Как найти обратную функцию степенной функции

Понятие обратной функции и ее определение в алгебре

Допустим, что у нас есть некая функция y=f(x), которая является строго монотонной (убывающей или возрастающей) и непрерывной на области определения x∈a; b; область ее значений y∈c; d, а на интервале c; d при этом у нас будет определена функция x=g(y) с областью значений a; b. Вторая функция также будет называться непрерывной и строго монотонной. По отношению к y=f(x) она будет обратной функцией. То есть мы можем говорить об обратной функции x=g(y) тогда, когда y=f(x) на заданном интервале будет либо убывать, либо возрастать.

Две этих функции, f и g, будут взаимно обратными.

Обратная функция – это что такое? Дадим определение взаимно обратимой функции (что такое обратимая функция – определение). 

Для чего вообще нам нужно понятие обратных функций?

Это нужно нам для решения уравнений y=f(x), которые записываются как раз с помощью этих выражений. Также понятие особенностей обратных функций помогают в решении операций по извлечению n-ой степени (она обратна возведению в степень).

На самом деле это не является чем-то сложным. Онлайн, как и в нашем материале, вы можете найти много примеров обратной функции, которые помогут в этом убедиться. 

Важно знать, что любая функция y = y (x) – это определенное правило, которое определяет соответствие между двумя значениями: x и y. К примеру, функция y = x² ставит соответственно каждому действительному числу его в квадрат. Можно сделать определенную таблицу, в которой будут располагаться значения этой функции для целых аргументов.

x -2 -1 0 1 2
y = x² 4 1 0 1 4

Как найти функцию обратную данной

Как найти обратную функцию?

Допустим, нам нужно найти решение уравнения cos(x)=13. Его решениями будут все точки: x=±arсcos13+2π·k, k∈Z 

Обратными по отношению друг к другу будут, например, функции арккосинуса и косинуса.

Разберем несколько задач на нахождение функций, обратных заданным. Вот несколько примеров обратной функции. 

Пример 1

Условие: какая функция будет обратной для y=3x+2?

Решение

Область определений и область значений линейной функции, данной в условии, – это множество всех действительных чисел. Попробуем решить данное уравнение через x, то есть выразив  x через y.

Мы получим x=13y-23. Это и есть нужная нам обратная функция, но y здесь будет аргументом, а x – функцией. Переставим их, чтобы получить более привычную форму записи:

y=13x-23 

Ответ: функция y=13x-23 будет обратной для y=3x+2.

Обе взаимообратные функции можно отобразить на графике следующим образом:

Как найти функцию обратную данной

На графике мы находим симметричность обоих графиков относительно y=x (они отображаются симметрично). Эта прямая является биссектрисой первого и третьего квадрантов. Что это позволило нам доказать? Получилось доказательство одного из свойств взаимно обратных функций, о котором мы поговорим далее.

Возьмем онлайн-пример, в котором нужно найти логарифмическую функцию, обратную заданной показательной.

Пример 2

Условие: определите, какая функция будет обратной для y=2x.

Решение

Для заданной функции областью определения являются все действительные числа. Область значений лежит в интервале 0; +∞. Теперь нам нужно выразить x через y, то есть решить указанное уравнение через x. Мы получаем x=log2y. Переставим переменные и получим y=log2x.

В итоге этого примера у нас вышли показательная и логарифмическая функции, которые будут взаимно обратными друг другу на всей области определения.

Ответ: y=log2x.

Графически обе функции будут выглядеть или иметь следующее отображение:

Как найти функцию обратную данной

Также взаимно обратные функции можно рассматривать на примере теорем.

Предположим, мы имеем определенную, с возрастающей или убывающей монотонностью, а также непрерывную в определенном промежутке x функцию y = f(x). Значит, в промежутке значений y этой функции существует и обратная функция. Она также монотонно убывает или возрастает. Также ее можно определить как непрерывную (в промежутке y).

Основные свойства взаимно обратных функций

В этом пункте мы перечислим основные свойства обратимых функций y=f(x) и x=g(y). Какими же свойствами обладают взаимообратные функции?

Определение 1
  1. Первое (исходное) свойство мы уже вывели ранее: y=f(g(y)) и x=g(f(x)).
  2. Второе свойство вытекает из первоначального (первого) и означает, что область определения y=f(x) будет совпадать с областью значений обратной функции x=g(y), и наоборот.
  3. Графики обратных функций будут симметричными (находиться в симметрии) относительно y=x.
  4. Если y=f(x) является возрастающей, то и x=g(y) будет возрастать, а если y=f(x) убывает, то убывает и x=g(y).

Советуем внимательно отнестись к понятиям области определения и области значения функций и никогда их не путать, так как это не одно и тоже даже исходя из названий. Допустим, что у нас есть две взаимно обратные функции y=f(x)=ax и x=g(y)=logay. Согласно первому свойству, y=f(g(y))=alogay. Данное равенство будет верным только в случае положительных значений y, а для отрицательных логарифмов не определен, поэтому не спешите записывать, что alogay=y. Обязательно проверьте и добавьте характеристику, что это верно только при положительном y.

А вот равенство x=f(g(x))=logaax=x будет верным при любых действительных значениях x.

