Как найти образ линейного оператора пример

Линейный
оператор ,
действующий из пространства
в пространство ,
ставит в соответствие каждому вектору

определенный вектор
из .
При этом вектор
называется образом
вектора

,
а вектор
прообразом
вектора


при отображении .

Пусть

и
– некоторые базисы линейных пространств

и
соответственно. Тогда ,

и координаты вектора – образа
связаны с координатами вектора – прообраза

соотношением

,

(7.2.1)

в
котором
– матрица линейного оператора
в паре базисов
и .

В
случае, когда пространства
и
совпадают, базисы
и
также совпадают, и формула (7.2.1) принимает
вид

.

(7.2.2)

Образом
(областью
значений
)
линейного
оператора



называется
множество всех элементов
вида .
Образ линейного оператора является
подпространством пространства
и обозначается .
Размерность образа называется рангом
оператора

и обозначается .

Ядром
линейного оператора



называется
множество всех векторов пространства
,
которые переводятся оператором
в нулевой вектор пространства .
Ядро линейного оператора является
подпространством пространства
и обозначается .
Размерность ядра называется дефектом
оператора

и обозначается .

Сумма
ранга и дефекта оператора


равна размерности пространства

.

Ранг
линейного оператора равен рангу матрицы
этого оператора.

Базис
системы векторов – столбцов матрицы
линейного оператора
образует систему координатных столбцов
базиса образа .
Базис подпространства решений однородной
системы линейных алгебраических
уравнений с матрицей оператора
образует базис ядра .

Пример
1
.
Из пространства
с базисом
в пространство
с базисом
действует линейный оператор ,
имеющий в данной паре базисов матрицу
.
Найдите столбец координат в базисе
образа вектора
и столбец координат в базисе
прообраза вектора .

Решение.
Столбец координат образа вектора
в базисе находим
непосредственно по формуле (7.2.1):

.

Для
определения прообраза вектора
по той же формуле (7.2.1) имеем

,

или,
что то же самое,

Отсюда
находим все прообразы
вектора ,
где
– свободная переменная, принимающая
произвольные значения.

Пример
2.

В пространстве с
базисом линейный
оператор
переводит векторы ,
в
векторы ,

соответственно. Найдите матрицу оператора
в
базисе .

Решение.
Пусть
матрица оператора в
базисе .
Тогда из условий ,

по формуле (7.2.2) имеем ,

или,
в подробной записи,

Отсюда
получаем
Следовательно,
.

Пример
3.

Найдите базис ядра и базис образа
линейного оператора пространства ,
если этот оператор задан матрицей .

Решение.
При помощи элементарных преобразований
над строками матрицы
приведём её к ступенчатому виду:

.

Отсюда
следует, что .
Базис составляют,
например, векторы
и .

Дефект
оператора найдём по формуле

,

т.е.
фундаментальная система решений
однородной системы линейных алгебраических
уравнений с матрицей
будет состоять из одного вектора. Общее
решение однородной системы можно
записать в виде .
Полагая
получаем базисный вектор .

7.2.1.
Линейный оператор переводит
вектор
в вектор.
Найдите образ вектора
и прообраз вектора ,
если

,

,
;

,

,
;

,

,
.

7.2.2.
Линейный оператор в
паре базисов и

имеет матрицу .
Найдите прообраз вектора ,
если

,
;

б)
,
;

в)
,
.

7.2.3.
Выясните, существует ли линейный оператор
двумерного пространства, переводящий
векторы ,

соответственно в векторы ,
,
и найдите матрицу этого оператора в
базисе ,
:

а)

б)

в)

7.2.4.
Выясните, существует ли линейный оператор
трехмерного пространства, переводящий
векторы ,
,

соответственно в векторы ,
,
,
и найдите матрицу этого оператора в том
же базисе, в котором даны координаты
всех векторов:

а)

б)

7.2.5.
Для указанных линейных операторов
пространства
найдите дефект и ранг, а также постройте
базисы ядра и образа. Каждый оператор
описывается своим действием на
произвольный вектор :

а)

б)

в)

7.2.6.
Найдите образ и ядро оператора
дифференцирования в пространстве .

7.2.7.
В пространстве
рассмотрите разностный
оператор

где

– фиксированное
число, отличное от нуля. Найдите его
образ и ядро.

7.2.8.
Найдите образ и ядро оператора
проектирования (см. задачу 7.1.2) на
параллельно
и оператора отражения (см. задачу 7.1.3) в

параллельно .

7.2.9.
Найдите базис ядра и базис образа
линейного
оператора из ,
заданного в некотором базисе матрицей
:

а)
;
б)
;
в)
.

