Как найти общее решение оду

Уважаемые студенты!
Заказать задачи по физике, информатике, экономике, праву и другим 200 предметам можно здесь всего за 10 минут.

Как решать дифференциальные уравнения

СОДЕРЖАНИЕ ТЕКУЩЕЙ СТАТЬИ

  1. Основные понятия и определения
    1. Определения
    2. Типы уравнений
    3. Алгоритм решения
  2. Дифференциальные уравнения первого порядка
    1. ДУ с разделяющимися переменными
    2. Однородные ДУ
    3. Линейные неоднородные ДУ
    4. ДУ Бернулли
    5. ДУ в полных дифференциалах
  3. Дифференциальные уравнения второго порядка
    1. ДУ допускающие понижение порядка
    2. Линейные однородные ДУ с постоянными коэффицентами
    3. Линейные неоднородные ДУ с постоянными коэффициентами
    4. Метод Лагранжа

Введите уравнение

Условия к задаче (необязательно)

Пример 1 Пример 2 Правила ввода

Дифференциальные уравнения бывают обыкновенными и в частных производных. В этой статье мы будем говорить об обыкновенных уравнениях и о том, как их решать.

Основные понятия и определения

Определения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие функцию $y(x)$ только от одной неизвестной переменной (например, $x$).

Рассмотрим это на следующих практических примерах. $$ y’ = xy $$ $$ y” = 1 $$

Итак, в первом диффуре присутствует независимая переменная $x$, неизвестная функция $y(x)$ и производная этой функции $y'(x)$. А во втором случае нет $x, y(x),y'(x)$, а есть только вторая производная функции $y”(x)$. Значит, для того, чтобы уравнение называлось дифференциальным необязательно иметь $y(x)$ и $x$, а должно быть производная $y(x)$ любого порядка.

Порядок дифференциального уравнения – это порядок старшей производной неизвестной функции $y(x)$ в уравнении.

В первом случае максимальная производная первого порядка, значит, и само ДУ первого порядка. А во втором случае уравнение имеет вторую производную $y”(x)$, поэтому это ДУ второго порядка. 

Общее решение дифференциального уравнения – это семейство функций $y = f(x,C)$, при подстановке которых в заданное исходное уравнение мы получаем равенство левой и правой части. Здесь $C$ произвольная константа. Процесс нахождения таких решений называется интегрированием дифференциального уравнения.

Частное решение дифференциального уравнения – это решение, полученное из общего решения, путем нахождения константы $C$ из дополнительных условий в задаче.

Типы уравнений

  1. ДУ первого порядка
    с разделяющимися переменными
    однородные
    линейные неоднородные
    уравнение Бернулли
  2. ДУ второго порядка
    уравнения допускающие понижение порядка
    однородные с постоянными коэффициентами
    неоднородные с постоянными коэффициентами 

Алгоритм решения

  1. По старшей производной функции $y(x)$ определить порядок ДУ
  2. Зная порядок, определить тип уравнения
  3. Узнав тип, подобрать подходящий метод решения
  4. Используя метод, найти общее решение
  5. Получить частное решение из общего путем вычисления неизвестной $C$

В некоторых случаях для решения дифференциальных уравнений удобно переписать производные в таком виде (например, это нужно для ДУ с разделяющимися переменными). $$y’ = frac{dy}{dx}$$

ОБЯЗАТЕЛЬНО! Чтобы успешно решать дифференциальные уравнения необходимо уметь находить интегралы. Поэтому, если вы забыли данную тему, то её нужно вспомнить!

Пример 1
Дана функция $y = Ce^{frac{x^2}{2}} $. Проверить является ли функция решением дифференциального уравнения $y’ = xy$
Решение

Для того, чтобы проверить является ли функция решением нужно подставить её в исходное ДУ. Найдем производную функции. $$y’ = (Ce^{frac{x^2}{2}})’ = Ce^{frac{x^2}{2}} cdot (frac{x^2}{2})’ = Ce^{frac{x^2}{2}} cdot x = Cxe^{frac{x^2}{2}}$$

Теперь подставим $y’$ и $y$ в исходное уравнение.

$$ Cxe^{frac{x^2}{2}} = x Ce^{frac{x^2}{2}} $$

Получили равенство левой и правой части, значит, функция $y = Ce^{frac{x^2}{2}} $ является общим решением ДУ.

Ответ
$$y = Ce^{frac{x^2}{2}} $$

Дифференциальные уравнения первого порядка

ДУ с разделяющимися переменными

Уравнения такого типа имеют следующий вид: $$ f_1(x)g_1(y)dy = f_2(x)g_2(y)dx$$ Общее решение такого ДУ нужно находить путем разделения переменных с иксами и с игреками: $$int frac{g_1(y)}{g_2(y)}dy = int frac{f_2(x)}{f_1(x)}dx$$

СОВЕТ: Если не удается определить тип диффура первого порядка, то рекомендуем мысленно попытаться разделить переменные иксы от игреков. Возможно перед вами хитрое дифференциальное уравнение с разделяющимися переменными.

