Казалось бы, что может быть проще, посмотреть на маркировку, схему и определить, а что делать если ни того ни другого нет, как найти пусковую и рабочую обмотки? В этой статье я расскажу и покажу на примере, как происходит определение назначения обмоток, если нет при этом никаких маркировочных определителей.
Визуальный осмотр
В качестве примера я рассмотрю двигатель АЕР 16УХЛ4 220В 180Вт, оставшийся от старой советской стиральной машинки, ушедшей на металлолом.
Произведя визуальный осмотр я не нашел на нем никакой бирки с информацией кроме названия. Но поковырявшись в интернете и найдя описание, я понял, что передо мной двигатель с пусковой обмоткой с релейным пуском.
Из самого двигателя выходят четыре провода, два из них грязно-голубого цвета, а два красно-розового. Логично предположить, что это выводы пусковой и рабочей обмоток.
Но вот какие относятся к пусковой, а какие к рабочей, совершенно непонятно, ведь бирок никаких нет.
Но это вовсе не проблема, сейчас я расскажу как в такой ситуации разобраться с обмотками.
Сечение проводников
Первое на что следует обратить внимание, это на толщину проводов выходящих с электродвигателя. Пара концов, которые будут тоньше, относятся к пусковой обмотке, а та, которая будет толще, к рабочей.
В моем случае провода имеют одинаковое сечение, поэтому определить «на глаз» никак не получится.
Но если в конкретно вашем случае видна разница в толщине жил не стоит верить только диаметру, необходимо обязательно измерять сопротивление обмоток.
Зная этот факт, переходим к определению сопротивления обмоток
Измеряем сопротивление обмоток
Для этого берем мультиметр, выбираем функцию прозвонки (либо измерение сопротивления)
Затем берем концы прибора и два любых вывода с двигателя и производим измерение
В случае того, если прибор показал единицу, то следует взять другой конец и повторить измерение.
Как мы видим при таком расположении щупов сопротивление равно 16,5 Ом, запоминаем (записываем) эти данные. Теперь цепляем щупы мультиметра на два оставшихся вывода и так же производим замер сопротивления.
У нас получилось 34,4Ом. Так же записываем и сравниваем с предыдущими замерами.
А как известно рабочая обмотка всегда имеет меньшее сопротивление, по сравнению с пусковой. Зная это мы теперь точно можем утверждать что: первая обмотка (с красно-розовыми проводами) рабочая, а вторая обмотка (с голубой изоляцией) пусковая.
Для того чтобы не искать в дальнейшем где какая обмотка маркируем их. Для этих целей я обычно использую виниловую трубку.
Согласно современному ГОСТу вывода обмоток маркируются следующим образом:
1. U1 – U2 – рабочая обмотка.
2. B1- B2 – пусковая обмотка.
В нашем случае с двигателя выходило 4 провода, но попадаются двигатели, у которых производитель вывел только три.
В таком варианте поступаем следующим образом:
Замеры сопротивления производятся аналогично вышеописанным способом. Маркируем наши провода буквами A, B, C.
Замеряем сопротивление между концами “A – B”, потом между “B – C” и между выводами “A – C”
Теперь записываем (запоминаем) наши получившиеся значения
Из всего выше представленного делаем выводы:
А – В – рабочая обмотка
В – С – пусковая обмотка
А – С – последовательно соединенные пусковая и рабочая обмотки с суммарным сопротивлением.
Заключение
Таким образом, вы сможете легко и просто определить, где пусковая, а где рабочая обмотка в конкретно вашем двигателе у которого вообще может отсутствовать маркировка. Если статья оказалась вам полезна, то оцените ее лайком. Спасибо за ваше внимание!
Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».
Меня часто спрашивают о том, как можно отличить рабочую обмотку от пусковой в однофазных двигателях, когда на проводах отсутствует маркировка.
Каждый раз приходится подробно разъяснять, что и как. И вот сегодня я решил написать об этом целую статью.
В качестве примера возьму однофазный электродвигатель КД-25-У4, 220 (В), 1350 (об/мин.):
- КД — конденсаторный двигатель
- 25 — мощность 25 (Вт)
- У4 — климатическое исполнение
Вот его внешний вид.
Как видите, маркировка (цветовая и цифровая) на проводах отсутствует. На бирке двигателя можно увидеть, какую маркировку должны иметь провода:
- рабочая (С1-С2) – провода красного цвета
- пусковая (В1-В2) — провода синего цвета
В первую очередь я Вам покажу, как определить рабочую и пусковую обмотки однофазного двигателя, а затем соберу схему его включения. Но об этом будет следующая статья. Перед тем как приступить к чтению данной статьи рекомендую Вам прочитать: подключение однофазного конденсаторного двигателя.
Итак, приступим.
1. Сечение проводов
Визуально смотрим сечение проводников. Пара проводов, у которых сечение больше, относятся к рабочей обмотке. И наоборот. Провода, у которых сечение меньше, относятся к пусковой.
Зная основы электротехники, можно с уверенностью сказать: чем больше сечение проводов, тем меньше их сопротивление, и наоборот, чем меньше сечение проводов, тем больше их сопротивление.
В моем примере разница в сечении проводов не видна, т.к. они тонкие и на глаз их отличить не возможно.
2. Измерение омического сопротивления обмоток
Даже если разницу в сечении проводов видно не вооруженным глазом, то я Вам все равно рекомендую измерять величину сопротивления обмоток. Таким образом, мы заодно и проверим их целостность.
Для этого воспользуемся цифровым мультиметром М890D. Сейчас я не буду рассказывать Вам о том, как пользоваться мультиметром, об этом читайте здесь:
- 1 часть
- 2 часть
- 3 часть
Снимаем изоляцию с проводов.
Затем берем щупы мультиметра и производим замер сопротивления между двух любых проводов.
Если на дисплее нет показаний, то значит нужно взять другой провод и снова произвести замер. Теперь измеренное значение сопротивления составляет 300 (Ом).
Это мы нашли выводы одной обмотки. Теперь подключаем щупы мультиметра на оставшуюся пару проводов и измеряем вторую обмотку. Получилось 129 (Ом).
Делаем вывод: первая обмотка — пусковая, вторая — рабочая.
Чтобы в дальнейшем не запутаться в проводах при подключении двигателя, подготовим бирочки («кембрики») для маркировки. Обычно, в качестве бирок я использую, либо изоляционную трубку ПВХ, либо силиконовую трубку (Silicone Rubber) необходимого мне диаметра. В этом примере я применил силиконовую трубку диаметром 3 (мм).
По новым ГОСТам обмотки однофазного двигателя обозначаются следующим образом:
- (U1-U2) — рабочая
- (Z1-Z2) — пусковая
У двигателя КД-25-У4, взятого в пример, цифровая маркировка выполнена еще по-старому:
- (С1-С2) — рабочая
- (В1-В2) — пусковая
Чтобы не было несоответствий маркировки проводов и схемы, изображенной на бирке двигателя, маркировку я оставил старую.
Одеваю бирки на провода. Вот что получилось.
Для справки: Многие ошибаются, когда говорят, что вращение двигателя можно изменить путем перестановки сетевой вилки (смены полюсов питающего напряжения). Это не правильно!!! Чтобы изменить направление вращения, нужно поменять местами концы пусковой или рабочей обмоток. Только так!!!
Более подробно об этом читайте в моей статье про реверс однофазного электродвигателя.
Мы рассмотрели случай, когда в клеммник однофазного двигателя выведено 4 провода. А бывает и так, что в клеммник выведено всего 3 провода.
В этом случае рабочая и пусковая обмотки соединяются не в клеммнике электродвигателя, а внутри его корпуса.
Как быть в таком случае?
Все делаем аналогично. Производим замер сопротивления между каждыми проводами. Мысленно обозначим их, как 1, 2 и 3.
Вот, что у меня получилось:
- (1-2) — 301 (Ом)
- (1-3) — 431 (Ом)
- (2-3) — 129 (Ом)
Отсюда делаем следующий вывод:
- (1-2) — пусковая обмотка
- (2-3) — рабочая обмотка
- (1-3) — пусковая и рабочая обмотки соединены последовательно (301 + 129 = 431 Ом)
Для справки: при таком соединении обмоток реверс однофазного двигателя тоже возможен. Если очень хочется, то можно вскрыть корпус двигателя, найти место соединения пусковой и рабочей обмоток, разъединить это соединение и вывести в клеммник уже 4 провода, как в первом случае. Но если у Вас однофазный двигатель является конденсаторным, как в моем случае с КД-25, то его реверс можно осуществить путем переключения фазы питающего напряжения.
P.S. На этом все. Если есть вопросы по материалу статьи, то задавайте их в комментариях. Спасибо за внимание.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Содержание
- 1 Как проверить однофазный двигатель? Начнем с обмоток
- 1.1 Зачем в однофазном двигателе две обмотки
- 1.2 Учимся определять пусковые и рабочие обмотки в однофазных асинхронных двигателях
- 1.2.1 Осмотрите изделие
- 1.2.2 Сечение
- 1.2.3 Завершающий этап
- 2 Прозваниваем однофазный двигатель с помощью мультиметра
- 2.1 Подготовительный этап проверки
- 2.2 Непосредственная проверка двигателя мультиметром
- 3 Проверяем однофазный коллекторный электропривод
- 3.1 Частые неисправности
- 3.2 Редкие неисправности
- 4 Проверка конденсатора с использованием мультиметра
- 5 Поломки, которые можно определить с помощью мультиметра
- 5.1 Оборвалась обмотка
- 5.2 Проверка на наличие короткого замыкания
- 5.3 Проверка на наличие межвиткового замыкания
- 6 Проверка борно
- 7 Подведем итог
Прозвонка электродвигателя достаточно простой процесс, однако, требует знания некоторых тонкостей и внимательности от проверяющего. Какие знания понадобятся при подготовке к прозвону? Что представляет собой проверка привода с помощью мультиметра? Разберемся ниже.
Устройство однофазного двигателя
Как проверить однофазный двигатель? Начнем с обмоток
Несмотря на свое название, однофазные двигатели имеют в своей конструкции три катушки, и это минимум. Две из них расположены в статоре, из подключают параллельно. При этом непосредственно работает только одна, вторую называют пусковой. Клеммы рабочей и пусковой обмоток выводятся на корпус агрегата, с их помощью и происходит включение привода в сеть. К сети подключаются две из них, все оставшиеся выполняют коммутационные функции. Обмотку ротора делают короткозамкнутого типа.
Чтобы была возможность менять мощность прибора, катушку обмотки могут сделать из двух частей. Включаться они будут последовательно.
Определить вид обмотки (рабочая и пусковая) можно визуально, обратив внимание на сечение провода, измерив сопротивление с помощью тестера. О методах определения типа обмотки, чем они отличаются и зачем нужны в однофазном двигателе поговорим подробнее.
Схема обмоток в однофазном электродвигателе
Зачем в однофазном двигателе две обмотки
Все обсуждаемые сегодня электромоторы обладают небольшой мощностью. Магнитопровод однофазной машины содержит обмотку из двух фаз, это и есть основная (рабочая) и пусковая. Последняя не принимает участия в непосредственной работе двигателя.
Такая пара обмоток нужна, чтобы заставить ротор однофазного двигателя вращаться. Наиболее популярные из таких приводов делятся на два подтипа: электродвигатели с пусковой обмоткой и те, которые содержат в конструкции рабочий конденсатор.
В первом случае, так сказать, не рабочая обмотка будет включаться через конденсатор во время запуска мотора, а когда агрегат придет в нормальную работу (скорость вращения станет постоянной), она сама по себе выключиться. Привод же продолжит свою работу при одной рабочей обмотке. Информация о конденсаторе, как правило, указана на специальной табличке на корпусе электродвигателя. Его характеристики непосредственно зависят от конструкции.
Однофазные асинхронные двигатели, содержащие рабочий конденсатор, всегда работают с включенной вспомогательной обмоткой. Она включена через этот самый конденсатор. Емкость такого конденсатора также зависит от его конструктивных особенностей.
Другими словами, двигатель с пусковой обмоткой характерен ее выключением после запуска. А вот при конденсаторной вспомогательной обмотке – ее постоянной работой, т.к. включение происходит через постоянно работающий (даже во время работы привода) конденсатор.
Чтобы правильно проверить работоспособность двигателя с одной фазой, знания об устройства его обмоток критически важны. Отличия между ними можно найти в сечениях проводов, количестве витков, величине сопротивления каждой из них (их можно измерить разными типами тестеров или с помощью омметра).
Учимся определять пусковые и рабочие обмотки в однофазных асинхронных двигателях
Конечно, наличие маркировки на обмотке решает эту проблему. Но зачастую в случае ремонта или замены обмоток, она не сохраняется. Как же тогда определить, что за обмотка перед вами? Вот и обсудим теоретическую и практическую стороны определения пусковой и рабочей обмоток.
Осмотрите изделие
Для наглядности возьмем двигатель, который был установлен в стиральной машине времен СССР. Сама же машинка уже давно на металлоломе.
После визуального осмотра таблички-шильдика на двигателе, как и в этом случае, вы можете не обнаружить, все же возраст мотора говорит сам за себя. В таком случае всю информацию можно найти в интернете. Оказалось, что двигатель содержит в конструкции пусковую обмотку и релейный пуск.
Из двигателя виднеются четыре провода: два красноватых, два голубоватых. Эти провода еще называются выводами обмоток.
Из-за отсутствия какой-либо маркировки, сходу определить какая обмотка пусковая, а какая рабочая невозможно. В такой ситуации нужно обратить внимание на сечение проводников.
Сечение
Посмотрите на провода, которые выходят из электромотора, а точнее на их толщину. Одна из пар будет тоньше. Это пусковая обмотка. Следовательно, пара потолще – рабочая.
Может статься, что сечения на обоих проводах одинаковые, как и в нашей ситуации. Так зрительно определить, где какая обмотка также невозможно.
Но если разница в толщине проводов заметна, не доверяйтесь лишь диаметру. Чтобы определить обмотки наверняка, измеряйте их сопротивление.
На этом этапе переходим к измерению сопротивления обмоток однофазного двигателя переменного тока.
Завершающий этап
Измерение сопротивления
Для измерения сопротивления обмоток однофазного двигателя вам понадобится мультиметр, на котором нужно выбрать прозвонку (или режим измерения Ом).
Провода, выглядывающие из электродвигателя (любая пара) соединяем с любыми выводами мультиметра, измеряем значение.
Если видите на экране цифру один, повторите измерение с любым другим концом.
Запишите сопротивление, которое показала первая выбранная пара (в данном случае вышло 16,5 Ом). После этого щупы измерительного прибора нужно прицепить к двум оставшимся выводам (вторая пара проводов) и произвести замер.
Полученные данные тоже нужно записать, а затем сравнить с первым замером.
Сопротивление исправной рабочей обмотки всегда будет иметь значение меньше, чем у пусковой. Вторая пара проводов, согласно мультиметру, показала сопротивление 34,5 Ом. Таким образом, можно смело утверждать, что первая пара проводов говорит о принадлежности к рабочей обмотке, а вторая, соответственно, к пусковой.
Обозначьте обе обмотки, что в будущем не пришлось проделывать все это заново. Удобно для этого использовать небольшую трубочку из винила.
Маркировать концы проводов (выводы) можно по современным стандартам вот так:
- знаками U1-U2 помечают рабочую обмотку;
- знаками B1-B2 помечают пусковую обмотку.
Такие обозначения ставятся в тех случаях, когда из двигателя видно четыре вывода, в данной ситуации. Однако, на вашем пути может встретиться двигатель, который имеет лишь три вывода. Что делать?
Итак, замеры каждого из трех выводов будут выглядеть примерно вот так: 10 Ом, 25 Ом и 15 Ом. Завершив эти измерения нужно сразу приступать к другим. Важно найти вывод, который с двумя другими выводами будет показывать 10 и 15 Ом. Поздравляем! Вы наши сетевой провод. Вывод, показывающий сопротивление 10 Ом тоже сетевой, а тот, что показывал 15 Ом – пусковой. Он соединяется со вторым сетевым через конденсатор. Кстати, чтобы изменить направление вращения в таком двигателе, придется добираться до самой схемы обмотки.
Иногда измерения могут быть величиной 10 Ом, 10 Ом и 20 Ом. Это норма, такие обмотки тоже существуют, их также ставили на различные бытовые приборы. Особенность такого двигателя заключается в том, что какая именно обмотка будет пусковой, а какая рабочей совершенно не имеет значения. Они одинаковы. Просто одну из них (ту, что будет пусковой) нужно подключить через конденсатор.
Вот мы и разобрались в простых методах распознавания пусковых и рабочих обмотках. Теперь вы сможете отличить составляющие двигателя даже в том случае, когда отсутствует шильдик и любая маркировка выводов. Предлагаем немного подытожить всю информацию:
- В случае, когда двигатель имеет четыре вывода, нужно лишь найти концы обмоток, в которых легко разобрать после замера. Провод, где значение сопротивления меньше – обмотка рабочая, больше – пусковая. Подключить все выводы очень просто: напряжение 220 В подают на те провода, которые потолще. А один из кончиков проводов пусковой на один из рабочей. При этом на какой именно кончик вывода рабочей обмотки совершенно не важно, ведь направление вращения от этого никак не зависит (так же как и, скажем, от того, какой стороной вы вставите вилку в розетку). Вращение меняется лишь от того, какой конец пусковой обмотки вы подключили.
- При наличии лишь трех проводов в качестве вывода обмоток, сетевым будет тот, что показывает меньшее сопротивление, а также тот, что при соединении с другими двумя покажет сопротивление 10 Ом и 15 Ом (если измерения сопротивления каждого из них дало 10 Ом, 25 Ом и 15 Ом). Тот что показал 15 Ом на мультиметре – вывод пусковой обмотки.
- Если вы встретили трехпроводный вывод, и сопротивление каждого из проводов (как пример) 10 Ом, 10 Ом и 20 Ом, обе обмотки могут быть и рабочей и пусковой.
Прозваниваем однофазный двигатель с помощью мультиметра
Чтобы выявить поломки электропривода в бытовых условиях достаточно использовать мультиметр. Во-первых, не у всех есть дорогое профессиональное оборудование (это скорее исключение), во вторых для определения большинства неисправностей этого прибора хватает, что называется, с головой. Тут вам не понадобится никакой специалист.
Самая основная неисправность в однофазных двигателях – прекращение вращения. Причина такой поломки определяется достаточно просто. Мультиметр переключают в режим вольтметра и проверяют подачу напряжения, которое питает двигатель. Если с напряжением все в порядке, то неисправность заключается в самом двигателе, его электрической части. Это, конечно, говорит о необходимости проверки состояния подключения и прозвона обмоток. Для этого, зачастую, также используют мультиметр.
Но как правильно подготовится к прозвону двигателя?
Подготовительный этап проверки
Замкните щупы мультиметра
Перед проведением диагностики нужно выполнить следующие действия:
- Отключить машину от питания. Если сопротивление обмотки измеряется с включенной в электросеть цепью, агрегат сломается.
- Замкните щупы мультиметра, выставите нулевые значения. Это называется калибровкой аппарата.
- Внимательно проведите осмотр двигателя. Его могло затопить, некоторые детали могут отломаться, возможно, слышен запах горелого. В таком случае прозванивать агрегат бессмысленно, ведь поломка очевидна.
Асинхронные, однофазные и трехфазные, коллекторные – прозвон всех двигателей происходит одинаково. Методика не отличается в зависимости от разницы конструкций агрегатов, так как все различия столь основательны. Тем не менее в диагностике присутствуют некоторые детали, игнорировать которые нельзя.
Непосредственная проверка двигателя мультиметром
Наиболее распространенные поломки делятся на две основные группы:
- присутствует контакт там, где он не должен быть;
- отсутствует контакт там, где он должен быть.
Рассмотрим, как прозвонить однофазный электромотор переменного тока с помощью мультиметра. Он имеет две катушки, одна из которых рабочая, а вторая вспомогательная. На уровень работоспособности двигателя огромное влияние имеют уровень надежности контактов, качество изоляции и правильность намотки.
- Первое, что нужно сделать: проверить наличие замыкания на корпус. Тут нужно помнить о том, что все значения на мультиметре будут приблизительные. Чтобы получить точные данные, понадобится более дорогостоящие и точные устройства измерения.
- Значение измерений на приборе устанавливаются на максимальные.
- Щупы соединяют между собой. Так можно убедиться в том, что сам мультиметр исправен и правильно настроен.
- Затем один щуп соединяют с корпусом привода. При наличии контакта можно подсоединять и второй щуп. Отслеживайте показания.
- Если ничего не сбоит, коснитесь щупом вывода фаз.
- При качественной изоляции прибор будет показывать высокое значение сопротивления. Оно может быть в пределах даже нескольких тысяч мегаом.
Помните, что измеряя сопротивление изоляции мультиметром вы всегда будете получать высокие показания (выше допустимых норм). Это связано с тем, что электродвижущая сила прибора составляет максимум 9 В, а двигатель, как мы знаем выполняет работу с напряжением 220 В или даже 380 В. Закон Ома говорит, что величина сопротивления зависит от величины напряжения, поэтому нужно всегда делать скидку на разницу.
Обязательной является и проверка целостности обмоток. Нужно прозвонить все концы, которые входят в клеммную коробку агрегата. Если есть обрыв, то проверку лучше остановить, ведь логики в дальнейшей диагностике нет. Сначала нужно поработать над решением этой проблемы.
Зная правила и порядок прозвона однофазного двигателя с помощью мультиметра, вы можете легко экономить на диагностике и ремонте, когда в двигателе действительно присутствуют лишь мелкие поломки. Но если вы понимаете, что все не так просто или просто не понимаете, что не так с вашим электродвигателем, лучше отнести его к профессионалу, который проведет более детальную проверку дорогостоящими и чувствительными приборами.
Проверяем однофазный коллекторный электропривод
Чтобы определить и устранить неисправность в коллекторном двигателе, его, скорее всего, придется разобрать.
Частые неисправности
Перед разборкой обязательно посмотрите на искрение, которое обычно происходит в контактно-щеточном механизме. В случае, когда вы заметили повышенный уровень искрения, стоит проверить контакт щеток или наличие межвиткового замыкания в самом коллекторе.
Как правило, основные причины, по которым ломаются коллекторные двигатели – это сильно изношенные щетки или почерневший коллектор. Старые щетки обычно меняют на новые. Они должны быть одинаковыми по размеру и форме. Лучше всего ставить оригинальные детали (от того же производителя, что и двигатель). Менять их достаточно просто: снимается (сдвигается) фиксатор или откручивается болт. Некоторые модели двигателей могут требовать смены не только щеток, но и щеткодержателей. Не забудьте о подключении медного поводка к контакту.
В случае, если щетки в норме, проверьте пружины, которые их прижимают, растянув их.
При потемнении контактной части коллектора, почистите ее, используя мелкую наждачную бумагу. Ее еще называют нулевкой.
Временами на месте, где происходит контакт щеток и коллектора, образуется некая канавка. Ее нужно проточить, используя станок.
Однофазный коллекторный двигатель
Еще одной распространенной поломкой коллекторного однофазного двигателя можно назвать износ подшипников. Если корпус сильно вибрирует во время работы и подшипники бьются, они точно подлежат замене. Если запустить ситуацию, упомянутые детали будут касаться ротора и статора, что может быть чревато их неизбежной заменой. Это уже сложнее и дороже.
Редкие неисправности
Намного реже в коллекторных двигателях случаются обрывы и выгорания обмоток и мест подключения. Также редко можно встретить оплавления, замыкания ламеля пылью графита.
Чтобы избежать таких поломок, во время внешнего осмотра нужно всегда обращать внимание на:
- цельность обмоток;
- наличие почернения на обмотках;
- прочность контакта ламелей коллектора с выводами проводов. Если есть необходимость, то их нужно перепаять;
- количество графитовой пыли между ламелями коллектора. Обязательно удалите пыль, если нужно;
- присутствие горелого запаха (это может быть изоляция).
При визуальном осмотре вы обнаружили, что обмотка статора/ротора повреждена? Сдайте ее на перемотку или просто замените новой.
К сожалению, повреждение обмотки не всегда можно увидеть невооруженным глазом, поэтому если очевидных поломок нет, прозвоните их с помощью мультиметра.
Проверка конденсатора с использованием мультиметра
Проверка конденсатора мультиметром
Конечно, наиболее надежный способ проверить неисправный однофазный двигатель с конденсатором – использовать омметр для измерения величины сопротивления. Прибор точно покажет сопротивление конденсатора, а по этому уже можно делать выводы о том, насколько целостным является диэлектрик, от чего напрямую зависит исправность электронного устройства.
В бытовых условиях, когда точных значений от вас никто не требует, а вам нужно лишь узнать причину поломки, достаточно будет и мультиметра.
Алгоритм проверки следующий:
- мультиметр переключается в режим измерения Ом;
- затем нужно выставить верхнее значение сопротивления – бесконечность;
- произвести измерение сопротивления конденсатора на выводах.
Если сопротивление будет низким (а это любое значение, помимо бесконечности), то устройство, которое проходит тест, сломано. Тут либо пробит диэлектрик, либо вытек электролит.
Стрелка циферблата на тестере показывает небольшое отклонение, а затем возвращается на исходную позицию? Конденсатор исправен и потихоньку набирает емкость.
Стрелка прибора, которая отклонилась, а затем зафиксировалась на одном из значений также свидетельствует о поломке электронного устройства.
Поломки, которые можно определить с помощью мультиметра
Как мы уже выяснили, мультиметр – незаменимый прибор для быстрой и многопрофильной проверки двигателей на исправность. Он найдется у всех профильных мастеров и во многих домашних мастерских. С его помощью можно выявить основные виды поломок электроприборов, и двигатели не исключение.
Наиболее частыми поломками в электродвигателях и других машинах такого типа являются следующими:
- оборвавшаяся обмотка на роторе или статоре;
- наличие короткого замыкания;
- наличие межвиткового замыкания.
Каждая проблема из списка выше заслуживает более близкого ее рассмотрения.
Оборвалась обмотка
В обрыве обмотки нет ничего удивительного, это самая распространенная неисправность в работе электроприводов. Произойти поломка может и в статоре, и в якоре.
Если в обмотке оборвалась одна фаза, то в этом месте тока не будет, а вот во второй фазе показатель тока будет завышен. Измерить это можно с помощью того же мультиметра в режиме амперметра.
В целом, эта поломка равнозначна потере фазы. Например, если обрыв внезапно произошел в то время, когда привод был в работе, двигатель начинает резко терять мощность и перегреваться. Если защита на агрегате работает правильно, то он отключится. Для решения проблемы, в основном, требуется перемотка.
В ситуации, когда обрыв произошел в роторе, частота колебания тока будет равна частоте колебания и скольжения напряжения. Из внешних признаков: сильное гудение и вибрирование, снижение оборотов привода.
Все это лишь причины поломок, но вот обнаружить их можно только если прозвонить каждую обмотку электромотора, измерив их сопротивление.
Пусковую и рабочую обмотку прозванивают в тех однофазных двигателях, которые работают при переменном напряжении величиной 220 В. Пусковая обмотка должна выдавать сопротивление, большее, чем у рабочей на 150%.
Для быстрой проверки работоспособности электродвигателя, на мультиметре также можно использовать функцию, которая называется «Прозвонка». Если цепь исправна, вы будете слышать характерный звук прибора, а в некоторых моделях присутствует и световой индикатор. Но если в цепи есть обрыв, звука вы не услышите.
Проверка на наличие короткого замыкания
Одна из привычных всем поломок в электрических двигателях – короткое замыкание на корпус. Чтобы найти поломку такого рода с мультиметром, проделайте следующее:
- установите измерение сопротивления прибором на максимальное;
- проверьте исправность самого мультиметра, соединив его щупы между собой;
- один из щупов подсоедините к корпусу двигателя;
- оставшийся по очереди присоединяйте к каждой из фаз.
Если двигатель, который вы проверяли, исправен, то сопротивление будет показывать сотни и даже тысячи мегаом.
Сделать исследование на предмет короткого замыкания в режиме «Прозвонка» еще легче. Нужно проделать те же действия, и если услышите звук (как при прозвонке обмотки), это будет свидетельствовать о наличии нарушений в целости изоляции обмотки, а также наличии короткого замыкания на корпус.
Надо отметить, что поломка такого типа не просто носит негативное влияние на сам двигатель, но опасна для жизни людей, работающих с машиной (если нет нужных средств защиты).
Проверка на наличие межвиткового замыкания
Проверка обмоток статора на межвитковое замыкание
Последний вид поломки (из самых популярных) – это наличие межвиткового замыкания.
Межвитковое замыкание – короткое замыкание, происходящее на одной катушке электродвигателя, между ее витками. Внешне такая неполадка проявляется в сильном гудении и заметном снижении мощности.
Обнаружение такой поломки проводится с помощью нескольких способов. Основные из них – токовые клещи и наш любимы мультиметр.
Во время диагностики измеряется значение тока во всех фазах (обмотка статора) по отдельности. Если одна из них покажет завышенный результат, значит, там есть межвитковое замыкание.
Проверка борно
Если вы все прозвонили согласно инструкции выше, но не избавились от подозрений в неисправности, вскройте борно электродвигателя. Это второе название клеммной коробки. Часто и густо бывает, что крепеж в коробке недостаточно крепко затянут. Провода там тоже могут отгореть. В случае использования гаек для соединения, проверьте протяжку верхней (она прикручивает проводник) гайки и осмотрите ту гайку, что служит для удержания вывода обмоток, которые уходят в двигатель.
Подведем итог
Если следовать всем инструкциям и указаниям в статье, то мультиметром можно обнаружить большинство наиболее распространенных поломок в однофазном электродвигателе, в том числе наличие межвиткового замыкания, короткого замыкания на корпус и обрыва обмоток.
Однако не всегда можно определить толщину проволоки невооруженным глазом, а иногда разница между ними вообще не заметна человеческому глазу.
Несмотря на свое название, однофазные двигатели имеют две фазные обмотки: основную и вспомогательную. Таким образом, существуют бифилярные и конденсаторные двигатели, и если первые имеют пусковую обмотку, то вторые – пусковой конденсатор. В то время как последний тип имеет вспомогательную обмотку, которая постоянно находится в работе, первый отключает ее от сети, как только двигатель достигает скорости. Таким образом, вспомогательная катушка включается на короткий промежуток времени.
Двигатель должен запускаться даже без цепи конденсатор+фазопереключающая катушка – просто вручную поверните ротор двигателя в любом направлении. И при 4 мкФ без нагрузки он, безусловно, должен справиться с этой задачей.
И проверьте, к какой обмотке относится пятый вывод, он не сам по себе, как у Матроскина.
Как определить рабочие и пусковые обмотки однофазного двигателя
17 февраля 2014 года. Категория: Электродвигатели, Электрооборудование
Здравствуйте, уважаемые читатели и посетители сайта “Записки электрика”.
Меня часто спрашивают, как можно отличить рабочую обмотку от пусковой в однофазных двигателях, если на проводах нет маркировки.
Каждый раз мне приходится подробно объяснять, что и как. Поэтому сегодня я решил написать об этом целую статью.
В качестве примера приведу однофазный электродвигатель КД-25-У4, 220 (В), 1350 (об/мин):
- KD – конденсаторный двигатель
- 25 – мощность 25 (Вт)
- U4 – климатическая версия
Вот его внешний вид.
Как вы можете видеть, на проводах нет никакой маркировки (цветной или цифровой). На заводской табличке двигателя можно увидеть, какую маркировку должны иметь провода:
- работа (C1-C2) – красные провода
- пуск (B1-B2) – синие провода
Сначала я покажу, как определить рабочую и пусковую обмотки однофазного двигателя, а затем сделаю схему его включения. Но об этом будет рассказано в следующей статье. Прежде чем вы начнете читать эту статью, я рекомендую вам прочитать: Подключение однофазного конденсаторного двигателя.
1 Сечение провода
Визуально проверьте сечение проводов. Пара проводов с большим сечением относится к рабочей обмотке. И наоборот. Провода с меньшим сечением относятся к пусковой обмотке.
Если вы знаете основы электротехники, то можете с уверенностью утверждать: чем больше площадь поперечного сечения проводов, тем меньше их сопротивление, и наоборот, чем меньше площадь поперечного сечения проводов, тем больше их сопротивление.
В моем примере разница в сечении проводов не видна, потому что они тонкие и визуально не различимы.
2. Измерение омического сопротивления обмоток
Даже если разница в сечении проводов заметна нетренированному глазу, я все равно рекомендую измерить значения сопротивления обмоток. Таким образом можно также проверить целостность обмоток.
Для этого мы будем использовать цифровой мультиметр M890D. Я не буду сейчас рассказывать вам, как пользоваться мультиметром, об этом вы можете прочитать здесь:
Снимите изоляцию с проводов.
Затем возьмите щуп мультиметра и измерьте сопротивление между любыми двумя проводами.
Если на дисплее нет показаний, возьмите другой провод и повторите измерение. Измеренное значение сопротивления теперь равно 300 (Ом).
Это позволило найти выводы одной обмотки. Теперь подключите щуп мультиметра к оставшейся паре выводов и измерьте другую обмотку. Результат – 129 (Ом).
Вывод таков: первая обмотка – пусковая, вторая обмотка – рабочая.
Чтобы не перепутать провода при подключении двигателя в будущем, готовим маркеры для разметки. Для разметки я обычно использую либо изоляционные трубки из ПВХ, либо трубки из силиконовой резины нужного диаметра. В данном примере я использовал силиконовую трубку диаметром 3 (мм).
Согласно новым национальным стандартам, обмотка однофазного двигателя маркируется следующим образом:
- (U1-U2) – оперативный
- (Z1-Z2) – начало
Для двигателя КД-25-У4, взятого в качестве примера, цифровое обозначение выполнено старым способом:
- (C1-C2) – оперативный
- (B1-B2) – начало
Чтобы избежать расхождений в маркировке проводов и схемы, которая отображается на пластине двигателя, я оставил старую маркировку.
Наклеивание бирок на провода. Вот что я получил.
Для справки: Многие ошибаются, говоря, что скорость двигателя можно изменить, перевернув сетевую вилку (поменяв полюса питающего напряжения). Это неверно. Для изменения направления вращения необходимо поменять местами концы пусковой или беговой обмотки. Это единственный путь.
Это происходит, когда в клеммную колодку однофазного двигателя вставляется 4 провода. Это также имеет место, если к клеммной колодке подключены только 3 провода.
В этом случае рабочая и пусковая обмотки соединяются не в клеммной коробке, а внутри корпуса двигателя.
Действуйте аналогичным образом. Измерьте сопротивление между каждым проводом. Назовем их мысленно 1, 2 и 3.
Вот что я получил:
- (1-2) – 301 (Ом)
- (1-3) – 431 Ом
- (2-3) – 129 Ом
Из этого мы делаем следующий вывод:
- (1-2) – пусковая обмотка
- (2-3) – рабочая обмотка
- (1-3) – пусковая и рабочая обмотки соединены последовательно (301 + 129 = 431 Ом)
Для справки: С помощью такого соединения обмоток можно также изменить направление вращения однофазного двигателя. Если вы действительно хотите, вы можете открыть корпус двигателя, найти соединение между пусковой и беговой обмотками, отсоединить соединение и проложить 4 провода к клеммной коробке, как в первом случае. Но если ваш однофазный двигатель является конденсаторным, как в моем случае с KD-25, вы можете изменить его направление, изменив фазу питающего напряжения.
P.S. На этом пока все. Если у вас есть вопросы по статье, не стесняйтесь задавать их в разделе комментариев. Спасибо за внимание.
143 комментария на “Как определить рабочую и пусковую обмотки однофазного двигателя
Добрый вечер Дмитрий, я сам работаю электриком в ETL. У меня вопрос об испытании кабельной линии из сшитого полиэтилена. Испытывали ли вы это, какое напряжение подавалось, каковы были токи утечки, сколько времени требуется для проверки одной фазы? Заранее благодарю вас, если вы сможете отправить свой ответ мне по адресу
по почте.
Привет Артем, добро пожаловать. я писал о тестировании кабелей из сшитого полиэтилена в комментариях в этой статье.
Здравствуйте Дмитрий. а не могли бы вы написать подробную статью по масляным выключателям, (соленоид, контактор включения, катушка отключения, их испытания, измерения производительности), а также испытания силового трансформатора и его измерения. очень нужно, есть нюансы на мой взгляд.
SLV, я планировал написать эти статьи, особенно о различных типах приводов (ПЭ-11, ПС-10, ПЭ-21 и др.), о высоковольтных масляных и вакуумных выключателях, устанавливаемых как в камерах КСО, так и на тележках, но боюсь, что многим посетителям этого сайта это будет не интересно. Я откладывал… все это время.
Здравствуйте Дмитрий!
Вы очень хорошо все объяснили, спасибо вам большое! Не могли бы вы объяснить, что означает для автоматических выключателей, например, 6 кА или 35 кА, если они рассчитаны на одинаковый ток срабатывания? И почему такая разница в цене?
Борис, значения 4,5 (кА), 6 (кА), 10 (кА) и т.д. относятся к электродинамическому сопротивлению короткого замыкания защитного аппарата, т.е. показывают, насколько выключатель устойчив к короткому замыканию. Для дома (квартиры) достаточно 4,5 (кА), так как линии от подстанции до дома и от распределительного устройства до квартир достаточно длинные и имеют высокое активное сопротивление, что приводит к снижению токов короткого замыкания до величины 0,5-1,5 (кА), а часто даже меньше.
Просмотрел весь интернет,нифига не могу понять,в книге на работе не могу разобраться и все.Кстати,можно сказать,что все таки значит тангенциальные диэлектрические потери масла,что все говорят об этом на работе,и никто так и не знает точно).
У меня есть электронная таблица для сравнения мощности двигателя с мощностью конденсатора, но мой друг попросил меня подключить трехфазный двигатель в его гараже.
Если у вас есть такая таблица, пожалуйста, опубликуйте ее или пришлите мне по электронной почте.
При всем уважении, Николай.
Николай, читайте здесь. Можно рассчитать емкость рабочих и пусковых конденсаторов в зависимости от мощности двигателя.
Здравствуйте, позволю себе не согласиться с вами по поводу невозможности изменить направление вращения однофазного двигателя, если из него выходят только три провода. Сегодня перепаял китайский электрический тельфер, открыл коробку с клеммами и конденсаторами, а из мотора выходят три провода, но реверс работает.
Я не понимаю последний чертеж.kak подключить к сетке с катодом. Двигатель 2.2 кВт 3000 об/мин на выходе 4 провода, открутил, похоже, что 2 припаяны к куче.Так что выходные клеммы 3.ПОЖАЛУЙСТА, КОНТАКТ.
Схема такая же, как показана на корпусе двигателя из статьи. Выход рабочей обмотки С1 и общий (С2+В1) подключены к сети 220 (В). Между пусковой обмоткой B2 и рабочей обмоткой C1 подключен конденсатор.
Добрый вечер, я так понимаю, что конденсатор вставляется там, где сопротивление 301 (Ом) и где 129 (Ом) идет на сеть.
Да, рабочая обмотка подключена непосредственно к сети 220 (В), а пусковая обмотка подключена через конденсатор.
Владимир: “Здравствуйте, я не согласен с вами в том, что невозможно изменить направление вращения однофазного двигателя, если из него выходят только три провода. Сегодня перебрал китайский электротельфер, открыл коробку с клеммами и конденсаторами, а там три провода из мотора вытащил, но реверс работает.
А почему вы решили, что у тельфера однофазный, а не трехфазный двигатель?
И еще один вопрос – зачем подключать конденсатор, если у вас уже есть пусковая обмотка.
Конденсатор необходим для создания сдвига фаз и создания вращающегося магнитного поля. Только однофазные коллекторные двигатели работают без конденсатора, асинхронные – нет.
Подойдет ли простой диммер мощностью 0,8 кВт для регулирования скорости такого двигателя, подойдет двигатель мощностью 0,2 кВт с 1000-1500 об/мин.
Алексей, вы можете использовать этот поворотный (механический) диммер. И да, в целом, я не рекомендую использовать диммер для регулирования скорости вращения двигателя.
Доброе утро, Дмитрий!
Очень интересный сайт! Спасибо за ваши усилия!
По этой статье есть вопрос: “КД 120-4 220w” вывод с тремя проводами одинакового сечения, 1-3 фаза с сопротивлением считывания 43, а 2-й провод ни с 1 ни с 3 сопротивление на нуле.После подачи напряжения на 1-3, происходит залипание, но после пинка руля. Скажите Дмитрий, это надо будет разбирать и смотреть еще, куда подключен 2-й провод?
Залим, пожалуйста, объясните, что сопротивление между 2-й клеммой и остальными равно нулю или обрыву?
Тестер показывает ноль Дмитрий
Залим, этого не может быть. Измерьте еще раз.
Да, Дмитрий, извините, я его измерил, он показывает один, я запутался в них, … это перелом?
Скорее всего, обрыв в соленоиде стартера.
Здравствуйте, подскажите, пожалуйста, должна ли обмотка стартера быть включена или ее нужно отсоединить после запуска двигателя?
Миша, обмотка конденсатора должна быть включена, а обычная выключена. Вот как это, похоже, работает.
А если бирка нечитаема, как определить, однофазный или трехфазный двигатель?
И если это однофазный двигатель, как узнать, является ли он конденсаторным или нет?
Я собрал схему для двигателей, но при включении двигатель не запускается, он гудит как трансформатор. ÒМожет быть, неисправность между витками или что-то еще.
Николай, вам необходимо измерить сопротивление обмоток запуска и запуска, чтобы проверить, не неисправны ли они. Это можно сделать с помощью цифрового мультиметра или другого оборудования.
Подскажите пожалуйста у меня на двигателе выходят 4 провода все они звонятся между собой, как мне узнать назначение каждого провода и как их соединить
Виталий, скажите мне тип (модель) вашего двигателя.
Доброе утро, пожалуйста, проконсультируйте меня по одной проблеме. Однофазный двигатель с конденсаторным запуском. Мой двигатель время от времени не заводится, он продолжает гудеть. Конденсаторная батарея состоит из трех конденсаторов 2MbGP-2 емкостью 2 мкФ 630 В каждый. Конденсаторы на тестере показывают полную емкость. Чем грозит увеличение емкости конденсатора и чем грозит снижение напряжения конденсатора с 630 В до 450 В? Спасибо! Сопротивление обмотки 50 Ом, стартовое 20 Ом марку рабочего двигателя сейчас не помню.
Вадим, если двигатель гудит, значит, нет крутящего момента. Это может произойти по следующим причинам: либо конденсаторы неисправны (отсутствуют или имеют низкую емкость), либо произошел перекос в одной из обмоток двигателя. Лучше всего начать сразу и заменить старые конденсаторы на новые. Емкость не нужно увеличивать, просто немного в ту или иную сторону, но вместо 630 (В) можно смело использовать 450 (В).
Хороший день. Конденсаторы показывают номинальную емкость. найти другие у нас оказалось проблемой. либо большая или меньшая емкость, либо размер не подходит. либо ценник не соответствует действительности и срок доставки. Как я понимаю, если увеличить с шести до почти семи мкФ, то особых проблем не будет? Двигатель во включенном состоянии работает пятнадцать секунд. проблема запуска не систематическая. как рассчитать межвитковое замыкание? на трехфазном асинхронном устройстве известно. Спасибо.
Здравствуйте, эксперты, а как быть с непредсказуемыми изменениями направления вращения двигателя. Но если я использую обмотку меньшего сечения в качестве рабочей обмотки, все работает нормально, и после замены контактов он правильно меняет направление вращения и работает около часа без перегрева.
Доброе утро, сегодня решил запустить вытяжку над плитой, регулятор оборотов двигателя уже давно отжил свое…. со светом проблем нет, но есть четыре провода от электродвигателя, что с ними делать? Я вынул все сенсорные кнопки, поставил, Вытяжка KRONA GALA с тремя скоростями вентилятора…. Можете ли вы помочь мне с проводкой?
Как вы обнаружили, что соленоид стартера имеет большее сопротивление, чем рабочая обмотка?
Здравствуйте, у меня есть двигатель 2DAK71-40-1.0-u2 у него четыре провода (черный, красный, серый, белый, они все соединены вместе, подскажите пожалуйста как его подключить?
Вы уверены, что этот двигатель работает?
добрый вечер такая проблема двигатель на пилораме 380в подключен пме-211 и тре-25 работал теперь он еле вращается или остается на месте что делать подскажите спасибо.
Вручную вращать? И еще у пилорам разная мощность двигателя, какой у вас?
Сначала измерьте напряжение на клеммах двигателя, я так думаю!
Здравствуйте у меня вопрос. есть двигатель выходят 4 провода обозначены с1 с2 с3 и обозначены 0 и ноль изолирован на землю не один из проводов не бьется как подключить к 220в и еще провод ноль прозвонить и с1 с2 с3 спасибо !
Сначала посмотрите это, соединение звезд – http://zametkielectrika.ru/soedinenie-zvezdoj-i-treugolnikom/
а затем найдите 220v три фазы, это даст вам схемы и некоторые данные для расчета конденсаторов. Но вам нужно знать хотя бы что-то о токе и мощности.
ZIKA:
04.06.2015 в 14:27
Назначение выводов выглядит как для трехфазного двигателя с обмотками, соединенными звездой, и снятой нулевой точкой. C1, C2, C3 – начала обмоток, 0 – нулевая точка звезды.
Измерьте сопротивление C1-0, C2-0, C3-0. У хорошего двигателя сопротивление обмоток должно быть примерно одинаковым. Сопротивление цепей C1-C2, C2-C3, C3-C1 должно быть одинаковым между собой и в 2 раза больше сопротивления C1-0. При подключении асинхронного двигателя точка “звезда” не используется. Снова утеплите его.
Если вы можете прочитать номинальное напряжение и мощность на заводской табличке, тогда вы можете перейти к расчету конденсатора, как написал SAW: 04/06/2015 в 15:24.
Если напряжение двигателя составляет 380 В, при подключении к 220 В его нагрузочная способность явно снизится. Но в режиме близком к холостому ходу он будет работать.
Если заводская табличка совсем не читается, начните с подключения к трехфазной сети. Если это работает, используйте потребляемый ток для оценки производительности двигателя.
Если трехфазная линия недоступна, начните с нескольких микрофарад и кратковременно подайте напряжение. Продолжайте увеличивать мощность, пока она не начнет работать.
Стоит ли этот двигатель затрат и риска? Проще купить однофазный двигатель 220 В, который заведомо исправен.
Спасибо за эту статью, простую, ясную и конкретную. Я освежил свою память, тем более что в настоящее время я имею дело с итальянским однофазным двигателем….. Мне еще не удалось заставить его работать. Он имеет 5/пять проводов на выходе. Я думаю, что конденсатор слишком мал, я подключил 4mc, в то время как на заводской табличке двигателя указано 20mf. Пока, и спасибо.
Двигатель должен запускаться даже без конденсатора и цепи переключения фаз – просто вручную поверните ротор двигателя в любом направлении. И с 4 мкФ без нагрузки он определенно должен запуститься.
Проверьте, к какой обмотке относится пятый вывод, он не такой, как у Матроскина.
Здравствуйте, подскажите пожалуйста, есть эл.двигатель маленький ватт на 300 без опознавательных знаков, из него выходят 4 провода, как я понимаю это концы рабочей и пусковой обмоток. 4 провода прозваниваются вместе, сопротивление от 50 до 250 Ом. Как определить, какая обмотка какая?
Ваш двигатель явно неисправен
Если он однофазный, то может быть либо три провода от двух обмоток с общей точкой, но без реверса, либо четыре с реверсом, и в последнем случае обмотки не должны соединяться никаким образом.
Если он трехфазный, то на общем проводе должно быть три одинаковых сопротивления (+/- разница в несколько Ом), или удвоенное, если вы соедините две обмотки последовательно в звезду без общего провода.
И третий вариант – это может быть что угодно…
Все устроено, что в наше время большая редкость.
Скажите, пожалуйста, можно ли сделать точило из такого специфического двигателя? Для заточки ножей, отверток, ножниц, сверл?
Любая мощность начинается от 50 Вт, а если вы не давите на руль, то и 30 вполне достаточно. Я пользуюсь таким уже около 30 лет, от какого-то магнитофона, 50…100 мм камень достаточно хорош для домашнего использования. Есть также трехфазный двигатель с, как его там, сначала он работал в звезде через конденсаторы, одна обмотка умерла, теперь, чтобы его раскрутить, нужно вручную повернуть его в нужную сторону.
Для больших камней 150 мм… мм, а для более крупных деталей нужно искать более мощные, от 300 Вт. Обороты, я думаю, не более 1500, иначе ваши детали сгорят при заточке.
Добавлю – именно такой КД-25 (фото в начале статьи) и стоит на одной из мельниц.
Однако если двигатель уже был отремонтирован или на нем нет маркировки, этот метод контроля не эффективен. В первом случае внутренняя отделка двигателя могла быть полностью изменена во время капитального ремонта, а во втором случае невозможно четко расшифровать цветную маркировку. Более того, иногда разметка может вообще отсутствовать. Поэтому в таких ситуациях лучше использовать другой, более надежный метод.
Первое, что нужно сделать, это попытаться найти различия между катушками визуально (по сечению провода).
Логически можно предположить следующее:
- Когда двигатель запускается, ток в соленоиде стартера увеличивается в несколько раз;
- для предотвращения перегрева и ожогов проволока должна быть достаточно толстой;
- в любом случае, эти провода толще, чем прутья рабочей катушки при нормальных условиях эксплуатации.
Важно!
При визуальном осмотре катушки достаточно распознать пару жил большего сечения, которые и являются катушкой машины. В этом случае сердечники с меньшим поперечным сечением относятся к начальной катушке. Совсем другое дело, когда разница в их фактических сечениях почти незаметна на глаз (как в случае с рассматриваемым двигателем).
Пусковые и рабочие характеристики рассматриваемого двигателя плохие. КПД значительно ниже, чем у конденсаторного двигателя той же мощности, из-за значительных электрических потерь в закороченной обмотке.
Однофазные двигатели 220 В: детали подключения
В настоящее время трудно найти человека, который не знает, что такое однофазный электродвигатель. Однофазные электродвигатели 220 В выпускаются серийно уже много лет. Они пользуются большим спросом в сельском хозяйстве, домашних хозяйствах, промышленности, частных и государственных мастерских. Очень популярны однофазные двигатели 220 В.
Основные понятия
Асинхронный двигатель 220 В, однофазный, требует питания переменным током; сеть для подключения такой машины должна быть однофазной. Однофазные двигатели 220 В работают при напряжении сети 220 В и частоте 50 Гц.
Эти электрические величины поддерживаются во всех бытовых электрических сетях, в домах, квартирах, коттеджах, дачах, по всей России, а в США напряжение в бытовой электрической сети составляет 110 В.
Напряжение сети в нашей стране бывает однофазным, трехфазным и другими видами электрических сетей.
Применение однофазных двигателей
Эти двигатели используются в приборах с низкой мощностью.
- Бытовая техника.
- Однофазные двигатели используются в приборах с небольшой мощностью.
- Электрические насосы.
- Станки для обработки сырья.
Заводы выпускают однофазные электродвигатели 220 В малой мощности различных моделей, частоты вращения и мощности. Стоит отметить, что однофазные двигатели уступают трехфазным по многим параметрам.
- КПД таких двигателей ниже.
- Пусковой момент.
- Мощность.
- Перегрузочная способность трехфазных двигателей выше, чем у однофазных.
Эти значения ниже, если трехфазные двигатели одинакового размера.
Конструкция электродвигателя
Однофазные двигатели 220 В имеют две фазы, но основную работу выполняет одна из них, поэтому такие двигатели называются однофазными. Двигатель состоит из следующих частей.
- Статор, который является неподвижной частью двигателя.
- Ротор, который является подвижной (вращающейся) частью двигателя.
Однофазный электродвигатель можно описать как асинхронный электродвигатель, имеющий рабочую обмотку на неподвижной части и подключенный к однофазной сети переменного тока.
Пусковая катушка
Для того чтобы однофазный двигатель мог самостоятельно запускаться и вращаться, устанавливается вторая катушка. Он предназначен для запуска двигателя.
Пусковая катушка устанавливается под углом 90° к рабочей катушке. Чтобы добиться сдвига тока, в цепи необходимо установить фазосдвигающее звено.
В качестве фазосдвигающего звена можно использовать несколько средств.
- Активный резистор.
- Конденсатор.
- Индуктор.
Ротор и статор двигателя металлические. Для ротора или статора требуется специальная электротехническая сталь класса 2212.
Двухфазные и трехфазные двигатели
Возможно подключение 2-фазного или 3-фазного двигателя к однофазному питанию. Такие двигатели иногда ошибочно называют однофазными. Это неправильное название – правильным термином является “двухфазный (или трехфазный) двигатель, подключенный к однофазному источнику переменного тока”. Простое подключение двух- или трехфазного двигателя к однофазному источнику питания не даст результата. Необходима согласующая цепь.
Существует несколько таких схем, и согласование может быть выполнено с помощью конденсаторов. Когда конденсаторы подключены к двигателю, как показано на электрической схеме, двигатель будет работать, и все фазы двигателя будут под напряжением, поэтому необходимо следить за тем, чтобы ротор вращался.
Принцип работы
Переменный электрический ток создает в статоре магнитное поле, которое имеет два поля равной амплитуды и частоты, но противоположных направлений.
Эти поля взаимодействуют с неподвижным ротором, и поскольку поля направлены по-разному, ротор начинает вращаться. Если в двигателе нет пускового механизма, ротор будет стоять на месте.
Ротор, однажды запущенный в одном направлении, будет продолжать вращаться в том же направлении.
Запуск двигателя
Двигатель запускается магнитным полем, магнитное поле, действующее на ротор, заставляет его вращаться. Основная и дополнительная катушки создают магнитное поле, причем начальная катушка меньше и соединена с дополнительной катушкой через конденсатор, индуктор или активный резистор.
Если двигатель имеет низкую мощность, пусковая фаза замыкается накоротко. Для запуска такого двигателя электрический ток может быть подключен к соленоиду стартера только временно, максимум на три секунды. Для этого используется кнопка пуска. Кнопка вставляется в стартер.
При нажатии кнопки пуска ток подается одновременно на рабочую катушку и катушку пускателя, двигатель работает как двухфазный двигатель в течение первых секунд запуска, но через три секунды ротор уже набрал скорость, двигатель запустился, и кнопка отпускается. Подача питания на соленоид стартера прекращается, но подача питания на рабочую обмотку не прекращается, так работает стартер, и устройство в этом случае работает как однофазный двигатель.
Помните, что не следует удерживать кнопку стартера слишком долго, так как соленоид стартера может перегреться и выйти из строя, он рассчитан на работу в течение нескольких секунд. Для обеспечения безопасности в корпус однофазного генератора может быть встроено тепловое реле или центробежный выключатель.
Конструкция центробежного выключателя такова, что когда ротор набирает скорость, центробежный выключатель отключается без вмешательства человека. Пусковой ток однофазного двигателя выше рабочего тока; после пуска ток снижается до рабочего тока.
Схему подключения однофазного двигателя можно найти здесь.
Тепловое реле
Тепловое реле работает следующим образом: когда обмотка нагревается до предельного значения, установленного на реле, реле отключает подачу питания на обе фазы, тем самым предотвращая перегрузку или другую причину повреждения и предотвращая возникновение пожара.
Преимущества
К положительным особенностям этого двигателя относится простота конструкции, ротор в этой конструкции компактен, а обмотка статора не слишком сложна.
Недостатки
Наряду с преимуществами, этот двигатель имеет и некоторые недостатки.
- Низкий пусковой момент двигателя.
- Низкий КПД двигателя.
- Электродвигатель не способен генерировать магнитное поле, которое совершает вращательное движение.
По этой причине сам двигатель не может вращаться. Для того чтобы двигатель вращался, он должен иметь как минимум две обмотки и, следовательно, две фазы, но двигатель с самого начала имеет одну фазу, такова его конструкция. Помимо наличия двух фаз, также необходимо, чтобы одна обмотка была смещена под определенным углом относительно другой.
Подключение двигателя
Двигатель должен быть подключен к однофазной сети переменного тока 220 В с частотой 50 Гц. Такие значения мощности есть во всех домах нашей страны, поэтому однофазные двигатели пользуются огромной популярностью. Они установлены во всех бытовых приборах, таких как.
- Холодильник.
- Гувер.
- Соковыжималка.
- Триммер.
- Электрический кусторез.
- Швейная машина.
- Электрическая дрель.
- Кухонный смеситель.
- Вентилятор.
- Водяной насос.
Варианты подключения
- Соединение с соленоидом стартера.
- Соединение с рабочим конденсатором.
Однофазные малые двигатели 220 В с пусковой катушкой имеют конденсатор в цепи во время пуска. Когда ротор ускоряется, катушка отключается. Если двигатель выполнен с рабочим конденсатором, то пусковая цепь не прерывается и пусковая катушка работает непрерывно через конденсатор.
Один электродвигатель можно использовать для разных целей. Один и тот же двигатель может быть снят с одной единицы оборудования и установлен в другую. Однофазный двигатель может быть переключен тремя способами.
- Электрический ток временно подается на обмотку стартера через конденсатор.
- Напряжение временно подается на стартер через резистор, без конденсатора.
- Электричество постоянно подается на пусковую обмотку через конденсатор, одновременно с работой рабочей обмотки.
Если в цепи запуска используется резистор, обмотка будет иметь более высокое активное сопротивление. Сдвиг фаз будет достаточным для начала вращения. Можно использовать пусковую обмотку с большим сопротивлением и меньшей индуктивностью. Обмотка должна иметь меньшее количество витков, более тонкий провод, чтобы соответствовать своим характеристикам.
Конденсаторный запуск подразумевает подключение конденсатора к обмотке стартера и временную подачу электричества.
Для достижения максимального пускового момента необходимо круговое магнитное поле, которое должно совершать вращательное движение. Для этого обмотки должны быть расположены под углом 90 градусов. Такое смещение не может быть достигнуто с помощью резистора.
Если емкость конденсатора была рассчитана правильно, можно будет сместить обмотки на 90 градусов.
Расчет аффилированности проводов
Омметр или тестер необходим для расчета выводов, соединяющих пусковую обмотку с рабочей обмоткой. Необходимо измерить сопротивление обмоток.
Сопротивление рабочей обмотки должно быть меньше сопротивления пусковой обмотки. Например, если одна обмотка измерена при 12 Ом, а другая – при 30 Ом, то первая является рабочей, а вторая – пусковой.
Рабочая обмотка будет иметь большее поперечное сечение, чем пусковая обмотка.
Выбор емкости конденсатора
Для выбора емкости конденсатора необходимо знать ток, потребляемый электродвигателем. Если он потребляет 1,4 ампера, вам понадобится конденсатор емкостью 6 микрофарад.
Проверка работы
Начните с визуального осмотра.
- Если у устройства поврежден кронштейн, это также может стать причиной его неисправности.
- Если корпус почернел внутри, это означает, что он перегрелся.
- Возможно попадание различных инородных тел в пазы корпуса, это замедляет работу и способствует перегреву.
- Если подшипники загрязнены, происходит перегрев.
- Износ подшипников вызывает перегрев.
- Если конденсатор подключен к обмотке стартера 220 В, произойдет перегрев. Если есть подозрение на конденсатор, отсоедините его от обмотки стартера, подключите двигатель, проверните вал рукой, запустите двигатель, и он начнет вращаться. Дайте двигателю поработать около пятнадцати минут, а затем проверьте наличие тепла. Если двигатель не нагревается, значит, емкость конденсатора была слишком большой. Следует установить конденсатор меньшей емкости.
Однофазные малогабаритные двигатели 220 В выпускаются в широком ассортименте моделей и для различных целей, и перед покупкой изделия следует четко понимать необходимую мощность, тип крепления, число оборотов в минуту и другие характеристики.
Однако часто при ремонте или перемотке конструкция статора меняется, а заводская табличка остается прежней. Этот вариант также следует принять во внимание.
Как распознать разницу в однофазном двигателе
Однофазные двигатели оснащены двумя типами обмоток для того, чтобы их ротор вращался, поскольку одной обмотки для этого недостаточно. Поэтому перед подключением двигателя необходимо определить, какая обмотка является основной, а какая – вспомогательной. Это можно сделать несколькими способами.
По цветовому кодированию
При визуальном осмотре двигателя можно определить тип провода, к которому относится катушка, по его цветовой кодировке. Как правило, красные провода относятся к рабочему типу, а синие – к вспомогательному.
Но из всех правил есть исключения, поэтому всегда обращайте внимание на этикетку двигателя, где расшифрованы все маркировки.
Однако если двигатель уже был отремонтирован или не имеет заводской таблички, этот метод проверки неэффективен. В первом случае интерьер двигателя мог быть полностью изменен во время ремонта, а во втором случае цветная маркировка не поддается четкой расшифровке. Более того, иногда маркировка может вообще отсутствовать. Поэтому в таких ситуациях лучше обратиться к другому, более надежному методу.
На этом этапе мы перейдем к измерению сопротивления обмотки однофазного двигателя переменного тока.
Проверка бора
Если все было проверено в соответствии с приведенными выше инструкциями, но неисправность все еще подозревается, откройте моторный отсек. Это другое название клеммной коробки. Часто и густо обнаруживается, что разъемы в коробке недостаточно затянуты. Провода там также могут быть перегоревшими. Что касается гаек разъемов, проверьте, вытащена ли верхняя гайка (она накручивается на провод), и проверьте гайку, которая используется для фиксации провода обмотки, идущего в двигатель.
- Шаговые двигатели: свойства и практические схемы управления. Часть 2.
- Как найти начало и конец обмотки электродвигателя – ООО “СЗЭМО Электродвигатель”.
- Рабочие характеристики асинхронного двигателя; Школа для электриков: электротехника и электроника.
- Как запустить однофазный двигатель в обратном направлении – несколько примеров.
- Соленоид – это электромагнитная катушка. Что такое соленоид?.
- Асинхронный электродвигатель – конструкция, принцип работы, типы асинхронных двигателей.
- Однофазный двигатель с конденсатором – Советы электрику – Electro Genius.
Содержание
- Как определить начала и концы фаз обмотки асинхронного двигателя
- Как определить рабочую и пусковую обмотки у однофазного двигателя
- Ищем начало и конец в обмотках электродвигателя.
- Как найти начало и конец обмотки электродвигателя – советы электрика
- Как найти начало и конец обмотки электродвигателя
- Как найти начало и конец обмотки электродвигателя: основные приемы
- Точность определения начал и концов статорной обмотки
- Как Определить Начало И Конец Обмотки Двигателя
- Первый способ
- Определение начала и конца обмоток трехфазного электродвигателя (простой способ)
- Определение начала и конца фазных обмоток асинхронного электродвигателя
- Второй способ
- Как соединить обмотки электродвигателя
- Основные понятия
- Схема звезда
- Подключаем треугольником
- Как найти начала и концы фаз обмотки электродвигателя
- Как найти начало и конец обмотки электродвигателя – совет специалиста
- Теоретический метод
- Поиск трансформации
- Подбор фаз
- Как определить начало и конец обмотки в двигателе
- Выводы асинхронного двигателя. Маркировка выводов асинхронного двигателя
- Начало и конец обмоток электродвигателя
- Первым делом нужно определить обмотки двигателя
- Как определить начало и конец обмоток
- Обмотка электродвигателя: лучшие схемы соединения и подключения. Инструкция как сделать и прозвонить обмотку своими руками
- Какой должна быть намотка
- Возможные неполадки
- Как определить неисправность
- Метод с шариком
- Как произвести обмотку
- Фото обмотки электродвигателя
- Начала и концы обмоток электродвигателей
- Определение начала конца обмоток двигателя
- Определение начала и конца обмоток
- Схемы включения трехфазных электродвигателей. Определение начала и конца обмоток
- Как определить начала и концы фаз обмотки асинхронного двигателя
Как определить начала и концы фаз обмотки асинхронного двигателя
Напряжения сети и схемы статорных обмоток электродвигателя
Если в паспорте электродвигателя указано, например, 220/380 в, это означает, что электродвигатель может быть включен как в сеть 220 в (схема соединения обмоток — треугольник), так и в сеть 380 в (схема соединения обмоток — звезда). Статорные обмотки асинхронного электродвигателя имеют шесть концов.
По ГОСТу обмотки асинхронного двигателя имеют следующие обозначения: I фаза — С1 (начало), С4 (конец), II фаза — С2 (начало), С5 (конец), III фаза — С3 (начало), С6 (конец).
Рис. 1. Схема подключения обмоток асинхронного двигателя: а — в звезду, б — в треугольник, в — исполнение схем «звезда» и «треугольник» на доске зажимов.
Если в сети напряжения равно 380 В, то обмотки статора двигателя должны быть соединены по схеме «звезда». В общую точку при этом собраны или все начала (С1, С2, С3), или все концы (С4, С5, С6). Напряжение 380 в приложено между концами обмоток АВ, ВС, СА. На каждой же фазе, то есть между точками О и А, О и В, О и С, напряжение будет в √ З раз меньше: 380/√ З = 220 В.
Если в сети напряжение 220 В (при системе напряжений 220/127 В, что в настоящее время, практически нигде не встречается) обмотки статора двигателя должны быть соединены по схеме «треугольник».
В точках А, В и С соединяются начало (Н) предыдущей с концом (К) последующей обмотки и с фазой сети (рис. 1, б). Если предположить, что между точками А и В включена I фаза, между точками В и С — II, а между точками С и А — III фаза, то при схеме «треугольник» соединены: начало I (С1) с концом III (С6), начало II (С2) с концом I (С4) и начало III (С3) с концом II (С5).
У некоторых двигателей концы фаз обмотки выведены на доску зажимов. По ГОСТу, начала и концы обмоток выводят .в том порядке, как эго показано на рисунке 1, в.
Если теперь необходимо соединить обмотки двигателя по схеме «звезда», зажимы, на которые выведены концы (или начала), замыкают между собой, а к зажимам двигателя, на которые выведены начала (или концы), присоединяют фазы сети.
При соединении обмоток двигателя в «треугольник» соединяют, зажимы по вертикали попарно и к перемычкам присоединяют фазы сети. Вертикальные перемычки соединяют начало I с концом III фазы, начало II с концом I фазы и начало III с концом II фазы.
При определении схемы соединения обмоток можно пользоваться следующей таблицей:
Напряжение, указанное в паспорте электродвигателя, В
Напряжение в сети, В
127 220 380 127 / 220 треугольник звезда — 220 / 380 — треугольник звезда 380 / — — — треугольник
Определение согласованных выводов (начал и концов) фаз статорной обмотки.
На выводах статорных обмоток двигателя обычно имеются стандартные обозначения па металлических обжимающих кольцах. Однако эти обжимающие кольца теряются. Тогда возникает необходимость определить согласованные выводы. Это выполняют в такой последовательности.
Сначала при помощи контрольной лампы определяют пары выводов, принадлежащих отдельным фазным обмоткам (рис. 2).
Рис. 2 . Определение фазных обмоток при помощи контрольной лампы.
К зажиму сети 2 подключают один из шести выводов статорной обмотки двигателя, а к другому зажиму сети 3 подключают один конец контрольной лампы. Другим концом контрольной лампы поочередно касаются каждого из остальных пяти выводов статорных обмоток до тех пор, пока лампа не загорится. Если лампа загорелась, значит, два вывода, присоединенные к сети, принадлежат одной фазе.
Необходимо следить при этом, чтобы выводы обмоток не замыкались друг с другом. Каждую пару выводов помечают (например, завязав ее узелком).
Определив фазы статорной обмотки, приступают ко второй части работы — определению согласованных выводов или «начал» и «концов». Эта часть работы может быть выполнена двумя способами.
1. Способ трансформации. В одну из фаз включают контрольную лампу. Две другие фазы соединяют последовательно и включают и сеть на фазное напряжение.
Если эти две фазы оказались включенными так, что и точке О условный «конец» одной фазы соединен с условным «началом» другой (рис. 3, а), то магнитный ноток ∑Ф пересекает третью обмотку и индуктирует в ней ЭДС.
Лампа укажет наличие ЭДС небольшим накалом. Если накал незаметен, то следует применить в качестве индикатора вольтметр со шкалой до 30 — 60 В.
Рис. 3. Определение начал и концов в фазных обмотках двигателя методом трансформации
Если в точке О встретятся, например, условные «концы» обмоток (рис. 3, б), то магнитные потоки обмоток будут направлены противоположно друг другу. Суммарный поток будет близок к нулю, и лампа не даст накала (вольтметр покажет О). В данном случае выводы, принадлежащие какой-либо из фаз, следует поменять местами и включить снова.
Если накал у лампы есть (или вольтметр показывает некоторое напряжение), то концы следует пометить. На одни из выводов, которые встретились в общей точке О, надевают бирку с пометкой Н1 (начало I фазы), а на другой вывод — К3 (или К2).
Бирки К1 и Н3 (или Н2) надевают па выводы, находящиеся в общих узелках (завязанных при выполнении первой части работы) с Н1 и К3 соответственно.
Для определения согласованных выводов третьей обмотки собирают схему, представленную на рисунке 3, в. Лампу включают в одну из фазе уже обозначенными выводами.
2. Способ подбора фаз. Этот способ определения согласованных выводов (начал и концов) фаз статорной обмотки можно использовать для двигателей небольшой мощности — до 3 — 5 кВт.
Рис. 4. Определение «начал» и «концов» обмотки методом подбора схемы «звезда».
После того как определены выводы отдельных фаз, их наугад соединяют в звезду (по одному выводу от фазы подключают к сети, а по одному — соединяют в общую точку) и включают двигатель в сеть. Если в общую точку попали все условные «начала» или все «концы», то двигатель будет работать нормально.
Но если одна из фаз ( III ) оказалась «перевернутой» (рис. 4, а), то двигатель сильно гудит, хотя и может вращаться (но легко может быть заторможен). В этом случае выводы любой из обмоток наугад (например, I ) следует поменять местами (рис. 4, б).
Если двигатель опять гудит и плохо работает, то фазу следует снова включить, как прежде (как в схеме а), но повернуть другую фазу — III (рис. 3, в).
Если двигатель и после этого гудит, то эту фазу следует также поставить по-прежнему, а повернуть следующую фазу — II.
Когда двигатель станет работать нормально (рис. 4, в), все три вывода, которые соединены в общую точку, следует пометить одинаково, например «концами», а противоположные — «началами». После этого можно собирать рабочую схему, указанную в паспорте двигателя.
Источник
Как определить рабочую и пусковую обмотки у однофазного двигателя
Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.
Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.
У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.
У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.
То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.
Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.
Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.
Рис. 1. Рабочая и пусковая обмотки однофазного двигателя
А теперь несколько примеров, с которыми вы можете столкнуться:
Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.
Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.
Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.
Источник
Ищем начало и конец в обмотках электродвигателя.
Если вам попался такой трёхфазный электродвигатель, у которого из клеммной коробки торчат 6 проводов и не имеют маркировки, то эта статья может пригодиться.
Итак, для начала нужно определить тестером три обмотки просто прозванивая их по 2 провода.
Нанесём маркировку на кембриках, но пока без цифр.
В результате получим такую маркировку:
Теперь подключим тестер к одной обмотке в режиме 200 вольт, переменное напряжение:
А две другие соединим последовательно, согласно схеме:
Включаем в сеть и наблюдаем за показаниями тестера: если показания равны нулю, значит 2 обмотки соединены встречно, следовательно номера обмоток в точке соединения совпадают, то есть 2 и 2 или 1 и 1, неважно пишем любые.
Идём дальше. Нам известны две обмотки. Соберём вторую схему, подключив к тестеру уже известную обмотку, а две другие соединим последовательно:
Включаем в сеть и наблюдаем показания прибора. На экране показывает 0,9 вольта, значит обмотки соединены последовательно и в точках их соединения должны быть разные цифры.
Получаем следующую маркировку: W2 соединена с U1 так как получилось последовательно, а остальные W1 и U2. Вот теперь все готово:
Теперь можно подключать к сети 380 вольт, двигатель должен работать спокойно и не нагреваться. Для эксперимента я попробовал перепутать концы у одной из обмоток и включил в сеть. Двигатель по другому зашумел и стал быстро нагреваться, ещё пару минут и я сжёг бы обмотки. Так что лучше сразу всё правильно определить.
Источник
Как найти начало и конец обмотки электродвигателя – советы электрика
Бывают ситуации, когда маркировка выводов статорной обмотки электродвигателя отсутствует или нарушена, а для правильного подключения асинхронного электродвигателя в сеть необходимо правильно определить начало статорной обмотки и её конец.
Давайте определим принадлежность выводов, к соответствующим обмоткам воспользовавшись для этого мультиметром.
Перед началом измерения переключаем мультиметр на 200 Ом и одним из щупов дотрагиваемся до любого из шести выводов, а вторым щупом ищем конец этой обмотки.
Когда вы найдете искомый проводник, показания на дисплее мультиметра изменятся на отличное от ноля. В нашем случае это 14,7 Ом.
Вы нашли первую обмотку статора электродвигателя. Предлагаю отметить выводы отрезками кембрика (или любым удобным вам способом) с маркировкой U1 иU2.
Аналогичным способом находим оставшиеся две обмотки.
Вторую обмотку отмечаем кембриком (или любым удобным вам способом) V1 и V2, а третью W1 и W2 соответственно.
В итоге мы нашли три обмотки и от маркировали их выводы в произвольном порядке.
Теперь перейдем к следующему шагу в котором мы определим начало статорной обмотки и её конец, но сначала немного теории.
В электротехнике две обмотки, которые находятся на одном сердечнике возможно подключить согласованно или встречно.
Таким образом, при согласованном подключении двух обмоток возникает ЭДС (электродвижущая сила), складывающаяся из сумм ЭДС (электродвижущей силы) первой и второй обмотоки.
То есть процесс электромагнитной индукции возникающей в первых двух обмотках наведет в расположенной рядом обмотке ЭДС, то есть напряжение.
Если же вы подключите две обмотки встречно, получается что ЭДС каждой из обмоток будет направлена друг на друга и её сумма с этих двух встречных обмоток будет равнятся нулю. Поэтому в расположенной рядом обмотке электродвижущая сила не наведётся или наведется только малой величины.
Теперь выполним все выше сказанное на практике.
Выводы U1 и U2 первой обмотки соединяем с выводами V1 и V2 второй обмотки, представленным ниже способом. Помните, что обозначения, нанесенные на выводы достаточно условные.
Выводы обмоток U2 и V1 соединяем между собой, а на выводы U1 и V2 подаем напряжение 220 Вольт.
После чего производим измерение напряжения на выводах обмотки W1 и W2, в первом случае получилось 0,15 Вольт. Полученное напряжение очень маленькое, поэтому можно сделать вывод, что обмотки подключены встречно. Отключаем напряжение и меняем выводы V1 и V2 местами.
После повторного измерения получается 6,8 Вольт. Значит обмотки подключены правильно, а маркировка их верна (рис.1).
Аналогичным способом ищем начало и конец у обмотки с выводами W1 и W2, все подключения выполняем по схеме приведенной ниже (рис.2).
Если при измерении напряжения вы получили 6,8 Вольт значит маркировка и подключение обмоток выполнено правильно.
Далее соедините обмотки вашего электродвигателя по схеме звезда или треугольник и провести испытания без нагрузки. В данном случае обмотки электродвигателя соединены по схеме звезда.
После пуска электродвигателя необходимо обратить внимание на сторону вращения вала и при необходимости поменять фазы местами для её изменения.
Материалы, близкие по теме:
Как найти начало и конец обмотки электродвигателя
Соединение обмоток двигателя чаще всего производится внутри статора. В коробку при этом выводят 3 провода, уже готовые к подаче на них питающего напряжения. Как вариант, обмотки могут быть соединены непосредственно в коробке. В этом случае необходимо предварительно определить, какие из 6 выводов являются концами, а какие – началами.
Эта статья поможет вам разобраться, как найти начало и конец обмотки электродвигателя, если выведенные в клеммную коробку провода:
- не промаркированы (или маркировочные бирки были утеряны);
- не имеют внешних различий (по цвету);
- не разделены на группы по 3 вывода.
Как найти начало и конец обмотки электродвигателя: основные приемы
Для выполнения этой задачи потребуются:
- какой-либо электрический тестер (омметр, мультиметр);
- лампа контрольная;
- маркер и наклейки (или кусочки трубки из ПВХ).
Определение начал и концов статорной обмотки электродвигателя начинается с разделения проводов на пары, принадлежащие одной обмотке. Это делается следующим образом:
- мультиметр, предварительно переключенный на 200 Ом, ставим одним из щупов на произвольный конец обмотки;
- далее используем метод перебора, дотрагиваясь вторым щупом до всех выводов поочередно, пока показания прибора не примут отличное от 0 значение;
- аналогичный подход применяем, чтобы отметить 2 другие пары.
Итак, мы получаем 3 пары проводов, но для соединения этой информации недостаточно. Чтобы отметить конец и начало для каждой обмотки, потребуется:
- Соединить выводы 2 обмоток.
- Замерить напряжение на третьей обмотке с помощью вольтметра (также можно применить контрольную лампу).
- Если показатели напряжения нулевые, значит 2 обмотки были соединены встречно. Необходимо изменить порядок их соединения на последовательный и промаркировать провода.
- Повторяем предыдущую схему, чтобы найти начало и конец третьей обмотки.
Точность определения начал и концов статорной обмотки
В завершение работы рекомендуется проверить точность полученных результатов, для этого:
- соединяем обмотки соответствующим образом – «звездой» или «треугольником», в зависимости от модели двигателя;
- подключаем двигатель без нагрузки;
- при необходимости корректируем направление вращения вала (меняем местами фазы).
Таким образом, начало и конец обмоток трехфазного электродвигателя можно достоверно определить, не разбирая при этом двигатель.
Как Определить Начало И Конец Обмотки Двигателя
Как определить начало и конец фаз обмотки?
Первый способ
Нам понадобится обычная плоская батарея 4,5 В и комбинированное измерительное устройство (тестер) или миллиамперметр постоянного тока. Мы предварительно обмотали обмотки омметром. У нас есть несколько пар проводов, но нам нужно определить, где эти пары начинают обмотку, а где конец.
Принципиальная схема соединения «треугольник».
Мы берем любую пару проводов, принадлежащих одной из обмоток. Условно мы отмечаем один из обмоточных проводов как начало (H), а второе. как конец (K). Мы подключаем тестер на пределе единицы или десятки миллиампер постоянного тока на любую другую пару проводов, принадлежащих другой обмотке.
Минус батарей, которые мы прикрепляем к нашему условному концу (К) первой обмотки. Прикоснувшись несколько раз к началу первой обмотки и аккумулятора, мы наблюдаем показания тестера. Нас интересует отклонение стрелки устройства в момент закрытия схемы «обмотки батареи».
Если стрелка устройства отклоняется на минус, то мы переключаем полярность соединения устройства со второй обмоткой и снова несколько раз закрываем батарею на первую обмотку.
Определение начала и конца обмоток трехфазного электродвигателя (простой способ)
В этом видео я подробно расскажу Вам про простой способ определения начала и конца обмоток трехфазного.
Определение начала и конца фазных обмоток асинхронного электродвигателя
Простой способ определения начала и конца фазных обмоток электродвигателя.
Теперь отклонения устройства в момент замыкания должны быть в положительном направлении. Этот вывод обмотки, который соединен с плюсом тестера, станет началом второй обмотки, а с минусом. концом. Точно так же мы определяем начало всех других обмоток.
Второй способ
Схема определения начала и конца фаз обмотки.
Мы соединяем все две «найденные» фазовые обмотки последовательно и соединяем полученные свободные концы с напряжением 220 В, а к третьей третьей обмотке подключаем контрольную лампу и кратковременно применяем 220 В. Помните, как мы сжигаем лампу.
Теперь на обмотках, которые мы подключили последовательно, измените соединение, то есть концы второго будут заменены и снова поданы. Лампочка должна светить иначе, ярче или слабее. Если он стал ярче, обмотки, которые мы соединяли последовательно, в порядке начала. конец. начало. конец. Поэтому мы подписываем их. Мы уже четко знаем две обмотки.
Теперь мы связываем любого из известных с неизвестным и снова приносим 220 В этой паре, а к свободному мы поставляем лампу. Снова включите питание. Теперь вы сразу увидите яркость свечения, так как обмотки включены. Мы помещаем соответствующие надписи.
В этом примере вы можете использовать вольтметр вместо контрольной лампы и ориентироваться в отклонении стрелки устройства. Теперь, в зависимости от схемы подключения, вам необходимо соединить обмотки.
Для подключения звезды любые три (по крайней мере, начало, по крайней мере, концы) соединены вместе, а остальные три будут питаться от 380 В.
Чтобы переключиться на треугольник, вам придется делать другие манипуляции.
Как соединить обмотки электродвигателя
Электрические двигатели сегодня используются повсеместно, так как могут обеспечить высокую мощность и эффективность. Важно правильно подключить подобную систему, чтобы не сгорела.
Для таких целей зачастую применяется соединение звезда и треугольник. Ознакомиться с техническими нюансами этих подключений можно на различных специализированных сайтах.
Основные понятия
Электрическим двигателем называют устройство, которое способно преобразовывать электрическую энергию в механическую. Работа подобных механизмов основана на взаимодействии магнитных полей, которые воздействуют на вращающийся элемент (ротор).
Электрические двигатели можно условно разделить на 2 вида:
- синхронные. Частота оборотов магнитного поля и ротора равны;
- асинхронные. Здесь двигатель немного отстает от магнитного поля, так как устройство старается его догнать.
Асинхронные модели используются чаще, так как позволяют обеспечить высокую мощность и производительность. Ими оснащают станки, транспортеры и другие подобные механизмы.
Если же в системе важна стабильная нагрузка, тогда оптимальным решением будут синхронные модели.
Схема звезда
Соединение обмотки электрических асинхронных двигателей может осуществляться с помощью нескольких схем, среди которых одной из самых распространенных является звезда. Ее осуществление требует выполнения нескольких последовательных операций:
- В первую следует демонтировать защитную крышку, чтобы добраться к выходам обмоток. При этом каждая из них имеет свое начало и конец, которые обозначаются специальными буквенно-цифровыми символами. Зачастую они располагаются параллельно в два ряда.
- Для соединения звездой следует использовать специальную перемычку. Она должна соединять все концы обмоток. В большинстве случаев они располагаются на одной линии. К началу обмоток подают трехфазное напряжение от основной сети.
Подключаем треугольником
Для создания подобной схемы следует выполнить такие действия:
- В первую очередь обмотка фазы «А» (конец) соединяется с началом фазы «В».
- После этого конце фазы «В» подключается к началу фазы «С».
- Конец фазы «С» соединяется с началом обмотки «А».
Для этого используются также специальные перемычки. Обратите внимание, что после подключения они не должны пересекаться. Если это явление присутствует, тогда следует проверить схему еще раз.
Как найти начала и концы фаз обмотки электродвигателя
Набросок обмоток электродвигателя
1-ый метод -нам пригодится рядовая плоская батарейка на 4,5 В и комбинированный измерительный прибор (тестер) либо миллиамперметр неизменного тока. Обмотки мы за ранее вызвонили омметром и у нас имеются несколько пар проводов, но нам нужно найти, где у этих пар начало обмотки, а где конец. Берем всякую пару проводов принадлежащих одной из обмоток.
Условно помечаем один из выводов обмотки как начало (Н), а 2-ой как конец (К).
Подключаем тестер на пределе единицы либо 10-ки миллиампер неизменного тока к хоть какой другой паре проводов, принадлежащей другой обмотке.
Минус батарейки присоединяем к нашему условному концу (К) первой обмотки.
Касаясь пару раз начала первой обмотки плюсом батарейки, смотрим за показаниями тестера. Нас интересует отклоненение стрелки прибора в момент замыкания цепи «батарейка – обмотка». Если стрелка прибора отклоняется в минус, то переключаем полярность присоединения прибора ко 2-ой обмотке, и опять пару раз замыкаем батарейку на первую обмотку.
Сейчас отличия прибора в момент замыкания должны быть в положительную сторону. Тот вывод обмотки, который соединен с плюсом тестера будет началом 2-ой обмотки, а с минусом – концом. Таким же образом определяем начала всех других обмоток.
2-ой метод – две любые “отысканные” фазные обмотки, соедининяем поочередно, и к получившимся свободым концам подключаем 220в, а к оставшейся третьей обмотке подключаем контрольную лампу, и краткосрочно подаем 220в- запоминаем как у нас пылает лампа.
Сейчас обмотки которые у нас соедены поочередно меняем подключение, другими словами концы 2-ой меняем местами и снова подаем питание, лампочка должна засветиться по другому либо ярче либо ослабевай. Если загорелась ярче, то обмотки у нас подключись поочередно, это означает идут в таком порядке начало – конец – начао – конец, так их и подписываем.
Мы уже знаем верно две обмотки. Сейчас к неизвесной подключаем всякую из узнаваемых и снова уже к этой паре подводим 220 в, а к свободной лампу. Снова включаем питание и сейчас сходу будет видно по яркости накала, как включены обмотки, наносим надписи.
В приведенном примере можно заместо контрольной лампочки применить вольтметр и ориентироваться по отклонению стрелки прибора. Сейчас зависимо от схемы подключения нужно подключить обмотки.
Для соединения звездой любые три ( хоть начало хоть концы ) соединяем вмете а к оставшимся трем будет подаваться питание- 380в. Для переключения в треугольк нужно будет сделать еще другие манипуляции.
Об этом читайте в статье ” Электродвигатель подключение трегольником”
Как найти начало и конец обмотки электродвигателя – совет специалиста
В бытовой и промышленной технике, как правило, применяются асинхронные электродвигатели, рассчитанные на работу в сетях переменного тока.
Поскольку условия их работы предполагают постоянные механические нагрузки, воздействие электромагнитных полей, а порой и агрессивной внешней среды, статоры и роторы таких двигателей со временем неизбежно выходят из строя.
Диагностику неисправностей начинают с электрических цепей, поэтому важно знать, как найти начало и конец обмотки электродвигателя.
Теоретический метод
Большинство достаточно качественных электромоторов имеет на корпусе гравировку или бирку, указывающую фирму-изготовителя, код модели и номер партии. Зная эти данные, нетрудно отыскать паспорт детали, в котором, помимо прочего, содержатся чертежи и принципиальные схемы двигателя.
После разборки детали достаточно будет сопоставить расположение контактов и/или цвета проводов с номинальными, чтобы понять, к каким обмоткам они относятся. При этом важно учесть характер соединения обмоток. В сетях с малым напряжением (127/220 В) обычно применяется принцип треугольника, в промышленных сетях (220/380 В) — принцип звезды.
Поиск трансформации
На практике отыскать концы определённой обмотки можно, включив её в сеть и измерив параметры. Для этого достаточно выполнить следующие действия:
- К одной из фаз подключают вольтметр или лампу накаливания.
- Другие фазы соединяют последовательно.
- На последовательное соединённые фазы подают переменный ток.
Отклонение стрелки вольтметра или свечение лампы (даже незначительное) укажет на наличие в контрольной обмотке ЭДС. Это в свою очередь значит, что условное начало одной из замкнутых фаз соединено с условным концом второй. В противном случае ЭДС не возникнет.
Подбор фаз
Этот метод используют преимущественно для проверки маломощных моторов (до 5 кВт). Он предполагает следующую последовательность операций:
- Фазы произвольно соединяют в звезду, то есть сводят по одному концу от фазы в две общие точки.
- Двигатель устанавливают в корпус и включают в сеть.
- Анализируют характер роботы мотора: тихий ход означает, что сборка выполнена правильно, а гул свидетельствует о неправильном соединении фаз.
Если нужна коррекция подключения, фазы поочередно «переворачивают», то есть по одной подключают в обратной последовательности, пока работа двигателя не станет нормальной. Не забудьте пометить начальные и конечные выводы обмоток соответствующими бирками или цветами — это поможет при следующем обслуживании или ремонте двигателя.
Даже базовых знаний электротехники достаточно, чтобы отыскать концы фаз двигателя, особенно если у вас есть необходимые инструменты и материалы. Главное — не забывайте о технике безопасности.
Как определить начало и конец обмотки в двигателе
В этой статье я расскажу способ, как определить начало и конец обмотки в асинхронном трёхфазном двигателе.
Когда вам может потребоваться данный материал? Только в том случае, если у вас имеется в коробке брно шесть проводов одинакового цвета и на них нет никаких обозначений.
Или ваш двигатель был соединен треугольником, а вы хотите получить возможность соединить его звездой. Как это сделать я писал здесь.
Чтобы проще было объяснять материал, сначала пройдемся по принятым маркировкам выводов обмоток двигателей.
Выводы асинхронного двигателя. Маркировка выводов асинхронного двигателя
Встречаются различные маркировки выводов обмоток двигателя. Отечественная маркировка от С1 до С6 и международная, которую вы видите на рисунке.
В наше время встречаются обе маркировки, но для «обучения» мы будем применять новые обозначения, как более наглядные.
Ранее, я уже говорил, что начало и конец обмоток понятия абсолютно условные, главное условие, которое играет важную роль это такое соединение обмоток, когда магнитные потоки не направлены встречно. Если два одинаковых потока направить встречно, они как бы уничтожают друг друга.
Нам же надо получить согласованное направление магнитных потоков. В двигателе находятся три обмотки. Грубо говоря, двигатель, это трансформатор с тремя обмотками и сердечником в виде статора.
Таким образом, обмотки в двигателе связывает магнитный поток, который протекает по статору, а его создает ток, который протекает по обмоткам. Ротор – это лишь приятная «вкусняшка», наличие которой позволяет получить из электрической энергии механическую.
Начало и конец обмоток электродвигателя
Ну что ж, приступим. Прежде, чем начинать процедуру, вам нужно подготовиться. Для этого вам потребуются:
- мультиметр или лампа накаливания (предпочтительнее, конечно же, мультиметр)
- маркеры для проводов
- знание техники безопасности, поскольку вы будете работать с опасным напряжением
- обычная сетевая вилка с проводом
- что-то, чем вы будете соединять провода, когда приступите к поиску выводов обмотки
- ну и материал данной статьи.
В качестве маркеров можно использовать кембрики, бумагу с резинками, цветную изоленту и обычные перманентные маркеры, в общем, что угодно, что позволит вам промаркировать выводы. Вам потребуется шесть маркеров, на которых вы напишете обозначения начала и концов обмоток.
Первым делом нужно определить обмотки двигателя
Названия обмоток тоже абсолютно условны. Хотя, если принимать в расчёт такое понятие, как фазировка, то правильное включение дает точное представление о том, в какую сторону будет вращаться вал двигателя и не более того.
Выставляете мультиметр в режим прозвонки, один щуп прикладываете к любому из шести проводов, вторым щупом находите конец, который будет прозваниваться. И эту пару звонящихся концов маркируете. Пусть это будут U1 и U2. Остается четыре конца. Повторяете операцию и еще одну пару снова маркируете. Пусть это будут V1 и V2.
Осталась еще пара концов, их проверяете на всякий случай, чтобы быть уверенными, что обмотка в исправном состоянии и тоже маркируете оставшимися маркерами W1 и W2. Теперь у вас есть три обмотки и вы знаете их выводы. Но не знаете, где начало, а где конец каждой обмотки.
Другими словами, вы не знаете, как направлены магнитные потоки этих обмоток согласно имеющейся маркировке, поскольку она сейчас носит случайный характер.
Как определить начало и конец обмоток
Приступаем к поиску концов. Снова предупрежу о технике безопасности, поскольку сейчас вы будете работать с опасным напряжением 220 вольт. Сама процедура очень простая. Вам надо на одну обмотку присоединить лампу или вольтметр (мультиметр, в режиме измерения напряжения), а две других обмотки соединить последовательно и подать на них напряжение. Теперь рассмотрим эту процедуру подробнее.
С присоединением лампы или вольтмера проблем не возникнет. Допустим это будет обмотка W1-W2. Остается две обмотки. Согласно имеющимся маркерам вы соединяете их в таком порядке, как это показано на рисунке, а именно соединяете между собой U2 и V1.
На выводы U1 и V2 подаете ПЕРЕМЕННОЕ напряжение 220 вольт. Обратите внимание, именно переменное, поскольку постоянное превратит наш двигатель в электромагнит, но при этом напряжение в третьей обмотке наводиться не будет.
На реальном двигателе это будет выглядеть, как на фотографии ниже:
Обратите внимание, я специально выделил одним цветом (зеленым) соединенные обмотки на схеме и на фотографии. Теперь, если магнитные потоки обмоток совпадут, то в третьей обмотке будет наведено напряжение. Если посчитать грубо, то чуть меньше 100 вольт. Следовательно, лампочка на третьей обмотке начнет светиться, но не в полный накал.
Если же магнитные потоки будут направлены встречно, то в третьей обмотке напряжение наводиться не будет и лампочка не загорится. Если лампочка загорелась, все отлично, придумайте, как навсегда промаркировать выводы обмоток и приступаем к третьей. Если лампочка не загорелась, значит меняем местами выводы любой обмотки.
Пусть это будет обмотка V1V2 (то есть, если раньше была схема U1→U2→V1→V2, то теперь будет схема U1→U2→V2→V1) и снова проверяем.
Лампочка засветилась? Отлично! Но прежде чем переходить к третьей обмотке, поскольку мы определили условные начала и концы двух обмоток нужно придумать, как навсегда промаркировать эти выводы, чтобы в дальнейшем вам не пришлось возвращаться к данной процедуре. Теперь будем работать только с третьей обмоткой. Маркеры первых двух трогать уже не будем.
К любой из найденных обмоток подключаем третью, а на освободившуюся подключаем лампочку. То есть на обмотку (пусть будет) U1U2 мы теперь подключаем вольтметр или лампочку, а соединяем обмотки V1→V2→W1→W2. И все повторяем по новой. С одним условием, что маркеры обмоток U и V мы не трогаем. Если лампочка при проверке не загорается, то меняем маркеры только на обмотке W.
Как видите, процедура не слишком сложная и при необходимой сноровке займет не больше 15 минут.
Есть и другие методы определения начал и концов обмоток, но они более сложные и требуют стрелочного вольтметра или сборки несложной схемы, хотя с другой стороны, они более безопасные.
Но этот метод наиболее простой. А если не боитесь электричества и внимательно прочитали технику безопасности, то вместо мультиметра прозванивать обмотки можно той же лампочкой.
Для этого можно использовать такую схему, которую вы видите ниже:
То есть, можно вообще обойтись без мультиметра. Достаточно одной лампочки на 220 вольт.
С наилучшими пожеланиями, Я!
Обмотка электродвигателя: лучшие схемы соединения и подключения. Инструкция как сделать и прозвонить обмотку своими руками
Электрический двигатель постоянно работает на больших мощностях, поэтому неудивительно, что механизм часто выходит из строя. Больше всего страдает так называемая обмотка — расположенная в пазах и соединенная на концах заворачивающими кольцами медная, алюминиевая или бронзовая проволока.
При скачках напряжения, гидравлических ударах, перегревах из-за превышения допустимой нагрузки изоляция на обмоточном слое нарушается, а происходящее замыкание плавит металлические стержни.
Однако не всегда после подобной поломки необходима дорогостоящая замена, так как разобравшись в технологии обмотки электродвигателей, можно самостоятельно снизить причиненный урон. Также своими руками рекомендуется регулярно проверять состояние проволоки и вовремя производить локальный ремонт.
А вся необходимая для этих действий информация — вплоть до пошаговой инструкции — представлена ниже.
Какой должна быть намотка
Обмотка — это кусок проводника, зафиксированный кольцами в корпусе двигателя. Ее установка требует соблюдения ряда условий:
- Проволока однородная на всем покрываемом участке;
- Форма и площадь сечения проводника соответствуют друг другу;
- Поверх наносится слой изоляции (лака);
- Соединение должно обеспечивать надежный контакт.
Если хоть одно из требований нарушено, то происходящие в двигателе процессы работают на износ, теряя мощность, обороты и ломаясь.
В большинстве случаев схема соединения обмоток двигателя представлена в виде звезды или треугольника, однако существуют и другие варианты. Концы проводников подключают на специальные внешние колодки с клеммами, редко соединения наблюдаются внутри корпуса.
Возможные неполадки
Обмотка достаточно хрупкий элемент мотора, поэтому его нестабильная работа может вылиться во многие неисправности:
- Обрыв провода и прекращение передачи тока;
- Короткое замыкание из-за поврежденной изоляции;
- Замыкание между отдельными витками, их самостоятельное «отключение» от системы;
- Повреждение изоляции.
Как определить неисправность
На представленных фото обмотки электродвигателей видно, что нередко поломку можно заметить невооруженным взглядом: провода плавятся, чернеют, присутствует влага, запах гари, сломанные детали. В случае обнаружения неприятных признаков сомнения о необходимом ремонте отпадают, а движок отправляется в ремонтную мастерскую.
Помимо осмотра существуют и другие способы, как проверить обмотку электродвигателя, если отсутствуют внешние «симптомы». Для этого требуется специальный прибор, который в домашних условиях можно заменить обычным мультиметром. К примеру, сообщить о проблемах с обмоткой может следующее:
Сравнить токи на фазах двигателя под нагрузкой (если механизм исправен, то значения будут одинаковыми).
Измерить показатели на различных значениях тока на каждом участке с обмоткой, занести сведения в таблицу или представить в виде графика. Сравнить данные, которые в нормальном режиме не должны иметь сильные отклонения от единой схемы.
Метод с шариком
- Подключить симметричное напряжение от трех фаз с низким номинальным током.
- Присоединить к каждой фазе понижающий трансформатор, имеющие одинаковые рабочие значения.
- Подать напряжение (и ни в коем случае не допустить превышения токовой нагрузки!).
- Одновременно ввести в созданное магнитное поле небольшой стальной шарик (диаметром 1-3 см).
- Проследить за совершаемыми предметом действиями: если шарик крутится синхронно — все исправно, если остановился — в этом месте замыкание.
Как произвести обмотку
Пошаговая инструкция для обмотки двигателя выглядит следующим образом:
- Произвести осмотр механизма по представленным выше схемам, выявить проблемные участки, наметить фронт работы.
- Приготовить расходные материалы (подходящий вид проволоки, изоляции и соединяющей пропитки).
- Подготовить к работе кантователь (станок для намотки).
- Надежно зафиксировать на машине стартер движка.
- Произвести соответствующую намотку.
- Густо обработать всю поверхность пропиточным средством.
- Установить изоляционный слой.
- Пропитать изоляцию.
- Высушить устройство в специальном сушильном шкафу.
- Проверить качество произведенной обмотки.
Обмотка электродвижка — это важный элемент системы, обеспечивающий непрерывную и равномерную подачу тока от стартера до всех остальных частей мотора. Ее повреждение ставит под угрозу всю работоспособность устройства, а несвоевременный ремонт способен и вовсе погубить механизм.
Регулярная диагностика позволит сразу определить неполадку, устранить ее, тем самым повысив срок службы двигателя.
Фото обмотки электродвигателя
Начала и концы обмоток электродвигателей
Загрузка…
В большинстве случаев, обмотки трехфазных асинхронных электродвигателей скоммутированы в нужное соединение (“звезда” или “треугольник”) внутри статора и выведены в клеммную коробку в виде трех проводов, на которые подается питающее напряжение
380 В. Соединяться обмотки двигателя могут и в клеммной коробке: в этом случае все концы обмоток выводятся в коробку виде двух разделенных пучков по три провода (“начала” и “концы”).
Наконец, выводы обмоток могут быть промаркированы металлическими бирками (С1-С2-С3 – “начала”, С4-С5-С6 “концы” обмоток). Однако, в некоторых случаях попадаются электродвигатели, в клеммную коробку которых просто выведены шесть немаркированных “концов” обмоток, не разделенных на пучки. Причиной этому может быть утеря бирок с маркировкой вследствие небрежной эксплуатации электродвигателя.
В некоторых случаях, бывает, что после ремонта его обмоток – перемотки, в клеммную коробку двигателя выводят шесть совершенно одинаковых проводов одного цвета.
В этом случае, для правильного соединения. необходимо определить “начала” и “концы” обмоток электродвигателя. Для этого, сначала нужно “найти” обмотки, т. е. определить пары проводов отдельных фазных обмоток. Прозвонить пары можно любым тестером или при помощи контрольной лампы, после чего следует промаркировать найденные фазные обмотки.
Теперь нужно определить начало и конец найденных пар фазных обмоток, существуют несколько способов определения, наиболее распространенный и достаточно надежный способ – следующий:
Две любые “найденные” фазные обмотки, соединенные последовательно включают в сеть
220 В, а к выводам третьей подключают контрольную лампу или вольтметр, с установленным пределом измерения до 100 В.
Слабый накал лампы или отклонение стрелки вольтметра будет признаком, того, что две, последовательно включенные в сеть обмотки, соединены таким образом, что, «конец» одной обмотки соединен с «началом» другой.
Соответственно, полное отсутствие накала лампы или отклонения стрелки вольтметра – свидетельство отсутствия ЭДС в третьей обмотки, следовательно, последовательно включенные обмотки соединены своими “началами” или “концами”. Таким образом, определив “начала” и “концы” двух обмоток, выводы маркируются.
Теперь нужно определить “начало” и “конец” третьей обмотки, для этого ее соединяют последовательно с любой из обмоток, “начало” и “конец” которой уже определены и, подключив лампу или вольтметр к оставшейся обмотке, по аналогии предыдущего опыта находят “начало” и “конец”.
Определение начала конца обмоток двигателя
Правильное соединение статорных обмоток (CO) трехфазного асинхронного двигателя является одним из обязательных условий его нормальной работы.
Под правильным подразумевается соединение обмоток в зависимости от схемы: при подключении двигателя “звездой” важно чтобы соединены вместе были начала (или концы) обмоток, при подключении “треугольником” начало одной обмотки соединяется с концом другой (см. схемы соединения обмоток электродвигателей).