7.2.10.
Найдите размерность линейного пространства

всех линейных операторов, действующих
в
– мерном линейном пространстве
и постройте базис пространства .

Соседние файлы в папке Задачник-2

  • #
  • #
  • #
  • #
  • #
  • #

Матрица линейного оператора примеры

Построение матрицы по заданной формуле отображения.

Пусть отображение задано с помощью формулы:

то есть для координат произвольного исходного вектора определены координаты его образа. Тогда, рассматривая вместо произвольного вектора x вектор , найдём его образ, это будет вектор . Для этого в формуле, задающей образ вектора, полагаем , ,…, . Аналогично находим образы для ,…, . Из координат образа вектора составляем 1-й столбец матрицы линейного оператора, аналогично из координат последующих векторов – остальные столбцы. Рассмотрим на примере.

Пример 1. Пусть оператор задан с помощью формулы:

.

Прежде всего, докажем, что это отображение – действительно линейный оператор.

Отобразим сумму векторов:

Теперь каждую координату получившегося вектора можем преобразовать:

.

Аналогично для умножения на константу:

Для того чтобы найти матрицу этого линейного оператора, нужно, как было сказано выше, подставить значения x1 = 1, x2 = 0, а затем x1 = 0, x2 = 1. В этом примере образы базисных векторов – соответственно (3, 1) и (2, -1).

Поэтому матрица линейного оператора будет иметь вид:

.

Аналогичным способом решается задача и для 3 и большего количества переменных.

Пример 2. .

Построим матрицу оператора. Отображая вектор (1,0,0), получаем (1,4,-1), соответственно (0,1,0) переходит в (2,1,-2), а вектор (0,0,1) – в (-1,1,3).

Матрица линейного оператора:

.

2.2. Построение матрицы оператора в случае, когда известен исходный базис и система векторов, в которую он отображается.

Если задана система из n векторов, образующих базис, и какая-нибудь произвольная система n векторов (возможно, линейно-зависимая), то однозначно определён линейный оператор, отображающий каждый вектор первой системы в соответствующий вектор второй системы.

Матрицу этого оператора можно найти двумя способами: с помощью обратной матрицы и с помощью системы уравнений.

Пусть – матрица оператора в базисе . По условию, для всех индексов . Данные n равенств можно записать в виде одного матричного равенства: , при этом столбцы матрицы – это векторы , а столбцы матрицы – векторы . Тогда матрица может быть найдена в виде .

Пример. Найти матрицу линейного оператора, отображающего базис

в систему векторов .

Здесь , , , и получаем:

.

Проверка осуществляется умножением получившейся матрицы на каждый вектор: .

Аналогично решаются подобные задачи и для трёхмерного пространства. В приложении (§5) есть несколько вариантов таких задач.

2.3. Прочие способы нахождения матрицы оператора.

Существуют также примеры, где линейный оператор задаётся другими способами, отличными от рассмотренных в п. 2.1 и 2.2.

Пример. Линейными операторами являются как правое, так и левое векторное умножение на фиксированный вектор в трёхмерном пространстве, то есть отображения вида и . Построим матрицу одного из этих операторов, . Для этого найдём образы всех трёх базисных векторов линейного пространства.

.

Аналогично, ,

.

Координаты полученных векторов запишем в виде столбцов матрицы оператора.

Матрица оператора: .

Аналогично можно построить матрицу линейного оператора :

.

Пример. Линейный оператор дифференцирования в пространстве всех многочленов степени не более n. Это пространство размерности n + 1. Возьмём в качестве базиса элементы , , ,…, .

, , , аналогично получим ,…, .

Матрица этого линейного оператора:

Линейные операторы могут отображать не только пространства конечной размерности, но и бесконечномерные пространства. Так, оператор дифференцирования может рассматриваться также в пространстве всех непрерывных функций. (В этом пространстве нет конечного базиса). В этом случае, очевидно, оператор не может быть задан матрицей конечного порядка.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10219 – | 7588 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Матрица линейного оператора

Определение 1. Если задан закон, который каждому вектору x?? ставит в соот ветствие вектор y . то говорят, что в линейном пространстве ? задан оператор A , при этом пишут:

Определение 2. Оператор A называется линейным, если для любых x 1 ?? и x 2 ?? и произвольного числа ? выполняются условия:

Рассмотрим теперь в евклидовом пространстве E n базис e 1 ,e 2 . e n и пусть в этом пространстве определён линейный оператор A : y = A x .

Разложим векторы x и y по базису e 1 ,e 2 . e n :

В силу линейности оператора A можно написать

Заметим, что каждый вектор , следовательно, его также можно разложить по базису e 1 ,e 2 . e n , т.е.