Алгоритм нахождения общего решения:

  1. Переписываем производные через $y’ = frac{dy}{dx}$
  2. Разделяем все $y$ в левую часть уравнения, а все $x$ в правую
  3. Интегрируем обе части уравнения
Пример 2
Найти общее решение дифференциального уравнения первого порядка с разделяющимися переменными $y’ = xy$
Решение

Видим, что в условии задачи присутствует производная от неизвестной функции $y(x)$ первого порядка. Значит, перед нами диффур 1-го порядка.  Забегая вперед скажем, что данный диффур из задачи является дифференциальным уравнением с разделяющимися переменными. Что это означает? Это означает, что можно в уравнении перенести всё что содержит $y$ в левую часть равенства, а то, что содержит $x$ перенести в правую часть. То есть разделить “игрики” от “иксов” по разные стороны. Но прежде, чем это делать стоит переписать производную таким образом: $$y’ = frac{dy}{dx}$$

После замены производной игрека исходное уравнение приобретает такой формат:

$$frac{dy}{dx} = xy$$

Теперь, как сказали ранее, начинаем отделять игрики от иксов по разные стороны. Для этого обе части уравнения необходимо умножить на $dx$, а ещё разделить на $y$.

$$ frac{dy}{y} = xdx $$

Теперь необходимо проинтегрировать обе части уравнения, чтобы получить функцию $y$. Для этого навешиваем значок интеграла на обе части уравнения.

$$ int frac{dy}{y} = int xdx $$

Вспоминаем, что левый интеграл равен натуральному логарифму, а правый интеграл $frac{x^2}{2}$. А так как интеграл неопределенный, то необходимо прибавить константу $C$.

$$ ln|y| = frac{x^2}{2} + C $$

Теперь необходимо вытащить $y$ для того, чтобы записать окончательный ответ в виде общего решения. Для этого вспоминаем, что игрик в $ln|y| = x$ равен $y = e^x$. Поэтому продолжая решать наше уравнение получаем.

$$ y = e^{frac{x^2}{2} + C} $$

Далее вспоминаем свойство степеней $a^{x+y} = a^x cdot a^y$. Таким образом делаем преобразования нашего уравнения.
$$ y = e^{frac{x^2}{2}} cdot e^C $$

Так как $e^C$ это константа, то её можно переписать следующим видом $e^C = C$. И после этого получаем окончательный ответ исходного уравнения, называемый общим решением.

$$ y = Ce^{frac{x^2}{2}} $$

Ответ
$$ y = Ce^{frac{x^2}{2}} $$
Пример 3
Найти частное решение дифференциального уравнения первого порядка с разделяющимися переменными $y’ = frac{2x}{1+x^2}$, если $y(0) = 0$.
Решение

Начнем решать с того, что представим производную в исходном уравнении в виде $y’ = frac{dy}{dx}$:

$$ frac{dy}{dx} = frac{2x}{1+x^2} $$

Теперь разделяем переменные иксы от игреков по разные стороны равенства путем умножения обеих частей уравнения на $dx$:

$$ dy = frac{2x}{1+x^2} dx $$

Навешиваем знак интеграла на левую и правую часть, а затем решаем интегралы:

$$ int dy = int frac{2x}{1+x^2} dx $$

$$ y =  int frac{2x}{1+x^2} dx $$

Замечаем, что $(1+x^2)’ = 2x$. Поэтому $2x$ можно занести под знак дифференциала, чтобы решить интеграл:

$$ y = int frac{d(1+x^2)}{1+x^2} = ln (1+x^2) + C $$

Получили общее решение $y = ln (1+x^2) + C$. В условии задачи просят найти частное решение при условии $y(0) = 0$. Это означает, что нужно из последного условия найти константу $C$. Из $y(0) = 0$ видно, что $x = 0$, а $y = 0$. Подставляем их в общее решение дифференциального уравнения и вычисляем $C$:

$$ln(1+0^2)+C = 0$$ $$ln 1+C = 0$$ $$0 + C = 0$$ $$C=0$$

Теперь заменив в общем решении $C$ на ноль, получаем частное решение:

$$y = ln(1+x^2)$$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$y = ln(1+x^2)$$

Однородные ДУ

Чтобы проверить является ли предложенное уравнение однородным нужно заменить $x$ и $y$ на $lambda x$ и $lambda y$. Производную $y’$ заменять не нужно. Если все $lambda$ после элементарных преобразований удастся уничтожить, то перед вами однородное дифференциальное уравнение первого порядка.

