Как найти обратную матрицу через миноры

Как найти обратную матрицу?

Продолжаем
разговор о действиях с матрицами. А
именно – в ходе изучения данной лекции
Вы научитесь находить обратную матрицу.
Научитесь. Даже, если с математикой
туго.

Что
такое обратная матрица? …Если интересно,
посмотрите в энциклопедии, суть не в
определении. А суть чаще всего в том,
что вот оно, злосчастное задание, где
нужно найти обратную матрицу. И это
задание нужно решить либо разобраться,
как оно решается.

Прежде
чем приступить к рассмотрению примеров
на нахождение обратной матрицы,
рассмотрим один важный вопрос. Что
необходимо знать и уметь для успешного
изучения данного материала? Ответ. Вы
должны уметь решать определители. Как
вычислить определитель
 смотрите
в соответствующей статье. Вы должны
понимать, что такое матрица и уметь
выполнять некоторые действия
с матрицами
.

Есть?
Тогда поехали дальше. А хотя… ехать
могут все, если Вы что-то не знаете, я
буду давать нужную ссылку по ходу
объяснений.

Начнем
с самого ужасного и непонятного.
Рассмотрим квадратную матрицу Обратную
матрицу  можно
найти по следующей формуле:

,
где  –
определитель матрицы  –
транспонированная матрица алгебраических
дополнений соответствующих элементов
матрицы .

Понятие
обратной матрицы существует только
для квадратных матриц
,
матриц «два на два», «три на три» и т.д.

Обозначения: Как
Вы уже, наверное, заметили, обратная
матрица обозначается надстрочным
индексом 

Начнем
с простейшего случая – матрицы «два
на два». Чаще всего, конечно, требуется
найти обратную матрицу для матрицы
«три на три», но, тем не менее, настоятельно
рекомендую изучить более простое
задание, для того чтобы усвоить общий
принцип решения.

Пример:

Найти
обратную матрицу для матрицы 

Решаем.
Последовательность действий удобно
разложить по пунктам.

1) Сначала находим определитель матрицы.

Если
с пониманием сего действа плоховато, 
ознакомьтесь с материалом Как
вычислить определитель

Важно! В
том случае, если определитель матрицы
равен НУЛЮ –
обратной матрицы НЕ
СУЩЕСТВУЕТ
.

В
рассматриваемом примере, как выяснилось, ,
а значит, всё в порядке.

2) Находим матрицу миноров

Для
решения нашей задачи не обязательно
знать, что такое минор, однако, желательно
ознакомиться со статьей Как
вычислить определитель
.

Матрица
миноров имеет такие же размеры, как и
матрица ,
то есть в данном случае 
Дело
за малым, осталось найти четыре числа
и поставить их вместо звездочек.

Возвращаемся
к нашей матрице 
Сначала
рассмотрим левый верхний элемент

Как
найти его минор?
А
делается это так: МЫСЛЕННО вычеркиваем
строку и столбец, в котором находится
данный элемент:

Оставшееся
число и является минором
данного элемента
,
которое записываем в нашу матрицу
миноров:

Рассматриваем
следующий элемент матрицы :

Мысленно
вычеркиваем строку и столбец, в котором
стоит данный элемент:

То,
что осталось, и есть минор данного
элемента, который записываем в нашу
матрицу:

Аналогично
рассматриваем элементы второй строки
и находим их миноры:


Готово.

 –
матрица
миноров соответствующих элементов
матрицы .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Что такое обратная матрица

Что такое обратная матрица

Сложная тема из линейной алгебры.

Что такое обратная матрица

Сложная тема из линейной алгебры.

Недавно мы начали говорить о линейной алгебре и матрицах. Сначала всё было хорошо и легко: 

  • Познакомились с вектором
  • Поделали с ними операции
  • Научились определять их параллельность
  • Познакомились с матрицами

Но начав заниматься линейной алгеброй, бывает трудно остановиться. Сегодня мы познакомимся с обратной матрицей и научимся её вычислять. Это навык, который в будущем нам пригодится для решения матричных уравнений.

С точки зрения арифметики материал не сложный. Но он требует вдумчивого чтения для понимания правил. В итоге статья довольно большая, мозги кипят и танки наши быстры. 

Читать ли эту статью?

❌ Если вам нужны простые быстрые решения для жизни — нет, можно объявить, что у вас сегодня выходной. 