Не забывайте про этот момент, особенно если приходится работать с  тригонометрическими и обратными тригонометрическими функциями.  Так, arcsinsin7π3≠7π3, потому что область значений арксинуса -π2; π2 и 7π3 в нее не входит. Верной будет запись

arcsinsin7π3=arcsinsin2π+π3==по формуле привидения=arcsinsinπ3=π3

А вот sinarcsin13=13 – верное равенство, т.е. sin(arcsin x)=x при x∈-1; 1 и arcsin(sin x)=x при x∈-π2; π2. Всегда будьте внимательны с областью значений и областью определений обратных функций!

Графики взаимно обратных функций

  • Основные взаимно обратные функции: степенные

Если у нас есть степенная функция y=xa, то при x>0 степенная функция x=y1a также будет обратной ей. Замена букв будет давать соответственно y=xa и x=y1a.

Сделаем график. На графике они будут выглядеть следующим образом (случаи с положительным и отрицательным коэффициентом a):

Графики взаимно обратных функций

  • Основные взаимно обратные функции: показательные и логарифмические

Возьмем a, которое будет положительным числом, не равным 1.

Узнаем, какими будут графики для функций с a>1 и a<1. Они будут выглядеть так:

Графики взаимно обратных функций

  • Основные взаимно обратные функции: тригонометрические и обратные тригонометрические

Если нам нужно построить график главной ветви синуса и арксинуса, он будет выглядеть следующим образом (показан выделенной светлой областью):

Графики взаимно обратных функций

Если построить график главной ветви косинуса и арккосинуса, то он будет выглядеть так:

Графики взаимно обратных функций

Если строить график главной ветви арктангенса и тангенса, то он будет таким:

Графики взаимно обратных функций

График главной ветви арккотангенса и котангенса будет таким:

Графики взаимно обратных функций

В случае построения обратных ветвей, отличные от главных, то обратную тригонометрическую функцию мы сдвигаем вдоль оси Oy на нужное число периодов. Так, если требуется обратная функция для ветви тангенса на π2; 3π2, то мы можем сдвинуть ее на величину π вдоль оси абсцисс. График будет представлять собой ветвь арктангенса, которая сдвинута на π вдоль оси ординат.

Графики взаимно обратных функций

Это все свойства обратных функций, о которых мы хотели бы вам рассказать.


Загрузить PDF


Загрузить PDF

Математические функции, обычно обозначаемые как f(x) или g(x), можно представить как порядок выполнения математических операций, которые позволяют прийти от «x» к «y». Обратная функция f(x) записывается как f-1(x).[1]
В случае простых функций найти обратную функцию несложно.

Шаги

  1. Изображение с названием Algebraically Find the Inverse of a Function Step 01

    1

    Полностью перепишите функцию, заменив f(x) на y. При этом «у» должна находиться на одной стороне функции, а «x» — на другой. Если вам дана функция вида 2 + y = 3x2, вам необходимо изолировать «у» на одной стороне, а «x» — на другой.

    • Пример. Перепишем данную функцию f(x) = 5x – 2 как y = 5x – 2. f(x) и «y» взаимозаменяемы.
    • f(x) — это стандартная запись функции, но если вы имеете дело с несколькими функциями, то каждой из них нужно будет присвоить свою букву, чтобы их было легче отличать друг от друга. Например, часто функции обозначают как g(x) и h(x).
  2. Изображение с названием Algebraically Find the Inverse of a Function Step 02

    2

    Найдите «x». Другими словами, выполните математические операции, необходимые для изолирования «x» по одну сторону от знака равенства. Основные алгебраические принципы: если «x» имеет числовой коэффициент, то разделите обе стороны функции на этот коэффициент; если к члену с «x» прибавляется некоторый свободный член, вычтите его с обеих сторон функции (и так далее).

    • Помните, что вы можете применять любую операцию по отношению к одной из сторон уравнения только в том случае, если вы применяете ту же операцию по отношению ко всем членам по обе стороны от знака равенства.[2]
    • В нашем примере добавьте 2 к обеим частям уравнения. Вы получите y + 2 = 5x. Затем разделите обе части уравнения на 5 и получите (y + 2)/5 = x. И, наконец, перепишите уравнение с «x» в левой части: x = (y + 2)/5.
  3. Изображение с названием Algebraically Find the Inverse of a Function Step 03

    3

    Поменяйте переменные, заменив «x» на «y» и наоборот. Результатом будет функция, обратная исходной. Другими словами, если мы подставим значение «x» в исходное уравнение и найдем значение «у», то, подставив это значение «у» в обратную функцию, мы получим значение «x».

    • В нашем примере получим y = (x + 2)/5.
  4. Изображение с названием Algebraically Find the Inverse of a Function Step 04

    4

    Замените «у» на f-1(x). Обратные функции обычно записывают в виде f-1(x) = (члены с «x»). Следует отметить, что в данном случае -1 — это не показатель степени; это просто обозначение обратной функции.

    • Так как «x» в -1 степени равно 1/x, то f-1(x) — это форма записи 1/f(x), что также обозначает функцию, обратную f(x).
  5. Изображение с названием Algebraically Find the Inverse of a Function Step 05

    5

    Проверьте работу, вместо «x» подставив постоянное значение в исходную функцию. Если вы правильно нашли обратную функцию, подставив в нее значение «у», вы найдете подставленное значение «x».

    • Например, подставьте x = 4. Вы получите f(x) = 5(4) – 2 или f(x) = 18.
    • Теперь подставьте 18 в обратную функцию и получите y = (18 + 2)/5 = 20/5 = 4. То есть у = 4. Это подставленное значение «x», поэтому вы правильно нашли обратную функцию.