Решается по следующему алгоритму:

  1. Проверить уравнение на однородность с помощью $lambda$
  2. Привести уравнение к виду $y’ = f(frac{y}{x})$
  3. Выполнить замену $frac{y}{x} = t$ и $y’ = t’x+t$
  4. Решить уравнение методом разделяющихся переменных
Пример 4
Найти общее решение дифференциального уравнения первого порядка $$y’ = frac{y}{x} – 1$$
Решение

Так как разделить переменные не получается, то проверим уравнение на однородность. Для этого вместо $x$ и $y$ выполним подстановку $lambda x$ и $lambda y$:

$$y’ = frac{lambda y}{lambda x} – 1$$

Выполняем сокращение $lambda$ в числителе и знаменателе:

$$y’ = frac{y}{x} – 1$$

После сокращения все $lambda$ уничтожились, значит перед нами однородное дифференциальное уравнение первого порядка. Решим его с помощью замены $frac{y}{x} = t$ и $y’ = t’x + t$:

$$ t’x + t = t – 1$$

Переносим $t$ в одну сторону и тем самым уничтожаем его:

$$ t’x = -1 $$

Теперь это ДУ с разделяющимися переменными. Запишем его в привычном для него виде: $$ frac{dt}{dx} x = -1 $$

Разделим переменные домножением на $dx$ и делением на $x$ обеих частей равенства:

$$dt = -frac{dx}{x}$$

Интегрируем обе части:

$$int dt = – int frac{dx}{x}$$

$$t = -ln|x|+C$$

Выполняем назад замену $t = frac{y}{x}$:

$$frac{y}{x} = -ln|x|+C$$

Умножаем обе части на $x$, чтобы получить окончательный ответ общего решения:

$$y = -xln|x| +Cx$$

Ответ
$$y = -xln|x| +Cx$$
Пример 5
Решить дифференциальное уравнение первого порядка $xy+y^2=(2x^2+xy)y’$
Решение

Сперва проверим уравнение на однородность. Подставляем $lambda$ вместо $x$ и $y$.

$$lambda x cdot lambda y + (lambda y)^2 = (2 (lambda x)^2 + lambda xcdot lambda y)y’$$

После вынесения $lambda$ слева и справа за скобки получаем $$ lambda^2(xy+y^2) = lambda^2(2x^2+xy)y’,$$ где все $lambda$ сокращаются. А это подтвержает однородность уравнения.

Перед тем, как выполнить замену $t = frac{y}{x}$ нужно привести исходное уравнение к виду $y = f(frac{y}{x})$. Для этого разделим левую и правую часть равенства на $x^2$: $$frac{y}{x}+frac{y^2}{x^2} = (2+frac{y}{x})y’.$$

Теперь производим замену $t = frac{y}{x}$ и $y’ = t’x+t$ в преобразованном уравнении: $$t+t^2=(2+t)(t’x+t).$$ Раскрываем скобки и сокращаем одинаковые слагаемые $$t+t^2 = 2t’x+2t+t’xt+t^2$$ $$2t’x+t’xt=-t.$$

Далее в полученном уравнении разделяем переменные $t$ и $x$ по разные стороны знака равенства. Для этого выносим за скобку $t’x$ $$t’x(2+t)=-t.$$ Делим на $t$ обе части уравнения $$t’xfrac{2+t}{t}=-1.$$ Представляем производную $t’ = frac{dt}{dx}$ и переносим $dx$ и $x$ в правую часть равенства $$frac{2+t}{t}dt = -frac{dx}{x}.$$

Интегрируем обе части уравнения $$int frac{2+t}{t}dt = – int frac{dx}{x}$$ $$int frac{2}{t}dt+int dt = -int frac{dx}{x}$$ $$2ln|t|+t = -ln|x|+C.$$

Выполняем обратную замену $t = frac{y}{x}$: $$2ln|frac{y}{x}|+frac{y}{x}=-ln|x|+C.$$ Упрощаем полученное равенство с помощью элементарных преобразований и свойств натурального логарифма $$2ln|y|-2ln|x|+frac{y}{x} = -ln|x|+C$$ $$2ln|y|+frac{y}{x}=ln|x|+C$$ $$2ln|y|+frac{y}{x}=ln|x|+ln|C|$$ $$2ln|y|+frac{y}{x}=ln|Cx|$$ $$ln y^2+frac{y}{x}=ln|Cx|$$ $$ln y^2 = ln|Cx|-frac{y}{x}$$ $$y^2 = Cxe^frac{-y}{x}.$$

Привели решение к такому виду через $y^2$. Это называется общим интегралом дифференциального уравнения. Ответ в таком виде остается в таком формате.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$y^2 = Cxe^frac{-y}{x}$$

Линейные неоднородные ДУ

Линейное неоднородное дифференциальное уравнение 1-го порядка имеет следующий вид $$y’+p(x)y=q(x).$$

Для его решения существует два способа: метод Бернулли и вариация произвольной постоянной. В первом методе нужно сделать замену на произведение двух функций $y = uv$, а во втором способе необходимо найти неизвестную функцию $C(x)$. 