В силу единственности разложения по данному базису мы можем при равнять коэффициенты при базисных векторах в правых частях формул (1) и (2); тогда получим:

Получили, что линейному оператору A в данном базисе соответствует квадратная матрица

которая называется матрицей линейного оператора A , i -й столбец которой состоит из координат вектора Ae i (i = 1,2. n ) относительно данного базиса. Отметим, что матрица A оператора A зависит от выбора базиса e 1 ,e 2 . e n .

Итак, мы показали, что всякому линейному оператору A в евклидовом пространстве E n соответствует матрица A ; можно доказать и обратное утверждение: всякую квадратную матрицу A можно рассматривать как матрицу некоторого линейного оператора A в данном базисе e 1 ,e 2 . e n .

Представляют интерес невырожденные линейные операторы, т.е. такие операторы, матрицы которых имеют обратную A -1 , т.е. также являются невырожденными. В этом случае каждому вектору y (образу), определённому соотношением, отвечает единственный вектор x (прообраз) и при этом имеет место матричное равенство: X = A -1 ? Y .

Примеры линейных операторов

1. В пространстве 2-мерных векторов линейным оператором является правило

связывающее вектор-прообраз с вектором-образом

2. В пространстве бесконечно дифференцируемых функций линейным оператором является операция дифференцирования, ставящая в соответствие каждому элементу этого простран ства его производную функцию.

3. В пространстве многочленов P n (t) линейным оператором является операция умножения многочлена на независимую переменную t .

Пример: Известны образы базисных векторов E 3 под действием оператора A :

Найти матрицу этого оператора в исходном базисе.

Решение: По определению y = A x, значит в матричном виде можно записать, что A = X -1 Y . Для нашего примера получаем

Действия над операторами

Сложение линейных операторов. Пусть x?E n , A и B – два линейных оператора в этом пространстве.

Определение 1. Суммой линейных операторов A и B в E n называется оператор C, определяемый равенством Cx = A x + Bx , где x – любой вектор из E n .

Сумма линейных операторов является линейным оператором, причём его матрица C = A + B, где A и B – матрицы линейных операторов A и B .

Умножение линейного оператора на число. Пусть x?E n , линейный оператор A определён в E n , ? – некоторое число.

Определение 2. Произведением линейного оператора A на число ? называется оператор ?A , определяемый равенством .

?A является линейным оператором, а матрица этого линейного оператора получается из матрицы A умножением её на число ? , т.е. она равна ? ? A.

Умножение линейных операторов. Пусть x? E n , y ? E n , z ? E n и кроме того в E n определены линейные операторы A и B таким образом, что y = Bx, z = A y .

Определение 3. Произведением A ? B линейных операторов A и B называется оператор C, определяемый соотношением Cx = A (Bx) .

Таким образом, перемножение линейных операторов состоит в последовательном их применении по отношению к вектору x .

Рассмотрим матрицы – столбцы:

и обозначим через A, B и C – соответственно матрицы линейных операторов A, B и C. Тогда Z = A ? (B ? X) = (A ? B) ? X = C ? X , таким образом, C = A ? B, т.е. матрица произведения линей ных операторов также является линейным оператором.

a) (A ? B)(x + y) = A (B(x + y)) = A (Bx + By) = A (Bx) + A (By) = = (A ? B) ? x + (A ? B) ? y

б) (A ? B)(? x) = A (B(? x)) = A (?Bx) =?A (Bx) =? (A ? B)x

Свойства умножения линейных операторов вытекают из свойств умножения матриц.

Определение 4. Линейные операторы A и В называются равными, если . Равенство операторов обозначается как A = B .

Определение 5. Оператор E называется единичным (или тождественным) оператором, если каждому элементу x линейного пространства он ставит в соответствие тот же самый элемент, то есть

1. Понятие линейного оператора

Пусть R и S линейные пространства, которые имеют размерность n и m соответственно. Оператором A действующим из R в S называется отображение вида , сопоставляющее каждому элементу x пространства R некоторый элемент y пространства S. Для этого отображения будем использовать обозначение y= A(x) или y= Ax.

Определение 1. Оператор A действующий из R в S называется линейным, если для любых элементов x1 и x2 пространства R и любого λ из числового поля K выполняются соотношения

Если пространство S совпадает с пространством R, то линейный оператор, который действует из R в R называют линейным преобразованием пространства R.