    Реклама

Советы

  • Когда вы выполняете алгебраические операции над функциями, вы можете свободно заменять f(x) = y и f^(-1)(x) = y в обоих направлениях. Но прямая запись обратной функции может привести к путанице, поэтому придерживайтесь записи f(x) или f^(-1)(x), которая поможет вам отличить их друг от друга.
  • Обратите внимание, что обратная функция обычно (но не всегда) является функциональной зависимостью.[3]

Реклама

Об этой статье

Эту страницу просматривали 63 367 раз.

Была ли эта статья полезной?

План урока:

Взаимно обратные функции

Кубический корень

Корни n-ой степени

Арифметические корни n-ой степени

Свойства корня n-ой степени

Сравнение корней

Взаимно обратные функции

Напомним, что любая функция у = у(х) представляет собой некоторое правило, которое устанавливает соответствие между значениями х и значениями у. В частности, функция у = х2 ставит в соответствие каждому действительному числу его квадрат. Приведем таблицу, содержащую значения этой функции для целых аргументов от – 2 до 2:

1hghjg

Но если есть соответствие между х и у, то должно существовать и обратное соответствие между у и х. Действительно, строки таблички можно «перевернуть» и она примет следующий вид:

2gghfj

Мы получили два взаимно обратных соответствия. Однако второе из них функцией не является, ведь функция должна ставить в соответствие своему аргументу только одно значение функции. Однако, судя по второй таблице, числу у = 1 соответствует сразу два х: х = – 1 и х = 1. В таком случае математики говорят, что исходная функция у = х2 является необратимой.

Теперь изучим зависимость у = х3. Построим табличку и для неё:

3gfdg

Теперь «перевернем таблицу» и получим следующее:

4ghgfhj

Мы видим, что как каждому значению х соответствует единственное значение у, так и наоборот, каждому у соответствует единственное значение х. В математике для подобных соответствий используют понятие взаимно-однозначное соответствие.

5gfh

Для лучшего понимания этого определения отвлечемся от чисел. Пусть в футбольном чемпионате играет несколько команд. Они образуют множество Х команд-участниц соревнования. За множество У примем отдельных футболистов, выступающих на турнире. Каждому игроку соответствует единственная команда, за которую он выступает, но обратное неверно – каждой команде соответствует несколько игроков. Значит, это пример соответствия, не являющегося взаимно-однозначным.

Пусть тренеры команд образуют множество Z. Каждый тренер тренирует лишь одну команду, и наоборот, каждую команду тренирует единственный тренер. Значит, между множествами X и Z есть взаимно-однозначное соответствие.

Вернемся к функциям. Если соответствие, которое задает функция у = у(х), является взаимно-однозначным, то каждому значению у будет соответствовать единственное значение х. Значит, существует некоторая функция х = х(у). Пары функций у = у(х) и х = х(у) называются взаимно обратными функциями.

Ещё раз скажем, что не для любой функции существует обратная функция, ведь не все они определяют взаимно-однозначное соответствие. Если всё же для у = у(х) есть обратная функция х = х(у), то у = у(х) называют обратимой функцией.

6hgfhf

Покажем, какие функции являются обратными, на примере пары у = 4х + 12 и у = 0,25х – 3. Возьмем, например, значение х = 5 и подставим его в у = 4х + 12:

у = 4х + 12 = 4•5 + 12 = 32

Получили 32. Подставим это число в обратную функцию:

у = 0,25х – 3 = 0,25•32 – 3 = 8 – 3 = 5

Получили именно то число, которое первоначально подставили в первую функцию! Возьмем другое произвольное число, например, 10, и подставим его в у = 4х + 12:

у = 4•10 + 12 = 40 + 12 = 52

Полученный результат подставляем в у = 0,25х – 3:

у = 0,25•52 – 3 = 13 – 3 = 10

Снова получили исходное число! Выберете сами ещё несколько произвольных чисел и убедитесь, что и с ними будет происходить то же самое.

Посмотрим, как получить обратную функцию. Пусть дана зависимость

у = 5х + 20

Это, по сути, выражение для вычисления у. Выразим из него х:

у = 5х + 20

у – 20 = 5х

(у – 20)/5 = х

х = у/5 – 20/5

х = 0,2у – 4

Получили зависимость х от у. Чтобы мы получили из нее обратную функцию, необходимо просто поменять местами буквы х и у:

у = 0,2х – 4

Убедитесь самостоятельно на нескольких примерах, что полученная функция обратна функции у = 5х + 20.

Пример. Найдите функцию, обратную зависимости у = 1/(х + 7).

Решение. Умножим обе части равенства у = 1/(х + 7) на (х + 7):

у(х + 7) = 1

Далее поделим обе части нау:

х + 7 = 1/у

Перенесем семерку вправо и получим формулу для вычисления х:

х = 1/у – 7

Для получения обратной функции просто меняем х и у местами:

у = 1/х – 7

Ответ: у = 1/х – 7.

Предположим, у нас есть у= у(х), чей график нам известен, и необходимо построить график взаимно обратной функции. Как это сделать? Если одна точка на координатной прямой имеет координаты (a; b) и принадлежит функции у = у(х), то, обратной функции должна принадлежать точка (b; a):

7hgfgh

Эти точки симметричны относительно прямой у = х:

8hgfgh

Поэтому для построения графика обратной функции достаточно симметрично отобразить его относительно прямой у = х.