Алгоритм метода Бернулли:

  1. Выполняем замену $y=uv$ и $y’ = u’v+uv’$
  2. Находим функции $u(x)$ и $v(x)$ с помощью решения системы двух уравнений
  3. Подставляем найденные $u(x)$ и $v(x)$ в уравнение $y=uv$, чтобы получить ответ

Алгоритм метода вариации произвольной постоянной:

  1. Решаем исходное уравнение в качестве однородного методом разделяющихся переменных
  2. В полученном общем решении заменяем константу $C$ на функцию $C(x)$
  3. Подставляем общее решение и его производную в исходное уравнение, чтобы найти $C(x)$
  4. Полученное $C(x)$ подставляем в общее решение однородного уравнения и записываем ответ
Пример 6
Найти частное решение дифференциального уравнения первого порядка методом Бернулли $xy’-2y=2x^4$, если $y(1)=0$.
Решение

Приводим уравнение к виду $y’+p(x)y=q(x)$ путем деления на $x$ обеих частей равенства $$y’-2frac{y}{x}=2x^3.$$

Делаем замену в полученном уравнении на $y=uv$ и $y’=u’v+uv’$ $$u’v+uv’-2frac{uv}{x}=2x^3.$$Выносим за скобку $u$, чтобы в дальнейшем составить систему уравнений: $$u’v+u(v’-2frac{v}{x})=2x^3.$$

Теперь приравниваем к нулю выражение в скобках и составляем систему уравнений $$begin{cases} v’ – 2frac{v}{x} = 0 \ u’v = 2x^3 end{cases},$$ в которой начнем сначала решать первое уравнение для нахождения функции $v(x)$. Разделяем в нём переменные $$begin{cases} frac{dv}{dx} = 2frac{v}{x} \ u’v = 2x^3 end{cases} Leftrightarrow begin{cases} frac{dv}{v} = 2frac{dx}{x} \ u’v = 2x^3 end{cases}.$$

Интегрируем первое уравнение в системе, чтобы получить функцию $v(x)$ $$begin{cases} ln|v| = 2ln|x| \ u’v = 2x^3 end{cases} Leftrightarrow begin{cases} v = x^2 \ u’v = 2x^3 end{cases}.$$

Теперь, зная, чему равно $v$ подставляем его во второе уравнение $$begin{cases} v=x^2 \ u’x^2 = 2x^3 end{cases} Leftrightarrow begin{cases} v=x^2 \ u = x^2+C end{cases}.$$

Записываем общее решение дифференциального уравнения $$y = uv Rightarrow y = x^4+Cx^2.$$

В условии задачи требуется найти частное решение из условия $y(1)=0$. Подставим в найденное общее решение $x=1$ и $y=0$, чтобы вычислить $C$ $$1^4+Ccdot 1^2 = 0 Rightarrow C = -1. $$

С учётом, что $C=-1$ записываем частное решение дифференциального уравнения $$y = x^4 – x^2.$$

Ответ
$$y = x^4 – x^2$$
Пример 7
Найти общее решение дифференциального уравнения первого порядка $y’sin x-ycos x = 1$ методом вариации произвольной постоянной $C$.
Решение

Перепишем уравнение в виде $$ y’ – y frac{cos x}{sin x} = frac{1}{sin x} .$$ Теперь записываем однородное дифференциальное уравнение $$y’ – y frac{cos x}{sin x} = 0,$$ решим его методом разделяющихся переменных: $$frac{dy}{dx} = y frac{cos x}{sin x}$$ $$int frac{dy}{y} = int frac{cos x}{sin x} dx.$$

Слева получается натуральный логарифм, а справа заносим косинус под знак дифференциала, чтобы получить логарифм синуса: $$ln|y| = ln|sin x| + C$$ $$y = Csin x.$$

Теперь заменяем константу $C$ на функцию $C(x)$ в полученном решении и находим производную $$y = C(x)sin x Rightarrow y’ = C'(x)sin x+ C(x)cos x.$$

Подставляем $y$ и $y’$ в неоднородное уравнение и решаем его относительно $C(x)$: $$C'(x)sin x+ C(x)cos x – C(x)sin x frac{cos x}{sin x} = frac{1}{sin x}$$ $$C'(x)sin x = frac{1}{sin x}$$ $$C'(x) = frac{1}{sin^2 x}.$$

В последнем уравнении можно разделить переменные, что и делаем, а затем интегрируем: $$ d(C(x)) = int frac{dx}{sin^2 x}$$ $$C(x) = -ctg x + C.$$

Берем решение $y = C(x)sin x$ и подставляем в него найденное $C(x) = -ctg x + C$ $$y = (-ctg x + C) sin x = Csin x – cos x.$$ Таким образом получили общее решение дифференциального уравнения $y = Csin x – cos x$.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$y = Csin x – cos x$$

ДУ Бернулли

Дифференциальное уравнение Бернулли имеет следующий вид $$y’ + g(x)y = f(x)y^alpha qquad (alpha neq 0), (alpha neq 1).$$

Алгоритм решения: 

  1. Выполняем подстановку $y = z^frac{1}{1-alpha}$
  2. После подстановки получаем линейное уравнение $z’+p(x)z=q(x)$
  3. Решив линейное уравнение делаем обратную замену $z = y^{1-alpha}$
Пример 8
Найти общее решение дифференциального уравнения первого порядка $y’+y=xy^2$.
Решение

Это уравнение Бернулли. Видим, что $alpha = 2$. Значит делаем замену на $y = z^frac{1}{1-alpha} = z^{-1}$. Отсюда $y’ = -frac{1}{z^2} cdot z’$. После подстановки в исходное уравнение имеем $$ -frac{z’}{z^2}+frac{1}{z}=frac{x}{z^2}.$$

Умножаем обе части равенства на $(-z^2)$, чтобы привести уравнение к линейному ДУ $$z’-z=-x, $$ которое можно решить методом Бернулли, либо вариацией произвольной постоянной. Выберем первый способ.