Пусть заданы два векторных пространства n-мерный R и m-мерный S, и пусть в этих пространствах заданы базисы и соответственно. Пусть задано отображение

где Am×n -матрица с коэффициентами из поля K. Тогда каждому элементу из R соответствует элемент y=Ax из S. Отображение (1) определяет оператор A. Покажем, что этот оператор обладает свойством линейности. Действительно, учитывая свойства умножения матриц, можно записать:

Покажем теперь обратное, т.е. что для любого линейного оператора A, отображающего пространство R в S и произвольных базисов и в R и S соответственно, существует такая матрица A с элементами из численного поля K, что определяемое этой матрицей линейное отображение (1) выражает координаты отображенного вектора y через координаты исходного вектора x.

Пусть x − произвольный элемент в R. Тогда

(3)

является разложением x в по базису .

Применим оператор A к базисным векторам :

(4)

где aij − координаты полученного вектора в базисе .

Тогда применяя оператор A к элементу x и учитывая (3) и (4), имеем

Сделаем следующее обозначение:

(6)

Тогда равенство (5) примет следующий вид:

(7)

Из равенства (7) следует, что любой элемент из пространства R при отображении оператором A, в пространстве S и в базисе имеет координаты yi, i=1,2. m. В свою очередь, из (6) следует, что этим координатам соответствуют линейные комбинации координатов элемента xj, j=1,2. n с коэффициентами aij i=1,2. m; j=1,2. n.

Построим матрицу A с элементами aij:

(8)

Тогда выражение (6) можно записать в матричном виде:

Матрица A называется матрицей линейного оператора в заданных базисах и .

2. Сложение линейных операторов

Пусть A и B два линейных оператора действующих из R в S и пусть A и Bmxn − матрицы соответствующие этим операторам.

Определение 2. Суммой линейных операторов A и B называется оператор C, определяемый равенством

где x∈R означает, что x принадлежит пространстве R.

Сумма линейных операторов обозначается так C=A+B. Легко убедится, что сумма линейных операторов также является линейным оператором.

Применим оператор C к базисному вектору ej, тогда:

Cej= Aej+ Bej= n (aij+bij) ej
j= 1

Следовательно оператору C отвечает матрица ,где i=1,2. m, j=1,2. n, т.е.

3. Умножение линейных операторов

Пусть заданы три линейных пространства R, S и T. Пусть линейный оператор B отображает R в S, а линейный оператор A отображает S в T.

Определение 3. Произведением операторов A и B называется оператор C, для которого выполняется следующее равенство при любом x из R:

Произведение линейных операторов обозначается C=AB. Легко убедится, что произведение линейных операторов также является линейным оператором.

Таким образом оператор C отображает пространство R в T. Выберем в пространствах R, S и T базисы и обозначим через A, B и C матрицы операторов A, B и C соответствующие этим базисам. Тогда отображения линейных операторов A, B, C

можно записать в виде матричных равенств

где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда

Учитывая произвольность х, получим

Следовательно произведению операторов C=AB соответствует матричное произведение C=AB.

4. Умножение линейного оператора на число

Пусть задан линейный оператор A отображающий R в S и некоторое число λ из поля K.

Определение 4. Произведением оператора A на число λ называется оператор C, для которого выполняется следующее равенство при любом x из R:

Таким образом оператор C отображает пространство R в S. Выберем в пространствах R и S базисы и обозначим через A матрицу оператора A соответствующее этим базисам векторные равенства

можно записать в виде матричных равенств

где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда

Учитывая произвольность х, получим

Следовательно произведению оператора C на число λ соответствует произведение матрицы A на число λ.

5. Нулевой оператор

Оператор, отображающий все элементы пространства R в нулевой элемент пространства S называется нулевым оператором и обозначается через O. Действие нулевого оператора можно записать так:

6. Противоположный оператор

Противоположным оператору A называется оператор −A удовлетворяющий равенству:

7. Ядро линейного оператора

Определение 5. Ядром линейного оператора A называется множество всех тех элементов x пространства R, для которых выполняется следующее равенство: Ax=0.

Ядро линейного оператора также называют дефектом оператора. Ядро линейного оператора обозначается символом ker A.

8. Образ линейного оператора

Определение 6. Образом линейного оператора A называется множество всех элементов y пространства R, для которых выполняется следующее равенство: y=Ax для всех x из R.

Образ линейного оператора обозначается символом im A.

9. Ранг линейного оператора

Определение 7. Рангом линейного оператора A обозначаемое символом rang A называется число равное размерности образа im A оператора A, т.е.: rang A=dim(im A).

Ядро и образ линейного отображения

Ядром линейного отображения называется множество таких векторов , что , т.е. множество векторов из , которые отображаются в нулевой вектор пространства . Ядро отображения обозначается:

Образом линейного отображения называется множество образов всех векторов из . Образ отображения обозначается или

Заметим, что символ следует отличать от — мнимой части комплексного числа.