9hghj

С помощью этого правила построим график функции, обратной у = х3:

10hgfgh

Практика показывает, что не все школьники (да и взрослые тоже) понимают, что означает симметричность относительно прямой у = х, ведь эта прямая наклонена. Здесь требуется довольно высокий уровень пространственного мышления. Куда проще понять симметрию относительно вертикальной или горизонтальной линии. Поэтому мы покажем ещё один способ построения обратных функций, который состоит из двух этапов.

Он заключается в том, что сначала график отображают симметрично относительно вертикальной оси Оу:

11gfdg

На втором этапе полученное отображение поворачивают по часовой стрелке относительно начала координат:

12gfdgh

Заметим важное правило. При построении обратной функции области определения и области значений меняются местами. Действительно, если какое-то число входит в область значения функции, то это значит, что его можно подставить в обратную функцию. Но это в свою очередь означает, что она входит в область определения обратной функции. Проиллюстрируем это правило картинкой:

13gfgd14gdfg

До сих пор мы рассматривали способы построения обратных функций, но ведь в самом начале урока говорилось о том, что обратная функция существует не всегда. Действительно, попытаемся построить обратную функцию для у = х2:

15gfdfg

Получилась та же парабола, но «лежащая на боку». Является ли она графиком функции? Нет. На рисунке проведена вертикальная линия, которая пересевает график в двух точках. Это значит, что одному значению х (в данном случае х = 5) соответствует сразу два значения у. Но подобное соответствие не является функцией. Это значит, что у = х2 – необратимая функция.

Есть ли какой-то признак, позволяющий быстро сказать, является ли функция обратимой? Оказывается, есть. Если функция строго монотонна (то есть либо только возрастает, либо только убывает), то это гарантирует, что она ещё и обратима. Покажем это с помощью рисунков. Известно, что каждому значению строго монотонной функции соответствует лишь один аргумент. С точки зрения геометрии это означает, что любая горизонтальная линия пересекает монотонную функцию не более чем в одной точке:

16gfd

К слову, это свойство мы использовали для решения некоторых уравнений. Теперь отобразим график симметрично прямой у = х, причем также отобразим и горизонтальные линии:

17bghf

Горизонтальные линии превратились в вертикальные, при этом они всё также пересекают график не более чем в одной точке. Но это как раз и означает, что график задает функцию, а не какое-то другое соответствие. Отсюда делаем вывод – любая строго монотонная функция обратима.

18gfdgh

Снова вернемся к функции у = х2. Мы уже показали, что она необратима. Но теперь наложим на нее дополнительное ограничение: х⩾0. Тогда от графика параболы останется только одна ветвь. Для нее уже можно построить обратную функцию:

19gfdfg

Можно сделать вывод – обратимость функции зависит не только от самого вида функции, но и от того, на какой области определения ее рассматривают.

Кубический корень

Ранее мы изучили понятие квадратного корня. Напомним, что извлечение квадратного корня – это операция, обратная возведению в квадрат. Другими словами, функция

20hgf

является обратной для у = х2.

Встает вопрос – а можно ли придумать функцию, обратную возведению в куб? Конечно же да, ведь мы убедились в том, что функция у = х3 обратима. Называют же функцию, обратную у = х3, кубическим корнем.

21gfdg

Можно дать и другое определение, не использующее понятие функции:

22gfdfg

Например, мы знаем, что число 5 в кубе равно 125:

53 = 125

Это значит, что кубический корень из 125 равен 5.

Для обозначения кубического корня используют тот же знак радикала, что и для квадратного корня. Чтобы их отличать друг от друга, в случае с кубическим корнем перед знаком радикала ставят тройку:

23gfdg

Заметим важное отличие кубического и квадратного корня. Мы привыкли, что под знаком радикала не должно стоять отрицательное число. Но кубический корень из отрицательного числа извлечь можно. Например, мы знаем, что (– 6)3 = – 216. Отсюда следует, что

24gfdg

График кубического корня можно получить, просто построив функцию, обратную у = х3:

25gfdfg

Корни n-ой степени

Аналогично кубическому корню можно ввести понятие и корня произвольной n-ой степени.

26gfdgh

Для обозначения корня n-ой степени используется знак радикала, перед которым стоит число n. Приведем пример. Мы знаем, что 25 = 32. Это значит, что корень 5-ой степени из 32 равен 2:

27hgfh

Мы помним, что все степенные функции вида у = хсхожи друг с другом и при этом могут быть разбиты на два класса, в зависимости от четности или нечетности показателя степени n. Если n– четное число (2, 4, 6…), то график будет похож на параболу у = х2, просто он будет чуть сильнее «прижат» к оси Ох вблизи точки О (0;0), но вместе с тем он будет и быстрее возрастать:

28hfgh

Если же показателем n является нечетное число, то график у = хбудет схож с графиком у = х3:

29gfgh

Мы видим, что при нечетном показателе получается строго монотонная (возрастающая) функция. Следовательно, она обратима. Функция, обратная функции у = хn, и будет корнем степени n.