Применяем подстановку $y=uv$ и $y’=u’v+uv’$ для последнего уравнения $$u’v+uv’-uv=-x.$$ Выносим за скобку $u$, чтобы затем построить систему уравнений для нахождения функций $u(x)$ и $v(x)$ $$u’v+u(v’-v) = -x.$$ Приравниваем к нулю скобку и получаем систему $$begin{cases} v’-v = 0 \ u’v = -x end{cases}.$$

Начинаем решать её с первого уравнения. Разделяем в нем переменные и затем интегрируем $$begin{cases} int frac{dv}{v} = int dx \ u’v = -x end{cases} Leftrightarrow begin{cases} ln|v| = x \ u’v = -x end{cases} Leftrightarrow begin{cases} v = e^x \ u’v = -x end{cases}. $$

Зная, что $v = e^x$ подставляем его во второе уравнение системы и решаем $$begin{cases} v = e^x \ u’ = -frac{x}{e^x} end{cases} Leftrightarrow begin{cases} v = e^x \ u = int (-x)e^{-x} dx end{cases}.$$

Для взятия интеграла воспользуемся методом интегрирования по частям $$u = int (-x)e^{-x} dx = begin{vmatrix} u = -x & du = -dx \ dv = e^{-x}dx & v = -e^{-x} end{vmatrix} = xe^{-x} – int e^{-x} dx = xe^{-x} +e^{-x} + C$$

Итак, получаем, что $$z = uv Rightarrow z = (xe^{-x} + e^{-x}+C) e^x = Ce^x +x + 1. $$ Вспоминаем, что была ещё одна замена в самом начале решения задачи $y = z^{-1}$, поэтому общее решение выглядит следующим образом $$y = frac{1}{Ce^x + x + 1}.$$

Ответ
$$y = frac{1}{Ce^x + x + 1}$$

ДУ в полных дифференциалах

Дифференциальные уравнения в полных дифференциалах имеют следующий вид $$P(x,y) dx + Q(x,y) dy = 0, $$ при выполнении условия $frac{partial P}{partial y} = frac{partial Q}{partial x} $.

Алгоритм решения заключается в том, чтобы найти функцию $U(x,y)=C$, полный дифференциал которой, есть исходное ДУ:

  1. Проверяем условие, подтверждающее, что перед нами ДУ в полных дифференциалах
  2. Получаем $U(x,y)$ интегрируя функцию $P(x,y)$ по переменной $x$. В результате этого появится неизвестная функция $varphi(y)$ 
  3. Дифференцируем $U(x,y)$ по $y$ и приравниваем к $Q(x,y)$, чтобы найти $varphi(y)$
Пример 9
Найти общий интеграл $U(x,y)=C$ дифференциального уравнения $$(2x+5y)dx+(5x+3y^2)dy=0.$$
Решение

Убедимся, что данное уравнение в полных дифференциалах. Для этого проверим условие $frac{partial P}{partial y} = frac{partial Q}{partial x} $. Находим производные $$ P’_y = (2x+5y)’_y = 5, Q’_x = (5x+3y^2)’_x = 5, $$ и видим, что условие выполняется $P’_y=P’_x=5$.

Находим функцию $U(x,y)$ беря интеграл по $x$ от функции $P(x,y)$ $$U(x,y) = int (2x+5y) dx = x^2 + 5yx + varphi(y).$$

Далее необходимо продифференцировать найденную $U(x,y)$ по $y$ $$U’_y = 5x + varphi'(y).$$

 Осталось найти неизвестную функцию $varphi(y)$ приравняв $U’_y$ к $Q(x,y)$: $$5x + varphi'(y) = 5x+3y^2$$ $$varphi'(y) = 3y^2$$ $$varphi(y) = int 3y^2 dy = y^3 + C.$$

Теперь зная чему равна $varphi(y)$ подставляем её в $U(x,y)$ $$U(x,y)=x^2+5xy+y^3+C.$$

Записываем ответ в таком виде $$x^2+5xy+y^3 = C.$$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$x^2+5xy+y^3 = C.$$

Дифференциальные уравнения второго порядка

ДУ допускающие понижение порядка

Дифференциальные уравнения, допускающие понижение порядка бывают двух видов:

  1. Без функции $y$: $F(x,y’,y”)=0$
  2. Без переменной $x$: $F(y,y’,y”)=0$

Для решения таких диффуров в первом случае делаем замену $y’ = p(x)$, а во втором $y’ = p(y)$.