✅ Если вашему мозгу не хватает вызова и новых горизонтов — велком ту зе матрикс. 

Обратное — это как? 

В математике есть взаимно обратные числа. Они получаются так: вы берёте какое-то число, добавляете отрицательную степень и получаете обратное число: 

Что такое обратная матрица

Обратные числа при умножении друг на друга всегда дают единицу:

Что такое обратная матрица

Обратная матрица

В линейной алгебре есть обратные матрицы. По свойствам они напоминают обратные числа: если обычную матрицу умножить на обратную к ней, получится единичная матрица.

Что такое обратная матрица

Единичная матрица работает как единица с числами: если умножить любое число на единицу, получится исходное число; если умножить любую матрицу на единичную матрицу — получится исходная матрица:

Что такое обратная матрица

Единичная матрица состоит из единиц и нулей: на диагонали находятся единицы; остальные элементы — нули. Единичные матрицы не используются при расчёте обратных матриц, но без них не получится решать матричные уравнения.

Пример квадратной единичной матрицы размером 5×5

Пример квадратной единичной матрицы размером 5×5. Единичная матрица может быть любого размера — состоять из любого количества строк и столбцов

Как рассчитать обратную матрицу

Для расчёта обратной матрицы нужно выполнить три действия. Пока что не обращайте внимание на термины:

  1. Разделить единицу на матричный определитель. 
  2. Найти транспонированную матрицу алгебраических дополнений. 
  3. Перемножить полученные значения.

Далее мы по порядку во всём разберёмся.

Формула расчёта обратной матрицы

Формула расчёта обратной матрицы: |A| — матричный определитель; Aᵀᵢⱼ — матрица алгебраических дополнений

Определитель — это особое число, которое «определяет» свойства матрицы. 

Порядок вычисления определителя зависит от размера матрицы, которому он соответствует — чем больше матрица, тем сложнее считать определитель. Мы только знакомимся с матрицами, поэтому остановимся на определителях второго и третьего порядка — они подходят для квадратных матриц размером 2×2 и 3×3. 

Чтобы найти определитель второго порядка, нам достаточно умножить элементы главной диагонали и вычесть из значения произведение чисел второй диагонали.

Формула для расчёта определителя второго порядка

Формула для расчёта определителя второго порядка
Пример расчёта определителя второго порядка
Пример расчёта определителя второго порядка

Определитель третьего порядка находится путём умножения диагоналей на треугольники. Здесь много операций, поэтому формулу соберём по частям. 

Сначала работаем по главной диагонали: идём от верхнего левого элемента и движемся к правому нижнему элементу. Перемножаем элементы между собой.

Считаем определитель третьего порядка: 1-й этап — главная диагональ

Считаем определитель третьего порядка: 1-й этап — главная диагональ

Прибавляем к произведению элементов первой диагонали произведение первого треугольника. Основание первого треугольника находится параллельно главной диагонали и состоит из элементов А₂₁ и А₃₂. Вершина — элементА₁₃.

Считаем определитель третьего порядка: 2-й этап — первый треугольник

Считаем определитель третьего порядка: 2-й этап — первый треугольник

Прибавляем к полученному результату произведение второго треугольника, в котором основание состоит из элементов А₁₂ и А₂₃, а вершина — А₃₁.

Считаем определитель третьего порядка: 3-й этап — второй треугольник

Считаем определитель третьего порядка: 3-й этап — второй треугольник

Вычитаем из полученного значения произведение элементов второй диагонали. Вторая диагональ начинается в левом нижнем углу и идёт в правый верхний угол.

Считаем определитель третьего порядка: 4-й этап — вторая диагональ

Считаем определитель третьего порядка: 4-й этап — вторая диагональ

Вычитаем произведение элементов третьего треугольника, в котором основание — элементы А₁₂ и А₂₁, а вершина — А₃₃.

Считаем определитель третьего порядка: 5-й этап — третий треугольник

Считаем определитель третьего порядка: 5-й этап — третий треугольник

Последний шаг: вычитаем произведение четвёртого треугольника, с основанием из элементов А₂₃ и А₃₂ и вершиной А₁₁.

