Как найти общее кратное у атома


Загрузить PDF


Загрузить PDF

На атомном уровне кратностью связи называется число пар связанных электронов между двумя атомами. Например, в двухатомном азоте (N≡N) кратность связи равна трем, поскольку два атома азота соединены тремя химическими связями. В теории молекулярных орбиталей кратность связи определяется как половина разности между количеством связывающих и разрыхляющих электронов. Таким образом, кратность связи можно рассчитать по следующей формуле: Кратность связи = [(Число электронов на связывающих орбиталях) – (Число электронов на разрыхляющих орбиталях)]/2.[1]

  1. Изображение с названием Calculate Bond Order in Chemistry Step 6

    1

    Запомните формулу. В теории молекулярных орбиталей кратность связи определяется как половина разности между количеством связывающих и разрыхляющих электронов: Кратность связи = [(Число электронов на связывающих орбиталях) – (Число электронов на разрыхляющих орбиталях)]/2.

  2. Изображение с названием Rebel Against Your Parents Step 11

    2

    Чем больше кратность связи, тем стабильнее молекула. Каждый электрон, который попал на связывающую орбиталь, стабилизирует новую молекулу. И наоборот, находящиеся на разрыхляющих орбиталях электроны дестабилизируют молекулу. Кратность связи определяет энергетический уровень образованной молекулы.

    • Если кратность связи равна нулю, молекула не может образоваться. Чем выше кратность связи, тем более стабильна молекула.
  3. Изображение с названием Calculate Bond Order in Chemistry Step 7

    3

    Рассмотрим простой пример. Атомы водорода имеют один электрон на s-оболочке, которая способна вместить два электрона. Когда соединяются два атома водорода, s-оболочка каждого дополняется вторым электроном. В результате образуются две связывающие орбитали. Электронам не приходится переходить на более высокую p-оболочку, поэтому не образуется разрыхляющих орбиталей. Таким образом, кратность связи составляет (2-0)/2, то есть 1. В результате образуется обычная молекула газообразного водорода H2.

    Реклама

  1. Изображение с названием Calculate Bond Order in Chemistry Step 1

    1

    Научитесь быстро определять кратность связи. В случае простой ковалентной связи кратность равна одному; при двойной ковалентной связи кратность равна двум; для тройной ковалентной связи кратность равна трем, и так далее.[2]
    Попросту говоря, кратность связи — это число пар связанных электронов, которые удерживают два атома вместе.

  2. Изображение с названием Calculate Bond Order in Chemistry Step 2

    2

    Узнайте, как атомы соединяются в молекулы. В любой молекуле составляющие ее атомы соединены связывающими парами электронов. Эти электроны вращаются вокруг ядра атома по “орбиталям”. Например, каждая s-оболочка может вмещать не более двух электронов. Если такая оболочка “не заполнена”, то на ней нет электронов или она содержит лишь один электрон. В этом случае несвязанный электрон может соединиться с соответствующим одиночным электроном другого атома.

    • В зависимости от размеров и сложности конкретного атома, он может иметь одну или несколько, вплоть до четырех оболочек.
    • Когда заполняется ближайшая к ядру электронная оболочка, новые электроны начинают заполнять следующую. Постепенно электроны заполняют следующие оболочки, поэтому чем крупнее атом, тем больше электронов он содержит.[3]
  3. Изображение с названием Calculate Bond Order in Chemistry Step 3

    3

    Изобразите точечные структуры Льюиса. Это удобный способ визуально представить, как атомы соединены друг с другом в молекуле. Обозначьте атомы их химическими символами (например, H для водорода и Cl для хлора). Нарисуйте связи между атомами в виде линий, например – для одинарной, = для двойной и ≡ для тройной связи. Обозначьте несвязанные электроны и электронные пары в виде точек (например, :C:).[4]
    После того как вы изобразите точечные структуры Льюиса, посчитайте число связей — это и будет кратностью связи.

    • Для двухатомной молекулы азота точечная структура Льюиса будет иметь вид N≡N. Каждый атом азота имеет одну электронную пару и три несвязанных электрона. При соединении двух атомов азота их шесть несвязанных электронов образуют сильную тройную ковалентную связь.[5]

    Реклама

  1. Изображение с названием Calculate Bond Order in Chemistry Step 4

    1

    Посмотрите на диаграмму электронных оболочек атомов. Отметьте, что каждая следующая оболочка расположена все дальше и дальше от атомного ядра. Согласно свойствам энтропии, любая система стремится к состоянию с минимальной возможной энергией. Таким образом, электроны стремятся занять самую низкую оболочку, если там есть свободные места.