Пример 10
Найти частное решение дифференциального уравнения второго порядка $xy”+y’=0$ при условиях $y(1) = 0$ и $y'(1)=1$.
Решение

Видим, что данный дифур попадает под первый случай, когда отсутствует в уравнении $y$, а есть только его производные. Значит, делаем замену $y’ = p(x)$ $$xp’+p=0.$$

Данное уравнение имеет разделяющиеся переменные. Начнем с того, что перепишем уравнение через $p’ = frac{dp}{dx}$ $$xfrac{dp}{dx} = -p.$$ Разделяем переменные налево и направо от знака равенства и затем интегрируем: $$ frac{dp}{p} = -frac{dx}{x}$$ $$ int frac{dp}{p} = -int frac{dx}{x}$$ $$ln|p| = -ln|x|+C_1.$$ Теперь избавимся от логарифмов, чтобы получить $p$: $$p = e^{-ln|x| + C_1}$$ $$p = frac{C_1}{x}.$$

Вспоминаем про ранее выполненную замену $$y’ = p(x) = frac{C_1}{x}.$$ Интегрируем для того, чтобы найти $y$ $$y = int frac{C_1}{x} dx = C_1 ln|x| + C_2.$$

Таким образом, общее решение дифференциального уравнения $$y = C_1 ln|x| + C_2.$$

Займемся поиском частного решения. Для этого используем два дополнительных равенства из условия задачи: $$y(1) = 0 Rightarrow C_1 ln|1| + C_2 = 0 Rightarrow C_2 = 0$$ $$y'(1)=1 Rightarrow frac{C_1}{1} = 1 Rightarrow C_1 = 1.$$

Записываем частное решение дифференциального уравнения $$y = ln|x|.$$

Ответ
$$y = ln|x|$$
Пример 11
Найти частное решение дифференциального уравнения второго порядка $$yy”+y’^2 = 1, qquad y(0) = 1, y'(0) = 1.$$
Решение

Видим, что в диффуре отсутствует в явном виде переменная $x$, поэтому необходимо сделать замену $y’ = p(y)$ и отсюда $y” = p'(y)cdot y’ = p'(y)p$.

Делаем замену и получаем уравнение $$yp'(y)p + p^2 = 1,$$ которое решим методом разделения переменных: $$ypfrac{dp}{dy} = 1-p^2$$ $$frac{p}{1-p^2}dp = frac{1}{y}dy.$$ Далее по плану необходимо проинтегрировать обе части уравнения, чтобы получить $p$ $$int frac{p}{1-p^2}dp = int frac{1}{y}dy.$$

В первом интеграле заносим под знак дифференциала $1-p^2$, чтобы получился натуральный логарифм, а во втором, используя таблицу интегрирования можно сразу записать ответ: $$-frac{1}{2} int frac{d(1-p^2)}{1-p^2} = ln|y| + C $$ $$-frac{1}{2} ln|1-p^2| = ln|y| + C.$$ 

Необходимо избавиться от логарифмов. Умножим обе части равенства на $(-2)$, а затем занесем эту двойку над икреком: $$ln|1-p^2| = -2ln|y|+C$$ $$ln|1-p^2| = ln frac{1}{y^2} + C.$$

Итак, теперь убирая логарифмы получаем: $$1-p^2 = C frac{1}{y^2}$$ $$p^2 = 1 – Cfrac{1}{y^2}$$ $$(y’)^2 = 1 – Cfrac{1}{y^2}.$$

Теперь найдем значение константы $C$ благодаря дополнительным условиям задачи $y = 1$ и $y’ = 1$. Подставляем их в последнее уравнение $$1^2 = 1 – Cfrac{1}{1^2} Rightarrow C = 0.$$

Зная теперь, что $C=0$ подставляем его в уравнение $(y’)^2 = 1 – Cfrac{1}{y^2}$: $$(y’)^2 = 1$$ $$y’ = pm 1.$$ Из условия помним, что $y’ = 1 > 0$, значит, берем только решение $y’ = 1$ и продолжаем его решать интегрированием $$y = int 1 dx = x + C.$$

Осталось найти снова постоянную $C$ теперь уже из условия $y(0) = 1$ $$y(0) = 0 + C = 1 Rightarrow C = 1.$$ Вот теперь можно записать ответ в виде частного решения, которое требовалось найти по условию данной задачи $$y = x + 1.$$

Ответ
$$y = x + 1$$

Линейные однородные ДУ с постоянными коэффицентами

Линейность дифференциального уравнения заключается в том, что в уравнение входит неизвестная функция $y(x)$ и её производные только в первой степени, между собой не перемножаясь. Однородность определяется тем, что уравнение не содержит свободного члена. То есть он равен нулю.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами выглядит следующим образом $$y”+py’+qy = 0.$$ Чтобы его решить необходимо составить характиристический многочлен и найти его корни. Для этого нужно заменить $y$ на $lambda$, степень которых будет соответствовать порядку производной $$y” Rightarrow lambda^2, qquad y’ Rightarrow lambda, qquad y Rightarrow 1.$$

В зависимости от получившихся корней имеем общее решение в различных видах:

  1. Действительные корни $lambda_1 neq lambda_2$, тогда $y = C_1e^{lambda_1 x}+C_2e^{lambda_2 x}$
  2. Действительные корни $lambda_1 = lambda_2$, тогда $y = C_1e^{lambda_1 x}+C_2xe^{lambda_1 x}$
  3. Комплексные корни $lambda_{1,2} = alphapmbeta i$, тогда $y = C_1e^{alpha x}cos beta x + C_2e^{alpha x}sin beta x$.
Пример 12
Найти общее решение дифференциального уравнения второго порядка $y”+y’-2y = 0$.
Решение

Первым делом составляем характеристический многочлен. Заменяем $y$ на $lambda$ со степенями соответствующими порядку производной $y$ $$lambda^2 + lambda -2 = 0.$$

Обратите внимание, что $y$ имеет производную нулевого порядка, поэтому он заменяется на $lambda^0 = 1$. Итак, перед нами квадратное уравнение, начинаем решать: $$lambda_{1,2} = frac{-1pm sqrt{1^2-4cdot 1 cdot (-2)}}{2cdot 1} = frac{-1pm 3}{2}$$ $$lambda_1 = -2, qquad lambda_2 = 1.$$

Так как получили отличающиеся действительные корни, то общее решение записывается следующим образом $$y = C_1 e^{-2x} + C_2 e^{x}.$$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$y = C_1 e^{-2x} + C_2 e^{x}$$

Линейные неоднородные ДУ с постоянными коэффициентами

Линейное неоднородное ДУ с постоянными коэффициентами отличается от предыдущего типа уравнений наличием правой части от знака равенства $$y”+py’+q = f(x).$$

Общее решение такого диффура складывается из двух частей: общего решения однородного уравнения и частного решения неоднородного уравнения $$y_text{о.н.} = y_text{о.о.} + y_text{ч.н.}.$$

Частное решение неоднородного уравнения $y_text{ч.н.}$ подбирается исходя из вида правой части дифференциального уравнения. Затем в нём неизвестные постоянные находятся методом неопределенных коэффициентов.

Правая часть Корни характеристического многочлена Вид частного решения
1 $$P_n (x)$$ Число 0 не является корнем характеристического уравнения. $$tilde{P_n}(x)$$
Число 0 – корень характеристического уравнения кратности $S$. $$x^s tilde{P_n}(x)$$
2 $$P_n (x) e^{alpha x}$$ Число $alpha$ не является корнем характеристического уравнения. $$tilde{P_n} (x) e^{alpha x}$$
Число $alpha$ является корнем характеристического уравнения кратности $S$. $$x^s tilde{P_n} (x) e^{alpha x}$$
3 $$P_n (x) cos beta x + Q_m (x) sin beta x$$ Число $pm ibeta$ не является корнем характеристического уравнения. $$tilde {P_n} cos beta x + tilde{Q_m} sin beta x$$
Число $pm ibeta$ является корнем характеристического уравнения кратности $S$. $$x^s (tilde {P_n} cos beta x + tilde{Q_m} sin beta x)$$
4 $$e^{alpha x}[P_n (x) cos beta x + Q_m (x) sin beta x]$$ Число $alpha pm ibeta$ не является корнем характеристического уравнения. $$e^{alpha x}[P_n (x) cos beta x + Q_m (x) sin beta x]$$
Число $alpha pm ibeta$ является корнем характеристического уравнения. $$x^s e^{alpha x}[P_n (x) cos beta x + Q_m (x) sin beta x]$$
Пример 13
Найти общее решение дифференциального уравнения второго порядка $y”+y = 4xcos x$.
Решение

Сначала находим общее решение однородного уравнения $$y” + y = 0.$$ Строим характеристический многочлен $$lambda^2 + 1 = 0,$$ и находим его корни $$lambda_{1,2}=pm i.$$ Записываем получившееся общее решение однородного уравнения $$y_text{о.о.} = C_1 cos x + C_2 sin x.$$

Теперь необходимо подобрать частное решение неоднородного уравнения. Для этого смотрим на правую часть исходного уравнения и видим, что здесь многочлен первой степени умножается на косинус. Значит, необходимо выбрать из таблицы 3й случай. Причем корень характеристического уравнения совпадает с аргументом косинуса. Это значит, что требуется домножение на $x$ $$y_text{ч.н.} = x[(Ax+B)cos x + (Cx+D)sin x].$$Упростим последнее равенство и найдем от него вторую производную: $$y_text{ч.н.} = (Ax^2+Bx)cos x + (Cx^2 + Dx) sin x$$ $$y’_text{ч.н.} = (2Ax+B)cos x-(Ax^2+Bx)sin x + (2Cx+D)sin x + (Cx^2 + Dx) cos x.$$

Упростим $y’_text{ч.н}$ для удобства нахождения второй производной $$y’_text{ч.н.} = (2Ax+B+Cx^2+Dx)cos x + (2Cx+D-Ax^2-Bx)sin x.$$ Теперь можно найти вторую производную $$y”_text{ч.н.} = (2A+2Cx+D)cos x-(2Ax+B+Cx^2+Dx)sin x + (2C-2Ax-B)sin x + (2Cx+D-Ax^2-Bx)cos x.$$ Упрощаем последнее выражение $$y”_text{ч.н.} = (2A+4Cx+2D-Ax^2-Bx)cos x + (2C-4Ax-2B-Cx^2-Dx)sin x.$$