Считаем определитель третьего порядка: 6-й этап — четвёртый треугольник

Считаем определитель третьего порядка: 6-й этап — четвёртый треугольник
Общий вид формулы для расчёта определителя третьего порядка
Общий вид формулы для расчёта определителя третьего порядка
Пример расчёта определителя третьего порядка
Пример расчёта определителя третьего порядка

Транспонированная матрица алгебраических дополнений вычисляется в три шага: 

  1. Мы из исходной матрицы находим матрицу миноров. 
  2. Меняем в матрице миноров знак некоторых элементов и получаем матрицу алгебраических дополнений. 
  3. Находим транспонированную матрицу из матрицы алгебраических дополнений. 

Алгоритм вычислений матрицы миноров и матрицы алгебраических дополнений зависит от размера исходной матрицы — чем она больше, тем сложнее формула расчёта. Поэтому мы рассматриваем только матрицы второго и третьего порядка. 

Чтобы найти матрицу миноров второго порядка, нам нужно последовательно зачеркнуть три элемента исходной матрицы: 

  • Вычёркиваем первую строку и первый столбец исходной матрицы — получаем первый элемент первой строки матрицы миноров. 
  • Вычёркиваем первую строку и второй столбец — получаем второй элемент первой строки матрицы миноров. 
  • Вычёркиваем вторую строку и первый столбец — получаем первый элемент второй строки матрицы миноров. 
  • Вычёркиваем вторую строку и второй столбец — получаем второй элемент второй строки матрицы миноров. 

Когда матрица миноров составлена — меняем знаки элементов второй диагонали и получаем матрицу алгебраических дополнений. Теперь берём эту матрицу и проводим транспонирование — меняем расположение строк и столбцов. Готово.

Пример вычисления матрицы миноров из матрицы второго порядка

Пример вычисления матрицы миноров из матрицы второго порядка
Пример вычисления матрицы алгебраических дополнений (Aᵢⱼ ) из матрицы миноров второго порядка
Пример вычисления матрицы алгебраических дополнений (Aᵢⱼ ) из матрицы миноров второго порядка
Пример вычисления транспонированной матрицы алгебраических дополнений (Aᵀᵢⱼ), полученной из матрицы миноров второго порядка
Пример вычисления транспонированной матрицы алгебраических дополнений (Aᵀᵢⱼ), полученной из матрицы миноров второго порядка

Матрица миноров третьего порядка рассчитывается по следующему принципу: 

  1. Последовательно вычёркиваем строки и столбцы. 
  2. Получаем четыре элемента и считаем определитель. 
  3. Записываем результат в матрицу миноров третьего порядка. 

Чтобы не запоминать порядок вычёркивания элементов — попробуйте схему: 

  1. Определите элемент, который вы ищете для матрицы. Пусть это будет A₁₁.
  2. Найдите этот же элемент в исходной матрице и отметьте его точкой. 
  3. Проведите от этой точки две линии: вдоль строки и вдоль столбца. 

После вычёркивания останется квадратная двухразмерная матрица, определитель которой равен разности произведений двух диагоналей.

Пример вычисления первого элемента матрицы миноров из матрицы третьего порядка. Треугольник, или греческая дельта, — это обозначение определителя вне матрицы

Пример вычисления первого элемента матрицы миноров из матрицы третьего порядка. Треугольник, или греческая дельта, — это обозначение определителя вне матрицы

Матрицу миноров третьего порядка удобно находить на бумаге с помощью ручки, карандаша и ластика — записываете исходную матрицу, карандашом вычёркиваете линии, считаете определитель, вытираете линии и повторяете процедуру. Рекомендуем попробовать и сверить результат с нашими расчётами. 

1-я строка 1-й элемент:  

Δ = 5×1 – 8×6 = -43

1-я строка 2-й элемент: 

Δ = 4×1 – 7×6 = -38

1-я строка 3-й элемент: 

Δ = 4×8 – 7×5 = -3

2-я строка 1-й элемент: 

Δ = 2×1 – 8×3 = -22

2-я строка 2-й элемент: 

Δ = 1×1 – 7×3 = -20

2-я строка 3-й элемент: 

Δ = 1×8 – 7×2 = -6

3-я строка 1-й элемент: 

Δ = 2×6 – 5×3 = -3

3-я строка 2-й элемент: 

Δ = 1×6 – 4×3 = -6

3-я строка 3-й элемент: 

Δ = 1×5 – 4×2 = -3

Считаем матрицу алгебраических дополнений: берём матрицу миноров и меняем на противоположный знак в четырёх элементах — изменяем А₁₂, А₂₁, А₂₃ и А₃₂. Транспонируем полученную матрицу и можем переходить к последнему действию.