  2. Изображение с названием Calculate Bond Order in Chemistry Step 5

    2

    Узнайте о разнице между связывающими и разрыхляющими орбиталями. Когда два атома объединяются в молекулу, их электроны стремятся заполнить самые низкие уровни в электронных оболочках. При этом связывающие электроны объединяются друг с другом и заполняют нижние энергетические состояния. Разрыхляющие электроны остаются “свободными”, или несвязанными, и вытесняются на более высокие орбитальные уровни.[6]

    • Связывающие электроны. Если вы посмотрите, насколько заполнены электронные оболочки каждого атома, то сможете определить, сколько электронов смогут перейти на более стабильные оболочки с низкой энергией. Эти “заполняющие электроны” называют связывающими электронами.
    • Разрыхляющие электроны. Когда два атома обмениваются электронами и образуют молекулу, орбитали с низкой энергией могут заполниться, и в этом случае некоторые электроны перейдут на уровни с более высокой энергией. Такие электроны называют разрыхляющими электронами.[7]

    Реклама

Об этой статье

Эту страницу просматривали 45 126 раз.

Была ли эта статья полезной?

Представим, что встретились два атома: атом щелочного металла и атом галогена. У атома металла на внешнем энергетическом уровне — единственный электрон, а атому неметалла как раз не хватает одного электрона, чтобы завершить свой внешний уровень.

Атом металла легко отдаст свой слабо связанный с ядром валентный электрон атому неметалла, который предоставит ему свободное место на внешнем энергетическом уровне. Оба в результате получат заполненные внешние уровни.

Атом металла при этом приобретёт положительный заряд, а атом галогена превратится в отрицательно заряженную частицу. Такие частицы называются ионами.

Ионы заряженные частицы, в которые превращаются атомы в результате отдачи или принятия электронов.

Образовавшиеся разноимённо заряженные ионы притягиваются друг к другу, и возникает химическая связь, которая называется  ионной.

Ионная связь — связь между положительно и отрицательно заряженными ионами.

Рассмотрим механизм образования ионной связи на примере взаимодействия натрия и хлора.

форм1.1.jpgформ1.2.jpgформ1.3.jpg

 Na0+Cl0→Na++Cl−→Na+Cl−        

Такое превращение атомов в ионы происходит всегда при взаимодействии атомов типичных металлов и типичных неметаллов, электроотрицательности которых резко различаются.

Ионная связь образуется в сложных веществах, состоящих из атомов металлов и неметаллов.

Рассмотрим другие примеры образования ионной связи. 

Пример:

Взаимодействие кальция и фтора

1. Кальций — элемент главной подгруппы второй группы. Ему легче отдать два внешних электрона, чем принять недостающие.

form2.jpg

2. Фтор — элемент главной подгруппы седьмой группы. Ему легче принять один электрон, чем отдать семь.

form3.jpg

3. Найдём наименьшее общее кратное между зарядами образующихся ионов. Оно равно (2). Определим число атомов фтора, которые примут два электрона от атома кальция: (2) (:) (1) (=) (2).

4. Составим схему образования ионной связи:

Пример:

Взаимодействие натрия и кислорода

1. Натрий — элемент главной подгруппы первой группы. Он легко отдаёт один внешний электрон.

form4.jpg

2. Кислород  — элемент главной подгруппы шестой группы. Ему легче принять два электрона, чем отдать шесть.

form5.jpg

3. Найдём наименьшее общее кратное между зарядами образующихся ионов. Оно равно (2) (:) (1) (=) (2). Определим число атомов натрия, которые отдадут два электрона атому кислорода: (2).

4. Составим схему образования ионной связи:

 С помощью ионной связи образуются также соединения, в которых имеются сложные ионы:

NH4+,NO3−,OH−,SO42−,PO43−,CO32−

.

Значит, ионная связь существует также в солях и основаниях.

Обрати внимание!

Соли аммония 

NH4NO3,NH4Cl,NH4SO42

 не содержат металла, но образованы ионной связью.

Ионы создают вокруг себя электрическое поле, действующее во всех направлениях. Поэтому каждый ион окружён ионами противоположного знака. Такое соединение представляет собой огромную группу положительных и отрицательных частиц, расположенных в определённом порядке.

