Как найти область значений функции онлайн решение

Множество значений функции

Онлайн калькулятор поможет найти множество значений (область значений) функции — все значения, которые принимает функция в ее области определения. Другими словами, это те значения у, которые получаются при подстановке всех возможных значений х.

Теперь рассмотрим следующий вопрос: Как найти множество значений функции? Решение этой задачи с помощью онлайн калькулятора не составит труда, просто введите нужную функцию и получите ответ.

Синтаксис
основных функций:

xa: x^a
|x|: abs(x)
√x: Sqrt[x]
n√x: x^(1/n)
ax: a^x
logax: Log[a, x]
ln x: Log[x]
cos x: cos[x] или Cos[x]

sin x: sin[x] или Sin[x]
tg: tan[x] или Tan[x]
ctg: cot[x] или Cot[x]
sec x: sec[x] или Sec[x]
cosec x: csc[x] или Csc[x]
arccos x: ArcCos[x]
arcsin x: ArcSin[x]
arctg x: ArcTan[x]
arcctg x: ArcCot[x]
arcsec x: ArcSec[x]

arccosec x: ArcCsc[x]
ch x: cosh[x] или Cosh[x]
sh x: sinh[x] или Sinh[x]
th x: tanh[x] или Tanh[x]
cth x: coth[x] или Coth[x]
sech x: sech[x] или Sech[x]
cosech x: csch[x] или Csch[е]
areach x: ArcCosh[x]
areash x: ArcSinh[x]
areath x: ArcTanh[x]

areacth x: ArcCoth[x]
areasech x: ArcSech[x]
areacosech x: ArcCsch[x]
конъюнкция “И” ∧: &&
дизъюнкция “ИЛИ” ∨: ||
отрицание “НЕ” ¬: !
импликация =>
число π pi : Pi
число e: E
бесконечность ∞: Infinity, inf или oo

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Областью значений
некоторой функции

называется множество, содержащее все значения которые могут получиться при подстановке в эту функцию всех допустимых значений аргумента
.
Область значений функции обозначается
.

Проиллюстрируем вышесказанное на конкретном примере. Рассмотрим функцию
,
график которой изображён на рисунке.

График функции e^(-x^2)

Из графика нетрудно заметить, что какие бы значения аргумента

мы не подставляли бы в функцию
,
возвращаемое значение всегда будет находиться в диапазоне от

до
. Таким образом, область значений рассматриваемой функции от

до
.

Данный факт можно записать следующим образом:

Наш онлайн калькулятор построен на основе системы Wolfram Alpha. Калькулятор позволяет найти область определения практически любой функции.

bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} – twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{”} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • y=frac{x^2+x+1}{x}

  • f(x)=x^3

  • f(x)=ln (x-5)

  • f(x)=frac{1}{x^2}

  • y=frac{x}{x^2-6x+8}

  • f(x)=sqrt{x+3}

  • f(x)=cos(2x+5)

  • f(x)=sin(3x)

  • Показать больше

Описание

Изучите функции шаг за шагом

functions-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • Functions

    A function basically relates an input to an output, there’s an input, a relationship and an output. For every input…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    Исследование функции по-шагам

    Примеры исследуемых функций

    • График логарифмической функции
    • y = log(x)/x
    • График показательной функции
    • y = 2^x - 3^x
    • График степенной функции
    • f(x) = x^5 - x^4 + x^2 - x + 1
    • График гиперболы
    • f(x) = (x - 1)/(x + 1)
    • y = 1/x
    • График квадратичной функции
    • x^2 - x + 5
    • График тригонометрической функции
    • sin(x) - 2*cos(x) + 3*sin(2*x)
    • Функция Гомпертца
    • e/2*e^(-e^-x)
    • e^(-e^-x)
    • -1/2*e^(-e^-x)
    • e^(-1/4*e^(-x))
    • e^(-e^(-2*x))
    • Логистическая кривая
    • 1/(1 + exp(-x))

    Что исследует?

    • Область определения функции. Умеет определять только точки, в которых знаменатель функции обращается в нуль
    • Умеет определять точки пересечения графика функции с осями координат
    • Экстремумы функции: интервалы (отрезки) возрастания и убывания функции, а также локальные (или относительные) и глобальные (или абсолютные) минимумы и максимумы функции
    • Точки перегибов графика функции: перегибы: интервалы выпуклости, вогнутости (впуклости)
    • Вертикальные асимптоты: область определения функции, точки, где знаменатель функции обращается в нуль
    • Горизонтальные асимптоты графика функции
    • Наклонные асимптоты графика функции
    • Четность и нечетность функции

    Подробнее про Исследование функции.

    Указанные выше примеры содержат также:

    • модуль или абсолютное значение: absolute(x) или |x|
    • квадратные корни sqrt(x),
      кубические корни cbrt(x)
    • тригонометрические функции:
      синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
    • показательные функции и экспоненты exp(x)
    • обратные тригонометрические функции:
      арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
      арккотангенс acot(x)
    • натуральные логарифмы ln(x),
      десятичные логарифмы log(x)
    • гиперболические функции:
      гиперболический синус sh(x), гиперболический косинус ch(x),
      гиперболический тангенс и котангенс tanh(x), ctanh(x)
    • обратные гиперболические функции:
      гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
      гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x)
    • другие тригонометрические и гиперболические функции:
      секанс sec(x), косеканс csc(x), арксеканс asec(x),
      арккосеканс acsc(x), гиперболический секанс sech(x),
      гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
      гиперболический арккосеканс acsch(x)
    • функции округления:
      в меньшую сторону floor(x), в большую сторону ceiling(x)
    • знак числа:
      sign(x)
    • для теории вероятности:
      функция ошибок erf(x) (интеграл вероятности),
      функция Лапласа laplace(x)
    • Факториал от x:
      x! или factorial(x)
    • Гамма-функция gamma(x)
    • Функция Ламберта LambertW(x)
    • Тригонометрические интегралы: Si(x),
      Ci(x),
      Shi(x),
      Chi(x)

    Правила ввода

    Можно делать следующие операции

    2*x
    – умножение
    3/x
    – деление
    x^2
    – возведение в квадрат
    x^3
    – возведение в куб
    x^5
    – возведение в степень
    x + 7
    – сложение
    x – 6
    – вычитание
    Действительные числа
    вводить в виде 7.5, не 7,5

    Постоянные

    pi
    – число Пи
    e
    – основание натурального логарифма
    i
    – комплексное число
    oo
    – символ бесконечности

    Как пользоваться калькулятором функций

    1

    Шаг 1

    Введите проблему с функцией в поле ввода.

    2

    Шаг 2

    Нажмите Enter на клавиатуре или на стрелку справа от поля ввода.

    3

    Шаг 3

    Во всплывающем окне выберите нужную операцию. Вы также можете воспользоваться поиском.

    Калькулятор функций

    Что такое функции

    Понятие функции – одно из основных в математике. Функция – это зависимость одной переменной от другой. Другими словами, отношения между количествами. Любой физический закон, любая формула отражает такую взаимосвязь величин. Например, формула p = pgh – это зависимость давления жидкости p от глубины h.

    Можно дать другое определение. Функция – это конкретное действие над переменной. Это означает, что мы берем значение x, выполняем с ним определенное действие (например, возводим его в квадрат или вычисляем его логарифм) – и получаем значение y.

    Дадим еще одно определение функции – то, что чаще всего встречается в учебниках. Функция – это соответствие между двумя наборами, причем каждый элемент первого набора соответствует одному и только одному элементу второго набора.

    Функцию можно указать с помощью формулы или графически – с помощью графика.

    Добавить комментарий