Получаем из матрицы третьего порядка матрицу миноров

Получаем из матрицы третьего порядка матрицу миноров
Меняем знаки в матрице миноров и получаем матрицу алгебраических дополнений (Aᵢⱼ)
Меняем знаки в матрице миноров и получаем матрицу алгебраических дополнений (Aᵢⱼ)
Пример вычисления транспонированной матрицы алгебраических дополнений (Aᵀᵢⱼ), полученной из матрицы миноров третьего порядка
Пример вычисления транспонированной матрицы алгебраических дополнений (Aᵀᵢⱼ), полученной из матрицы миноров третьего порядка

Мы нашли все компоненты для вычисления обратной матрицы. Осталось их подставить в формулу, перемножить и записать ответ:

Пример вычисления обратной матрицы второго порядка: мы внесли дробь в матрицу, но могли этого не делать — просто так захотелось

Пример вычисления обратной матрицы второго порядка: мы внесли дробь в матрицу, но могли этого не делать — просто так захотелось
Пример вычисления обратной матрицы третьего порядка
Пример вычисления обратной матрицы третьего порядка: мы оставили дробь за пределами матрицы и вынесли из матрицы минус. Матрица — это таблица с числами, поэтому не обращайте внимание, если числа получаются большими или неудобными

Господи, зачем всё это?

Мы понимаем, что это всё кажется совершенно оторванным от жизни. Какие-то миноры, детерминанты, о чём вообще речь? 

Смотрите: 

  • Вам не нужно уметь решать все эти уравнения самостоятельно. Для этого давно есть мощные алгоритмы. 
  • Достаточно понимать, из чего всё это складывается. Вот матрица. Вот некий алгоритм, который делает из этой матрицы какую-то другую матрицу. Это всё просто арифметика, числа туда, числа сюда. 
  • В конце этого пути мы покажем, как из этих кубиков собрано машинное обучение. И вы увидите, что машинное обучение — это просто много алгебры. Просто арифметика, числа туда, числа сюда.
  • И вы понимаете, что никакого искусственного интеллекта не существует. Это всё, от начала и до конца, работа с числами и расчёты по формулам. Просто когда это делается в больших масштабах, создаётся иллюзия осмысленной деятельности. Ключевое слово — иллюзия. 

Спокойствие, всё будет хорошо. 

Получите ИТ-профессию

В «Яндекс Практикуме» можно стать разработчиком, тестировщиком, аналитиком и менеджером цифровых продуктов. Первая часть обучения всегда бесплатная, чтобы попробовать и найти то, что вам по душе. Дальше — программы трудоустройства.

Начать карьеру в ИТ

Получите ИТ-профессию
Получите ИТ-профессию
Получите ИТ-профессию
Получите ИТ-профессию

Как найти обратную матрицу

  1. Быстрый способ для матриц $2 times 2$
    1. Пример 1
    2. Пример 2
  2. Нахождение с помощью метода Гаусса
    1. Пример 3
    2. Пример 4
  3. Метод союзной матрицы(алгебраические дополнения)
    1. Пример 5

Обратная матрица обозначается $ A^{-1} $ и существует только для матриц, у которых определитель не равен нулю $ det A neq 0 $.

Быстрый способ для матриц $2 times 2$

Пусть задана матрица $A = begin{pmatrix} a&b\c&d end{pmatrix}$. Для быстрого способа нахождения обратной матрицы необходимо поменять местами элементы стоящие на главной диагонали, а для оставшихся элементов поменять знак на противоположный. Затем каждый элемент разделить матрицы разделить на определитель исходной матрицы. Математическая формула выглядит следующим образом $$A^{-1} = frac{1}{det A} begin{pmatrix} d&-b \ -c&a end{pmatrix} = frac{1}{ad-bc} begin{pmatrix} d&-b \ -c&a end{pmatrix}.$$ 

Пример 1
Найти обратную матрицу для $A = begin{pmatrix} 3&4 \ 5&9 end{pmatrix}$.
Решение

Первым делом вычисляем определитель и убеждаемся, что он не равен нулю $$det A = begin{vmatrix} 3&4 \ 5&9 end{vmatrix} = 3cdot9 – 4cdot5 = 27 – 20 = 7.$$