Sodium_chloride_crystal.png

Рис. (1). Ионный кристалл

Притяжение между ионами довольно сильное, поэтому ионные вещества имеют высокие температуры кипения и плавления.

Обрати внимание!

Все ионные соединения при обычных условиях — твёрдые вещества.

Примеры веществ с ионной связью:

bakingsoda7689501280w300.jpg

1280px-Iron(II)-sulfate-heptahydrate-sample.jpg

Chlorid_sodný.jpg

Рис. (2). Питьевая сода

Рис. (3). Железный купорос

Рис. (4). Поваренная соль

Источники:

Рис. 1. Ионный кристалл https://upload.wikimedia.org/wikipedia/commons/e/eb/Sodium_chloride_crystal.png

Рис. 2. Питьевая сода https://pixabay.com/images/id-768950/ 8.06.2021

Рис. 3. Железный купорос https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Iron%28II%29-sulfate-heptahydrate-sample.jpg/1280px-Iron%28II%29-sulfate-heptahydrate-sample.jpg

Рис. 4. Поваренная соль https://upload.wikimedia.org/wikipedia/commons/9/93/Chlorid_sodn%C3%BD.JPG

Урок 6. Валентность

В уроке 6 «Валентность» из курса «Химия для чайников» дадим определение валентности, научимся ее определять; рассмотрим элементы с постоянной и переменной валентностью, кроме того научимся составлять химические формулы по валентности. Напоминаю, что в прошлом уроке «Химическая формула» мы дали определение химическим формулам и их индексам, а также выяснили различия химических формул веществ молекулярного и немолекулярного строения.

Вы уже знаете, что в химических соединениях атомы разных элементов находятся в определенных числовых соотношениях. От чего зависят эти соотношения?

Рассмотрим химические формулы нескольких соединений водорода с атомами других элементов:

Нетрудно заметить, что атом хлора связан с одним атомом водорода, атом кислорода — с двумя, атом азота — с тремя, а атом углерода — с четырьмя атомами водорода. В то же время в молекуле углекислого газа СО2 атом углерода связан с двумя атомами кислорода. Из этих примеров видно, что атомы обладают разной способностью соединяться с другими атомами. Такая способность атомов выражается с помощью численной характеристики, называемой валентностью.

Валентность — численная характеристика способности атомов данного элемента соединяться с другими атомами.

Поскольку один атом водорода может соединиться только с одним атомом другого элемента, валентность атома водорода принята равной единице. Иначе говорят, что атом водорода обладает одной единицей валентности, т. е. он одновалентен.

Валентность атома какого-либо другого элемента равна числу соединившихся с ним атомов водорода. Поэтому в молекуле HCl у атома хлора валентность равна единице, а в молекуле H2O у атома кислорода валентность равна двум. По той же причине в молекуле NH3 валентность атома азота равна трем, а в молекуле CH4 валентность атома углерода равна четырем. Если условно обозначить единицу валентности черточкой |, вышесказанное можно изобразить схематически:

Следовательно, валентность атома любого элемента есть число, которое показывает, со сколькими атомами одновалентного элемента связан данный атом в химическом соединении.

Численные значения валентности обозначают римскими цифрами над символами химических элементов:

Определение валентности

Однако водород образует соединения далеко не со всеми элементами, а вот кислородные соединения есть почти у всех элементов. И во всех таких соединениях атомы кислорода проявляют валентность, равную двум. Зная это, можно определять валентности атомов других элементов в их бинарных соединениях с кислородом. (Бинарными называются соединения, состоящие из атомов двух химических элементов.)

Чтобы это сделать, необходимо соблюдать простое правило: в химической формуле вещества суммарные числа единиц валентности атомов каждого элемента должны быть одинаковыми.

Так, в молекуле воды H2O общее число единиц валентности двух атомов водорода равно произведению валентности одного атома на соответствующий числовой индекс в формуле:

Так же определяют число единиц валентности атома кислорода:

По величине валентности атомов одного элемента можно определить валентность атомов другого элемента. Например, определим валентность атома углерода в молекуле углекислого газа СО2:

Согласно вышеприведенному правилу х ·1 = II · 2 , откуда х = IV .