Примеры ядер и образов линейных отображений

1. Ядром нулевого отображения является все пространство , а образом служит один нулевой вектор, т.е.

2. Рассмотрим отображение , которое ставит в соответствие каждому вектору n-мерного линейного пространства его координатный столбец относительно заданного базиса . Ядром этого отображения является нулевой вектор пространства , поскольку только этот вектор имеет нулевой координатный столбец . Образ преобразования совпадает со всем пространством , так как это преобразование сюръективно (любой столбец из является координатным столбцом некоторого вектора пространства ).

3. Рассмотрим отображение , которое каждому вектору n-мерного евклидова пространства ставит в соответствие алгебраическое значение его проекции на направление, задаваемое единичным вектором . Ядром этого преобразования является ортогональное дополнение — множество векторов, ортогональных . Образом является все множество действительных чисел .

4. Рассмотрим отображение , которое каждому многочлену степени не выше ставит в соответствие его производную. Ядром этого отображения является множество многочленов нулевой степени, а образом — все пространство .

Свойства ядра и образа линейного отображения

1. Ядро любого линейного отображения является подпространством: .

В соответствии с определением требуется доказать, что множество является непустым и замкнутым относительно операций сложения векторов и умножения вектора на число. В самом деле, из однородности отображения следует, что

т.е. нулевой вектор отображается в нулевой вектор . Следовательно, ядро любого линейного отображения не является пустым и содержит, по крайней мере, нулевой элемент: . Покажем, что множество замкнуто по отношению к операциям сложения векторов и умножения вектора на число. Действительно:

Следовательно, множество является линейным подпространством пространства .

2. Образ любого линейного отображения является подпространством: .

В самом деле, докажем, например, замкнутость множества по отношению к операции умножения вектора на число. Если , то существует вектор такой, что . Тогда , то есть .

Поскольку ядро и образ линейного отображения являются линейными подпространствами (свойства 1 и 2), можно говорить об их размерностях.

Дефектом линейного отображения называется размерность его ядра: , а рангом линейного отображения — размерность его образа: .

3. Ранг линейного отображения равен рангу его матрицы (определенной относительно любых базисов).

В самом деле, если любой базис пространства , то . Поэтому максимальное число линейно независимых векторов системы (ранг системы векторов) равно максимальному числу линейно независимых столбцов матрицы отображения, т.е. рангу матрицы: .

4. Линейное отображение инъективно тогда и только тогда, когда , другими словами, когда дефект отображения равен нулю: .

Действительно, образом нулевого вектора служит нулевой вектор . Поэтому, если отображение инъективно, то ядро содержит только нулевой вектор , иначе два разных вектора имели бы один и тот же образ . Обратно, при условии разные векторы не могут иметь одинаковые образы , так как в этом случае из равенств , следует, что ненулевой вектор (приходим к противоречию).

5. Линейное отображение сюръективно тогда и только тогда, когда , другими словами, когда ранг отображения равен размерности пространства образов: .

6. Линейное отображение биективно (значит, обратимо) тогда и только тогда, когда и одновременно.

Теорема (9.1) о размерностях ядра и образа. Сумма размерностей ядра и образа любого линейного отображения равна размерности пространства прообразов:

Действительно, пусть . Выберем в подпространстве базис и дополним его векторами до базиса всего пространства . Покажем, что векторы образуют базис подпространства .

Во-первых, , так как образ любого вектора линейно выражается через векторы

Во-вторых, образующие линейно независимы. Если их линейная комбинация равна нулевому вектору:

то вектор принадлежит ядру (его образ — нулевой вектор). Однако, по построению этот вектор принадлежит алгебраическому дополнению . Учитывая, что , заключаем: . Получили разложение нулевого вектора по линейно независимой системе векторов, значит, все коэффициенты . Поэтому равенство справедливо только для тривиальной линейной комбинации, т.е. система векторов линейно независимая.

Таким образом, векторы образуют базис подпространства , а его размерность определяется количеством базисных векторов, т.е. , что равносильно (9.3).

Следствие. Линейное отображение биективно (значит, обратимо) тогда и только тогда, когда обратима его матрица (определенная относительно любых базисов).

Действительно, для обратимости преобразования (см. свойство 6) его матрица (размеров ) должна удовлетворять условиям (см. свойства 3,4,5):

Тогда по теореме 9.1 заключаем, что , т.е. матрица — квадратная n-го порядка и невырожденная , что и требовалось доказать.

Обратимые линейные отображения называются также невырожденными (имея в виду невырожденность их матрицы).