Итак, определитель не равен нулю, значит, обратная матрица существует. Продолжаем наш алгоритм. Меняем элементы на главной диагонали местами, а у оставшихся элементов меняем знак на противоположный. $$A^{-1} = frac{1}{7} begin{pmatrix} 9&-4 \ -5&3 end{pmatrix} = begin{pmatrix} frac{9}{7}&frac{-4}{7} \ frac{-5}{7}&frac{3}{7} end{pmatrix}.$$

Ответ
$$A^{-1} = begin{pmatrix} frac{9}{7}&frac{-4}{7} \ frac{-5}{7}&frac{3}{7} end{pmatrix}$$
Пример 2
Вычислить обратную матрицу для $A = begin{pmatrix} 2&-1 \ 4&-6 end{pmatrix}$.
Решение

Находим определитель $$det A = begin{vmatrix} 2&-1 \ 4&-6 end{vmatrix} = 2cdot(-6) – 4cdot(-1) = -12 + 4 = -8.$$

Меняем местами элементы главной диагонали, а остальным меняем знак на противоположный. Не забываем затем каждый элемент разделить на определитель. $$A^{-1} = frac{1}{-8} begin{pmatrix} -6&1 \ -4&2 end{pmatrix} = begin{pmatrix} frac{-6}{-8}&frac{1}{-8} \ frac{-4}{-8}&frac{2}{-8} end{pmatrix} = begin{pmatrix} frac{3}{4}&-frac{1}{8} \ frac{1}{2}&-frac{1}{4} end{pmatrix}$$

Ответ
$$A^{-1} = begin{pmatrix} frac{3}{4}&-frac{1}{8} \ frac{1}{2}&-frac{1}{4} end{pmatrix}$$

Нахождение с помощью метода Гаусса

На практике чаще всего метод Гаусса используется как способ нахождения обратной матрицы. Суть метода в том, что к основной матрице добавляется дополнительная единичная матрица с такой же размерностью.

$$ Bigg (begin{matrix} a_{11}&a_{12}&a_{13}\a_{21}&a_{22}&a_{23}\a_{31}&a_{32}&a_{33} end{matrix} Bigg | begin{matrix} 1&0&0\0&1&0\0&0&1 end{matrix} Bigg ) $$

Далее нужно путем простейших элементарных преобразований привести левую матрицу к единичной, а одновременно с ней справа получится обратная матрица:

$$ Bigg (begin{matrix} 1&0&0\0&1&0\0&0&1 end{matrix} Bigg | begin{matrix} b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}\b_{31}&b_{32}&b_{33} end{matrix} Bigg ) $$

$$A^{-1} = begin{pmatrix} b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}\b_{31}&b_{32}&b_{33} end{pmatrix}$$

Пример 3
Найти обратную матрицу элементарными преобразованиями $$A = begin{pmatrix} 2&-1&0 \ 0&2&-1 \ -1&-1&1 end{pmatrix}.$$
Решение

Вычисляем определитель матрицы, чтобы убедиться что он не равен нулю $$det A = begin{vmatrix} 2&-1&0 \ 0&2&-1 \ -1&-1&1 end{vmatrix} = 4-1+0-0-2-0=1 neq 0.$$

Выписываем основную матрицу и добавляем справа единичную матрицу. $$begin{pmatrix} 2&-1&0 &|& 1&0&0 \ 0&2&-1 &|& 0&1&0 \ -1&-1&1 &|& 0&0&1 end{pmatrix}$$

Проводим элементарные преобразования над строками матриц таким образом, чтобы слева получилась единичная матрица. В то же время как справа получим обратную матрицу.

Умножаем третью строку на 2 и прибавляем первую. $$begin{pmatrix} 2&-1&0 &|& 1&0&0 \ 0&2&-1 &|& 0&1&0 \ 0&-3&2 &|& 1&0&2 end{pmatrix}$$

Умножаем третью строку на 2 и прибавляем к ней вторую строку, умноженную на 3. $$begin{pmatrix} 2&-1&0 &|& 1&0&0 \ 0&2&-1 &|& 0&1&0 \ 0&0&1 &|& 2&3&4 end{pmatrix}$$

Теперь запускаем обратный ход преобразований снизу вверх. Ко второй строке прибавляем третью. $$begin{pmatrix} 2&-1&0 &|& 1&0&0 \ 0&2&0 &|& 2&4&4 \ 0&0&1 &|& 2&3&4 end{pmatrix}$$