Существует и другое соединение углерода с кислородом — угарный газ СО, в молекуле которого атом углерода соединен только с одним атомом кислорода:

В этом веществе валентность углерода равна II , так как х ·1 = II · 1 , откуда х = II :

Постоянная и переменная валентность

Как видим, углерод соединяется с разным числом атомов кислорода, т. е. имеет переменную валентность. У большинства элементов валентность — величина переменная. Только у водорода, кислорода и еще нескольких элементов она постоянна (см. таблицу).

Составление химических формул по валентности

Зная валентность элементов, можно составлять формулы их бинарных соединений. Например, необходимо записать формулу кислородного соединения хлора, в котором валентность хлора равна семи. Порядок действий здесь таков.

Еще один пример. Составим формулу соединения кремния с азотом, если валентность кремния равна IV , а азота — III .

Записываем рядом символы элементов в следующем виде:

Затем находим НОК валентностей обоих элементов. Оно равно 12 ( IV·III ).

Определяем индексы каждого элемента:

Записываем формулу соединения: Si3N4.

В дальнейшем при составлении формул веществ не обязательно указывать цифрами значения валентностей, а необходимые несложные вычисления можно выполнять в уме.

Краткие выводы урока:

  1. Численной характеристикой способности атомов данного элемента соединяться с другими атомами является валентность.
  2. Валентность водорода постоянна и равна единице. Валентность кислорода также постоянна и равна двум.
  3. Валентность большинства остальных элементов не является постоянной. Ее можно определить по формулам их бинарных соединений с водородом или кислородом.

Надеюсь урок 6 «Валентность» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Коэффициенты и индексы в химических уравнениях

По коэффициенту можно узнать, сколько всего молекул или атомов принимают участие в реакции. Индекс показывает, сколько атомов входит в молекулу. Уравнением реакции называется запись химического процесса с помощью химических формул и математических знаков.

В такой науке, как химия, такая запись называется схемой реакции. Если возникает знак «=», то называется «уравнение». Давайте расставлять коэффициенты. В Са одна частица, так как коэффициент не стоит. Индекс здесь тоже не написан, значит, единица. Справа уравнения Са тоже один. По Са нам не надо работать. Смотрим следующий элемент. Это кислород.

Индекс говорит о том, что здесь две частицы кислорода, а справа без индексов. То есть слева 2 молекулы, а с правой одна молекула. Что делаем? Никаких дополнительных индексов или исправлений в химическую формулу вносить нельзя, так как она написана правильно.

Коэффициенты

Коэффициенты – это то, что написано перед молекулами. Они уже имеют право меняться. Для удобства саму формулу не переписываем. Справа 1 умножаем на 2, чтобы получить и там 2 частицы кислорода.

После того как мы поставили коэффициент, получилось две частицы кальция. Слева же только одна. Значит, теперь перед кальцием мы должны поставить 2.

Теперь проверяем итог. Если количество молекул элементов равно с обеих сторон, то можем поставить знак «равно».

Следующий пример.

2 водорода слева, и после стрелочки у нас тоже 2 водорода. Смотрим дальше. Два кислорода до стрелочки, а после стрелочки индексов нет, значит, 1 атом. Слева больше, а справа меньше. Выходим из положения и ставим коэффициент 2 перед водой.

Умножили всю формулу на 2, и теперь у нас изменилось количество водорода. Умножаем индекс на коэффициент, и получается 4. А с левой стороны осталось две частицы водорода. Вот чтобы получить 4, мы должны водород умножить на 2.

Проверяем. Если везде одинаково, то ставим «равно».

Последний пример в элементарных реакциях.

Вот как раз случай, когда элемент в одной и в другой формуле с одной стороны до стрелочки. 1 атом серы слева и один — справа. Два атома кислорода да еще плюс два кислорода.

  • с левой стороны 4 кислорода;
  • с правой же стороны находится 3 кислорода;

То есть с одной стороны получается четное число атомов, а с другой — нечетное. Если же мы умножим нечетное в два раза, то получим четное число. Доводим сначала до четного значения. То есть сначала умножаем на 2 всю формулу после стрелочки. После умножения получаем 6 атомов кислорода, да еще и два атома серы. С левой же стороны имеем 1 атом серы. Уравниваем теперь серу. Ставим с левой стороны уравнения перед серой 2.

Реакция нейтрализации

Второй пример более сложный, так как здесь больше элементов вещества.

Эта реакция называется реакцией нейтрализации. Что здесь надо уравнивать в первую очередь?

