Как найти обмотки трансформатора мультиметром

Здравствуйте, уважаемые читатели сайта sesaga.ru. На первых порах занятий радиоэлектроникой у начинающих радиолюбителей, да и не только у радиолюбителей, возникает очень много вопросов, связанных с прозвонкой или определением обмоток трансформатора. Это хорошо, если у трансформатора всего две обмотки. А если их несколько, да и еще у каждой обмотки несколько выводов. Тут просто караул кричи. В этой статье я расскажу Вам, как можно определить обмотки трансформатора визуальным осмотром и с помощью мультиметра.

Внешний вид трансформатора

Как Вы знаете, трансформаторы предназначены для преобразования переменного напряжения одной величины в переменное напряжение другой величины. Самый обычный трансформатор имеет одну первичную и одну вторичную обмотки. Питающее напряжение подается на первичную обмотку, а ко вторичной обмотке подключается нагрузка. На практике же большинство трансформаторов может иметь несколько обмоток, что и вызывает затруднение в их определении.

1. Определение обмоток визуальным осмотром.

При визуальном осмотре трансформатора обращают внимание на его внешний защитный слой изоляции, потому как у некоторых моделей на внешнем слое изображают электрическую схему с обозначением всех обмоток и выводов; у некоторых моделей выводы обмоток только маркируют цифрами. Также можно встретить старые отечественные трансформаторы, на внешнем слое которых указывают маркировку в виде цифрового кода, по которому в справочниках для радиолюбителей есть вся информация о конкретном трансформаторе.

Трансформатор типа ТАН

Если трансформатор попался без опознавательных знаков, то обращают внимание на диаметр обмоточного провода, которым намотаны обмотки. Диаметр провода можно определить по выступающим выводам концов обмоток, выпущенных для закрепления на контактных лепестках, расположенных на элементах каркаса трансформатора. Как правило, первичную обмотку мотают проводом меньшего сечения, по отношению к вторичной. Диаметр провода вторичной обмотки всегда больше.

Первичная и вторичная обмотки трансформатора

Исключением могут быть повышающие трансформаторы, работающие в схемах преобразователей напряжения и тока. Их первичная обмотка выполнена толстым проводом, так как генерирует высокое напряжение во вторичной обмотке. Но такие трансформаторы встречаются очень редко.

При изготовлении трансформаторов первичную обмотку, как правило, мотают первой. Ее легко определить по выступающим концам выводов обмотки, расположенных ближе к магнитопроводу. Вторичную обмотку наматывают поверх первичной, и поэтому концы ее выводов расположены ближе к внешнему слою изоляции.

Выводы обмоток трансформатора

В некоторых моделях сетевых трансформаторов, используемых в блоках питания бытовой радиоаппаратуры, обмотки располагают на пластмассовом каркасе, разделенном на две части: в одной части находится первичная обмотка, а в другой вторичная. К выводам первичной обмотки припаивают гибкий монтажный провод, а выводы вторичной обмотки оставляют в виде обмоточного провода.

Китайский понижающий трансформатор

2. Определение обмоток по сопротивлению.

Когда предварительный анализ обмоток произведен, необходимо убедиться в правильности сделанных выводов, а заодно прозвонить обмотки на отсутствие обрыва. Для этого воспользуемся мультиметром. Если Вы не знаете как измерить сопротивление мультиметром, то прочитайте эту статью.

Вначале прозвоним обычный сетевой трансформатор, у которого всего две обмотки.
Мультиметр переводим в режим «Прозвонка» и производим измерение сопротивления предполагаемых первичной и вторичной обмоток. Здесь все просто: у какой из обмоток величина сопротивления больше, та обмотка и является первичной.

Это объясняется тем, что в маломощных трансформаторах и трансформаторах средней мощности первичная обмотка может содержать 1000…5000 витков, намотанных тонким медным проводом, и при этом может достичь сопротивления до 1,5 кОм. Тогда как вторичная обмотка содержит небольшое количество витков, намотанных толстым проводом, и ее сопротивление может составлять всего несколько десятков ом.

Теперь прозвоним трансформатор, у которого несколько обмоток. Для этого воспользуемся листком бумаги, ручкой и мультиметром. На бумаге будем зарисовывать и записывать величины сопротивлений обмоток.

Многообмоточный трансформатор

Делается это так: одним щупом мультиметра садимся на любой крайний вывод, а вторым щупом по очереди касаемся остальных выводов трансформатора и записываем полученное значение сопротивлений. Выводы, между которыми мультиметр покажет сопротивление, и будут являться выводами одной обмотки. Если обмотка без средних отводов, то сопротивление будет только между двумя выводами. Если же обмотка имеет один или несколько отводов, то мультиметр покажет сопротивление между всеми этими отводами.

Например. Первичная обмотка может иметь несколько отводов, когда трансформатор рассчитан на работу в сети с напряжениями 110В, 127В и 220В. Вторичная обмотка также может иметь один или несколько отводов, когда хотят от одного трансформатора получить несколько напряжений.

Обозначение обмоток трансформатора на схемах

Идем дальше. Когда первая обмотка и ее выводы будут найдены, то переходим к поиску следующей обмотки. Щупом опять садимся на следующий свободный вывод, а другим поочередно касаемся оставшихся выводов и записываем результат. И таким образом производим измерение, пока не будут найдены все обмотки.

Например. Между выводами с номерами 1 и 2 величина сопротивления составила 21 Ом, тогда как между остальными выводами мультиметр показал бесконечность. Из этого следует, что мы нашли обмотку, у которой выводы обозначены номерами 1 и 2. Нарисуем ее так:

Первая обмотка трансформатора

Теперь щупом садимся на вывод 3, а другим щупом поочередно касаемся выводов с номерами от 4 до 10. Мультиметр показал сопротивление только между выводами 3, 4 и 5. Причем между выводами 3 и 4 величина сопротивления составила 6 Ом, а между парой выводов 3, 5 и 4, 5 получилось по 3 Ома. Отсюда делаем вывод, что эта обмотка с отводом посередине, т.е. пары 3, 5 и 4, 5 намотаны равным количеством витков, и что с этой обмотки снимается два одинаковых напряжения относительно общего вывода 5. Рисуем так:

Обмотка с отводом посередине

Производим измерение далее.
Между выводами 6 и 7 величина сопротивления составила 16 Ом. Рисуем так:

Выводы третьей обмотки трансформатора

Ну и между выводами 9 и 10 сопротивление составило 270 Ом.
А так как среди всех обмоток эта оказалась с самой большой величиной сопротивления, то она и является первичной. Рисуем так:

Сетевая обмотка трансформатора

Вывод 8, к которому припаяна желто-зеленая жилка, ни как не звонился, поэтому смело утверждаем, что это экранирующая обмотка (экран), которую наматывают поверх первичной, чтобы устранить влияние ее магнитного поля на другие обмотки. Как правило, экранирующую обмотку соединяют с корпусом радиоаппаратуры.

В итоге у нас получилось четыре обмотки, из которых одна сетевая и три понижающих. Экранирующая обмотка обозначается пунктирной линией и располагается параллельно с сердечником. И вот на основе полученных результатов нарисуем электрическую схему трансформатора.

Электрическая схема трансформатора

Теперь остается подать напряжение на первичную обмотку и измерить выходящие напряжения. Однако тут есть один момент, который необходимо знать, если Вы сомневаетесь в правильности определения первичной (сетевой) обмотки.

Здесь все просто: чтобы не сжечь обмотку трансформатора и ограничить через нее нежелательный ток нужно последовательно с этой обмоткой включить лампу накаливания на напряжение 220В и мощностью 40 – 100 Вт. Если обмотка определена правильно, то нить накала лампы должна не гореть или еле тлеть. Если же лампа будет гореть достаточно ярко, то есть вероятность того, что сетевая обмотка трансформатора рассчитана на питающее напряжение 110 — 127В или Вы ее прозвонили неправильно.

Последовательное включение лампы в обмотку

Второй момент, по которому можно судить о правильности подключения трансформатора к сети — это сама работа трансформатора. При правильном включении работа трансформатора практически беззвучна и сопровождается слегка ощутимой вибрацией. Если же он будет громко гудеть и сильно вибрировать, и при этом будет нагреваться обмотка и из нее может пойти дым, то трансформатор однозначно включен неправильно. В этом случае тут же отключайте трансформатор от сети, чтобы не повредить обмотку.