Умножаем первую строку на 2 и прибавляем к ней вторую строчку матрицы. $$begin{pmatrix} 4&0&0 &|& 4&4&4 \ 0&2&0 &|& 2&4&4 \ 0&0&1 &|& 2&3&4 end{pmatrix}$$

Теперь, чтобы слева получилась единичная матрица нужно первую строку разделить на 4, вторую на 2. $$begin{pmatrix} 1&0&0 &|& 1&1&1 \ 0&1&0 &|& 1&2&2 \ 0&0&1 &|& 2&3&4 end{pmatrix}$$

Справа как видим получилась обратная матрица $$A^{-1} = begin{pmatrix} 1&1&1 \ 1&2&2 \ 2&3&4 end{pmatrix}.$$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$A^{-1} = begin{pmatrix} 1&1&1 \ 1&2&2 \ 2&3&4 end{pmatrix}$$
Пример 4
Дана матрица, найти обратную $$A = begin{pmatrix} 3&2&1 \ 1&0&2 \ 4&1&3 end{pmatrix}.$$
Решение

Первым делом вычисляем определитель, чтобы убедиться в существовании обратной матрицы $$det A = begin{vmatrix} 3&2&1 \ 1&0&2 \ 4&1&3 end{vmatrix} = 0+16+1-0-6-6=5.$$

Теперь справа от матрицы дописываем единичную матрицу $$begin{pmatrix} 3&2&1 &|& 1&0&0 \ 1&0&2 &|& 0&1&0 \ 4&1&3 &|& 0&0&1 end{pmatrix}.$$

Теперь с помощью элементарных преобразований делаем так, чтобы слева стояла единичная матрица. А справа получим одновременно обратную матрицу.

Умножаем вторую строку на 3 и вычитаем из неё первую. Умножаем третью строчку на 3 и вычитаем первую, умноженную на 4. $$begin{pmatrix} 3&2&1 &|& 1&0&0 \ 0&-2&5 &|& -1&3&0 \ 0&-5&5 &|& -4&0&3 end{pmatrix}$$

Умножаем третью строку на 2 и вычитаем вторую, умноженную на 5. $$begin{pmatrix} 3&2&1 &|& 1&0&0 \ 0&-2&5 &|& -1&3&0 \ 0&0&-15 &|& -3&-15&6 end{pmatrix}$$

Третью строку можно разделить на 3, чтобы уменьшить числа для дальнейшего удобства. Сделаем это. $$begin{pmatrix} 3&2&1 &|& 1&0&0 \ 0&-2&5 &|& -1&3&0 \ 0&0&-5 &|& -1&-5&2 end{pmatrix}$$

Начинаем проводить преобразования над строками теперь снизу вверх. Умножаем первую строку на 5 и прибавляем к ней третью. Ко второй строке просто прибавляем третью. $$begin{pmatrix} 15&10&0 &|& 4&-5&2 \ 0&-2&0 &|& -2&-2&2 \ 0&0&-5 &|& -1&-5&2 end{pmatrix}$$

К первой строке прибавляем вторую, умноженную на 5. $$begin{pmatrix} 15&0&0 &|& -6&-15&12 \ 0&-2&0 &|& -2&-2&2 \ 0&0&-5 &|& -1&-5&2 end{pmatrix}$$

Осталось разделить первую строку на 15, вторую на (-2), а третью на (-5). $$begin{pmatrix} 1&0&0 &|& -frac{2}{5}&-1&frac{4}{5} \ 0&1&0 &|& 1&1&-1 \ 0&0&1 &|& frac{1}{5}&1&-frac{2}{5} end{pmatrix}$$

Ответ
$$begin{pmatrix} 1&0&0 &|& -frac{2}{5}&-1&frac{4}{5} \ 0&1&0 &|& 1&1&-1 \ 0&0&1 &|& frac{1}{5}&1&-frac{2}{5} end{pmatrix}$$

Метод союзной матрицы(алгебраические дополнения)

Формула нахождения обратной матрицы через алгебраические дополнения выглядит следующим образом

$$A^{-1} = frac{1}{|A|} (A^*)^T. $$

Матрица $A^*$ называется союзной (присоединенной) матрицей и представляет собой набор алгебраических дополнений матрицы $ A $:

$$ A^* = begin{pmatrix} A_{11}&A_{12}&A_{13}\A_{21}&A_{22}&A_{23}\A_{31}&A_{22}&A_{33} end{pmatrix}, text{ где } A_{ij}=(-1)^{i+j} M_{ij} $$

$M_{ij} $ называется минором матрицы, который получается путем вычеркивания $ i $-ой строки и $ j $-того столбца из матрицы.