  • с левой стороны 1 атом натрия;
  • с правой же стороны индекс говорит о том, что здесь два атома натрия;

Напрашивается вывод, что надо умножить всю формулу на два.

Теперь дальше смотрим, сколько есть серы. С левой и правой стороны по 1 атому серы. Дальше смотрим на кислород. С левой стороны мы имеем 6 атомов кислорода. С другой стороны – 5. Меньше справа, больше слева. Нечетное количество надо довести до четного значения. Для этого формулу воды умножаем на 2, то есть из одного атома кислорода делаем два.

Теперь с правой стороны уже 6 атомов кислорода. С левой стороны тоже 6. Кислород уравнен. Проверяем водород. Два водорода и еще два водорода будет 4 водорода с левой стороны. Смотрим с другой стороны. Здесь также 4 водорода. Все элементы уравнены. Ставим знак «равно».

Следующий пример:

Он интересен тем, что появились скобки. Скобки говорят о том, что если множитель стоит за скобкой, то каждый элемент, стоящий в скобках, умножается на этот множитель. Здесь надо начать с азота, так как его меньше, чем кислорода и водорода. Слева азот 1, а справа, с учетом скобок, его два.

Справа же 2 атома водорода, а нужно 4. Мы просто выходим из положения и умножаем воду на 2, в результате чего получили 4 водорода. Отлично, водород уравняли. Если все элементы не уравнены, нельзя сказать что-то однозначно. Остался не уравненным кислород. До реакции присутствует 8 атомов кислорода, после – тоже 8.

Отлично, все элементы уравнены, можем ставить «равно».

Смотрим барий. Барий уравнен, его трогать не нужно. До реакции присутствуют два хлора, после — всего 1. Что же нужно сделать? Поставить 2 перед хлором после реакции.

Теперь за счет коэффициента, который только что поставили, после реакции два натрия, до реакции его тоже 2. Отлично, все остальное уравнено.

Видео

Из этого видео вы узнаете, как правильно расставлять коэффициенты в химических уравнениях.

Написание формулы по валентности

Валентность — способность атома присоединять то или иное число других атомов с образованием химической связи (см. «Что такое валентность»).

Для того, чтобы выводить химические формулы веществ по валентности элементов, необходимо знать, как минимум, валентности наиболее часто встречающихся элементов.

Алгоритм написания химической формулы вещества по валентности элементов, входящих в него:

  1. записать химические знаки элементов, входящих в вещество;
  2. определить валентность этих элементов;
  3. найти наименьшее общее кратное для валентностей этих элементов;
  4. определить индексы для атомов.

Составление формулы оксидов по валентности элементов

В качестве примера составим формулу оксида железа (III).

  1. В оксид железа входят железо и кислород: Fe O;
  2. Указываем валентность этих элементов: Fe III O II ;
  3. Находим наименьшее общее кратное (НОК): 3·2=6;
  4. Делим НОК на число единиц валентности каждого элемента:
    • для Fe — 6:3=2;
    • для O — 6:2=3.
  5. Записываем полученные индексы справа внизу от элемента: Fe2O3.

Составление формулы оснований

Важный нюанс, который неободимо знать — группы атомов могут рассматриваться, как единое целое.

Составление формул оснований по валентности элементов отличается от составления формулы оксидов лишь тем, что вместо атома кислорода в формуле стоит гидроксогруппа OH. В случае, если гидроксогруппа в формуле повторяется несколько раз, она берется в скобки.

В качестве примера составим составим формулу гидроксида магния.

На первом месте в основаниях стоит атом металла, гидроксогруппа — на втором.

Составление формулы солей

В солях «роль» гидроксогруппы OH играют кислотные остатки.

На первом месте в формуле средней соли стоит атом(ы) металла, кислотный остаток — на втором.

В качестве примера составим формулу соли фосфата натрия.

Составление формулы кислот

На первом месте в формуле кислот стоит атом(ы) водорода, кислотный остаток — на втором.

В качестве примера составим формулу серной кислоты.

Потренируемся в решении обратной задачи, когда по готовой формуле надо определить валентность элементов.

Определение валентности по готовой формуле

«Фишка» решения подобных задач заключается в том, что некоторые химические элементы в любых соединениях, в которые они входят, имеют постоянную валентность.