Линейные операторы

1. Понятие линейного оператора

Пусть R и S линейные пространства, которые имеют размерность n и m соответственно. Оператором A действующим из R в S называется отображение вида , сопоставляющее каждому элементу x пространства R некоторый элемент y пространства S. Для этого отображения будем использовать обозначение y= A(x) или y= Ax.

Определение 1. Оператор A действующий из R в S называется линейным, если для любых элементов x1 и x2 пространства R и любого λ из числового поля K выполняются соотношения

Если пространство S совпадает с пространством R, то линейный оператор, который действует из R в R называют линейным преобразованием пространства R.

Пусть заданы два векторных пространства n-мерный R и m-мерный S, и пусть в этих пространствах заданы базисы и соответственно. Пусть задано отображение

где Am×n -матрица с коэффициентами из поля K. Тогда каждому элементу из R соответствует элемент y=Ax из S. Отображение (1) определяет оператор A. Покажем, что этот оператор обладает свойством линейности. Действительно, учитывая свойства умножения матриц, можно записать:

Покажем теперь обратное, т.е. что для любого линейного оператора A, отображающего пространство R в S и произвольных базисов и в R и S соответственно, существует такая матрица A с элементами из численного поля K, что определяемое этой матрицей линейное отображение (1) выражает координаты отображенного вектора y через координаты исходного вектора x.

Пусть x − произвольный элемент в R. Тогда

(3)

является разложением x в по базису .

Применим оператор A к базисным векторам :

(4)

где aij − координаты полученного вектора в базисе .

Тогда применяя оператор A к элементу x и учитывая (3) и (4), имеем

Сделаем следующее обозначение:

(6)

Тогда равенство (5) примет следующий вид:

(7)

Из равенства (7) следует, что любой элемент из пространства R при отображении оператором A, в пространстве S и в базисе имеет координаты yi, i=1,2. m. В свою очередь, из (6) следует, что этим координатам соответствуют линейные комбинации координатов элемента xj, j=1,2. n с коэффициентами aij i=1,2. m; j=1,2. n.

Построим матрицу A с элементами aij:

(8)

Тогда выражение (6) можно записать в матричном виде:

Матрица A называется матрицей линейного оператора в заданных базисах и .

2. Сложение линейных операторов

Пусть A и B два линейных оператора действующих из R в S и пусть A и Bmxn − матрицы соответствующие этим операторам.

Определение 2. Суммой линейных операторов A и B называется оператор C, определяемый равенством

где x∈R означает, что x принадлежит пространстве R.

Сумма линейных операторов обозначается так C=A+B. Легко убедится, что сумма линейных операторов также является линейным оператором.

Применим оператор C к базисному вектору ej, тогда:

Cej= Aej+ Bej= n (aij+bij) ej
j= 1

Следовательно оператору C отвечает матрица ,где i=1,2. m, j=1,2. n, т.е.

3. Умножение линейных операторов

Пусть заданы три линейных пространства R, S и T. Пусть линейный оператор B отображает R в S, а линейный оператор A отображает S в T.

Определение 3. Произведением операторов A и B называется оператор C, для которого выполняется следующее равенство при любом x из R:

Произведение линейных операторов обозначается C=AB. Легко убедится, что произведение линейных операторов также является линейным оператором.

Таким образом оператор C отображает пространство R в T. Выберем в пространствах R, S и T базисы и обозначим через A, B и C матрицы операторов A, B и C соответствующие этим базисам. Тогда отображения линейных операторов A, B, C

можно записать в виде матричных равенств

где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда

Учитывая произвольность х, получим

Следовательно произведению операторов C=AB соответствует матричное произведение C=AB.

4. Умножение линейного оператора на число

Пусть задан линейный оператор A отображающий R в S и некоторое число λ из поля K.

Определение 4. Произведением оператора A на число λ называется оператор C, для которого выполняется следующее равенство при любом x из R:

Таким образом оператор C отображает пространство R в S. Выберем в пространствах R и S базисы и обозначим через A матрицу оператора A соответствующее этим базисам векторные равенства

можно записать в виде матричных равенств

где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда

Учитывая произвольность х, получим

Следовательно произведению оператора C на число λ соответствует произведение матрицы A на число λ.

5. Нулевой оператор

Оператор, отображающий все элементы пространства R в нулевой элемент пространства S называется нулевым оператором и обозначается через O. Действие нулевого оператора можно записать так:

6. Противоположный оператор

Противоположным оператору A называется оператор −A удовлетворяющий равенству:

7. Ядро линейного оператора

Определение 5. Ядром линейного оператора A называется множество всех тех элементов x пространства R, для которых выполняется следующее равенство: Ax=0.