Пример 5
Найти обратную матрицу методом алгебраических дополнений $$ A = begin{pmatrix} 3&1&2\-1&3&-2\0&-1&4 end{pmatrix} $$
Решение

Итак, пользуемся формулой $ A^{-1} = frac{1}{|A|} (A^*)^T $

Первым делом вычисляем определитель матрицы $ A $, так как необходимым условием существование обратной матрицы является неравенство его к нулю:

$$ |A| = begin{vmatrix} 3&1&2\-1&3&-2\0&-1&4 end{vmatrix} = 36 + 0 + 2 – 0 – 6 + 4 = 36 neq 0 $$

Находим алгебраические дополнения матрицы $ A $. Для этого удаляем все элементы стоящие в i-ой строке и в j-ом столбце. Оставшиеся элементы матрицы переписываем в определитель и проводим его вычисление.

Вычеркиваем первую строку и первый столбец:

$$ A_{11} = (-1)^{1+1} cdot begin{vmatrix} 3&-2\-1&4 end{vmatrix} = 12 – 2 = 10 $$

Убираем первую строку и второй столбец:

$$ A_{12} = (-1)^{1+2} cdot begin{vmatrix} -1&-2\0&4 end{vmatrix} = -(-4 – 0) = 4 $$

Оставшиеся алгебраические дополнения находим по аналогии с предыдущими двумя.

$$ A_{13} = (-1)^{1+3} cdot begin{vmatrix} -1&3\0&-1 end{vmatrix} = 1 – 0 = 1 $$

$$ A_{21} = (-1)^{2+1} cdot begin{vmatrix} 1&2\-1&4 end{vmatrix} = -(4 + 2) = -6 $$

$$ A_{22} = (-1)^{2+2} cdot begin{vmatrix} 3&2\0&4 end{vmatrix} = 12 – 0 = 12 $$

$$ A_{23} = (-1)^{2+3} cdot begin{vmatrix} 3&1\0&-1 end{vmatrix} = -(-3 – 0) = 3 $$

$$ A_{31} = (-1)^{3+1} cdot begin{vmatrix} 1&2\3&-2 end{vmatrix} = -2 – 6 = -8 $$

$$ A_{32} = (-1)^{3+2} cdot begin{vmatrix} 3&2\-1&-2 end{vmatrix} = -(-6 + 2) = 4 $$

$$ A_{33} = (-1)^{3+3} cdot begin{vmatrix} 3&1\-1&3 end{vmatrix} = 9+1 = 10 $$

Составляем союзную (присоединенную) матрицу $ A^* $ из алгебраических дополнений:

$$ A^* = begin{pmatrix} 10&4&1\-6&12&3\-8&4&10 end{pmatrix}. $$

Транспонируем её и обозначаем $ (A^*)^T $:

$$ (A^*)^T = begin{pmatrix} 10&-6&-8\4&12&4\1&3&10 end{pmatrix} $$

В итоге находим обратную матрицу $ A^{-1} $:

$$ A^{-1} = frac{1}{36} begin{pmatrix} 10&-6&-8\4&12&4\1&3&10 end{pmatrix} $$

Делим каждый элемент матрицы на 36 и получаем следующее: $$begin{pmatrix} frac{5}{18}&-frac{1}{6}&-frac{2}{9}\ frac{1}{9}&frac{1}{3}&frac{1}{9}\frac{1}{36}&frac{1}{12}&frac{5}{18} end{pmatrix}.$$

Ответ
$$A^{-1} =begin{pmatrix} frac{5}{18}&-frac{1}{6}&-frac{2}{9}\ frac{1}{9}&frac{1}{3}&frac{1}{9}\frac{1}{36}&frac{1}{12}&frac{5}{18} end{pmatrix}$$

Для того что бы найти обратную матрицу можно использовать два метода: с помощью алгебраических дополнений (метод присоединённой (союзной) матрицы) или элементарных преобразований (метод Жордано-Гаусса).
Рассмотрим как найти обратную матрицу с помощью алгебраических дополнений.

Обратной матрицей называется матрицы A-1 при умножении на исходную матрицу A получается единичная матрица E.

