Как найти обратную функцию степени


Загрузить PDF


Загрузить PDF

Математические функции, обычно обозначаемые как f(x) или g(x), можно представить как порядок выполнения математических операций, которые позволяют прийти от «x» к «y». Обратная функция f(x) записывается как f-1(x).[1]
В случае простых функций найти обратную функцию несложно.

Шаги

  1. Изображение с названием Algebraically Find the Inverse of a Function Step 01

    1

    Полностью перепишите функцию, заменив f(x) на y. При этом «у» должна находиться на одной стороне функции, а «x» — на другой. Если вам дана функция вида 2 + y = 3x2, вам необходимо изолировать «у» на одной стороне, а «x» — на другой.

    • Пример. Перепишем данную функцию f(x) = 5x – 2 как y = 5x – 2. f(x) и «y» взаимозаменяемы.
    • f(x) — это стандартная запись функции, но если вы имеете дело с несколькими функциями, то каждой из них нужно будет присвоить свою букву, чтобы их было легче отличать друг от друга. Например, часто функции обозначают как g(x) и h(x).
  2. Изображение с названием Algebraically Find the Inverse of a Function Step 02

    2

    Найдите «x». Другими словами, выполните математические операции, необходимые для изолирования «x» по одну сторону от знака равенства. Основные алгебраические принципы: если «x» имеет числовой коэффициент, то разделите обе стороны функции на этот коэффициент; если к члену с «x» прибавляется некоторый свободный член, вычтите его с обеих сторон функции (и так далее).

    • Помните, что вы можете применять любую операцию по отношению к одной из сторон уравнения только в том случае, если вы применяете ту же операцию по отношению ко всем членам по обе стороны от знака равенства.[2]
    • В нашем примере добавьте 2 к обеим частям уравнения. Вы получите y + 2 = 5x. Затем разделите обе части уравнения на 5 и получите (y + 2)/5 = x. И, наконец, перепишите уравнение с «x» в левой части: x = (y + 2)/5.
  3. Изображение с названием Algebraically Find the Inverse of a Function Step 03

    3

    Поменяйте переменные, заменив «x» на «y» и наоборот. Результатом будет функция, обратная исходной. Другими словами, если мы подставим значение «x» в исходное уравнение и найдем значение «у», то, подставив это значение «у» в обратную функцию, мы получим значение «x».

    • В нашем примере получим y = (x + 2)/5.
  4. Изображение с названием Algebraically Find the Inverse of a Function Step 04

    4

    Замените «у» на f-1(x). Обратные функции обычно записывают в виде f-1(x) = (члены с «x»). Следует отметить, что в данном случае -1 — это не показатель степени; это просто обозначение обратной функции.

    • Так как «x» в -1 степени равно 1/x, то f-1(x) — это форма записи 1/f(x), что также обозначает функцию, обратную f(x).
  5. Изображение с названием Algebraically Find the Inverse of a Function Step 05

    5

    Проверьте работу, вместо «x» подставив постоянное значение в исходную функцию. Если вы правильно нашли обратную функцию, подставив в нее значение «у», вы найдете подставленное значение «x».

    • Например, подставьте x = 4. Вы получите f(x) = 5(4) – 2 или f(x) = 18.
    • Теперь подставьте 18 в обратную функцию и получите y = (18 + 2)/5 = 20/5 = 4. То есть у = 4. Это подставленное значение «x», поэтому вы правильно нашли обратную функцию.

    Реклама

Советы

  • Когда вы выполняете алгебраические операции над функциями, вы можете свободно заменять f(x) = y и f^(-1)(x) = y в обоих направлениях. Но прямая запись обратной функции может привести к путанице, поэтому придерживайтесь записи f(x) или f^(-1)(x), которая поможет вам отличить их друг от друга.
  • Обратите внимание, что обратная функция обычно (но не всегда) является функциональной зависимостью.[3]

Реклама

Об этой статье

Эту страницу просматривали 63 527 раз.