Элементы с постоянной валентностью:

  • валентность I: H, F, Li, Na, K, Rb, Cs
  • валентность II: O, Mg, Ca, Sr, Ba, Zn
  • валентность III: Al

Большинство элементов в различных соединениях могут принимать различную валентность,, т. е., образовывать различное число химических связей.

Для нахождения валентности элементов с переменной валентностью в том или ином соединении используют правило валентности.

x·m=y·n
в бинарных соединениях типа AmBn произведение валнетности элемента A(x) на кол-во его атомов m равно произведению валентности элемента B(y) на число его атомов n

Определим, используя правило валентности, валентность фософра в соединении P2O5.

Поскольку валентность кислорода равна II, то:

Теперь решим ту же задачу, используя алгоритм, описанный выше для выведения формулы по валентности, который будем применять «сзади-наперёд».

Определим валентность фосфора и кислорода в соединении P2O5.

  1. P2O5
  2. валентность кислорода равна двум: P2O5 II
  3. общее число единиц валентности всех атомов вещества будет равно 2·5=10
  4. делим общее число единиц валентности (10) на индекс кислорода, валентность которого известна: 10:2=5 — это и будет валентность неизвестного, в нашем случае, фосфора
  5. P2 V O5 II

Немного усложним задачу и определим валентность элементов в соли кислородсодержащей кислоты Al2(SO4)3.

  1. решение задачи начинается с элемента с известной валентностью, т. е., с кислорода — определяем кол-во его атомов: 4·3=12
  2. с учётом того, что валентность кислорода равна 2, находим общее число единиц валентности для кислорода: 12·2=24
  3. по аналогии вычисляем общее число единиц валентности для атомов алюминия (валентность=3): 2·3=6
  4. от общего числа единиц валентности кислорода вычитаем общее число единиц валентности алюминия: 24-6=18 — это общее число единиц валентности, которое будет приходиться на серу
  5. по аналогии с кислородом определяем число атомов серы, валентность которой неизвестна: 1·3=3
  6. чтобы узнать валентность серы следует разделить разность, найденную в п.4, на число атомов серы: 18:3=6
  7. Al2 III (S VI O4 II )3

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

источники:

http://liveposts.ru/articles/education-articles/himiya/koeffitsienty-i-indeksy-v-himicheskih-uravneniyah

http://prosto-o-slognom.ru/chimia_primery/001-valentnost.html

В математической области теории порядка , элемент из частично упорядоченного множества с наименьшим элементом 0 не является атомом , если 0 < и нет х , таких , что 0 < х < .

Эквивалентно, можно определить атом как элемент, который является минимальным среди ненулевых элементов, или, альтернативно, элемент, который покрывает наименьший элемент 0 .

Атомарные порядки

Фиг.2. : Решетки делителей 4, с упорядочением « является делителем из », атомная, с 2 является единственным атомом и coatom. Это не атомистично, поскольку 4 не может быть получено как наименьшее общее кратное атомов.

Обозначим <: отношение покрытия в частично упорядоченном множестве.

Частично упорядоченное множество с наименьшим элементом 0 является атомарный , если каждый элемент Ь  >  0 имеет атом А под ним, то есть, есть некоторые таким образом, что б  ≥   :>  0 . Каждый конечный частично упорядоченный набор с 0 является атомарным, но набор неотрицательных действительных чисел (упорядоченных обычным образом) не является атомарным (и фактически не имеет атомов).

Частично упорядоченное множество относительно атомарно (или сильно атомарно ), если для всех a  <  b существует такой элемент c , что a  <:  c  ≤  b, или, что то же самое, если каждый интервал [ ab ] атомарен. Каждый относительно атомарный частично упорядоченный набор с наименьшим элементом является атомарным. Каждый конечный ч.у. относительно атомарен.

Частично упорядоченный набор с наименьшим элементом 0 называется атомистическим (не путать с атомарным ), если каждый элемент является наименьшей верхней границей набора атомов. Линейный порядок с тремя элементами не является атомистическим (см. Рис. 2).

Атомы в частично упорядоченных множествах являются абстрактными обобщениями синглетонов в теории множеств (см. Рис. 1). Атомарность (свойство быть атомарным) обеспечивает абстрактное обобщение в контексте теории порядка способности выбирать элемент из непустого набора.

Coatoms

Термины коатом , коатомик и коатомизм имеют двойное определение. Таким образом, в частично упорядоченном множестве с наибольшим элементом 1 говорят, что

  • coatom является элемент покрыт 1 ,
  • набор является коатомным, если каждый b  <  1 имеет коатом c над ним, и
  • набор является коатомистическим, если каждый элемент является точной нижней границей набора коатомов.