Если нечетно, то корень можно извлечь и из отрицательного числа. Так, известно, что (– 3)7 = – 2187. Это значит, что корень седьмой степени из (– 2187) равен (– 3):

30gfdfg

Очевидно, что корень получится отрицательным, если под ним стоит отрицательное число. Если же подкоренное выражение положительно, то и сам корень положителен. Более того, можно заметить, что корень из отрицательного числа равен корню из противоположенного ему положительного числа, взятого со знаком минус:

31fdg

В общем случае графики всех корней нечетных степеней будут похожи на график кубического корня:

32gdfg

Несколько сложнее дело обстоит в том случае, если показатель является четным. Мы уже выяснили, что у = х2 – это необратимая функция. Аналогично и любая другая степенная функция у = хнеобратима. Однако у = х2 обратима, если наложить дополнительное ограничение: х ≥ 0. Аналогично, при использовании такого же ограничения, обратимой будет и любая функция у = хn, где – четное число. График такой функции будет похож на квадратный корень:

33gfdfg

При четном значении n корень n-ой степени нельзя извлечь из отрицательного числа. Действительно, попробуем возвести в четную степень положительное число:

54 = 5•5•5•5 = 625

Получили другое положительное число. Теперь попробуем возвести в четную степень отрицательное число:

(– 5)4 = (– 5)•(– 5)•(– 5)•(– 5) = 625

Результат снова положительный! Минусы у отрицательных чисел «сократились» друг с другом, и получилось положительное произведение. Но раз при возведении в четную степень всегда получается неотрицательное число, значит, и под четным корнем должно также стоять неотрицательное число. Поэтому подкоренное выражение не может быть отрицательным.

Арифметические корни n-ой степени

Мы видим, что складывается не очень удобная для математиков ситуация: корни n-ой степени из отрицательного числа можно извлечь, если – нечетное число, но при четном такая операция уже недопустима. Это порождает много проблем при работе с корнями. Для устранения этих проблем вводится понятие арифметического корня степени n. Его особенность в том, что он всегда извлекается из неотрицательного числа и сам принимает значения, не меньшие нуля.

34gdfgd

Заметим, что корень нечетной степени из отрицательного числа всегда можно выразить с помощью арифметического корня, просто вынеся знак минус из-под корня:

35gfdg

Поэтому арифметических корней вполне хватает для работы в любых ситуациях.

Определение корня можно записать в более формализованном виде:

36gdfg

Это значит, что

37gdfg

Проиллюстрируем использование этой формулы:

38gfdfg

Свойства корня n-ой степени

Далее рассмотрим некоторые свойства корней степени n, помогающие вычислять их значения. Сразу скажем, что они во многом идентичны свойствам квадратного корня.

39gfdfg

Для доказательства этого свойства правую часть в n-ую степень:

40fdfg

Приведем примеры использования этого свойства:

41gdfg

Отсюда следует, что множители можно вносить и выносить из-под знака корня:

42gfdg

Следующее свойство помогает извлекать корни из дробей.

43gfg

Доказывается это свойство так же, как и первое. Возведем в n-ую степень правую часть формулы:

44gfdg

Продемонстрируем применение доказанного тождества:

45gfdfg

Заметим, что если под корнем находится степень какого-то числа, то ее вынести из-под радикала:

46hfgh

47gdfg

Доказать это можно, разложив число am в произведение:

am =a•a•a…•a

Всего справа стоит множителей. Теперь извлечем корень степени n:

48gfdg

Справа всё те же m множителей, а потому

49hfdgh

Таким образом, получаем, что

50gfdfg

Покажем несколько примеров использования этого правила:

51gdfg

Далее посмотрим, как извлекать корень из другого корня.

52dgh

Для доказательства возведем корень в левой части формулы в степень mn:

53gfdh

По определению корня получаем, что

54gfdg

Проиллюстрируем использование данного правила:

55hggfh

Последнее свойство, которое нам осталось изучить, называют основным свойством корня.

56hgfgh

Доказательство записывается всего в одну строчку:

57gdfgh

Степени в корне и под ним можно «сокращать»:

58gfh

59hgfh

Сравнение корней

Естественно, что большинство корней – это не целые, а иррациональные числа, которые довольно сложно вычислять. Тем не менее есть несколько правил, которые помогают оценивать их значение. Из графиков корней видно, что все они являются возрастающими функциями. Поэтому, если необходимо сравнить два корня одной степени, достаточно сравнить их подкоренные выражения. Тот корень, у которого под корнем стоит большее число, и будет больше

60hgfgh

В частности, справедливы неравенства:

61gdfg

В случае, если у корней различаются степени, следует постараться преобразовать их так, чтобы степени всё же совпали.

Пример. Сравните числа

62gfdg

Решение. Преобразуем первое число, чтобы у нас получился корень шестой степени:

63gfgd

Так как 121 > 119, то и

64hgfh

Пример. Сравните числа

65ggh

Решение. Сначала избавимся от вложенных корней:

66hgfh

Получили два кубических корня. Меньше тот из них, у которого под радикалом меньшее число:

67ghfgh

Пример. Сравните корни

68hgfgh

Решение. Имеем корни 7-ой и 4-ой степени. К какой одинаковой степени можно привести оба корня? Это число 28, ведь оно представляет собой произведение 7•4:

69gfdfg

Так как 16384 > 14641, то и

70fdg

Пусть
задана функция ,
где каждое значение .

Понятно,
что каждому значению  соответствует
единственное значение  из
области значений функции. Если мы по данному значению функции  захотим
найти соответствующее значение аргумента, нам придётся решить уравнение
относительно,
то есть решить уравнение .

Понятно,
что такое уравнение может иметь не одно, а несколько и даже бесконечно много
решений. Решениями нашего уравнения являются абсциссы всех точек, в которых
прямая  пересекает
график функции .

Однако
существуют такие функции, для которых уравнение  имеет
единственное решение для каждого фиксированного значения.
Такие функции называют обратимыми.

Запомните! Если
функция   принимает
каждое своё значение только при одном значении ,
то эту функцию называют обратимой.

Вот,
например, рассмотрим две функции:  и
.

Функция
 обратима,
так как каждое значение  принимается
при единственном значении аргумента .
Чтобы найти это значение, нам нужно решить уравнение   относительно
.
Этим мы займёмся чуть позже.

Что
касается функции ,
то она не является обратимой, так как значения принимает
не при единственном значении аргумента.
Например, значение  функция
 принимает
при .

Итак,
пусть  —
обратимая функция. В этом случае уравнение  можно
при любом  однозначно
разрешить относительно ,
то есть каждому  поставить
в соответствие единственное  такое,
что .
Это соответствие определяет функцию  от
.
Обозначим эту функцию .
Но мы привыкли обозначать аргумент функции буквой,
а значения – буквой .
Перейдём к привычным для нас обозначениям. Для этого поменяем в этой записи местами и
.
Получим функцию .

Функцию
 называют
обратной к функции.

Давайте
найдём функцию, обратную к функции .

Решение.
Решим уравнение .
Для
этого 2 перенесём в левую часть уравнения.

Затем
разделим обе части нашего уравнения на 5. Получим

или,
что то же самое,

Теперь
поменяем в нашем равенстве местами  и
.
Получим

Итак,
функция  обратна
к функции .

Сделаем
вывод
. Если обратимая функция  задана
формулой, то для нахождения обратной функции нужно решить
уравнение  относительно
,
а затем поменять местами  и
.

Вернёмся
к нашему примеру. Мы с вами показали, что функция  является
обратной к функции .
Обратите внимание: в свою очередь и функция  также
будет являться обратной к функции .
Такие функции называют взаимно обратными.

Сделаем
вывод:
если  –
функция, обратная к функции,
то и  –
функция, обратная к ,
при этом область определения обратной функции совпадает со множеством
значений исходной функции, а множество значений обратной функции
совпадает с областью определения исходной функции. Это свойство, которое
показывает, как связаны функция и обратная к ней.

Вы
уже знаете, что функция называется возрастающей на некотором
промежутке, если в этом промежутке большему значению аргумента соответствует
большее значение функции. И функция называется убывающей в
некотором промежутке, если в этом промежутке большему значению аргумента
соответствует меньшее значение функции. Чаще всего возрастающие и
убывающие функции называют одним словом — монотонные.

Докажем
теорему. Монотонная функция является обратимой.

Доказательство.
Пусть функция ,
например, возрастает и пусть  —
её значение в некоторой точке ,
то есть .

Тогда
если ,
то при  выполняется
неравенство ,
в свою очередь, при  выполняется
неравенство .
Понятно, что значение  функция
 принимает
только в одной точке ,
а значит, является обратимой.

Что
и требовалось доказать.

Для
убывающей функции доказательство проводится аналогично.

К
примеру, рассмотрим функцию .
Эта функция возрастающая, значит, является обратимой. Не сложно
догадаться, что обратной к ней будет функция .

Из
теоремы вытекает следующее следствие: если функция  возрастает
(убывает), то для неё существует обратная функция, и она возрастает (убывает)
на множестве значений данной функции.

Другими
словами, если функция  возрастает,
то понятно, что с увеличением  значения также
увеличиваются и, наоборот, с увеличением  увеличиваются
.

Это
означает, что обратная функция также возрастает.

И
аналогично с убывающей функцией: если функция   убывает,
то обратная к ней функция также убывает.

Кстати,
функция, не являющаяся монотонной, может не иметь обратной. Примером
такой функции служит функция .
Мы
с вами уже говорили, что эта функция не имеет обратной, если
рассматривать её на всей числовой оси. Однако если мы с вами будем
рассматривать функцию  только
при ,
то на промежутке  она
возрастает и, следовательно, имеет обратную. Функция  является
обратной к функции  при
.

Данный
пример показывает, что некоторые функции обратной функции не
имеют, если их рассматривать на всей области определения, и имеют обратную
функцию, если область определения сузить. Часто в качестве сужения области
определения берут интервал монотонности функции.

А
теперь давайте докажем ещё одну теорему. Если функция имеет обратную,
то график обратной функции симметричен графику данной функции
относительно прямой .

Доказательство.
Пусть некоторая точка с координатами ,
принадлежит графику функции ,
то есть .

Из
существования обратной функции следует, что .
Значит, точка с координатами  принадлежит
графику обратной функции .
Следовательно, точки с координатами  и
 симметричны
относительно прямой .

Что
и требовалось доказать.

Хотелось
бы обратить внимание, что и знакомая вам степенная функция с
областью определения  и
 обратима,
так как она монотонна. Обратной к степенной
функции  при
 и
 является
функция .

А
теперь давайте приступим к практической части нашего урока.

Задание.
Найдите обратную функцию для функции .

Решение.
Решим это уравнение относительно .

Имеем

Раскроем
скобки в левой части нашего уравнения. Получим,

Затем
перенесём слагаемое  в
правую часть уравнения, а  –
в левую. Вынесем общий множитель  за
скобку. Заметим, что если выражение ,
то есть ,
то последнее соотношение превращается в неверное равенство. Значит, можем
разделить обе части нашего уравнения на выражение .

Получим
.
Не забудем поменять  и
 местами.
Тогда функция  обратная
к функции .

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ НОВОСИБИРСКОЙ ОБЛАСТИ «КУПИНСКИЙ МЕДИЦИНСКИЙ ТЕХНИКУМ»

МЕТОДИЧЕСКОЕ ПОСОБИЕ

Для самостоятельной работы студентов

По дисциплине: МАТЕМАТИКА (включая алгебру и начала математического анализа; геометрию)

Тема: «Обратные функции»

Специальность: 34.02.01 Сестринское дело Курс: 1

(базовой подготовки)

Купино

2020

Рассмотрено на заседании предметной цикловой

Методической комиссии по общеобразовательным дисциплинам,

общему гуманитарному и социально-экономическому, математическому и

естественно-научному циклу

Протокол № _____ от «_____» _________20____г.

Автор – составитель: преподаватель математики высшей категории Тюменцева О.Н.

Купино

2020 г

Пояснительная записка к методическому пособию

Методическое пособие предназначено для повторения теоретических и практических знаний по теме.

Цель пособия – повторить понятияобратной функции, определять вид и строить график обратной функции, находить ее область определения и область значений и подготовится к занятию по теме «Обратные функции».

Данное пособие рекомендовано для студентов первого курса специальности 34.02.01 Сестринское дело. Пособие содержит определения, свойства и формулы по теме: Обратные функции, тест для самоконтроля и ключи к тесту.

Пособие направлено на формирование навыков самостоятельной работы с учебным материалом, формирование навыков решения задач, формирование и развитие творческого потенциала, повышение интереса к дисциплине.

Обратные функции

Определение обратной функции

Пусть функция   строго монотонная (возрастающая или убывающая) и непрерывная на области определения  , область значений этой функции  , тогда на интервале   определена непрерывная строго монотонная функция   с областью значений  , которая является обратной для  .

Другими словами, об обратной функции   для функции   на конкретном промежутке имеет смысл говорить, если на этом интервале   либо возрастает, либо убывает.

Функции f и g называют взаимно обратными.

Зачем вообще рассматривать понятие обратных функций?

Это вызвано задачей решения уравнений  . Решения как раз и записываются через обратные функции.

Примеры нахождения взаимнообратных функций.

Например, требуется решить уравнение  .

Решениями являются точки  .

Функции косинус и арккосинус как раз являются обратными на области определения.

Рассмотрим несколько примеров нахождения обратных функций.

Начнем с линейных взаимнообратных функций.

Пример.

Найти функцию обратную для  .

Решение.

Областью определения и областью значений этой функции является все множество действительных чисел. Выразим через (другими словами, решим уравнение   относительно ).

 – это и есть обратная функция, правда здесь – аргумент, а – функция этого аргумента. Чтобы не нарушать привычки в обозначениях (это не имеет принципиального значения), переставив буквы и , будем писать  .

Таким образом,   и   – взаимно обратные функции.

Приведем графическую иллюстрацию взаимно обратных линейных функций.

Очевидно, что графики симметричны относительно прямой y=x (биссектрисы первого и третьего квадрантов). Это одно из свойств взаимно обратных функций, о которых речь пойдет ниже.

Теперь рассмотрим пример нахождения логарифмической функции, обратной к заданной показательной функции.

Пример.

Найти функцию обратную для  .

Решение.

Областью определения этой функции является все множество действительных чисел, областью значений является интервал  . Выразим x через y(другими словами, решим уравнение   относительно x).

 – это и есть обратная функция. Переставив буквы и , имеем  .

Таким образом,   и   – показательная и логарифмическая функции есть взаимно обратные функции на области определения.

График взаимно обратных показательной и логарифмической функций.

Свойства взаимно обратных функций

Перечислим свойства взаимно обратных функций   и  .

  •  и  .

  • Из первого свойства видно, что область определения функции  совпадает с областью значений функции   и наоборот.

  • Графики взаимно обратных функций симметричны относительно прямой y=x.

  • Если   возрастает, то и   возрастает, если   убывает, то и   убывает.

Замечание по свойству 1).

Рекомендуем ОЧЕНЬ ВНИМАТЕЛЬНО относиться к области определения и области значений функций.

Например:   и   – взаимно обратные функции. По первому свойству имеем  . Это равенство верно только для положительных , для отрицательных y логарифм не определен. Так что не спешите с записями вида  , а если уж так написали, то следует добавить фразу «при положительных y».

Равенство   в свою очередь верно для любых действительных x.

Надеемся, Вы уловили этот тонкий момент.

Особенно аккуратными надо быть с тригонометрическими и обратными тригонометрическими функциями.

К примеру,  , так как область значений арксинуса  , а  в нее не попадает.

Правильно будет

В свою очередь   есть верное равенство.

То есть   при   и   при  .

Графики основных элементарных взаимно обратных функций

  • Взаимно обратные степенные функции, графики.

Для степенной функции   при   обратной является также степенная функция   Если заменить буквы, то получим пару взаимно обратных функций   и 

Графики для положительных а и отрицательных а.

  • Взаимно обратные показательная и логарифмическая функции  и  , графики.

Подразумеваем, что а положительное и не равное единице число.

Графики для   и для 

  • Взаимно обратные тригонометрические и обратные тригонометрические функции.

График главной ветви синуса и арксинуса (светлая область).

График главной ветви косинуса и арккосинуса (светлая область).

График главной ветви тангенса и арктангенса (светлая область).

График главной ветви котангенса и арккотангенса (светлая область).

Если Вам потребуются обратные функции для ветвей тригонометрических функций, отличных от главных, то соответствующую обратную тригонометрическую функцию нужно будет сдвинуть вдоль оси ординат на необходимое количество периодов.

Например, если Вам потребуется обратная функция для ветви тангенса на промежутке   (эта ветвь получается из главной ветви сдвигом на величину  вдоль оси ох ), то ей будет являться ветвь арктангенса, сдвинутая вдоль оси oy на  .

Пока на этом закончим с обратными функциями.

Тест по теме: Обратные функции

1. Как называют функция y = f(х), если она принимает каждое своё значение только при одном значении х?

2. Найдите функцию, обратную к функции у = 5х + 2.

Варианты ответов

  • у = 0,2 (х – 2)

  • у = 0,5 (х – 2)

  • у = 0,2 (2 + х)

  • у = (х – 2)2

3. Является ли монотонная функция обратимой?

Варианты ответов

  • является

  • не является

4.Укажите, какие из перечисленных функций являются обратимыми.

Варианты ответов

  • у = 5х + 2

  • у = х2

  • у = х5

  • у = х3 + 1

5.Укажите истинные утверждения.
Если g(x) – функция, обратная к функции f(x), то и f(x) – функция, обратная к g(x), при этом …

Варианты ответов

  • область определения обратной функции совпадает со множеством значений исходной функции

  • множество значений обратной функции совпадает с областью определения исходной функции

  • область определения обратной функции совпадает с областью определения исходной функции

  • множество значений обратной функции совпадает со множеством значений исходной функции

6.Найдите область значений функции, обратной для f(x) = 4 – 3x.

Варианты ответов

  • (-∞;+∞)

  • (0;+∞)

  • (-∞;4)

  • [3;4]

  • [-4;-3]

7.Найдите область определения и область значения функции, обратной данной у = 7х – 5.

Варианты ответов

  • D(y) = (-∞;+∞)

  • E(y) = (-∞;+∞)

  • D(y) = (-5;+∞)

  • E(y) = (-∞;5)

  • D(y) = (-7;+∞)

  • E(y) = (-5;7)

8.Укажите номер рисунка, на котором изображен график обратной функции к функции у = х2, при х є [0;+∞).

9.Сопоставьте функции и обратные к ним.

Варианты ответов

  • y=x+53

  • y=x3

  • y=x2

10.Какое значение принимает обратная функция при х = 6 к функции у = 2х – 4.

Эталоны ответов теста по теме: Обратные функции

1. Как называют функция y = f(х), если она принимает каждое своё значение только при одном значении х? Ответ обратимая

2. Найдите функцию, обратную к функции у = 5х + 2.

Варианты ответов

  • у = 0,2 (х – 2)

  • у = 0,5 (х – 2)

  • у = 0,2 (2 + х)

  • у = (х – 2)2

3. Является ли монотонная функция обратимой?

Варианты ответов

  • является

  • не является

4.Укажите, какие из перечисленных функций являются обратимыми.

Варианты ответов

  • у = 5х + 2

  • у = х2

  • у = х5

  • у = х3 + 1

5.Укажите истинные утверждения.
Если g(x) – функция, обратная к функции f(x), то и f(x) – функция, обратная к g(x), при этом …

Варианты ответов

  • область определения обратной функции совпадает со множеством значений исходной функции

  • множество значений обратной функции совпадает с областью определения исходной функции

  • область определения обратной функции совпадает с областью определения исходной функции

  • множество значений обратной функции совпадает со множеством значений исходной функции

6.Найдите область значений функции, обратной для f(x) = 4 – 3x.

Варианты ответов

  • (-∞;+∞)

  • (0;+∞)

  • (-∞;4)

  • [3;4]

  • [-4;-3]

7.Найдите область определения и область значения функции, обратной данной у = 7х – 5.

Варианты ответов

  • D(y) = (-∞;+∞)

  • E(y) = (-∞;+∞)

  • D(y) = (-5;+∞)

  • E(y) = (-∞;5)

  • D(y) = (-7;+∞)

  • E(y) = (-5;7)

8.Укажите номер рисунка, на котором изображен график обратной функции к функции у = х2, при х є [0;+∞).

Ответ 4

9.Сопоставьте функции и обратные к ним.

Варианты ответов

  • y=x+53

  • y=x3

  • y=x2

10.Какое значение принимает обратная функция при х = 6 к функции у = 2х – 4. Ответ 5

Критерии оценивания тестовых заданий

10 вопросов 5 (отлично) (10-9 ответов)

10 вопросов 4 (хорошо) (8 ответов)

10 вопросов 3 (удов) (7 ответов)

Литература

  1. Алимов Ш.А. и др. Алгебра и начала анализа. 10 (11) кл. – М.: 2018

  2. Башмаков М.И. Сборник задач: учеб. пособие (базовый уровень). 11 кл. М.: 2012

Интернет-ресурсы

  1. http://school-collection.edu.ru – Электронный учебник «Математика в

школе, XXI век».

  1. http://fcior.edu.ru – информационные, тренировочные и контрольные материалы.

  2. www.school-collection.edu.ru – Единая коллекции Цифровых образовательных ресурсов

Добавить комментарий