Была ли эта статья полезной?

План урока:

Взаимно обратные функции

Кубический корень

Корни n-ой степени

Арифметические корни n-ой степени

Свойства корня n-ой степени

Сравнение корней

Взаимно обратные функции

Напомним, что любая функция у = у(х) представляет собой некоторое правило, которое устанавливает соответствие между значениями х и значениями у. В частности, функция у = х2 ставит в соответствие каждому действительному числу его квадрат. Приведем таблицу, содержащую значения этой функции для целых аргументов от – 2 до 2:

1hghjg

Но если есть соответствие между х и у, то должно существовать и обратное соответствие между у и х. Действительно, строки таблички можно «перевернуть» и она примет следующий вид:

2gghfj

Мы получили два взаимно обратных соответствия. Однако второе из них функцией не является, ведь функция должна ставить в соответствие своему аргументу только одно значение функции. Однако, судя по второй таблице, числу у = 1 соответствует сразу два х: х = – 1 и х = 1. В таком случае математики говорят, что исходная функция у = х2 является необратимой.

Теперь изучим зависимость у = х3. Построим табличку и для неё:

3gfdg

Теперь «перевернем таблицу» и получим следующее:

4ghgfhj

Мы видим, что как каждому значению х соответствует единственное значение у, так и наоборот, каждому у соответствует единственное значение х. В математике для подобных соответствий используют понятие взаимно-однозначное соответствие.

5gfh

Для лучшего понимания этого определения отвлечемся от чисел. Пусть в футбольном чемпионате играет несколько команд. Они образуют множество Х команд-участниц соревнования. За множество У примем отдельных футболистов, выступающих на турнире. Каждому игроку соответствует единственная команда, за которую он выступает, но обратное неверно – каждой команде соответствует несколько игроков. Значит, это пример соответствия, не являющегося взаимно-однозначным.

Пусть тренеры команд образуют множество Z. Каждый тренер тренирует лишь одну команду, и наоборот, каждую команду тренирует единственный тренер. Значит, между множествами X и Z есть взаимно-однозначное соответствие.

Вернемся к функциям. Если соответствие, которое задает функция у = у(х), является взаимно-однозначным, то каждому значению у будет соответствовать единственное значение х. Значит, существует некоторая функция х = х(у). Пары функций у = у(х) и х = х(у) называются взаимно обратными функциями.

Ещё раз скажем, что не для любой функции существует обратная функция, ведь не все они определяют взаимно-однозначное соответствие. Если всё же для у = у(х) есть обратная функция х = х(у), то у = у(х) называют обратимой функцией.

6hgfhf

Покажем, какие функции являются обратными, на примере пары у = 4х + 12 и у = 0,25х – 3. Возьмем, например, значение х = 5 и подставим его в у = 4х + 12:

у = 4х + 12 = 4•5 + 12 = 32

Получили 32. Подставим это число в обратную функцию:

у = 0,25х – 3 = 0,25•32 – 3 = 8 – 3 = 5

Получили именно то число, которое первоначально подставили в первую функцию! Возьмем другое произвольное число, например, 10, и подставим его в у = 4х + 12:

у = 4•10 + 12 = 40 + 12 = 52

Полученный результат подставляем в у = 0,25х – 3:

у = 0,25•52 – 3 = 13 – 3 = 10

Снова получили исходное число! Выберете сами ещё несколько произвольных чисел и убедитесь, что и с ними будет происходить то же самое.

Посмотрим, как получить обратную функцию. Пусть дана зависимость

у = 5х + 20

Это, по сути, выражение для вычисления у. Выразим из него х:

у = 5х + 20

у – 20 = 5х

(у – 20)/5 = х

х = у/5 – 20/5

х = 0,2у – 4

Получили зависимость х от у. Чтобы мы получили из нее обратную функцию, необходимо просто поменять местами буквы х и у:

у = 0,2х – 4

Убедитесь самостоятельно на нескольких примерах, что полученная функция обратна функции у = 5х + 20.

Пример. Найдите функцию, обратную зависимости у = 1/(х + 7).

Решение. Умножим обе части равенства у = 1/(х + 7) на (х + 7):

у(х + 7) = 1

Далее поделим обе части нау:

х + 7 = 1/у

Перенесем семерку вправо и получим формулу для вычисления х:

х = 1/у – 7

Для получения обратной функции просто меняем х и у местами:

у = 1/х – 7

Ответ: у = 1/х – 7.

Предположим, у нас есть у= у(х), чей график нам известен, и необходимо построить график взаимно обратной функции. Как это сделать? Если одна точка на координатной прямой имеет координаты (a; b) и принадлежит функции у = у(х), то, обратной функции должна принадлежать точка (b; a):

7hgfgh

Эти точки симметричны относительно прямой у = х:

8hgfgh

Поэтому для построения графика обратной функции достаточно симметрично отобразить его относительно прямой у = х.

9hghj

С помощью этого правила построим график функции, обратной у = х3:

10hgfgh

Практика показывает, что не все школьники (да и взрослые тоже) понимают, что означает симметричность относительно прямой у = х, ведь эта прямая наклонена. Здесь требуется довольно высокий уровень пространственного мышления. Куда проще понять симметрию относительно вертикальной или горизонтальной линии. Поэтому мы покажем ещё один способ построения обратных функций, который состоит из двух этапов.

Он заключается в том, что сначала график отображают симметрично относительно вертикальной оси Оу:

11gfdg

На втором этапе полученное отображение поворачивают по часовой стрелке относительно начала координат:

12gfdgh

Заметим важное правило. При построении обратной функции области определения и области значений меняются местами. Действительно, если какое-то число входит в область значения функции, то это значит, что его можно подставить в обратную функцию. Но это в свою очередь означает, что она входит в область определения обратной функции. Проиллюстрируем это правило картинкой:

13gfgd14gdfg

До сих пор мы рассматривали способы построения обратных функций, но ведь в самом начале урока говорилось о том, что обратная функция существует не всегда. Действительно, попытаемся построить обратную функцию для у = х2:

15gfdfg

Получилась та же парабола, но «лежащая на боку». Является ли она графиком функции? Нет. На рисунке проведена вертикальная линия, которая пересевает график в двух точках. Это значит, что одному значению х (в данном случае х = 5) соответствует сразу два значения у. Но подобное соответствие не является функцией. Это значит, что у = х2 – необратимая функция.

Есть ли какой-то признак, позволяющий быстро сказать, является ли функция обратимой? Оказывается, есть. Если функция строго монотонна (то есть либо только возрастает, либо только убывает), то это гарантирует, что она ещё и обратима. Покажем это с помощью рисунков. Известно, что каждому значению строго монотонной функции соответствует лишь один аргумент. С точки зрения геометрии это означает, что любая горизонтальная линия пересекает монотонную функцию не более чем в одной точке:

16gfd

К слову, это свойство мы использовали для решения некоторых уравнений. Теперь отобразим график симметрично прямой у = х, причем также отобразим и горизонтальные линии:

17bghf

Горизонтальные линии превратились в вертикальные, при этом они всё также пересекают график не более чем в одной точке. Но это как раз и означает, что график задает функцию, а не какое-то другое соответствие. Отсюда делаем вывод – любая строго монотонная функция обратима.

18gfdgh

Снова вернемся к функции у = х2. Мы уже показали, что она необратима. Но теперь наложим на нее дополнительное ограничение: х⩾0. Тогда от графика параболы останется только одна ветвь. Для нее уже можно построить обратную функцию:

19gfdfg

Можно сделать вывод – обратимость функции зависит не только от самого вида функции, но и от того, на какой области определения ее рассматривают.

Кубический корень

Ранее мы изучили понятие квадратного корня. Напомним, что извлечение квадратного корня – это операция, обратная возведению в квадрат. Другими словами, функция

20hgf

является обратной для у = х2.

Встает вопрос – а можно ли придумать функцию, обратную возведению в куб? Конечно же да, ведь мы убедились в том, что функция у = х3 обратима. Называют же функцию, обратную у = х3, кубическим корнем.

21gfdg

Можно дать и другое определение, не использующее понятие функции:

22gfdfg

Например, мы знаем, что число 5 в кубе равно 125:

53 = 125

Это значит, что кубический корень из 125 равен 5.

Для обозначения кубического корня используют тот же знак радикала, что и для квадратного корня. Чтобы их отличать друг от друга, в случае с кубическим корнем перед знаком радикала ставят тройку:

23gfdg

Заметим важное отличие кубического и квадратного корня. Мы привыкли, что под знаком радикала не должно стоять отрицательное число. Но кубический корень из отрицательного числа извлечь можно. Например, мы знаем, что (– 6)3 = – 216. Отсюда следует, что

24gfdg

График кубического корня можно получить, просто построив функцию, обратную у = х3:

25gfdfg

Корни n-ой степени

Аналогично кубическому корню можно ввести понятие и корня произвольной n-ой степени.

26gfdgh

Для обозначения корня n-ой степени используется знак радикала, перед которым стоит число n. Приведем пример. Мы знаем, что 25 = 32. Это значит, что корень 5-ой степени из 32 равен 2:

27hgfh

Мы помним, что все степенные функции вида у = хсхожи друг с другом и при этом могут быть разбиты на два класса, в зависимости от четности или нечетности показателя степени n. Если n– четное число (2, 4, 6…), то график будет похож на параболу у = х2, просто он будет чуть сильнее «прижат» к оси Ох вблизи точки О (0;0), но вместе с тем он будет и быстрее возрастать:

28hfgh

Если же показателем n является нечетное число, то график у = хбудет схож с графиком у = х3:

29gfgh

Мы видим, что при нечетном показателе получается строго монотонная (возрастающая) функция. Следовательно, она обратима. Функция, обратная функции у = хn, и будет корнем степени n.

Если нечетно, то корень можно извлечь и из отрицательного числа. Так, известно, что (– 3)7 = – 2187. Это значит, что корень седьмой степени из (– 2187) равен (– 3):

30gfdfg

Очевидно, что корень получится отрицательным, если под ним стоит отрицательное число. Если же подкоренное выражение положительно, то и сам корень положителен. Более того, можно заметить, что корень из отрицательного числа равен корню из противоположенного ему положительного числа, взятого со знаком минус:

31fdg

В общем случае графики всех корней нечетных степеней будут похожи на график кубического корня:

32gdfg

Несколько сложнее дело обстоит в том случае, если показатель является четным. Мы уже выяснили, что у = х2 – это необратимая функция. Аналогично и любая другая степенная функция у = хнеобратима. Однако у = х2 обратима, если наложить дополнительное ограничение: х ≥ 0. Аналогично, при использовании такого же ограничения, обратимой будет и любая функция у = хn, где – четное число. График такой функции будет похож на квадратный корень:

33gfdfg

При четном значении n корень n-ой степени нельзя извлечь из отрицательного числа. Действительно, попробуем возвести в четную степень положительное число:

54 = 5•5•5•5 = 625

Получили другое положительное число. Теперь попробуем возвести в четную степень отрицательное число:

(– 5)4 = (– 5)•(– 5)•(– 5)•(– 5) = 625

Результат снова положительный! Минусы у отрицательных чисел «сократились» друг с другом, и получилось положительное произведение. Но раз при возведении в четную степень всегда получается неотрицательное число, значит, и под четным корнем должно также стоять неотрицательное число. Поэтому подкоренное выражение не может быть отрицательным.

Арифметические корни n-ой степени

Мы видим, что складывается не очень удобная для математиков ситуация: корни n-ой степени из отрицательного числа можно извлечь, если – нечетное число, но при четном такая операция уже недопустима. Это порождает много проблем при работе с корнями. Для устранения этих проблем вводится понятие арифметического корня степени n. Его особенность в том, что он всегда извлекается из неотрицательного числа и сам принимает значения, не меньшие нуля.

34gdfgd

Заметим, что корень нечетной степени из отрицательного числа всегда можно выразить с помощью арифметического корня, просто вынеся знак минус из-под корня:

35gfdg

Поэтому арифметических корней вполне хватает для работы в любых ситуациях.

Определение корня можно записать в более формализованном виде:

36gdfg

Это значит, что

37gdfg

Проиллюстрируем использование этой формулы:

38gfdfg

Свойства корня n-ой степени

Далее рассмотрим некоторые свойства корней степени n, помогающие вычислять их значения. Сразу скажем, что они во многом идентичны свойствам квадратного корня.

39gfdfg

Для доказательства этого свойства правую часть в n-ую степень:

40fdfg

Приведем примеры использования этого свойства:

41gdfg

Отсюда следует, что множители можно вносить и выносить из-под знака корня:

42gfdg

Следующее свойство помогает извлекать корни из дробей.

43gfg

Доказывается это свойство так же, как и первое. Возведем в n-ую степень правую часть формулы:

44gfdg

Продемонстрируем применение доказанного тождества:

45gfdfg

Заметим, что если под корнем находится степень какого-то числа, то ее вынести из-под радикала:

46hfgh

47gdfg

Доказать это можно, разложив число am в произведение:

am =a•a•a…•a

Всего справа стоит множителей. Теперь извлечем корень степени n:

48gfdg

Справа всё те же m множителей, а потому

49hfdgh

Таким образом, получаем, что

50gfdfg

Покажем несколько примеров использования этого правила:

51gdfg

Далее посмотрим, как извлекать корень из другого корня.

52dgh

Для доказательства возведем корень в левой части формулы в степень mn:

53gfdh

По определению корня получаем, что

54gfdg

Проиллюстрируем использование данного правила:

55hggfh

Последнее свойство, которое нам осталось изучить, называют основным свойством корня.

56hgfgh

Доказательство записывается всего в одну строчку:

57gdfgh

Степени в корне и под ним можно «сокращать»:

58gfh

59hgfh

Сравнение корней

Естественно, что большинство корней – это не целые, а иррациональные числа, которые довольно сложно вычислять. Тем не менее есть несколько правил, которые помогают оценивать их значение. Из графиков корней видно, что все они являются возрастающими функциями. Поэтому, если необходимо сравнить два корня одной степени, достаточно сравнить их подкоренные выражения. Тот корень, у которого под корнем стоит большее число, и будет больше

60hgfgh

В частности, справедливы неравенства:

61gdfg

В случае, если у корней различаются степени, следует постараться преобразовать их так, чтобы степени всё же совпали.

Пример. Сравните числа

62gfdg

Решение. Преобразуем первое число, чтобы у нас получился корень шестой степени:

63gfgd

Так как 121 > 119, то и

64hgfh

Пример. Сравните числа

65ggh

Решение. Сначала избавимся от вложенных корней:

66hgfh

Получили два кубических корня. Меньше тот из них, у которого под радикалом меньшее число:

67ghfgh

Пример. Сравните корни

68hgfgh

Решение. Имеем корни 7-ой и 4-ой степени. К какой одинаковой степени можно привести оба корня? Это число 28, ведь оно представляет собой произведение 7•4:

69gfdfg

Так как 16384 > 14641, то и

70fdg


Download Article


Download Article

A mathematical function (usually denoted as f(x)) can be thought of as a formula that will give you a value for y if you specify a value for x. The inverse of a function f(x) (which is written as f-1(x))is essentially the reverse: put in your y value, and you’ll get your initial x value back.[1]
Finding the inverse of a function may sound like a complex process, but for simple equations, all that’s required is knowledge of basic algebraic operations. Read on for step-by-step instructions and an illustrative example.

  1. Image titled Algebraically Find the Inverse of a Function Step 01

    1

    Write your function, replacing f(x) with y if necessary. Your formula should have y on one side of the equals sign by itself with the x terms on the other side of the equals sign. If you have an equation that’s already written in terms of y and x (for instance, 2 + y = 3x2), all you need to do is solve for y by isolating it on one side of the equals sign.[2]

    • Example: If we have a function f(x) = 5x – 2, we would rewrite it as y = 5x – 2 simply by replacing the “f(x)” with a y.
    • Note: f(x) is the standard function notation, but if you’re dealing with multiple functions, each one gets a different letter to make telling them apart easier. For example, g(x) and h(x) are each common identifiers for functions.
  2. Image titled Algebraically Find the Inverse of a Function Step 02

    2

    Solve for x. In other words, perform the necessary mathematical operations to isolate x by itself on one side of the equal sign. Basic algebraic principles will guide you here: if x has a numeric coefficient, divide both sides of the equation by this number; if a certain number is added to the x term(s) on one side of the equals sign, subtract this number from both sides, and so on.[3]

    • Remember, you can perform any operation on one side of the equation as long as you perform the operation on every term on both sides of the equal sign.
    • Example: To continue our example, first, we’d add 2 to both sides of the equation. This gives us y + 2 = 5x. We’d then divide both sides of the equation by 5, yielding (y + 2)/5 = x. Finally, to make it easier to read, we’ll rewrite the equation with “x” on the left side: x = (y + 2)/5.

    Advertisement

  3. Image titled Algebraically Find the Inverse of a Function Step 03

    3

    Switch the variables. Replace x with y and vice versa. The resulting equation is the inverse of the original function. In other words, if we substitute a value for x into our original equation and get an answer, when we substitute that answer into the inverse equation (again for x), we’ll get our original value back![4]

    • Example: After switching x and y, we’d have y = (x + 2)/5
  4. Image titled Algebraically Find the Inverse of a Function Step 04

    4

    Replace y with “f-1(x).” Inverse functions are usually written as f-1(x) = (x terms) . Note that in this case, the -1 exponent doesn’t mean we should perform an exponent operation on our function. It’s just a way of indicating that this function is the inverse of our original.[5]

    • Since taking x to the -1st power gives the fraction 1/x, you can also think of f-1(x) as a way of writing “1/f(x),” which also signifies the inverse of f(x).
  5. Image titled Algebraically Find the Inverse of a Function Step 05

    5

    Check your work. Try substituting a constant into the original function for x. If you found the correct inverse, you should be able to plug the result into the inverse function and get your original x-value as the result.[6]

    • Example: Let’s substitute 4 for x in our original equation. This gives us f(x) = 5(4) – 2, or f(x) = 18.
    • Next, let’s substitute our answer, 18, into our inverse function for x. If we do this, we get y = (18 + 2)/5, which simplifies to y = 20/5, which further simplifies to y = 4. 4 is our original x-value, so we know we’ve calculated the correct inverse function.
  6. Advertisement

Add New Question

  • Question

    Where do I use inverse functions?

    Community Answer

    For one thing, any time you solve an equation. To solve x+4 = 7, you apply the inverse function of f(x) = x+4, that is g(x) = x-4, to both sides (x+4)-4 = 7-4 . To solve 2^x = 8, the inverse function of 2^x is log2(x), so you apply log base 2 to both sides and get log2(2^x)=log2(8) = 3. To solve x^2 = 16, you want to apply the inverse of f(x)=x^2 to both sides, but since f(x)=x^2 isn’t invertible, you have to split it into two cases. If x is positive, g(x) = sqrt(x) is the inverse of f, but if x is negative, g(x) = -sqrt(x) is the inverse. So the solutions are x = +4 and -4.

  • Question

    What inverse operations do I use to solve equations?

    Danoyachtcapt

    The inverse of any number is that number divided into 1, as in 1/N.

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • Note that the inverse of a function is usually, but not always, a function itself.[7]

  • You can freely substitute back and forth for f(x) = y and f^(-1)(x) = y when you’re performing algebraic operations on your functions. But keeping the original function and the inverse function straight can get confusing, so if you’re not actively working with either function, try to stick to the f(x) or f^(-1)(x) notation, which helps you tell them apart.

Advertisement

About This Article

Thanks to all authors for creating a page that has been read 154,078 times.

Did this article help you?

  1. Функция, обратная данной
  2. Алгоритм вывода формулы функции, обратной данной
  3. Свойства взаимно обратных функций
  4. Примеры

Функция, обратная данной

По определению (см. §34 справочника для 7 класса)

Функция – это соответствие, при котором каждому значению независимой переменной соответствует единственное значение зависимой переменной.

Пусть некоторое соответствие задано таблицей:

x

-4

-3

-2

-1

0

1

2

3

4

y

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

Множество значений X = {-4;-3;…;4} отображается в множество значений Y = {-2;-1,5;…;2}: $X xrightarrow{f} Y$. При этом каждому значению x соответствует единственное значение y, т.е., данное соответствие f является функцией.

С другой стороны, мы можем рассмотреть обратное отображение $Y xrightarrow{g} X$, заданное той же таблицей. При этом каждому значению y соответствует единственное значение x, т.е., обратное соответствие $g = f^{-1}$ также является функцией.

Функцию $f: X xrightarrow{f} Y$ с областью определения X и областью значений Y называют обратимой, если обратное ей соответствие $g: Y xrightarrow{g} g X$ также является фунцией.

Если функция f обратима, то обратное ей соответствие $g = f^{-1}$ называют обратной функцией к f.

Например: аналитическое выражение для функции $X xrightarrow{f} Y$, заданной таблицей $y = f(x) = frac{x}{2}$. Обратное соответствие $Y xrightarrow{g} X$ также является функцией x = g(y) = 2y.

Функция g – обратная функция к f.

В общем случае формулы функций записывают в виде y(x). При такой записи, функции $y = frac{x}{2}$ и y=2x являются взаимно обратными.

Алгоритм вывода формулы функции, обратной данной

На входе: множества X и Y, для которых оба соответствия $X xrightarrow{f} Y$ и $Y xrightarrow{g} X$ являются функциями.

Шаг 1. В формуле для исходной функции заменить обозначения аргумента и значения: $x rightarrow y$, $y rightarrow x$.

Шаг 2. Из полученной формулы выразить y(x). Искомое выражение для обратной функции найдено.

Шаг 3. Учесть ограничения для области определения и области значений исходной и/или обратной функций.

Например:

1) Пусть исходная функция $y = frac{x}{2}$

Шаг 1. Меняем аргумент и значение: $x = frac{y}{2}$

Шаг 2. Находим y из полученной формулы: y = 2x – искомая обратная функция

Шаг 3. Ограничений на x и y нет

2) Пусть исходная функция y = -2x+3

Шаг 1. Меняем аргумент и значение: x = -2y+3

Шаг 2. Находим y из полученной формулы: $y = frac{-x+3}{2}$ – искомая обратная функция

Шаг 3. Ограничений на x и y нет

3) Пусть исходная функция $y = sqrt{x+1}$

Шаг 1. Меняем аргумент и значение: $x = sqrt{y+1}$

Шаг 2. Находим y из полученной формулы: $y = x^2-1$ – искомая обратная функция

Шаг 3. На исходную функцию накладываются ограничения

на $x:x+1 ge 0 Rightarrow x ge -1$, на $y:y ge 0$

Тогда исходная функция определяется на множествах $y ge -1$, $x ge 0$

4) Пусть исходная функция $y = 2x^2+1$

Шаг 1. Меняем аргумент и значение: $x = 2y^2+1$

Шаг 2. Находим y из полученной формулы: $y = sqrt{frac{x-1}{2}}$ – искомая обратная функция

Шаг 3. На обратную функцию накладываются ограничения

на $x:x-1 ge 0 Rightarrow x ge 1$, на $y:y ge 0$

Тогда исходная функция определяется на множествах $y ge 1$, $x ge 0$

Исходная функция — парабола получает ограничения из-за обратной функции; только в этом случаи функции будут взаимно обратными.

Свойства взаимно обратных функций

Пусть f и g – взаимно обратные функции. Тогда:

1. Область определения функции f является областью значений функции g, а область значений функции f является областью определения функции g.

2. Функции f и g либо одновременно возрастающие, либо одновременно убывающие.

3. Если f – нечётная, то и g – нечётная.

4. Графики f и g симметричны относительно биссектрисы 1-й четверти y = x.

5. Справедливы тождества f(g(x) ) = x и g(f(x) ) = x.

Например:

Графики пар взаимно обратных функций, найденных выше:

Примеры

Пример 1. Задайте формулой функцию, обратную данной.

а) y = 5x-4

Меняем аргумент и значение: x = 5y-4

Получаем: $y = frac{x+4}{5}$ – искомая обратная функция

б) y = -3x+2

Меняем аргумент и значение: x = -3y+2

Получаем: $y = frac{-x+2}{3}$ – искомая обратная функция

в) y = 4x+1, где $-1 le x le 5$

Меняем аргумент и значение: x = 4y+1

Получаем: $y = frac{x-1}{4}$

Требуем, чтобы: $-1 le y le 5 Rightarrow -1 le frac{x-1}{4} le 5 Rightarrow -4 le x-1 le 20 Rightarrow -3 le x le 21$

Итак, искомая обратная функция: $y = frac{x-1}{4}$, где -3 $le x le 21$

г) $y=- frac{1}{2} x+7$, где $2 le x le 9$

Меняем аргумент и значение: $x=-frac{1}{2} y+7$

Получаем: y = 2(-x+7) = -2x+14

Требуем, чтобы: $2 le y le 9 Rightarrow 2 le -2x+14 le 9 Rightarrow -12 le -2x le -5 Rightarrow$

$6 ge x ge 2,5 Rightarrow 2,5 le x le 6$

$y = -2x+14,где 2,5 le x le 6$ – искомая обратная функция

Пример 2. Найдите функцию, обратную данной.

Постройте график исходной и обратной функции в одной системе координат.

а) $y=x^2,x le 0$

Обратная функция

$x = y^2 Rightarrow y = pm sqrt{x}$

При этом $y le 0$

Поэтому выбираем

$y = – sqrt{x}$ – искомая обратная функция

Пример 2. а)

б) y = x-3, $-1 le x le 4$

Обратная функция

$x = y-3 Rightarrow y = x+3$

При этом $-1 le y le 4 Rightarrow -1 le x+3 le 4$

$Rightarrow -4 le x le 1$

y = x+3, $-4 le x le 1$ – искомая обратная

функция

Пример 2. б)

в) $y = frac{1}{x+1} $

Обратная функция

$x = frac{1}{y+1} Rightarrow y = frac{1}{x} -1$

Пример 2. в)

г) $y = 1+ sqrt{x-3}$

Область определения: $x ge 3$

Область значений: $y ge 1$

Обратная функция:

$x = 1+ sqrt{y-3} Rightarrow y = (x-1)^2+3$

Область определения: $x ge 1$

Область значений: $y ge 3$

Пример 2. г)

Добавить комментарий