использованная литература

  • Дэйви, BA; Пристли, HA (2002), Введение в решетки и порядок , Cambridge University Press , ISBN 978-0-521-78451-1

внешние ссылки

  • «Атом» . PlanetMath .
  • «Посеть» . PlanetMath .

Кратность
связи определяется количеством
электронных пар, участвующих в связи
между атомами. Химическая связь
обусловлена перекрыванием электронных
облаков. Если это перекрывание происходит
вдоль линии, соединяющей ядра атомов,
то такая связь называется σ-связью.
Она может быть образована за счет s
– s
 электронов, р
– р
 электронов, s
– р
 электронов.
Химическая связь, осуществляемая одной
электронной парой, называется одинарной.

Если
связь образуется более чем одной парой
электронов, то она называется кратной.

Кратная
связь образуется в тех случаях, когда
имеется слишком мало электронов и
связывающихся атомов, чтобы каждая
пригодная для образования связи валентная
орбиталь центрального атома могла
перекрыться с какой-либо орбиталью
окружающего атома.

Поскольку р-орбитали
строго ориентированы в пространстве,
то они могут перекрываться только в том
случае, если перпендикулярные межъядерной
оси р-орбитали
каждого атома будут параллельны друг
другу. Это означает, что в молекулах с
кратной связью отсутствует вращение
вокруг связи.

5. Полярность связи

Если
двухатомная молекула состоит из атомов
одного элемента, как, например, молекулы
Н2,
N2, Cl2 и
т. п., то каждое электронное облако,
образованное общей парой электронов и
осуществляющее ковалентную связь,
распределяется в пространстве симметрично
относительно ядер обоих атомов. В
подобном случае ковалентная связь
называется неполярной или гомеополярной.
Если же двухатомная молекула состоит
из атомов различных элементов, то общее
электронное облако смещено в сторону
одного из атомов, так что возникает
асимметрия в распределении заряда. В
таких случаях ковалентная связь
называется полярной или гетерополярной.

Для
оценки способности атома данного
элемента оттягивать к себе общую
электронную пару пользуются величиной
относительной электроотрицательности.
Чем больше электроотрицательность
атома, тем сильнее притягивает он общую
электронную пару. Иначе говоря, при
образовании ковалентной связи между
двумя атомами разных элементов общее
электронное облако смещается к более
электроотрицательному атому, и в тем
большей степени, чем больше различаются
электроотрицательности взаимодействующих
атомов. Значения электроотрицательности
атомов некоторых элементов по отношению
к электроотрицательности фтора, которая
принята равной 4, приведены в табл. 4.5.

Как
показывает табл. 4.5, электроотрицательность
закономерно изменяется в зависимости
от положения элемента в периодической
системе. В начале каждого периода
находятся элементы с наиболее низкой
электроотрицательностью – типичные
металлы, в конце периода (перед благородными
газами) – элементы с наивысшей
электроотрицательностью, т. е. типичные
неметаллы.

У
элементов одной и той же подгруппы
электроотрицательность с ростом заряда
ядра проявляет тенденцию к уменьшению.
Таким образом, чем более типичным
металлом является элемент, тем ниже его
электроотрицательность; чем более
типичным неметаллом является элемент,
тем выше его электроотрицательность.

Смещение
общего электронного облака при образовании
полярной ковалентной связи приводит к
тому, что средняя плотность отрицательного
электрического заряда оказывается выше
вблизи более электроотрицательного
атома и ниже – вблизи менее
электроотрицательного. В результате
первый атом приобретает избыточный
отрицательный, а второй – избыточный
положительный заряд; эти заряды принято
называть эффективными зарядами атомов
в молекуле.

Так,
в молекуле хлористого водорода общая
электронная пара смещена в сторону
более электроотрицательного атома
хлора, что приводит к появлению у атома
хлора эффективного отрицательного
заряда, равного 0,17 заряда электрона, а
у атома водорода такого же по абсолютной
величине эффективного положительного
заряда. Следовательно, молекула НС1
является полярной молекулой. Ее можно
рассматривать как систему из двух равных
по абсолютной величине, но противоположных
по знаку зарядов, расположенных на
определенном расстоянии друг от друга.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий