Загрузить PDF
Загрузить PDF
Одной из важнейших составляющих алгебры является понятие обратной функции. Обратная функции обозначается как f^-1(х) и графически представляется как отражение графика исходной функции относительно прямой у=х. В этой статье мы расскажем вам, как найти обратную функцию.
Шаги
-
1
Убедитесь, что данная функция биективна. Только биективные функции имеют обратные функции.
- Функция биективна, если она проходит тест вертикальной и горизонтальной прямыми. Проведите вертикальную прямую через график функции и подсчитайте количество раз, которое прямая пересекает график функции. Потом проведите горизонтальную прямую через график функции и подсчитайте количество раз, которое прямая пересекает график функции. Если каждая прямая пересекает график функции только один раз, то функция биективна.
- Если график не проходит тест вертикальной прямой, то он не задан функцией.
- Для алгебраического определения биективности функции подставьте f(а) и f(b) в данную функцию и определите, выполняется ли равенство a=b. В качестве примера рассмотрим функцию f(x) = 3x+5.
- f(a) = 3a + 5; f(b) = 3b + 5
- 3a + 5 = 3b + 5
- 3a = 3b
- a = b
- Таким образом, данная функция биективна.
- Функция биективна, если она проходит тест вертикальной и горизонтальной прямыми. Проведите вертикальную прямую через график функции и подсчитайте количество раз, которое прямая пересекает график функции. Потом проведите горизонтальную прямую через график функции и подсчитайте количество раз, которое прямая пересекает график функции. Если каждая прямая пересекает график функции только один раз, то функция биективна.
-
2
В данной функции поменяйте местами «х» и «у». Помните, что f(х) — другое написание «у».
- “f(x)” или “y” представляет собой функцию, а “х” — переменную. Чтобы найти обратную функцию, нужно поменять местами функцию и переменную.
- Пример: рассмотрим функцию f(x) = (4x+3)/(2x+5), которая является биективной. Поменяв местами «х» и «у», получите x = (4y + 3)/(2y + 5).
-
3
Найдите «у». Решите новое уравнение и найдите «у».
- Возможно, чтобы найти значение выражения и упростить его, вам понадобятся алгебраические приемы вроде умножения дробей или разложения на множители.
- Решение нашего примера:
- х = (4y + 3)/(2y + 5)
- х(2y + 5) = 4y + 3 — избавьтесь от дроби. Для этого умножьте обе части уравнения на знаменатель дроби (2у + 5).
- 2xy + 5x = 4y + 3 — раскройте скобки.
- 2xy – 4y = 3 – 5x — перенесите все члены с переменной (в данном случае это «у») на одну сторону уравнения.
- у (2x – 4) = 3 – 5x — вынесите «у» за скобку.
- у = (3 – 5x)/(2x – 4) — разделите обе части уравнения на (2х-4), чтобы получить окончательный ответ.
-
4
Замените «у» на f^-1(х). Это есть обратная функция для исходной функции.
- Окончательный ответ: f^-1(x) = (3 – 5x)/(2x – 4). Это обратная функция для f(х) = (4x + 3)/(2x + 5) .
Реклама
Об этой статье
Эту страницу просматривали 212 791 раз.
Была ли эта статья полезной?
Понятие обратной функции и ее определение в алгебре
Допустим, что у нас есть некая функция y=f(x), которая является строго монотонной (убывающей или возрастающей) и непрерывной на области определения x∈a; b; область ее значений y∈c; d, а на интервале c; d при этом у нас будет определена функция x=g(y) с областью значений a; b. Вторая функция также будет называться непрерывной и строго монотонной. По отношению к y=f(x) она будет обратной функцией. То есть мы можем говорить об обратной функции x=g(y) тогда, когда y=f(x) на заданном интервале будет либо убывать, либо возрастать.
Две этих функции, f и g, будут взаимно обратными.
Обратная функция – это что такое? Дадим определение взаимно обратимой функции (что такое обратимая функция – определение).
Для чего вообще нам нужно понятие обратных функций?
Это нужно нам для решения уравнений y=f(x), которые записываются как раз с помощью этих выражений. Также понятие особенностей обратных функций помогают в решении операций по извлечению n-ой степени (она обратна возведению в степень).