Ядро линейного оператора также называют дефектом оператора. Ядро линейного оператора обозначается символом ker A.

8. Образ линейного оператора

Определение 6. Образом линейного оператора A называется множество всех элементов y пространства R, для которых выполняется следующее равенство: y=Ax для всех x из R.

Образ линейного оператора обозначается символом im A.

9. Ранг линейного оператора

Определение 7. Рангом линейного оператора A обозначаемое символом rang A называется число равное размерности образа im A оператора A, т.е.: rang A=dim(im A).

[spoiler title=”источники:”]

http://mathhelpplanet.com/static.php?p=yadro-i-obraz-linyeinogo-otobrazheniya

http://matworld.ru/linear-algebra/linear-operator.php

[/spoiler]

Решение:

Линейность оператора следует из линейности матричных операций умножения на скаляр, транспонирования и умножения на матрицу.

Если в каноническом базисе пространства М22

то

т.е. матрица данного оператора в каноническом базисе имеет вид:

Находим ядро данного оператора:

Для получения базиса образа данного линейного оператора находим:

Полученные векторы линейно независимы:

и могут быть выбраны в качестве базиса образа данного оператора, т.е.

Данный оператор имеет ненулевое ядро, следовательно, он необратим.

3.17. Оператор А действует на матрицы второго порядка по правилу , где . Показать, что А – линейный оператор. Составить его матрицу в каноническом базисе. Найти ядро и образ оператора. Существует ли обратный оператор?

Решение:

Линейность оператора следует из линейности матричных операций умножения на скаляр, транспонирования и умножения на матрицу.

Если в каноническом базисе пространства М22

то

т.е. матрица данного оператора в каноническом базисе имеет вид:

Поскольку detA=-34≠0, то KerA=0, ImA=M22.

Данный оператор имеет нулевое ядро, следовательно, он обратим.

3.18. В пространстве Р2 многочленов степени не выше 2 оператор А действует по правилу . Показать линейность оператора. Найти его матрицу в каноническом базисе. Найти образ многочлена . Найти ядро и образ оператора. Существует ли обратный оператор?

Решение:

Проверяем линейность оператора:

Свойства линейности выполнены – оператор линеен.

Если в базисе пространства P2

то

т.е. матрица данного оператора в базисе имеет вид:

Для данного многочлена получаем:

Находим ядро оператора:

Образ оператора находим как дополнение ядра до всего пространства L, для этого выбираем базисные векторы с нулями в тех координатах, которые отличны от нуля в уже выбранном векторе (1;0;0): .

Данный оператор имеет ненулевое ядро, следовательно, он необратим.

3.19. В пространстве Р3 многочленов степени не выше 3 оператор А действует по правилу . Показать линейность оператора. Найти его матрицу в каноническом базисе. Найти ядро и образ оператора. Существует ли обратный оператор?

Решение:

Проверяем линейность оператора:

Свойства линейности выполнены – оператор линеен.

Если в базисе пространства P3

то

т.е. матрица данного оператора в базисе имеет вид:

Находим ядро оператора:

Образ оператора находим как дополнение ядра до всего пространства L, для этого выбираем базисные векторы с нулями в тех координатах, которые отличны от нуля в уже выбранном векторе (0;0;0;1): .

Данный оператор имеет ненулевое ядро, следовательно, он необратим.

3.20. В пространстве Р2 многочленов степени не выше 2 оператор А действует по правилу . Показать линейность оператора. Найти его матрицу в каноническом базисе и в базисе .

Решение:

Проверяем линейность оператора:

Свойства линейности выполнены – оператор линеен.

Если в базисе пространства P2

то

т.е. матрица данного оператора в каноническом базисе имеет вид:

Матрица перехода от базиса к базису имеет вид:

следовательно, матрица данного оператора в базисе S имеет вид:

3.21. Показать, что оператор А, действующий на функции f(t) по правилу , является линейным оператором в пространстве функций . Найти матрицу оператора в каком-нибудь базисе пространства. Обратим ли оператор? Найти ядро и образ оператора.

Решение:

Проверяем линейность оператора:

Свойства линейности выполнены – оператор линеен.

Если в базисе пространства L

то

т.е. матрица данного оператора в базисе имеет вид:

При этом detA=0, следовательно, данный оператор необратим.

Находим ядро оператора:

Образ оператора находим как дополнение ядра до всего пространства L, для этого выбираем базисные векторы с нулями в тех координатах, которые отличны от нуля в уже выбранном векторе (-1;1;0):

3.22. Показать, что оператор дифференцирования является линейным оператором в пространстве функций . Найти матрицу оператора в каком-нибудь базисе пространства. Существует ли обратный оператор? Найти ядро и образ оператора.

Решение:

Если то

т.е. и матрица оператора в базисе имеет вид:

Поскольку detA=0, то данный оператор не имеет обратного.

Находим ядро данного оператора:

т.е. KerA = L{(0;0;1)} =

Отсюда получаем образ данного оператора как дополнения ядра до полного пространства L, для этого выбираем базисные векторы с нулями в тех координатах, которые отличны от нуля в уже выбранном векторе (0;0;1):

ImA = L{(1;0;0).(0;1;0)} =

3.23. Показать, что оператор сдвига является линейным оператором в пространстве функций . Найти матрицу оператора в каком-нибудь базисе пространства. Существует ли обратный оператор? Найти ядро и образ оператора.

Решение:

Данный оператор линеен, поскольку выполнены свойства

Если , то

т.е. и матрица оператора в базисе имеет вид:

Поскольку detA≠0, то данный оператор имеет обратный.

Находим ядро данного оператора:

т.е. KerA = 0 и поэтому ImA = L.

3.24. Линейный оператор А в пространстве V3 имеет в базисе матрицу . Найти собственные значения и собственные векторы оператора А, показать, что это оператор простого типа.

Решение:

Матрица линейного оператора из задачи 3.24 в базисе имеет вид:

Находим собственные значения и собственные векторы матрицы:

Для

Для

Т.е. собственному значению соответствуют два собственных вектора собственному значению – один собственный вектор .

По определению, линейный оператор называется оператором простого типа (или простым оператором), если из собственных векторов этого оператора можно составить базис линейного пространства. Собственные векторы данного оператора образуют базис пространства V3, следовательно, это оператор простого типа.

3.25. В пространстве V3 оператор линейный оператор А – зеркальное отражение относительно плоскости YOZ. Найти собственные значения и собственные векторы оператора А.

Решение:

Зеркальное отражение относительно плоскости YOZ в пространстве V3 переводит точку с координатами (a;b;c) в точку с координатами (-a;b;c), т.е. матрица данного оператора имеет вид:

Находим собственные значения и собственные векторы матрицы оператора:

Для

Для

Получаем два собственных значения , первому соответствует один собственный вектор , второму – два собственных вектора: .

3.26. В пространстве V3 оператор линейный оператор А – проекция на ось OY. Найти собственные значения и собственные векторы оператора А.

Решение:

Проекция на ось OY в пространстве V3 переводит точку с координатами (a;b;c) в точку с координатами (0;b;0), т.е. матрица данного оператора имеет вид:

Находим собственные значения и собственные векторы матрицы оператора:

Для

Для

Получаем два собственных значения , первому соответствуют два собственных вектора: , второму – один собственный вектор .

3.27. Линейный оператор А – проекция на ось . Найти собственные значения и собственные векторы оператора А.

Решение:

Проекция на ось переводит точку с координатами (a;b) в точку с координатами (ab;ba):

т.е. матрица данного оператора имеет вид:

Находим собственные значения и собственные векторы матрицы оператора:

Для

Получаем единственное собственное значение , которому соответствует один собственный вектор: .

3.28. В пространстве V3 оператор действует по правилу , где . Найти собственные значения и собственные векторы оператора А.

Решение:

Если , то

т.е. матрица данного оператора имеет вид:

Находим собственные значения и собственные векторы матрицы оператора:

Для

Для

Получаем два собственных значения , первому соответствуют два собственных вектора: , второму – один собственный вектор .

3.29. В каноническом базисе пространства R3 оператор А действует по правилу . Найти собственные значения и собственные векторы оператора А.

Решение:

Матрица данного оператора в каноническом базисе имеет вид:

Находим собственные значения и собственные векторы матрицы оператора:

Для

Для

Получаем два собственных значения , которым соответствуют собственные вектора: .

3.30. Найти

Решение:

Находим собственные значения и собственные векторы матрицы оператора:

Для

Для

Отсюда получаем представление данной матрицы в виде

Тогда

=

3.31. Линейный оператор А в каноническом базисе пространства Р2 многочленов степени не выше 2 имеет матрицу . Найти собственные значения и собственные векторы оператора А. Является ли оператор оператором простого типа?

Решение:

Находим собственные значения и собственные векторы матрицы оператора:

Для

Получаем единственное собственное значение , которому соответствуют два собственных вектора: .

По определению, линейный оператор называется оператором простого типа (или простым оператором), если из собственных векторов этого оператора можно составить базис линейного пространства. Данный оператор имеет всего два собственных вектора, размерность пространства Р2 равна 3, следовательно, данный оператор не является оператором простого типа.

Добавить комментарий