Неправильное соединение проводников СО (напр. если перепутаны начало и конец одной из обмоток) может стать причиной нагрева, снижения момента и выхода двигателя его из строя.
На практике чаще всего встречаются двигатели с тремя выводами в клеммной коробке – их СО уже соединены в статоре согласно нужной схемы.
Однако, существуют двигатели, которые могут быть подключены и работать по обеим схемам. Выведенные в коробку шесть проводов (три начала и три конца обмоток) начала и концы обмоток могут быть соединены как по схеме “звезда”, так и “треугольник”.
Провода могут быть промаркированы или разделены на два пучка – начала и концы обмоток. Однако, нередко в процессе эксплуатации маркировка теряется или стирается, делая нечитаемыми надписи. И очевидно, что имея шесть неидентифицированных проводов одного цвета при подключении электродвигателя могут возникнуть затруднения.
Определение начала и конца обмоток
Прежде всего необходимо определить фазы СО двигателя – “вызвонить” при помощи мультиметра пары выводов, имеющим принадлежность к определенным фазным обмоткам. Провода найденных пар лучше сразу промаркировать.
Далее, потребуется найти их начала и концы. Для этого нужно соединить два любых провода с двух любых найденных пар, а на оставшиеся два провода подать напряжение (иначе говоря, соединить найденные СО последовательно).
К третьей фазной обмотке – найденной паре, в зависимости от напряжения источника питания может быть подключен мультиметр, работающий в режиме вольтметра или контрольная лампочка накаливания как в примере на схеме (используется напряжения сети 220 В).
При согласованном последовательном включении двух обмоток (начала одной с концом другой, см. рис.1) ЭДС обмоток сложится, наводяя ЭДС (напряжение) в третьей обмотке, вызывая свечение подключенной к ней лампы. Найденные начала и концы обмоток рекомендуется сразу пометить.
При отсутствии свечения лампы нужно поменять провода одной из последовательно соединенных пар местами, поскольку они соединены встречно – началами или концами (см. рис.2) и ЭДС каждой направлен друг на друга, их сумма будет равна нулю.
Аналогично определяются начало и конец третьей обмотки (см. схему выше).
Схемы включения трехфазных электродвигателей. Определение начала и конца обмоток
Здравствуйте уважаемые читатели и гости блога! В этом посте я хочу поговорить о схемах включения трехфазного электродвигателя в сеть и методе определения «начал» и «концов» статорной обмотки.
Вообще все выводы электродвигателей должны маркироваться(иметь бирки). Но не всегда в реале так бывает. Часто на практике бирок нет, а выводы беспорядочно торчат из коробки электродвигателя.
Как правило условные «начала» обмоток асинхронных электродвигателей помечают как С1, С2, С3, а соответствующие им «концы» как С4, С5, С6. Если двигатель является многоскоростным, то первая обмотка помечается 1С1….1С6, вторая как 2С1….2С6 и т.д.
Выводы обмоток маломощных машин маркируют краской разного цвета. Фазу «А» желтым цветом, фазу «В»- зеленым и «С»- красным. Концы обмоток имеют соответствующий цвет и покрашены сверху черным цветом.
Обмотки трехфазных асинхронных электродвигателей собирают по двум схемам: «звезда» и «треугольник».
Давайте разберемся, в каком случае обмотки нужно соединять по схеме «звезда» или «треугольник». Для этого нам нужен паспорт электродвигателя. Поищите алюминиевую табличку на корпусе электродвигателя. Это и есть его паспорт.
На ней обычно указывают 127/220 или 220/380 Вольт. Если напряжение сети, в которую вы собираетесь включить электродвигатель, совпадает с большим из напряжений, приведенных на табличке, то обмотки нужно соединить по схеме «звезда». См.
Для этого все три конца или начала соединяют вместе, а оставшиеся выводы подключают к фазам сети.
Если же напряжение сети совпадает с одним из меньших, приведенных на табличке, то применяют схему соединения «треугольник». В этом случае выводы обмоток соединяются таким образом: конец первой обмотки соединяют с началом второй, конец второй с началом третьей, коней третьей с началом первой. Общие точки соединения подключают к сети к фазам.
Очень часто у многих трехфазных асинхронных электромоторов начала и концы обмоток выводятся на клеммную доску следующим образом, как показано на рисунке ниже
Здесь для соединения обмоток по схеме «звезда» необходимо замкнуть между собой три нижних зажима(можно и верхних) и подать к оставшимся зажимам фазы сети. Для соединения по схеме «треугольник» нужно по вертикали соединить пару зажимов и уже к ним подключить фазы сети. На рисунке ниже это показано.
Если вы хотите поменять направление вращения вала электродвигателя на противоположное, то поменяйте местами две любые фазы сети.
Теперь представим себе следующую ситуацию. Вы хотите подключить электромотор, открываете клеммную крышку и видите 6 выводов без каких либо обозначений и цвета. Что делать? Быстро закрыть крышку и бежать от такого электрооборудования подальше! )) Посадка кедровой сосны поможет сконцентрироваться. Ну а если серьезно, то есть три способа определения начал и концов обмоток.
Для начала необходимо определить пары выводов обмоток, принадлежащие разным фазам. Для этого можно воспользоваться контрольной лампой на 220 вольт, но безопаснее для этих целей использовать тестер в режиме измерения омического сопротивления (мультиметр). Более подробно я описывать этот процесс не буду, так как надеюсь, что азы вы какие-нибудь уже имеете за плечами.
И так теперь нам предстоит с вами определить согласованные выводы, начала и концы обмоток.
1 Метод трансформации. В чем суть метода? Смотрите рисунок ниже
Для этого к одной из обмоток подключают вольтметр переменного тока или контрольную лампу, а две других соединяют последовательно друг с другом и включают в сеть 220 вольт.
В случае, если конец одной обмотки соединен с началом другой, то общий магнитный поток будет направлен под углом 90 градусов к плоскости обмотки третьей фазы. При этом в ней будет наведена какая то величина эдс, которая вызовет свечение спирали лампы и показание вольтметра.
Когда же в общей точке соединенных последовательно двух фаз окажутся два начала или конца, то эдс наводиться не будет.Теперь вам нужно поменять местами выводы какой либо фазы и снова включить схему в сеть.
При появлении напряжения в третьей обмотке, пометьте бирками концы и начала двух последовательно соединенных обмоток. Далее соберите следующую схему на рисунке ниже
Включите вольтметр в цепь обмотки I и определите выводы начала и конца обмотки III по отношению к обмотке II.
Если у вас нет возможности использовать в качестве источника тока сеть 220 вольт, то можно вместо нее использовать аккумулятор или батарейки.
Тогда вместо контрольной лампы нужно применить чувствительный вольтметр(стрелочный). При этом сам способ определения остается неизменным, только подключение обмоток должно проводиться кратковременно.
Но тут возникает опасность возникновения эдс самоиндукции величиной 200-300 вольт. Не забывайте об этом!
2 Метод подбора. Данный метод удобно использовать на практике, если мощность электродвигателя не превышает 5 кВт. Соедините по одному из выводов от каждой обмотки в общую точку, а на три оставшихся подайте три фазы сети.Если вы угадали и соединили в общую точку три конца или начала, то электромотор будет нормально работать .
Если же в общей точке оказалось два конца и одно начало, то электромотор будет сильно гудеть, плохо вращаться. В этом случае быстро отключите его от сети. Далее поменяйте местами выводы любой фазы и снова произведите включение в сеть. Если мотор снова гудит и плохо вращается, то возвратите выводы на прежнее место и поменяйте местами две другие фазы и т.д.
В любом случае количество проб по данному методу- три.
3 Метод. Для определения начала и конца обмоток по третьему методу необходимо собрать схему открытого треугольника. Смотри рисунок ниже
Если в точках А и В соединены начала и концы обмоток, то вольтметр будет показывать примерно одинаковое напряжение на каждой обмотке. Если же одна из обмоток окажется «перевернутой»,напряжение на ней будет больше, чем на двух других. Всем пока и удачи в нелегком деле электрика!
Как определить начала и концы фаз обмотки асинхронного двигателя
Читать все новости ➔
Если в паспорте электродвигателя указано, например, 220/380 В, это означает, что электродвигатель может быть включен как в сеть 220 В (схема соединения обмоток – треугольник), так и в сеть 380 В (схема соединения обмоток – звезда). Статорные обмотки асинхронного электродвигателя имеют шесть концов.
По ГОСТу обмотки асинхронного двигателя имеют следующие обозначения: I фаза – С1 (начало), С4 (конец), II фаза – С2 (начало), С5 (конец), III фаза – С3 (начало), С6 (конец).
Рис. 1. Схема подключения обмоток асинхронного двигателя: а – в звезду, б – в треугольник, в – исполнение схем “звезда” и “треугольник” на доске зажимов.
Если в сети напряжения равно 380 В, то обмотки статора двигателя должны быть соединены по схеме “звезда”. В общую точку при этом собраны или все начала (С1, С2, С3), или все концы (С4, С5, С6). Напряжение 380 в приложено между концами обмоток АВ, ВС, СА. На каждой же фазе, то есть между точками О и А, О и В, О и С, напряжение будет в √З раз меньше: 380/√З = 220 В.
Способы подключения электродвигателей
Если в сети напряжение 220 В (при системе напряжений 220/127 В, что в настоящее время, практически нигде не встречается) обмотки статора двигателя должны быть соединены по схеме “треугольник”.
В точках А, В и С соединяются начало (Н) предыдущей с концом (К) последующей обмотки и с фазой сети (рис. 1, б). Если предположить, что между точками А и В включена I фаза, между точками В и С – II, а между точками С и А – III фаза, то при схеме “треугольник” соединены: начало I (С1) с концом III (С6), начало II (С2) с концом I (С4) и начало III (С3) с концом II (С5).
У некоторых двигателей концы фаз обмотки выведены на доску зажимов. По ГОСТу, начала и концы обмоток выводят .в том порядке, как эго показано на рисунке 1, в.
Если теперь необходимо соединить обмотки двигателя по схеме “звезда”, зажимы, на которые выведены концы (или начала), замыкают между собой, а к зажимам двигателя, на которые выведены начала (или концы), присоединяют фазы сети.
При соединении обмоток двигателя в “треугольник” соединяют, зажимы по вертикали попарно и к перемычкам присоединяют фазы сети. Вертикальные перемычки соединяют начало I с концом III фазы, начало II с концом I фазы и начало III с концом II фазы.
При определении схемы соединения обмоток можно пользоваться следующей таблицей:
Напряжение, указанное в паспорте электродвигателя, В
Напряжение в сети, В
127 220 380 127 / 220 треугольник звезда – 220 / 380 – треугольник звезда 380 / – – – треугольник
Определение согласованных выводов (начал и концов) фаз статорной обмотки.
На выводах статорных обмоток двигателя обычно имеются стандартные обозначения па металлических обжимающих кольцах. Однако эти обжимающие кольца теряются. Тогда возникает необходимость определить согласованные выводы. Это выполняют в такой последовательности.
Сначала при помощи контрольной лампы определяют пары выводов, принадлежащих отдельным фазным обмоткам (рис. 2).
Рис. 2 . Определение фазных обмоток при помощи контрольной лампы.
К зажиму сети 2 подключают один из шести выводов статорной обмотки двигателя, а к другому зажиму сети 3 подключают один конец контрольной лампы. Другим концом контрольной лампы поочередно касаются каждого из остальных пяти выводов статорных обмоток до тех пор, пока лампа не загорится. Если лампа загорелась, значит, два вывода, присоединенные к сети, принадлежат одной фазе.
Необходимо следить при этом, чтобы выводы обмоток не замыкались друг с другом. Каждую пару выводов помечают (например, завязав ее узелком).
Определив фазы статорной обмотки, приступают ко второй части работы – определению согласованных выводов или “начал” и “концов”. Эта часть работы может быть выполнена двумя способами.
1. Способ трансформации. В одну из фаз включают контрольную лампу. Две другие фазы соединяют последовательно и включают и сеть на фазное напряжение.
Если эти две фазы оказались включенными так, что и точке О условный “конец” одной фазы соединен с условным “началом” другой (рис. 3, а), то магнитный ноток ∑Ф пересекает третью обмотку и индуктирует в ней ЭДС.
Лампа укажет наличие ЭДС небольшим накалом. Если накал незаметен, то следует применить в качестве индикатора вольтметр со шкалой до 30 – 60 В.
Рис. 3. Определение начал и концов в фазных обмотках двигателя методом трансформации
Если в точке О встретятся, например, условные “концы” обмоток (рис. 3, б), то магнитные потоки обмоток будут направлены противоположно друг другу. Суммарный поток будет близок к нулю, и лампа не даст накала (вольтметр покажет О). В данном случае выводы, принадлежащие какой-либо из фаз, следует поменять местами и включить снова.
Если накал у лампы есть (или вольтметр показывает некоторое напряжение), то концы следует пометить. На одни из выводов, которые встретились в общей точке О, надевают бирку с пометкой Н1 (начало I фазы), а на другой вывод – К3 (или К2).
Бирки К1 и Н3 (или Н2) надевают па выводы, находящиеся в общих узелках (завязанных при выполнении первой части работы) с Н1 и К3 соответственно.
Для определения согласованных выводов третьей обмотки собирают схему, представленную на рисунке 3, в. Лампу включают в одну из фазе уже обозначенными выводами.
2. Способ подбора фаз. Этот способ определения согласованных выводов (начал и концов) фаз статорной обмотки можно использовать для двигателей небольшой мощности – до 3 – 5 кВт.
Рис. 4. Определение “начал” и “концов” обмотки методом подбора схемы “звезда”.
После того как определены выводы отдельных фаз, их наугад соединяют в звезду (по одному выводу от фазы подключают к сети, а по одному — соединяют в общую точку) и включают двигатель в сеть. Если в общую точку попали все условные “начала” или все “концы”, то двигатель будет работать нормально.
Но если одна из фаз (III) оказалась “перевернутой” (рис. 4, а), то двигатель сильно гудит, хотя и может вращаться (но легко может быть заторможен). В этом случае выводы любой из обмоток наугад (например, I) следует поменять местами (рис. 4, б).
Если двигатель опять гудит и плохо работает, то фазу следует снова включить, как прежде (как в схеме а), но повернуть другую фазу – III (рис. 3, в).
Если двигатель и после этого гудит, то эту фазу следует также поставить по-прежнему, а повернуть следующую фазу – II.
Когда двигатель станет работать нормально (рис. 4, в), все три вывода, которые соединены в общую точку, следует пометить одинаково, например “концами”, а противоположные – “началами”. После этого можно собирать рабочую схему, указанную в паспорте двигателя.
Источник