A·A-1 = A-1 · A = E

Алгоритм нахождения обратной матрицы с помощью алгебраических дополнений:

  1. Найти определитель (детерминант) матрицы A. Если определитель ≠ 0, то обратная матрица существует. Если определитель = 0, то обратная матрица не существует.
  2. Найти матрицу миноров M.
  3. Из матрицы M найти матрицу алгебраических дополнений C*.
  4. Транспонировать матрицу (поменяем местами строки со столбцами) C*, получить матрицу C*T.
  5. По формуле найти обратную матрицу.
    Обратная матрица с помощью алгебраических дополнений

Пример

Рассмотрим данный метод на примере. Дана матрицы 3х3:

Обратная матрица с помощью алгебраических дополнений

Найдем определитель (детерминант) матрицы, detA = 12 обратная матрица существует.

Найдем минор M11 и алгебраическое дополнение A11. В матрице А вычеркиваем строку 1 и столбец 1.

Обратная матрица с помощью алгебраических дополнений

Найдем минор M12 и алгебраическое дополнение A12. В матрице А вычеркиваем строку 1 и столбец 2.

Обратная матрица с помощью алгебраических дополнений

Остальные миноры и алгебраические дополнения находятся аналогично. В итоге получаем матрицу C*.

Обратная матрица с помощью алгебраических дополнений

Найдем транспонированную союзную матрицу алгебраических дополнений C*T.

Обратная матрица с помощью алгебраических дополнений

Найдем обратную матрицу. Ответ:

Обратная матрица с помощью алгебраических дополнений

В данной публикации мы рассмотрим, что такое обратная матрица, а также на практическом примере разберем, как ее можно найти с помощью специальной формулы и алгоритма последовательных действий.

  • Определение обратной матрицы

  • Алгоритм нахождения обратной матрицы

Определение обратной матрицы

Для начала вспомним, что из себя представляют обратные значения в математике. Допустим, у нас есть число 7. Тогда обратное ему будет равняться 7-1 или 1/7. Если умножить данные числа, в результате получится один, т.е. 7 · 7-1 = 1.

Почти то же самое и с матрицами. Обратной называется такая матрица, умножив которую на исходную, мы получим единичную. Обозначается она как A-1.

A · A-1 = E

Алгоритм нахождения обратной матрицы

Для нахождения обратной матрицы нужно уметь вычислять определитель матрицы, а также иметь навыки выполнения определенных действий с ними.

Сразу отметить, что найти обратную можно только для квадратной матрицы, а делается это по формуле ниже:

Формула для вычисления обратной матрицы

|A| – определитель матрицы;
ATM – транспонированная матрица алгебраических дополнений.

Примечание: если определитель равен нулю, то обратной матрицы не существует.

Пример
Давайте найдем для матрицы A ниже обратную ей.

Пример квадратной матрицы

Решение
1. Для начала найдем определитель заданной матрицы.

Пример расчета определителя матрицы

2. Теперь составим матрицу миноров, которая имеет те же самые размеры, что и исходная:

Общий вид таблицы миноров

Нам нужно выяснить, какие числа должны стоять на месте звездочек. Начнем с верхнего левого элемента матрицы. Минор к нему находится путем зачеркивания строки и столбца, в котором он находится, т.е. в обоих случаях под номером один.

Пример нахождения минора матрицы

Число, которое останется после зачеркивания, и является требуемым минором, т.е. M11 = 8.

Аналогичным образом находим миноры для оставшихся элементов матрицы и получаем такой результат.

Пример таблицы миноров к матрице

3. Определяем матрицу алгебраических дополнений. Как их посчитать для каждого элемента мы рассмотрели в отдельной публикации.

Пример матрицы алгебраических дополнений

Например, для элемента a11 алгебраическое дополнение считается так:

A11 = (-1)1+1 · M11 = 1 · 8 = 8

4. Выполняем транспонирование полученной матрицы алгебраических дополнений (т. е. поменяем столбцы и строки местами).

Пример транспонированной матрицы миноров

5. Остается только воспользоваться формулой выше, чтобы найти обратную матрицу.

Пример нахождения обратной матрицы

Ответ можем оставить в таком виде, не деля элементы матрицы на число 11, так как в этом случае получится некрасивые дробные числа.

Проверка результата

Чтобы убедиться в том, что мы получили обратную исходной матрицу, мы можем найти их произведение, которое должно равняться единичной матрице.

Результат умножения обратной матрицы на исходную

В результате мы получили единичную матрицу, значит все сделали верно.

Добавить комментарий