Однако и тут есть пару нюансов, которые необходимо учитывать, потому как у некоторых трансформаторов каркас с обмотками может неплотно прилегать к сердечнику и от этого работа трансформатора может сопровождаться некоторым гудением и вибрацией, но при этом обмотка греться не будет. В этом случае в зазор между сердечником и каркасом можно вставить кусочек дерева, пластмассы или кусок провода в изоляции и, тем самым, плотно зафиксировать каркас.

Также характерный гул и вибрацию может вызвать плохая стяжка пластин, из которых собран сердечник магнитопровода. Как правило, стягивание сердечника производится металлической скобой, специальными планками, болтами или стяжками, которые обеспечивают необходимую механическую прочность и жесткое соединение деталей сердечника.

Ну вот в принципе и все, что хотел сказать о прозвонке и определению обмоток трансформатора. Если у Вас возникли вопросы по этой теме, то задавайте их в комментариях к статье. Также, в дополнение к статье, можете посмотреть видеоролик.

Удачи!

Программирование микроконтроллеров Курсы

Начинающим радиолюбителям очень полезно уметь и знать, как проверить трансформатор мультимтером. Такие знания полезны по той причине, что позволяют сэкономить время и деньги. В большинстве линейных блоков питания львиную долю стоимости составляет трансформатор. Поэтому, если в руках оказался трансформатор с неизвестными параметрами не спешите его выбрасывать. Лучше возьмите в руки мультиметр. Также для некоторых опытов нам понадобится лампа накаливания с патроном.

Как проверить трансформатор

С целью более осознанного выполнения дальнейших опытов и экспериментов следует понимать, как устроен и работает трансформатор трансформатора. Рассмотрим здесь это в упрощенной форме.

Простейший трансформатор представляет собой две обмотки, намотанных на сердечник или магнитопровод. Каждая обмотка представляет собой изолированные друг от друга проводники. А сердечник набирается из тонких изолированных друг от друга листов из специальной электротехнической стали. На одну из обмоток, называемую первичной, подается напряжение, а со второй, называемой вторичной, оно снимается.

Принцип работы трансформатора

При подаче переменного напряжения на первичную обмотку, поскольку электрическая цепь замкнута, то в ней создается пуль для протекания переменного электрического тока. Вокруг проводника с переменным током всегда образуется переменное магнитное поле. Магнитное поле замыкается и усиливается посредством сердечника магнитопровода и наводит во вторичной обмотке переменную электродвижущую силу ЭДС. При подключении нагрузки ко вторично обмотке в ней протекает переменный ток i2.

Как устроен и работает трансформатор

Как работает трансформатор

Этих знаний на еще не достаточно, чтобы полностью понимать, как проверить трансформатор мультиметром. Поэтому рассмотрим еще ряд полезных моментов.

Как проверить трансформатор мультимтером правильно

Не вникая в подробности, которые здесь ни к чему, заметим, что ЭДС, как и напряжение, определяется числом витков обмотки при прочих равных параметрах

E ~ w.

Чем больше витков, тем выше значение ЭДС (или напряжения) обмотки. В большинстве случаев мы имеем дело с понижающими трансформаторами. На их первичную обмотку подают высокое напряжение 220 В (230 В по-новому ГОСТу), а со вторичной обмотки снимается низкое напряжение: 9 В, 12 В, 24 В и т.д. Соответственно и число витков также будет разным. В первом случае оно выше, а во втором ниже.

Так как

E1 > E2,

то

w1 > w2.

Также, не приводя обоснований, заметим, что мощности обоих обмоток всегда равны:

S1 = S2.

А так как мощность – это произведение тока i на напряжение u

S = u∙i,

то

S1 = u1∙i1; S2 = u2∙i2.

Откуда получаем простое уравнение:

u1∙i1 = u2∙i2.

Последнее выражение имеет для нас большой практический интерес, который заключается в следующем. Для сохранения баланса мощностей первичной и вторичной обмоток при увеличении напряжения нужно снижать ток. Поэтому в обмотке с большим напряжением протекает меньший ток и наоборот. Проще говоря, поскольку в первичной обмотке напряжение выше, чем во вторичной, то ток в ней меньше, чем во вторичной. При этом сохраняется пропорция. Например, если напряжение выше в 10 раз, то ток ниже в те же 10 раз.

Отношение числа витков или отношение ЭДС первичной обмотки ко вторичной называют коэффициентом трансформации:

kт = w1 / w2 = E1 / E2.

Из приведенного выше, мы можем сделать важнейший вывод, который поможет нам понять, как проверить трансформатор мультиметром.

Вывод заключается в следующем. Поскольку первичная обмотка трансформатора рассчитана на более высокое напряжение (220 В, 230 В) относительно вторичной (12 В, 24 В и т.д.), то она мотается большим числом витков. Но при этом в ней протекает меньший ток, поэтому применяется более тонкий провод большей длины. Отсюда следует, что первичная обмотка понижающего трансформатора обладает большим сопротивлением, чем вторичная.

Как проверить трансформатор мультиметром

Поэтому с помощью мультиметра уже можно определить, какие выводы являются выводами первичной обмотки, а какие вторичной, путем измерения и сравнения их сопротивлений.

Как определить обмотки трансформатора

Измерив сопротивление обмоток, мы узнали, как из них рассчитана на более высокое напряжение. Но мы еще не знаем, можно ли на нее подавать 220 В. Ведь более высокое напряжение еще на означает 220 В. Иногда попадаются трансформаторы, рассчитаны на работу от мети переменного тока 110 В и 127 В или меньшее значение. Поэтому если такой трансформатор включить в сеть 220 В, он попросту сгорит.

Как найти первичную обмотку трансформатора

В таком случае опытные электрики поступают так. Берут лампу накаливания и последовательно соединяют с предполагаемой первичной обмоткой. Далее один вывод обмотки и вывод лампочки подключают в сеть 220 В. Если трансформатор рассчитан на 220 В, то лампа не засветится, так как приложенное напряжение 220 В полностью уравновешивается ЭДС самоиндукции обмотки. ЭДС и приложенное напряжение направлены встречно. Поэтому через лампу накаливания будет протекать небольшой ток – ток холостого хода трансформатора. Величина этого тока недостаточна для разогрева нити лампы накаливания. По этой причине лампа не светится.

Как определить первичную обмотку трансформатора

Если лампа засветится даже в полнакала, то на такой трансформатор нельзя подавать 220 В; он не рассчитан на такое напряжение.

Как проверить первичную обмотку трансформатора

Очень часто можно встретить трансформатор, имеющий много выводов. Это значит, что он имеет несколько вторичных обмоток. Узнать напряжение каждой из них можно узнать следующим образом.

Раньше мы рассмотрели, как проверить трансформатор мультиметром и определить по отношению сопротивления первичную обмотку. Также с помощью лампы накаливания можно убедится в том, что она рассчитана на 220 В (230 В).

Теперь дело осталось за малым. Подаем на первичную обмотку 220 В и выполняем измерение переменного напряжения на выводах оставшихся обмоток с помощью мультиметра.

Как проверить трансформатор мультиметром

Соединение обмоток трансформатора

Вторичные обмотки трансформатора соединяют последовательно и реже параллельно. При последовательном соединении обмотки могут включаться согласно и встречно.

Обозначение первичной обмотки трансформатора

Согласное соединение обмоток трансформатора применяют с целью получения большей величины напряжения, чем дает одна из обмоток. При согласном соединении начало одной обмотки, обозначаемое на чертежах электрических схем точкой или крестиком, соединяется с концом предыдущей. Здесь следует помнить, что максимальный ток всех соединенных обмоток не должен превышать значения той, которая рассчитана на наименьший ток.

Согласное и встречное соединение обмоток трансформатора

При встречном соединении начала или концы обмоток соединяются вместе. При встречном соединении ЭДС направлены встречно. На выводах получают разницу ЭДС: от большего значения отнимается меньшее значение. Если соединить встречно две обмотки с равными значениями ЭДС, то на выводах будет ноль.

Теперь мы знаем, как, как проверить трансформатор мультиметром, а также можем найти первичную и вторичную обмотки.

Электроника для начинающих

Как проверить трансформатор при помощи мультиметра

https://ya.cc/m/Z73c8WI

Проверить трансформатор на наличие обрыва или замыкания катушки с помощью обычного тестера довольно просто. Проверить межвитковые замыкания, не имея генератора и осциллографа, трудно или даже вовсе невозможно. Провести подобную проверку можно только осциллографом с выходами калибровки. Для этого подаются сигналы и отслеживаются прибором.

Но существуют также специальные приборы для проведения теста на исправность трансформатора и его отдельных элементов – мультиметры. С их помощью установить, исправен ли прибор, можно даже в домашних условиях. В данной статье будут рассмотрены основные моменты проверки трансформаторов с помощью мультиметра.

Как проверить трансформатор при помощи мультиметра

Поломки трансформаторов

Строчные устройства могут выходить из строя. Работа телевизора, монитора в этом случае будет невозможна. Существует много разновидностей моделей строчных агрегатов. Замена вызывает трудности. Стоимость аналоговых приборов высока. Некоторые телевизоры, мониторы требуют больших затрат при ремонте. Необходимые детали в некоторых случаях тяжело найти.

Чтобы приобрести только ту часть схемы, которая вышла из строя, произвести ее быструю замену, нужно проверить строчный трансформатор. Телевизору проще будет выполнить адекватный ремонт. В первую очередь проверьте, нет ли следующих неисправностей:

  • обрыв контура;
  • пробой герметичного корпуса;
  • замыкание между витков;
  • обрыв потенциометра.

Первые две поломки выявить достаточно просто. Это определяется визуально. Для выполнения замены неисправных элементов материал приобретается практически в любом магазине радиотехники. Сложнее определить замыкание в контурах обмоток. Трансформатором в этом случае производится звук, напоминающий писк.

Но не всегда требуется ремонт при появлении такого сигнала. ТДКС иногда пищит из-за высокого напряжения на вторичном контуре. Проверяете, что вызывает звук, при помощи специального прибора. Если оборудования нет, нужно искать другие варианты.

Проверка на межвитковое замыкание

Начать нужно с внешнего осмотра, особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки. Дело в том, что межвитковое замыкание приводит к сильному нагреву трансформатора. Далее проверяем сопротивление изоляции между обмотками, оно должно составлять не менее 10 Мом. Если есть аналогичный трансформатор, можно сравнить их значение индуктивности. Когда такой возможности нет, можно воспользоваться другим методом, основанном на резонансных свойствах цепи.

Как проверить трансформатор при помощи мультиметра

От перестраиваемого генератора подаем синусоидальный сигнал поочередно на обмотки через разделительный конденсатор и контролируем форму сигнала во вторичной обмотке.

Если внутри нет межвитковых замыканий, то форма сигнала не должна отличаться от синусоидальной во всем диапазоне частот. Короткозамкнутые витки в катушке приводят к срыву колебаний в LC-контуре на резонансной частоте. У трансформаторов разного назначения рабочий частотный диапазон отличается — это надо учитывать при проверке.

Для импульсного блока питания он составляет — 8-40 кГц, для ТДКС — 13-17 кГц. Импульсные трансформаторы обычно содержат малое число витков. Возможен вариант убедиться в работоспособности трансформатора путем контроля   коэффициента трансформации обмоток.

Для этого подключаем обмотку трансформатора с наибольшим числом витков к генератору синусоидального сигнала на частоте 1 кГц. Эта частота не очень высокая и на ней работают все измерительные вольтметры (цифровые и аналоговые), в то же время она позволяет с достаточной точностью определить коэффициент трансформации (такими же они будут и на более высоких рабочих частотах).

Измерив напряжение на входе и выходе всех других обмоток трансформатора, легко посчитать соответствующие коэффициенты трансформации. Этот метод вполне реален для тех кто дружит с математикой. По результатам пробных измерений составлена таблица, в которой сопротивлению, указанному в левой колонке, соответствует определенное показание цифрового индикатора.

Инструкции для тестирования тороидального трансформатора

Тороидальный трансформатор представляет собой высокоэффективный трансформатор, который легче и меньше, чем альтернативные трансформаторы такой же мощности. Тороидальный трансформатор — это плотно обернутые полоски стали в сердцевине, также он состоит из мотка проволоки, который свернут вокруг сердечника. Этот моток называется первичная катушка, а также есть вторая катушка проволоки, которая тоже свернута вокруг сердечника и называется вторичная обмотка.

Проще говоря, электричество проходит через первичную обмотку тороидального трансформатора, тем самым создавая магнитные поля, которые проходят через вторую катушку для получения выходного напряжения.

Трансформаторы используются для повышения или понижения выходного напряжения, тем самым увеличивая или уменьшая напряжение. Для проведения тестирования состояния трансформатора, существует определенный алгоритм действий:

  1. Первый шаг заключается в том, что трансформатор необходимо визуально осмотреть и проверить, нет ли от него запаха.
  2. Перегрев может привести к неисправности трансформатора, если есть следы ожогов или внешняя часть обмотки видна снаружи, трансформатор должен быть заменен и нет никакой необходимости для дальнейших испытаний, которые будут проводиться.
  3. Точно так же, запах гари является свидетельством того, что трансформатор перегревается. Если никаких дополнительных повреждений не видно за исключением запаха, дальнейшие испытания могут быть проведены, чтобы определить, является ли трансформатор в рабочем состоянии или нет.
  4. Информация о входном и выходном напряжении, как правило, четко обозначена на трансформаторе, но самым безопасным вариантом является получение схемы цепи от производителя продукта.

Напряжение, которое подается на первичную обмотку, должно быть четко указано на схеме цепи и корпуса трансформатора. Аналогичным образом, выходное напряжение, подаваемое на вторичной обмотке должно быть четко указано на схеме цепи и корпуса трансформатора. Вы должны знать входное и выходное напряжения для того, чтобы проверить, правильно ли работает трансформатор.

Трансформатор не способен преобразовывать переменное напряжение, в напряжение постоянного тока. Для преобразования напряжения переменного тока используются диоды и конденсаторы. Схема цепи покажет, как выходное напряжение трансформатора преобразуется из переменного тока, в напряжение постоянного тока.

Вам потребуется эта информация, чтобы определить, следует ли завершить измерения, проводимые с помощью мультиметра тестера в режиме переменного тока или в режиме постоянного тока. Начните проведение теста путем подключения питания и коммутации к изделию.

https://ya.cc/m/QfSS79q

Как проверить трансформатор при помощи мультиметра

Переключите цифровой мультиметр тестер (с экраном) или аналоговый мультиметр тестер в режиме напряжения переменного тока. Для того, чтобы подтвердить правильность входного напряжения для трансформатора, проверьте напряжение, прикоснувшись красный щуп к положительному полюсу, а черный зонда к отрицательной клемме трансформатора основного входа.

Если значения напряжений слишком низкие, значит это может быть из-за проблем с трансформатором или схемами. Необходимо удалить трансформатор от входной цепи и проверить входную мощность, представленную схемой. Если показания находятся в линии, то трансформатор неисправен и если показания остаются неизменными, то схема неисправна.

Чтобы проверить выходное напряжение сначала нужно определить, является ли выходное напряжение в сети переменного или постоянного тока. Установите цифровой или аналоговый мультиметр тестер в нужный режим для проверки.

Если конденсаторы и диоды используются для преобразования выходного напряжения от сети переменного тока в напряжении постоянного тока, то слишком низкое чтение может быть вызвано неисправным трансформатором или неисправными конденсаторами и диодами. Извлеките тороидальный трансформатор с выходной схемой и проверьте выходное напряжение трансформатора. Не забудьте изменить режим мультиметра тестера к напряжению сети переменного тока.

Если выходное напряжение в линии, трансформатор работает правильно, то проблема будет тогда с конденсаторами и диодами. Тороидальные трансформаторы, которые излучают постоянный жужжащий звук скоро выйдут из строя и должны быть заменены. Всегда помните об осторожности, не касайтесь схемы при выполнении тестов. Случайный контакт со схемой, которая находится под напряжением может привести к травмам.

Проверка с помощью мультиметра дома

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты.

Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром в домашних условиях, рассмотрим ниже.

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока.

Если приходится работать с постоянным, вначале его надо преобразовывать. На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности

Как проверить трансформатор при помощи мультиметра

Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника.

При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток. Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.

Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

[stextbox id=’info’]Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.[/stextbox]

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.

Как проверить трансформатор при помощи мультиметра

Проверка осциллографом

Если телевизору требуется проверка в системе ТДКС, проверка выполняется при помощи осциллографа. Для ремонта телевизора потребуется отрезать питающий прибор вывод. Далее нужно найти вторичный контур. Его работу исследуют при подключении к отрезанному выводу питания ТДКС через R-10 Ом. Замена или ремонт устройства потребуется, если подключение осциллографа выявит отклонения. Возможны следующие отклонения:

  • Межвитковое замыкание демонстрирует на R=10 Ом «прямоугольник» с большими помехами. Здесь остается почти все напряжение. Если неисправности в этой области нет, отклонение будет определяться долями вольта.
  • Если нет вторичного напряжения, требуется замена контура. Произошел обрыв.
  • Когда убирают R=10 Ом и создают нагрузку 0,2-1 кОм на вторичном контуре, оценивается нагрузка на выходе. Она должна повторять входящие показатели. Если есть отклонение, ТДКС подлежит ремонту или полной замене.

Существуют и другие поломки. Выявить их можно самостоятельно.

Как проверить импульсный трансформатор мультиметром

Как проверить трансформатор при помощи мультиметра

Что бы проверить импульсный трансформатор можно использовать как аналоговый прибор, так и цифровой мультиметр. Применение второго предпочтительней из-за удобства его использования.

Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

  • Методика проверки аналоговым (стрелочным) измерительным прибором:
  • Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления.
  • После в гнёзда тестера вставляются два провода и перемыкаются накоротко.

Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить.

Порядок выявления дефектов

Как проверить трансформатор при помощи мультиметра

Важным этапом проверки трансформатора мультиметром является определение обмоток. При этом их направление существенной роли не играет. Сделать это можно по маркировке, нанесённой на устройство. Обычно на трансформаторе указывается определённый код.

В отдельных случаях на ИТ может быть нанесена схема расположения обмоток или даже подписаны их выводы. Если же трансформатор установлен в прибор, то в нахождении распиновки поможет принципиальная электрическая схема или спецификация.

Также часто обозначения обмоток, а именно напряжения и общий вывод, подписываются на самом текстолите платы возле разъёмов, к которым подключается устройство.

После того как выводы определены, можно приступать непосредственно к проверке трансформатора. Перечень неисправностей, которые могут возникнуть в устройстве, ограничен четырьмя пунктами:

  • повреждение сердечника;
  • отгоревший контакт;
  • пробой изоляции, приводящий к межвитковому или корпусному замыканию;
  • разрыв проволоки.

Последовательность проверки сводится к первоначальному внешнему осмотру трансформатора. Он внимательно проверяется на почернения, сколы, а также запах. Если явных повреждений не выявлено, то переходят к измерению мультиметром.

Обязательно поделись мнением после просмотра видео! 🙂 Поддержите ролик лайком и репостом за старания. Вам несложно, а мне приятно!!!

*По вопросам сотрудничества и рекламы: Fetch74@mail.ru:

*Спасибо что смотрите! Не забываем подписаться на канал: https://www.youtube.com/@Gerich174

У кого есть желание и возможность может поддержать развитие канала донатом https://yoomoney.ru/to/4100117056657007

Трансформаторы стали частью жизни человека с началом электрификации. Далее они стали использоваться в качестве источников постоянного напряжения для различной аппаратуры, приборов, бытовой техники.

Трансформатор типы

В статье изложена информация о принципе работы этих устройств, разновидностях, поисках мощности. Также будут даны советы, как проверить трансформатор мультиметром.

Принцип работы и назначение

Основным назначением трансформатора является преобразование или понижение электрического напряжения. В зависимости от конструкции и назначения, трансформаторы изменяют классность токов, напряжение, или преобразуют импульс в необходимое значение.

Схема трансформатора

В работу трансформатора заложен принцип образования магнитного поля при взаимодействии металлического сердечника и постоянного напряжения. При подключении напряжения в 220 В, ток движется по первичной обмотке трансформатора, образуя магнитное поле. Далее ток попадает во вторичную обмотку, число и шаг которой намного меньше. Создается сильное сопротивление, которое сглаживается за счет воздействия магнитных потоков. Таким образом, во вторичной обмотке, напряжение сильно занижается, что приводит к выходному напряжению более низкого числа.

Конструкция

В независимости от конструкции и назначения трансформатора, его конструкция максимально проста. Эти устройства состоят из:

  1. Стальной или ферромагнитный сердечник. Используется для образования магнитного поля. Сердечники могут быть различных видов. Все зависит от назначения устройства и величины преобразования тока.
  2. Обмотка. В устройстве находится минимум 2 обмотки: первичная и вторичная. Представляет собой медный или алюминиевый изолированный лаком провод. Обмотка наматывается на трансформатор с заданным количеством витков, шагом, сечением провода. Именно обмотка трансформатора влияет на параметр входного и выходного напряжения.
  3. Клеммы и контакты. Необходимы для включения устройства в сеть и выходную цепь.
  4. Конструктивные дополнения. Ими могут быть защитные корпуса, изоляционные и крепежные элементы, радиаторы охлаждения. Все это необходимо для обеспечения надежного монтажа и защиты от воздействия постоянного напряжения.

Конструкция трансформатора

Тип и назначение преобразователя напряжения можно определить по внешнему виду. Для этого необходимо знать основные разновидности трансформаторов.

Разновидности

В зависимости от назначений, трансформаторы используются в различных сферах, не только в приборостроении. Различаются по следующим типам:

  1. Силовой. Используется как понижающий трансформатор на электростанциях, крупных организациях, в сети электроснабжения населения. В цепи электроснабжения используется несколько подобных устройств. Их задача понизить напряжение от электростанции до потребителя. Также силовые трансформаторы могут работать по обратному принципу, в качестве повышающего устройства. Такие устройства необходимы для передачи электричества на большие расстояния от электростанций потребителям, существенно снимая нагрузку с генераторов.Силовой трансформатор
  2. Сетевые. Самые распространенные в бытовой технике. Основной задачей этих устройств является снижение напряжения с 220 до 36, 24, 12, 9 вольт. Сетевые трансформаторы можно встретить в бытовой технике, произведенной до 2000 годов. Теперь эти устройства выглядят значительно меньше и их редко применяют.Сетевой трансформатор
  3. Импульсные. Пришли на смену сетевым элементам. Основное отличие в работе состоит в преобразовании импульсного напряжения, а не прямого тока. Этот принцип способствовал уменьшению габаритов, возможность экономии материалов, использование трансформатора в роли занижающего устройства и защиты от перегрузок.Импульсные трансформаторы
  4. Трансформатор тока. Используется для измерения токовой величины. Применяется в цепях между силовыми трансформаторами и выходом в 380 вольт и счетчиками потребления электричества. Также применяется в качестве защитного устройства. Первичная обмотка этого трансформатора включается в цепь подачи электричества по 1 фазе, осуществляя защиту от перепада напряжения в результате выхода из строя силового устройства.Трансформатор тока

Также существуют лабораторные или автотрансформаторы. Их отличием является только возможность регулировки и переключения выходного напряжения с одного значения на другое.

Проверка

Проверка трансформатора на работоспособность и величину выходного напряжения необходимо начинать с визуального осмотра. На корпусе многих современных и элементах старого производства, нанесена принципиальная схема. В ней находится информация о контактах входа и выхода, количество витков первичной и вторичной обмотки, величины выходных напряжений. Если этой информации нет, необходимо прозвонить трансформатор.

Многие начинающие радиолюбители сталкиваются с проблемой, как прозвонить импульсный трансформатор мультиметром. Далее будут даны рекомендации на примере именно этого устройства.

Межвитковое короткое замыкание

Самый важный тест. Запрещается проводить подключение неизвестных, найденных где — то трансформаторов, без теста на короткое замыкание. Межвитковое замыкание не определяется при помощи мультиметра. Причина этого кроется в пробое двух рядом стоящих обмоток и их соединении между собой.

При прозвонке на сопротивление, оно останется неизменным (если до КЗ нет обрыва). Поэтому проверяется трансформатор визуально. Любые потемнения, вспучивания, плавления изоляции или нагар на бумаге можно считать следствием короткого замыкания. Плавление и нагар произошли из-за нагрева обмотки при нагрузке. При межвитковом замыкании первичной обмотки, ток проходит меньшее количество витков, что создает нагрузку и нагрев. Также КЗ можно определить по запаху гари.

Если внешне устройство не имеет дефектов изоляционного покрытия, можно начинать следующую проверку.

Поиск обмоток

Этот тест необходим, если элемент был изначально не подключен к электрической схеме прибора или устройства. Первичная обмотка трансформатора, имеет большее число витков, так как на нее подается высокое напряжение. Значит и сопротивление должно быть значительно больше. Вход первичной обмотки всегда располагается в верхней части устройства, клеммы вторичной в нижней. Для поиска необходимо:

  1. Мультиметр перевести в режим замера сопротивления.
  2. Оба контрольных щупа соединить с двумя выводами трансформатора.
  3. Сохранить полученные значения.

Проверка первичной обмотки

Далее нужно найти выходы вторичных катушек. Делается это по тому же принципу. Если выходов более 2, то необходимо провести замер каждой пары. Полученные значения также сохраняются.

Теперь необходимо провести сверку результатов. Выводы с самым большим сопротивлением укажут на первичную обмотку входа. Остальные пары будут являться выходными контактами.

Целостность

Определение целостности необходимо для того чтобы узнать, нет ли обрыва в цепи трансформатора. Предыдущая проверка помогла выяснить, какие контакты являются входящими и выходящими. Теперь нужно определить их целостность. Для этого нужно:

  1. Перевести мультиметр в режим прозвонки со звуковым оповещением.
  2. 2 контрольных щупа подключить к входным контактам трансформатора.
  3. Звуковое оповещение будет свидетельствовать о целостности провода.

Проверка целостности трансформатора

Таким же образом нужно проверить остальные контакты выхода. У современных понижающих устройств бытового назначения есть один нюанс. В его схему первичной обмотки встроен тепловой резистор. Найти его просто. Он припаян между клеммой и началом обмотки и скрыт под изоляцией. Если проверка на входе показала обрыв, стоит осторожно вскрыть изоляционный слой и найти резистор. Далее сделать еще один замер, но только самого провода, за резистором. Если проверка была удачной, значит необходима замена теплового элемента.

Тепловой резистор

Тепловой резистор необходим для отключения цепи во время перегрева. Он может выйти из строя по причине высокой нагрузки, не пропустив в цепь высокое напряжение.

Определение величины входящего напряжения

Этот тест поможет узнать, можно ли эксплуатировать элемент от бытовой электрической сети или он рассчитан на напряжения других значений. Для определения величины тока необходимо:

  1. Подключить один контакт лампы накаливания к клемме входа ТР.
  2. Второй контакт к источнику напряжения 220 В.
  3. Клемму «2» от ТР к «2» клемме источника напряжения.

Определение величины входящего напряжения

Если лампа не загорается, то это указывает на то, что трансформатор предназначается для работы от сети 220 вольт. Горение лампы любой величины накала, укажет на работу от токов иных величин.

Замер выходящего напряжения

После проведения всех тестов, на целостность импульсного трансформатора, можно перейти к его подключению к электрическому напряжению и замеру выходного напряжения. Для этого нужно:

  1. К найденным разъемам входа подключить напряжение 220 вольт.
  2. На входных клеммах попарно замерить напряжение.
  3. Полученные результаты сохранить.

Определение выходного напряжения

Если на корпусе трансформатора нанесены обозначения величины выходящих напряжений, то при замере они должны быть больше на 5–20 %. Это делается для запаса мощности, при последующем подключении к диодному мосту.

Если маркировки нет, нужно выполнить следующие действия:

  1. Красный контрольный щуп подключить к «1» клемме вывода.
  2. Черный щуп поочередно подключать к остальным выводам.
  3. Если замер дал результаты от 9 до 24–36 вольт, то эти контакты необходимо отметить.

Проверка считается удачной, если все разъемы показали определенные значения.

Важно! На выходах трансформаторов переменное напряжение. Запрещаться делать замер, касаясь руками оголенных контактов.

Определение мощности

Далее будет рассмотрен вопрос, как узнать мощность трансформатора. Для этого потребуется замерить ширину его сердечника. Если ТР имеет сердечник типа «Ш», то придется замерить толщину центральных пластин. Например, толщина пластин 2 см, а ширина центрального набора 1.7 см. Необходимо перемножить эти значения, получив число 3.4 кв/см. Далее понадобится коэффициент усреднения для трансформаторов, равный 1.3. 3.4 разделить на 1.3 = 2.6 кв/см. Это значение определяет мощность ТР равную 7 Вт.

Измерение ширины трансформатора-1

Измерение ширины трансформатора-2

Многие задаются вопросом, как определить мощность трансформатора мультиметром. Бытовой элемент таким способом протестировать не получиться.

Советы

Проверка работоспособности трансформаторов важна, перед подключением или ремонтом устройства. При работе нужно соблюдать следующие правила:

  1. Внимательно изучить маркировку и схему на корпусе.
  2. Если на корпусе нет схемы, выполнять прямое подключение запрещено.
  3. Запрещается подключать в сеть неизвестный ТР, без проверки на короткое замыкание.
  4. Любые замеры под напряжением проводятся без контакта с клеммами.
  5. Не выпаивая устройство из схемы, не получиться сделать замер выходящего сопротивления.
  6. При работе нужно четко соблюдать технику безопасности.

Трансформаторы, особенно неизвестные, могут стать причиной короткого замыкания электропроводки и привести к возникновению пожара.

Заключение

Сегодня были подробно описаны правила проверки обычных бытовых трансформаторов. Проверки силовых, автоматических и лабораторных аналогов проводятся другими способами, с использованием более точной измерительной аппаратуры.

Видео по теме

На чтение 20 мин Просмотров 2.3к. Опубликовано 25.04.2021

Содержание

  1. Устройство трансформатора и его назначение
  2. Методы проверок трансформатора мультиметром
  3. Физический смысл сопротивления
  4. Что такое сопротивление провода изоляции
  5. Как правильно измерять сопротивление
  6. Мультиметр для измерения сопротивления
  7. Разрядность, разрешение, погрешность
  8. Готовим мультиметр
  9. Принцип работы
  10. Настройка перед использованием
  11. Как проверить трансформатор мультиметром?
  12. Как измерить сопротивление мультиметром: порядок действий
  13. Пример практического измерения
  14. Какой мультиметр использовать
  15. Специализированные измерительные приборы
  16. Цифровой и аналоговый мультиметры
  17. Прозвонка цепи
  18. Почему режим называется «прозвонка»
  19. Как выбрать мультиметр в магазине
  20. Основные и дополнительные возможности мультиметров
  21. Какие параметры можно измерить мультиметром
  22. Меры безопасности

Устройство трансформатора и его назначение

Все преобразователи делятся на однофазные и трёхфазные. Что за этим скрывается? Чтобы найти ответы на вопросы необходимо понимать различие между трёхфазным и однофазным.  Если электричество идёт по трём проводам – то имеем три фазовых провода и нулевой – это и значит трёхфазный. А если же всего по двум проводам, то имеем однофазное электричество. Чтобы из трёх фаз превратить в одну, нужно всего лишь использовать один провод трёхфазного и его ноль. Во всех квартирах и домах используется однофазный ток.  В розетке, куда включен телевизор поступает однофазный переменный ток.

Методы проверок трансформатора мультиметром

Прежде всего, следует проверить состояние изоляции трансформатора. Для этого мультиметр необходимо переключить в режим мегомметра. После этого замеряют сопротивление:

  • между корпусом и каждой из обмоток;
  • между обмотками попарно.

Напряжение, при котором должна осуществляться такая проверка, указывается в технической документации на трансформатор. К примеру, для большинства высоковольтных моделей замер сопротивления изоляции предписано проводить при напряжении 1 кВ.

проверка трансформатора

Проверка прибора мультиметром

Требуемое значение сопротивления можно посмотреть в технической документации или в справочнике. Например, для тех же высоковольтных трансформаторов оно составляет не менее 1 мОм.

Данный тест не способен выявить межвитковые замыкания, а также изменения свойств материалов проводов и сердечника. Поэтому обязательно нужно проверить рабочие характеристики трансформатора, для чего применяют следующие методы:

самодельный преобразователь с 220 на 12 вольт

Напряжение в 220 Вольт воспринимают далеко не все приборы. Трансформатор 220 на 12 Вольт понижает напряжение для возможности использования электроприборов.

Физический смысл сопротивления

Электрический ток — это движение заряженных частиц в определенном направлении, которое инициируется разницей напряжения на концах проводника. Проводящие ток материалы обладают сопротивлением, которое можно наглядно представить как силу трения. Чем тем больше препятствий электроны встречают на своем пути, тем быстрее теряют энергию.

Значение сопротивления зависит от свойств материала проводника, его длины и площади сечения. Лучшей проводимостью среди доступных металлов характеризуется медь, поэтому современные ЛЭП и электропроводка изготавливаются из медных жил. Энергопотери таких линий гораздо меньше, чем алюминиевых или стальных.

На сопротивление оказывает влияние условия среды. Некоторые материалы при достижении критической температуры порядка -200°С обладают сверхпроводимостью, то есть нулевым сопротивлением. Это позволяет использовать их для изготовления сложной аппаратуры и мощных турбогенераторов.

В элементах типа ТЭН или греющих кабелях, наоборот, сопротивление очень большое. За счет передачи части энергии от заряженных частиц материалу проводника устройство нагревается и сообщает тепло окружающему пространству.

Сопротивлением обладают не только проводники, но и источники тока, измерительные приборы, конденсаторы, катушки, контакты в соединениях. Существует 3 вида сопротивлений:

  • активное при постоянном и переменном токе;
  • индуктивное;
  • емкостное.

По величине оно может быть малым, средним и большим. Чем меньше значение, тем сильнее влияет на результат измерений сопротивление самого прибора и его контактов.

Что такое сопротивление провода изоляции

Сопротивление изоляции — это один из важнейших параметров любых кабелей и проводников. Основано это на том, что все провода в процессе их эксплуатации подвергаются сторонним воздействиям. Помимо внешнего влияния присутствуют также и внутренние: влияние жил одного провода друг на друга, взаимодействие по электромагнитным полям. Все это, так или иначе, приводит к появлению утечек.

Промышленный мегомметр для замера крупных значений сопротивления

Именно поэтому любые электрические и неэлектрические провода создаются с изоляцией, защищающей проводник от внешнего влияния. Среди популярных изоляционных материалов выделяют резину, поливинилхлорид, масло, дерево и бумагу. Используются эти материалы исходя из самого предназначения кабеля. Например, провода, прокладываемые под землей, изолированы сравнительно толстой лентой диэлектрика, а кабеля телекоммуникаций могут быть заключены в простую обертку из алюминиевой фольги.


Старый советский аналоговый стендовый омметр

Важно! Изоляция — это защита жил от воздействия потусторонних факторов, защита жилок друг от друга, от замыкания и от различных утечек. Сопротивление же изоляции это величина сопротивления между жилами провода или между одной из жил и изоляционным слоем.

Любой материал со временем эксплуатации стареет и разрушается, что ведет к ухудшению его характеристик и снижению сопротивления изоляции постоянному или переменному току. Характеристика сопротивляемости изоляции указывается на кабеле и нормируется в его ГОСТе. Определяют его в лабораторных условиях при при температуре в 20 градусов.

Произведение измерений сопротивляемости профессиональным мегаомметром

Низкочастотные кабели связи имеют минимальное сопротивление изоляции в 5 Гигаом на километр, а коаксиальные в свою очередь — 10 Гигаом на километр. Измерение и проверку сопротивляемости проводят на регулярной основе мегаомметром: на установках мобильной связи — один раз в 6 месяцев, на объектах повышенной опасности — один раз в 12 месяцев, на других объектах — один раз в три года.

Как правильно измерять сопротивление

Первое и основное. Нельзя касаться руками оголённых частей щупа или контактов резистора. И вовсе не потому, что ток мультиметра вас убъёт. А потому, что человеческое тело тоже имеет своё сопротивление. При включении параллельно два резистора образуют один. И прибор вам покажет не сопротивление одной детали, а сопротивление системы «Вася+резистор».

Мультиметр. Касание щупа кожи

Ток в такой схеме не пойдёт через сопротивление — зачем, есть же более простой путь. Так и в случае с Васей.

Мультиметр для измерения сопротивления

Для определения различных электрических характеристик очень удобно использовать универсальный цифровой тестер. Он измеряет не только сопротивление, но и напряжение, силу тока, емкость конденсаторов и т.д. Набор функций и точность полученных данных зависит от того, где предполагается использовать мультиметр — в быту или профессиональной работе. Некоторые модели могут подключаться к персональному компьютеру и обмениваться с ним информацией.

На корпусе прибора расположена шкала с переключателем режимов, разъемы для подсоединения щупов и дисплей для считывания результатов. В комплект входят 2 щупа — красный и черный.

Дополнительно может включаться термопара. Питание осуществляется от пальчиковых батарей или типа «крона». Проверка с помощью мультиметра помогает установить и устранить неполадки в участке цепи — обрывы, падения напряжения, пробой изоляции.

Разрядность, разрешение, погрешность

Разрядность мультиметра — это величина, определяющая число разрядов для записи измеряемой характеристики. Она задает не точность прибора, а вид (длину) числа. Так например, разрядность 4 1/2 означает, что дисплей отображает 4 полных разряда и 1 половинчатый, то есть до 19999 отсчетов. Если величина выходит за эти пределы, необходимо переключиться в другой диапазон.

Разрешение обозначает степень точности прибора, то есть на каком интервале возможно обнаружение изменения характеристики. Если разрешение мультиметра составляет 1 мВ в диапазоне 4 В, то при измерении напряжения в пределах 1 В разница между соседними значениями будет не менее 1 мВ.

Погрешность цифрового мультиметра — это наибольшая ошибка, которую допускается прибором при измерении величин в конкретных рабочих условиях. Чем она меньше, тем ближе полученный результат к фактическому значению.

Чаще всего погрешность выражается в процентах. Например, если она составляет 1%, то при отображении напряжения в 200 В истинное значение распределяется в пределах от 198 до 202 В.

Готовим мультиметр

Подготовка мультиметра

В первую очередь осматриваем провода и щупы на предмет видимых повреждений. Априори негодные провода меняем или ремонтируем — хотя бы на скрутку, изолируем синей изолентой. Подойдёт и другой цвет, лишь бы изолента изолировала.

Далее осматриваем щупы. Если случайный скол оголил токонесущие части, обматываем той же изолентой.

Делается это не только из соображений безопасности, но и во избежание погрешностей при измерениях.

Третьим этапом проверяем питание. Индикатор горит — уже хорошо.

Включаем один провод в гнездо COM, другой штекер вставляем в кабельный ввод с символикой единиц измерения. V — Вольты, A — амперы. А мы сегодня меряем омы, которые обозначены заглавной буквой Омега.

Мультиметр. Подключение черного щупа

Переключатель прибора загоняем в зелёную зону обозначенную той же греческой буквой, ориентируясь на предел измерений. Смотрим номинал резистора и ставим ближайший сверху предел. Допустим, резистор на 10 Ом — ставим 20.

Мультиметр. Выставление измерения сопротивления

Пока щупы ничего не касаются, на мультиметре значение 1. Если щупы замкнуть, должно быть значение 0.

Принцип работы

Работа любого омметра (включая и современные цифровые измерители) базируется на основном постулате электротехники – законе Ома. Согласно его условиям, чем больше сопротивление, тем меньше проходящий через него ток – при неизменном напряжении питания.

Омметру для работы необходим источник питания. Образуется запитанная электрическая цепь, в которой прибор, учитывая напряжение питания и ток, протекающий через замеряемый элемент, определяет сопротивление.

В современных цифровых мультиметрах используется батарейка на 9 вольт.

В Китае можно заказать никель-кадмиевую аккумуляторную батарейку на 8,4 В – 7 перезаряжаемых элементов по 1,2 В, упакованных в корпус такого же размера, ёмкостью до 200 миллиампер-часов – она даст близкое к 9 В питание, отчего прибор не выдаст существенную погрешность.

Такой способ – выход для тех, кто часто по работе замеряет сопротивление резисторов, спиралей и обмоток, «прозванивает» кабельные линии и т. д.: после примерно 1000 замеров обычная батарейка «села» бы.

Настройка перед использованием

Моделей цифровых мультиметров много, но все они схожи – выпускаются по одному «образу и подобию». В комплект входит пара щупов и, возможно, батарейка на 9 В. В самом приборе может использоваться термопара (температурный датчик), по которой измеряется температура.

С помощью многопозиционного переключателя выбирается нужный интервал замеров. Круговая разметка вокруг него соответствует разным параметрам (позиций может быть от 15 до 50). Сектор, отвечающий за измерение сопротивления, выделяется отдельным цветом. Это позиции, позволяющие измерить сопротивление до:

  • 200 Ом;
  • 2 кОм;
  • 20 кОм;
  • 200 кОм;
  • 2 МОм;
  • 20 МОм;
  • 200 МОм.


Сколько ом, килоом или мегаом есть в каждом из резисторов, покажет замер либо маркер на таком резисторе.

Если метки на резисторе стёрлись – пользователь уточнит его сопротивление, выполнив замер.

Вставив батарейку, подключите провода с щупами ко входным клеммам. С прибором эти щупы соединяются посредством коннекторов – на других концах проводов.

Чёрный провод с таким же по цвету щупом подключается к общей шине – рядом с её разъёмом стоит значок заземления. Красный – в гнездо «вольты, амперы и омы», обозначающий все эти (и некоторые другие) измеряемые параметры. Выберите измеряемый предел, например, 2000 кОм.

Убедитесь в отсутствии брака щупов, обрыва проводов – замкните их между собой. На дисплее появится нулевое значение сопротивления. Если это не так, то для проверки можно подключить другие провода без щупов и штекеров и замкнуть их. Никаких неприятных последствий от смены проводов вы не получите – ток и напряжение, выдаваемые прибором в режиме омметра, очень малы, чтобы их можно было заметить, даже если руки мокрые.

Ненулевые показания, например, при выборе измерения в диапазоне до 200 Ом, связаны с плохим контактом щупов, малым сопротивлением проводов (тысячные доли ома) – не являются неисправностью мультиметра.

Отсутствие замыкания щупов выдаст на дисплее единицу в верхнем разряде цифровой матрицы – признак условно-бесконечного сопротивления. Режим прозвонки линий – это омметр, оснащённый «пищалкой». Она сработает, когда сопротивление линии менее 50 Ом. Предел замеров – до 200 Ом.

Как проверить трансформатор мультиметром?

Наш простенький трансформатор от зарядного устройства имеет всего четыре вывода, т.е. два провода с вторичной обмотки и два с первичной. Весь процесс проверки  трансформатора мультиметром заключается в проверке целостности обмоток. Для начала необходимо мультиметр перевести в режим проверки диодов или же измерения сопротивления. Дальше проверяется одна из обмоток, полярность подключения щупов роли не играет.

Как проверить трансформатор мультиметром

Затем подключается к мультиметру вторая обмотка.

А если вдруг возникает вопрос, как определить обмотки трансформатора? На него можно ответить тем, что сопротивление первичной обмотки у понижающего трансформатора всегда будет больше.

Как проверить трансформатор мультиметром

Обмотка, которая имеет обрыв, прозваниваться не будет вообще. Если есть необходимость проверки трансформаторов, у которых есть несколько выводов первичной обмотки и несколько вторичных обмоток, то каждая обмотка такого трансформатора проверяется отдельно.

Такой метод проверки трансформатора мультиметром очень прост и поможет определить целостность обмотки. О том, как проверить трансформатор на межвитковое замыкание читаем тут .

Как измерить сопротивление мультиметром: порядок действий

Испытания проводятся без подключения к сети. Батарейка подает на контакты небольшое напряжение, поэтому другой источник тока не нужен. Благодаря этому измерение не представляет угрозы человеку и считается безопасным.

Для проверки сопротивления на шкале мультиметра выделен сектор, обозначенный буквой Ω (омега). Чтобы задать нужный регистр точности, требуется определить ожидаемый порядок величины:

  • до 200 Ом;
  • до 2000 Ом (2К);
  • до 20К;
  • до 200К;
  • до 2000К (2М).

В некоторых приборах можно измерять сопротивления до 200 мегаОм (200м). Они используются для проверки резисторов с большой емкостью. Плохо проводящие ток диэлектрики, из которых изготавливается изоляция проводов, исследуются с помощью мегаомметров. Мультиметры для этой цели не подходят, поскольку не могут генерировать большие токи, а диапазон их ограничивается максимумом в 200 мОм.

Для проведения измерений нужно вставить щупы в разъемы на корпусе прибора:

  • черный — в гнездо СОМ;
  • красный — в VΩmА.

При таком расположении «минус» будет подаваться на черный проводник, «плюс» — на красный. Обычные резисторы не имеют полярности, их можно подключать к проводникам в любой последовательности.

Несмотря на то, что удар током вам не грозит, пальцами желательно контактов не касаться. Иначе мультиметр покажет данные с погрешностью. Поскольку сопротивление человеческого тела от 3 до 100 Ом, ошибка может быть очень большой.

Перед началом измерений концы щупов рекомендуется соединить и проверить непосредственно сами проводники. Особенно это важно, если исследуются резисторы с небольшим R, где десятые доли Ом могут иметь значение.

После определения сопротивления щупов эту цифру надо запомнить, чтобы вычитать из всех дальнейших результатов.

Измерения проводятся при соприкосновении наконечников с контактами элемента. Данные считываются с дисплея и при необходимости переводятся в Омы с учетом учитывая приставки к числу:

  • к — кило, 1000;
  • м — мега, 1000 000.

Если диапазон выставлен правильно, значение будет отличным от 0. Для более точного измерения можно повернуть переключатель на меньшую цифру.

Если на экране высветился 0, предел постепенно снижают до получения численного результата. Когда на приборе видна только цифра 1, это значит, что сопротивление бесконечно. Из-за обрыва ток в цепи отсутствует.

Пример практического измерения

В качестве примера измерения импеданса цифровым тестером можно привести паяльник. Вначале подключаются штекеры устройства согласно инструкции, а после выставляется предел измерения на 10 кОм. Нужно дотронуться щупами до контактной вилки прибора и посмотреть на индикатор. На нём отобразится число — например, 320. Это обозначает, что паяльник имеет сопротивление, равное 320 Ом. Получив величину сопротивления можно вычислить мощность паяльника. Она рассчитывается по формуле: P = U*U/R, где:

Тестер

  • P — мощность паяльника (Вт);
  • U — рабочее напряжение паяльника (В);
  • R — измеренное сопротивление (Ом).

Для приведённого примера она составит 150 Вт, при включении в сеть — 220 вольт. Таким образом возможно снимать показания ламп накаливания и любых нагревательных элементов.

Используя мультиметр, можно прозвонить электролитический конденсатор, т. е. определить по изменению сопротивления его исправность. Первоначально конденсатор выпаивается с платы и разряжается путём замыкания его контактов между собой. Переключатель тестера устанавливается на самое большое положение диапазона, после чего нужно щупами прикоснуться к ножкам радиоэлемента.

Если измерения проводятся стрелочным прибором, его стрелка должна отклониться в нулевое положение, а затем медленно перейти в положение бесконечности. Скорость ее возврата зависит от ёмкости элемента. Чем она больше, тем медленнее возвращается стрелка.

Перед тем как замерить сопротивление мультиметром, необходимо извлечь хотя бы один из выводов радиоэлемента из платы. Связано это с тем, что, находясь в плате, выводы элемента могут шунтироваться другими радиодеталями, т. е. к этим выводам параллельно может быть подключён другой радиоэлемент. Это означает, что результат будет определён неправильно.

Какой мультиметр использовать

Измерительные приборы делятся на универсальные (мультиметры) и специализированные, которые предназначены для выполнения одной операции, но проводят ее максимально быстро и точно. В мультиметре омметр является только составляющей частью прибора и его еще надо включить в соответствующий режим. Специализированные устройства, в свою очередь, также требуют некоторых навыков использования – надо знать, как их правильно подключить и интерпретировать полученные данные.

Специализированные измерительные приборы

Из закона Ома понятно, что стандартным мультиметром не получится замерить большие сопротивления, так как в качестве источника питания там используются стандартные пальчиковые, либо батарейка типа «Крона» – прибору попросту не хватит мощности.

Если часто возникает необходимость выполнить замер большого сопротивления, к примеру, изоляции, то надо приобретать мегаомметр.

В качестве источника тока он использует динамомашину или мощную батарею с повышающим трансформатором – в зависимости от класса устройства он может генерировать напряжение от 300 до 3000 Вольт.

Мегаомметр для измерения больших сопротивлений

Отсюда следует вывод, что у задачи, к примеру, как измерить мультиметром сопротивление заземления, не может быть однозначного ответа – в этом случае надо воспользоваться специализированным прибором, предназначенным именно для этой цели. Измерение проводятся по определенным правилам и применение таких устройств это удел специалистов – без профильных знаний получить правильный результат достаточно проблематично. Теоретически можно проверить у заземления сопротивление тестером, но это потребует сборки дополнительной электроцепи, для которой потребуется как минимум мощный трансформатор, наподобие такого, что используется на сварочных аппаратах.

Цифровой и аналоговый мультиметры

Внешне эти устройства легко отличить друг от друга – у цифрового данные выводятся на дисплей цифрами, а у аналогового циферблат проградуирован и на нужное значение указывает стрелка. Соответственно, цифровое устройство проще в использовании, так как сразу показывает готовое значение, а при работе с аналоговым придется еще дополнительно интерпретировать выдаваемые данные.

Дополнительно, при работе с такими устройствами, надо учитывать, что у цифрового мультиметра есть датчик разрядки источника питания – если силы тока батареи недостаточно, то он просто откажется работать.

Источник питания цифрового мультиметра

Аналоговый же в такой ситуации ничего не скажет, а будет просто выдавать неправильные результаты.

В остальном, для бытовых целей подойдет любой мультиметр, на шкале которого указан достаточный предел измерения сопротивления.

Прозвонка цепи

Существует в приборе и подобная функция, с помощью которой легко определить целостность проводов или других элементов электрических схем, например, целостность лампочек накаливания.

Режим прозвонки на шкале измерений мультиметра

Целостность цепи определяется по звуковому сигналу, который генерируется прибором. Кроме этого на дисплее высвечивается реальное сопротивление цепи.

В общем, пользоваться таким прибором намного проще, по сравнению со стрелочным, главное – это хорошо изучить инструкцию, а также рекомендации, изложенные в этой статье.

Почему режим называется «прозвонка»

Проверить целостность цепи можно было и раньше, используя режим замера сопротивления — омметра. Главное же отличие прозвонки в том, что при замерах, если электрическая связь есть между тестируемыми участками то, дополнительно к показаниям на экране, раздаётся звуковой сигнал — зуммер, от сюда и возник термин прозвонка или прозвон.

Этот звуковой сигнал значительно ускоряет процесс проверки, вам не приходится отвлекаться, смотреть на экран, да и не всегда это удобно, а услышав зуммер (либо не услышав) вы уже знаете результат. Особенно это полезно при массовых замерах, например, при поиске в пучке проводов одного определенного.

Как выбрать мультиметр в магазине

Иногда в имеющиеся в продаже приборы показывают абсолютно неточные значения. Придя домой, обнаруживается, что погрешности очень велики. Согласно закону о правах потребителя вернуть или заменить некачественный товар не получится. Поэтому, собираясь в магазин, рекомендуется прихватить батарейку с известным номиналом и резистор и измерить их величину на месте в торговой точке.

Основные и дополнительные возможности мультиметров

Если раньше в свободной продаже имелись приборы, способные замерить силу тока и напряжение, то современные модели имеют расширенный функционал. С его помощью не нужно производить расчетов, достаточно лишь воспользоваться тестером и снять показания.

Именно по причине многофункциональности вопрос как пользоваться прибором для тестирования стает особенно остро.

Ведь с его помощью замеряю показатели:

  1. Силу тока (переменного).
  2. Напряжения участка цепи.
  3. Индуктивность катушки.
  4. Емкость конденсатора.
  5. Сопротивление проводника.
  6. Частоту колебаний.
  7. Параметры постоянного тока.
  8. Температуру нагрева.

Самое простое применение – «прозвонить» цепь с целью определить ее целостность. Это необходимо, например, когда требуется выявить участок с дефектом, чтобы потом произвести ремонт. Кроме того, мультиметр – устройство, позволяющее без отключения определить момент появления электрического тока. Как только он возник, подается звуковой или световой сигнал, что облегчает работу и делает ее безопасной.

Как пользоваться мультиметром: подробная инструкция для начинающих

Цифровые модели способны генерировать тестовые импульсы или гармонические сигналы, что дает возможность проверять работоспособность диодов, а также транзисторов. Выявляется полярность, целостность конструкции и т.д. Есть модификации:

  1. С предустановленной защитой контактов, срабатывающей в случае, если при измерении сопротивления произойдет незапланированная подача электричества.
  2. Имеющие плавкие вставки на случай, если пользователь неверно выбрал режим. Предохранитель перегорает, но прибор остается рабочим после его замены.
  3. Способные автоматически выключаться при нештатной ситуации или в случае, если устройство длительное время остается невостребованным.
  4. Имеющие подсвечиваемый дисплей. Есть ночные режимы, световая индикация, обычная диодная подсветка, что позволяет работать в условиях ограниченной видивости.
  5. Подающие сигнал при перегрузке батареи, блока питания, рабочих узлов без отключения.
  6. Обладающие возможностью сохранять и запоминать результаты замеров, которые потребуются для обработки полученных данных.

Некоторые модели предназначены для ручной установки пределов измерений. Как пользоваться мультиметром и перечень функциональных возможностей указано в мануале, идущем в комплекте с тестером. Удобней, если это сертифицированный товар, и инструкция написана на русском языке. Однако и без мануала можно разобраться в основных функциях прибора. На корпусе есть все необходимые надписи, стандартные символьные обозначения.

Какие параметры можно измерить мультиметром

Такой ручной измерительный прибор предназначен для различных тестовых проверок касающихся электричества.

Мультиметр является многофункциональным устройством, которым можно определить такие технические параметры:

  • напряжение – постоянное и переменное;
  • диапазон сопротивления;
  • емкость;
  • частоту;
  • индуктивность;
  • силу постоянного и переменного тока;
  • температурный режим;
  • коэффициент усиления транзисторов;
  • проверка диодов и транзисторов;
  • вычисление электросопротивления с передачей сигнала пониженного сопротивления цепи.

Во многих моделях на передней панели находится ручка, которая способствует переключению величин.

Параметры измерения
Некоторые мультиметры имеют дополнительное оснащение и могут измерять массу, метраж или время в секундах

Результаты измерений видны на встроенном мониторе. Сбоку прибора находятся два гнезда для щупов – красного (плюсового значения) и черного (с минусовым потенциалом).

Меры безопасности

Пользоваться мультиметром при напряжении свыше нескольких сотен вольт не рекомендуется. На многих мультиметрах в целях безопасности нанесена отметка, устанавливающая максимальный предел при измерении переменного напряжения – 750 В.

Хотя прибор позволяет работать (по шкале) с переменным напряжением до 2 кВ, это, скорее, исключение, чем допуск.

Кроме того, для работы на электроустановках свыше 1 кВ существуют ещё более жёсткие ограничения, которых необязательно придерживаться при работе в сетях с напряжением ниже этого предела. К тому же напряжение в 2 кВ, измеряемое «во всю длину» допустимого диапазона, легко создаёт статические наводки, могущие привести чувствительную цифровую электронику к электрическому пробою.

Используйте мультиметры, обладающие усиленным слоем диэлектрика на щупах, провода с двойным слоем изоляции. Ручки щупов не должны быть скользкими. Контакты и гнёзда на приборе должны быть защищены и закрыты от случайного попадания проводов и металлических предметов, капель воды и т. д. Работая в электроустановке с напряжением свыше 110 В, используйте защитные очки, диэлектрические перчатки, каску и специальный негорючий комбинезон из плотной ткани.

Измеряя напряжение, убедитесь, что красный щуп не включён в гнездо «10 А».

Дело в том, что к этому гнезду подходит низкоомный шунт, выдерживающий значительный ток. Ток короткого замыкания мощных источников питания, выдающих 10 и более ампер на замыкание, способен расплавить и поджечь провода прибора. При этом техник может получить ожог. Зачастую повреждается и сам прибор.

Источники

  • https://VseOToke.ru/instrument/kak-proverit-transformator-multimetrom
  • https://proprovoda.ru/elektrooborudovanie/transformatory/kak-proverit-multimetrom.html
  • https://vdomishke.ru/kak-proverit-soprotivlenie-multimetrom/
  • https://rusenergetics.ru/instrumenty/kak-proverit-soprotivlenie-multimetrom
  • https://multimetri.ru/izmerenie/kak-izmerit-soprotivlenie-multimetrom/
  • https://vdomishke.ru/kak-polzovatsya-multimetrom/
  • https://stroy-podskazka.ru/multimetr/proverit-soprotivlenie/
  • https://diodnik.com/kak-proverit-transformator-multimetrom/
  • https://pochini.guru/sovety-mastera/proverka-soprotivleniya-multimetrom
  • https://YaElectrik.ru/elektroprovodka/kak-izmerit-soprotivlenie-multimetrom
  • https://stroyday.com/kak-polzovatsya-multimetrom/
  • https://rozetka-online.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/180-kak-prozvanivat-multimetrom
  • https://electric-220.ru/kak-polzovatsja-multimetrom-poshagovaja-instrukcija
  • https://electric-220.ru/kak-proverit-naprjazhenie-multimetrom

Добавить комментарий