На самом деле это не является чем-то сложным. Онлайн, как и в нашем материале, вы можете найти много примеров обратной функции, которые помогут в этом убедиться.
Важно знать, что любая функция y = y (x) – это определенное правило, которое определяет соответствие между двумя значениями: x и y. К примеру, функция y = x² ставит соответственно каждому действительному числу его в квадрат. Можно сделать определенную таблицу, в которой будут располагаться значения этой функции для целых аргументов.
x | -2 | -1 | 0 | 1 | 2 |
y = x² | 4 | 1 | 0 | 1 | 4 |
Как найти функцию обратную данной
Как найти обратную функцию?
Допустим, нам нужно найти решение уравнения cos(x)=13. Его решениями будут все точки: x=±arсcos13+2π·k, k∈Z
Обратными по отношению друг к другу будут, например, функции арккосинуса и косинуса.
Разберем несколько задач на нахождение функций, обратных заданным. Вот несколько примеров обратной функции.
Условие: какая функция будет обратной для y=3x+2?
Решение
Область определений и область значений линейной функции, данной в условии, – это множество всех действительных чисел. Попробуем решить данное уравнение через x, то есть выразив x через y.
Мы получим x=13y-23. Это и есть нужная нам обратная функция, но y здесь будет аргументом, а x – функцией. Переставим их, чтобы получить более привычную форму записи:
y=13x-23
Ответ: функция y=13x-23 будет обратной для y=3x+2.
Обе взаимообратные функции можно отобразить на графике следующим образом:
На графике мы находим симметричность обоих графиков относительно y=x (они отображаются симметрично). Эта прямая является биссектрисой первого и третьего квадрантов. Что это позволило нам доказать? Получилось доказательство одного из свойств взаимно обратных функций, о котором мы поговорим далее.
Возьмем онлайн-пример, в котором нужно найти логарифмическую функцию, обратную заданной показательной.
Условие: определите, какая функция будет обратной для y=2x.
Решение
Для заданной функции областью определения являются все действительные числа. Область значений лежит в интервале 0; +∞. Теперь нам нужно выразить x через y, то есть решить указанное уравнение через x. Мы получаем x=log2y. Переставим переменные и получим y=log2x.
В итоге этого примера у нас вышли показательная и логарифмическая функции, которые будут взаимно обратными друг другу на всей области определения.
Ответ: y=log2x.
Графически обе функции будут выглядеть или иметь следующее отображение:
Также взаимно обратные функции можно рассматривать на примере теорем.
Предположим, мы имеем определенную, с возрастающей или убывающей монотонностью, а также непрерывную в определенном промежутке x функцию y = f(x). Значит, в промежутке значений y этой функции существует и обратная функция. Она также монотонно убывает или возрастает. Также ее можно определить как непрерывную (в промежутке y).
Основные свойства взаимно обратных функций
В этом пункте мы перечислим основные свойства обратимых функций y=f(x) и x=g(y). Какими же свойствами обладают взаимообратные функции?
- Первое (исходное) свойство мы уже вывели ранее: y=f(g(y)) и x=g(f(x)).
- Второе свойство вытекает из первоначального (первого) и означает, что область определения y=f(x) будет совпадать с областью значений обратной функции x=g(y), и наоборот.
- Графики обратных функций будут симметричными (находиться в симметрии) относительно y=x.
- Если y=f(x) является возрастающей, то и x=g(y) будет возрастать, а если y=f(x) убывает, то убывает и x=g(y).
Советуем внимательно отнестись к понятиям области определения и области значения функций и никогда их не путать, так как это не одно и тоже даже исходя из названий. Допустим, что у нас есть две взаимно обратные функции y=f(x)=ax и x=g(y)=logay. Согласно первому свойству, y=f(g(y))=alogay. Данное равенство будет верным только в случае положительных значений y, а для отрицательных логарифмов не определен, поэтому не спешите записывать, что alogay=y. Обязательно проверьте и добавьте характеристику, что это верно только при положительном y.
А вот равенство x=f(g(x))=logaax=x будет верным при любых действительных значениях x.
Не забывайте про этот момент, особенно если приходится работать с тригонометрическими и обратными тригонометрическими функциями. Так, arcsinsin7π3≠7π3, потому что область значений арксинуса -π2; π2 и 7π3 в нее не входит. Верной будет запись
arcsinsin7π3=arcsinsin2π+π3==по формуле привидения=arcsinsinπ3=π3
А вот sinarcsin13=13 – верное равенство, т.е. sin(arcsin x)=x при x∈-1; 1 и arcsin(sin x)=x при x∈-π2; π2. Всегда будьте внимательны с областью значений и областью определений обратных функций!
Графики взаимно обратных функций
- Основные взаимно обратные функции: степенные
Если у нас есть степенная функция y=xa, то при x>0 степенная функция x=y1a также будет обратной ей. Замена букв будет давать соответственно y=xa и x=y1a.
Сделаем график. На графике они будут выглядеть следующим образом (случаи с положительным и отрицательным коэффициентом a):
- Основные взаимно обратные функции: показательные и логарифмические
Возьмем a, которое будет положительным числом, не равным 1.
Узнаем, какими будут графики для функций с a>1 и a<1. Они будут выглядеть так:
- Основные взаимно обратные функции: тригонометрические и обратные тригонометрические
Если нам нужно построить график главной ветви синуса и арксинуса, он будет выглядеть следующим образом (показан выделенной светлой областью):
Если построить график главной ветви косинуса и арккосинуса, то он будет выглядеть так:
Если строить график главной ветви арктангенса и тангенса, то он будет таким:
График главной ветви арккотангенса и котангенса будет таким:
В случае построения обратных ветвей, отличные от главных, то обратную тригонометрическую функцию мы сдвигаем вдоль оси Oy на нужное число периодов. Так, если требуется обратная функция для ветви тангенса на π2; 3π2, то мы можем сдвинуть ее на величину π вдоль оси абсцисс. График будет представлять собой ветвь арктангенса, которая сдвинута на π вдоль оси ординат.
Это все свойства обратных функций, о которых мы хотели бы вам рассказать.
Нахождение формулы для функции, обратной данной
Пользуясь формулой (y = f(x)), следует выразить (x) через (y), а в полученной формуле (x = g(y)) заменить (x) на (y), а (y) на (x).
Пример:
найти функцию, обратную для функции
y=x2,x∈0;+∞)
.
Функция
y=x2
возрастает на промежутке
0;+∞)
. Делаем вывод, что обратная функция существует. Если значения (x) принадлежат промежутку
0;+∞)
, то
x=y
. Заменим (x) на (y), а (y) на (x), получим обратную функцию
y=x,x∈0;+∞)
. Обратная функция определена на промежутке
0;+∞)
и её график симметричен графику функции
y=x2,x∈0;+∞)
относительно прямой (y=x).
- Функция, обратная данной
- Алгоритм вывода формулы функции, обратной данной
- Свойства взаимно обратных функций
- Примеры
Функция, обратная данной
По определению (см. §34 справочника для 7 класса)
Функция – это соответствие, при котором каждому значению независимой переменной соответствует единственное значение зависимой переменной.
Пусть некоторое соответствие задано таблицей:
x |
-4 |
-3 |
-2 |
-1 |
0 |
1 |
2 |
3 |
4 |
y |
-2 |
-1,5 |
-1 |
-0,5 |
0 |
0,5 |
1 |
1,5 |
2 |
Множество значений X = {-4;-3;…;4} отображается в множество значений Y = {-2;-1,5;…;2}: $X xrightarrow{f} Y$. При этом каждому значению x соответствует единственное значение y, т.е., данное соответствие f является функцией.
С другой стороны, мы можем рассмотреть обратное отображение $Y xrightarrow{g} X$, заданное той же таблицей. При этом каждому значению y соответствует единственное значение x, т.е., обратное соответствие $g = f^{-1}$ также является функцией.
Функцию $f: X xrightarrow{f} Y$ с областью определения X и областью значений Y называют обратимой, если обратное ей соответствие $g: Y xrightarrow{g} g X$ также является фунцией.
Если функция f обратима, то обратное ей соответствие $g = f^{-1}$ называют обратной функцией к f.
Например: аналитическое выражение для функции $X xrightarrow{f} Y$, заданной таблицей $y = f(x) = frac{x}{2}$. Обратное соответствие $Y xrightarrow{g} X$ также является функцией x = g(y) = 2y.
Функция g – обратная функция к f.
В общем случае формулы функций записывают в виде y(x). При такой записи, функции $y = frac{x}{2}$ и y=2x являются взаимно обратными.
Алгоритм вывода формулы функции, обратной данной
На входе: множества X и Y, для которых оба соответствия $X xrightarrow{f} Y$ и $Y xrightarrow{g} X$ являются функциями.
Шаг 1. В формуле для исходной функции заменить обозначения аргумента и значения: $x rightarrow y$, $y rightarrow x$.
Шаг 2. Из полученной формулы выразить y(x). Искомое выражение для обратной функции найдено.
Шаг 3. Учесть ограничения для области определения и области значений исходной и/или обратной функций.
Например:
1) Пусть исходная функция $y = frac{x}{2}$
Шаг 1. Меняем аргумент и значение: $x = frac{y}{2}$
Шаг 2. Находим y из полученной формулы: y = 2x – искомая обратная функция
Шаг 3. Ограничений на x и y нет
2) Пусть исходная функция y = -2x+3
Шаг 1. Меняем аргумент и значение: x = -2y+3
Шаг 2. Находим y из полученной формулы: $y = frac{-x+3}{2}$ – искомая обратная функция
Шаг 3. Ограничений на x и y нет
3) Пусть исходная функция $y = sqrt{x+1}$
Шаг 1. Меняем аргумент и значение: $x = sqrt{y+1}$
Шаг 2. Находим y из полученной формулы: $y = x^2-1$ – искомая обратная функция
Шаг 3. На исходную функцию накладываются ограничения
на $x:x+1 ge 0 Rightarrow x ge -1$, на $y:y ge 0$
Тогда исходная функция определяется на множествах $y ge -1$, $x ge 0$
4) Пусть исходная функция $y = 2x^2+1$
Шаг 1. Меняем аргумент и значение: $x = 2y^2+1$
Шаг 2. Находим y из полученной формулы: $y = sqrt{frac{x-1}{2}}$ – искомая обратная функция
Шаг 3. На обратную функцию накладываются ограничения
на $x:x-1 ge 0 Rightarrow x ge 1$, на $y:y ge 0$
Тогда исходная функция определяется на множествах $y ge 1$, $x ge 0$
Исходная функция — парабола получает ограничения из-за обратной функции; только в этом случаи функции будут взаимно обратными.
Свойства взаимно обратных функций
Пусть f и g – взаимно обратные функции. Тогда:
1. Область определения функции f является областью значений функции g, а область значений функции f является областью определения функции g.
2. Функции f и g либо одновременно возрастающие, либо одновременно убывающие.
3. Если f – нечётная, то и g – нечётная.
4. Графики f и g симметричны относительно биссектрисы 1-й четверти y = x.
5. Справедливы тождества f(g(x) ) = x и g(f(x) ) = x.
Например:
Графики пар взаимно обратных функций, найденных выше:
Примеры
Пример 1. Задайте формулой функцию, обратную данной.
а) y = 5x-4
Меняем аргумент и значение: x = 5y-4
Получаем: $y = frac{x+4}{5}$ – искомая обратная функция
б) y = -3x+2
Меняем аргумент и значение: x = -3y+2
Получаем: $y = frac{-x+2}{3}$ – искомая обратная функция
в) y = 4x+1, где $-1 le x le 5$
Меняем аргумент и значение: x = 4y+1
Получаем: $y = frac{x-1}{4}$
Требуем, чтобы: $-1 le y le 5 Rightarrow -1 le frac{x-1}{4} le 5 Rightarrow -4 le x-1 le 20 Rightarrow -3 le x le 21$
Итак, искомая обратная функция: $y = frac{x-1}{4}$, где -3 $le x le 21$
г) $y=- frac{1}{2} x+7$, где $2 le x le 9$
Меняем аргумент и значение: $x=-frac{1}{2} y+7$
Получаем: y = 2(-x+7) = -2x+14
Требуем, чтобы: $2 le y le 9 Rightarrow 2 le -2x+14 le 9 Rightarrow -12 le -2x le -5 Rightarrow$
$6 ge x ge 2,5 Rightarrow 2,5 le x le 6$
$y = -2x+14,где 2,5 le x le 6$ – искомая обратная функция
Пример 2. Найдите функцию, обратную данной.
Постройте график исходной и обратной функции в одной системе координат.
а) $y=x^2,x le 0$ Обратная функция $x = y^2 Rightarrow y = pm sqrt{x}$ При этом $y le 0$ Поэтому выбираем $y = – sqrt{x}$ – искомая обратная функция |
|
б) y = x-3, $-1 le x le 4$ Обратная функция $x = y-3 Rightarrow y = x+3$ При этом $-1 le y le 4 Rightarrow -1 le x+3 le 4$ $Rightarrow -4 le x le 1$ y = x+3, $-4 le x le 1$ – искомая обратная функция |
|
в) $y = frac{1}{x+1} $ Обратная функция $x = frac{1}{y+1} Rightarrow y = frac{1}{x} -1$ |
|
г) $y = 1+ sqrt{x-3}$ Область определения: $x ge 3$ Область значений: $y ge 1$ Обратная функция: $x = 1+ sqrt{y-3} Rightarrow y = (x-1)^2+3$ Область определения: $x ge 1$ Область значений: $y ge 3$ |
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 июля 2022 года; проверки требуют 13 правок.
Функция и обратная ей функция . Если , то
Обра́тная фу́нкция — функция, обращающая зависимость, выражаемую данной функцией. Например, если функция от x даёт y, то обратная ей функция от y даёт x. Обратная функция функции обычно обозначается , иногда также используется обозначение .
Функция, имеющая обратную, называется обратимой.
Определение[править | править код]
Функция называется обратной к функции , если выполнены следующие тождества:
Связанные определения[править | править код]
Существование[править | править код]
Чтобы найти обратную функцию, нужно решить уравнение относительно . Если оно имеет более чем один корень, то функции, обратной к не существует. Таким образом, функция обратима на интервале тогда и только тогда, когда на этом интервале она взаимно-однозначна.
Для непрерывной функции выразить из уравнения возможно в том и только том случае, когда функция строго монотонна (см. теорема о неявной функции). Тем не менее, непрерывную функцию всегда можно обратить на промежутках её строгой монотонности. Например, является обратной функцией к на , хотя на промежутке обратная функция другая: .
Для существования обратной функции не являются необходимыми ни непрерывность, ни монотонность исходной функции. Пример: функция где — функция Дирихле, разрывна и не монотонна, однако обратная для неё существует[2]:
Примеры[править | править код]
Свойства[править | править код]
Графики функции и обратной ей
или
- ,
- ,
или короче
- ,
- ,
где означает композицию функций, а — тождественные отображения на и соответственно.
- .
Теорема. Композиция любых двух обратимых функций является обратимой функцией, то есть .
Доказательство |
---|
Поскольку и для любой обратимой функции , где — тождественное преобразование, то можно записать следующие равенства.
Имеем: Подействуем слева функцией и получим: |
Это утверждение легко запомнить так: «Пиджак надевают после рубашки, а снимают раньше».
Разложение в степенной ряд[править | править код]
Обратная функция аналитической в некоторой окрестности точки функции может быть представлена в виде степенного ряда:
где функции задаются рекурсивной формулой:
См. также[править | править код]
- Теорема Лагранжа об обращении рядов
- Обратные тригонометрические функции
- Обратимая функция
Примечания[править | править код]
- ↑ Куликов Л.Я. “Алгебра и теория чисел: Учебное пособие для педагогических институтов”
- ↑ Шибинский В. М. Примеры и контрпримеры в курсе математического анализа. Учебное пособие. — М.: Высшая школа, 2007. — С. 29—30. — 543 с. — ISBN 978-5-06-005774-4.