Подставляем найденные $y_text{ч.н.}$ и $y”_text{ч.н.}$ в исходный диффур из “дано” задачи $$(2A+4Cx+2D-Ax^2-Bx)cos x + (2C-4Ax-2B-Cx^2-Dx)sin x + (Ax^2+Bx)cos x + (Cx^2 + Dx) sin x = 4xcos x.$$ Упрощаем его $$(2A+4Cx+2D)cos x + (2C-4Ax-2B)sin x = 4xcos x.$$ Теперь подгоняем левую часть под правую, так чтобы можно было применить метод неопределенных коэффициентов и найти неизвестные $A,B,C,D$ $$(2A+2D)cos x+4Cxcos x + (2C-2B)sin x+(-4Ax)sin x = 4xcos x.$$ Смотрим на левую и правую часть и составляем систему $$begin{cases} 2A+2D = 0 \ 4C=4 \ 2C-2B=0 \ -4A = 0 end{cases} Leftrightarrow begin{cases} D=0 \ C= 1 \ B=1 \ A = 0end{cases}.$$

Подставляем полученные коэффициенты в частное решение неоднородного уравнения $$y_text{ч.н.} = xcos x + x^2sin x.$$ Теперь вспоминая, что $y_text{о.н.} = y_text{о.о.} + y_text{ч.н.}$ можем записать окончательный ответ $$y_text{о.н.} = C_1 cos x + C_2 sin x + xcos x + x^2sin x.$$

Ответ
$$y = C_1 cos x + C_2 sin x + xcos x + x^2sin x$$
Пример 14
Найти общее решение дифференциального уравнения второго порядка $y”+y’=5x+2e^x$.
Решение

Сначала найдем общее решение однородного дифференциального уравнения $$y”+y’=5x+2e^x.$$

Составляем характеристический многочлен однородного уравнения и находим его корни: $$lambda^2 + lambda = 0$$ $$lambda(lambda + 1) = 0$$ $$lambda_1 = 0, qquad lambda_2=-1.$$ Теперь можно записать общее решение $$y_text{о.о.} = C_1 + C_2e^{-x}.$$

Далее необходимо по правой части исходного неоднородного уравнения найти его частное решение путем подбора, используя данные таблицы. Первое слагаемое есть многочлен первой степени. И так как один из корней характеристического уравнения является нулем кратности 1, то решение ищем в виде $y = (Ax+B)x$. Второе слагаемое представляет собой произведение многочлена нулевой степени на экспоненту. Так как аргумент экспоненты не совпадает с одним из корней характеристического многочлена, то подбор будем делать в виде $y = Ce^x$. В итоге правую часть будем искать в виде суммы $$y_text{ч.н.} = (Ax+B)x+Ce^x.$$

Находим первую и вторую производную последней функции: $$y’ = 2Ax+B+Ce^x$$ $$y”=2A+Ce^x.$$ Подставляем полученные производные $y’$ и $y”$ в исходное дифференциальное уравнение: $$2A+Ce^x+2Ax+B+Ce^x = 5x+2e^x$$ $$2Ax+B+2A+2Ce^x=5x+2e^x.$$

Далее необходимо, используя метод неопределенных коэффициентов, найти значения $A,B,C$ составив систему уравнений $$begin{cases} 2A=5 \ 2C=2 \ B+2A = 0 end{cases} Leftrightarrow begin{cases} A=frac{5}{2} \ C=1 \ B=-5 end{cases}.$$

Подставляем найденные коэффициенты и получаем частное решение неоднородного уравнения $$y_text{ч.н.} = (frac{5}{2}x-5)x + e^x = frac{5}{2}x^2 – 5x + e^x.$$

Таким образом теперь можно записать общее решение неоднородного диффура $$y_text{о.н.} = y_text{о.о.} + y_text{ч.н.}=C_1 + C_2e^{-x} + frac{5}{2}x^2 – 5x + e^x.$$

Ответ
$$y = C_1 + C_2e^{-x} + frac{5}{2}x^2 – 5x + e^x$$

Метод Лагранжа

Данный метод позволяет решать линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами даже в тех, случаях, когда правая часть уравнения не подходит под табличный вид. В этом случае целесообразно применить данный метод решения.

  1. Находим общее решение однородного уравнения $y = C_1 y_1(x) + C_2 y_2(x)$
  2. Варьируем постоянные $C_1$ и $C_2$ на функции $C_1(x)$ и $C_2(x)$
  3. Решаем систему методом Крамера $begin{cases} C_1 ‘(x) y_1 (x) + C_2 ‘(x) y_2 (x) = 0 \ C_1 ‘(x) y_1 ‘(x) + C_2 ‘(x) y_2 ‘(x) = f(x) end{cases} $
  4. Получаем $C_1(x)$ и $C_2(x).$
Пример 15
Найти частное решение дифференциального уравнения $$y”-2y’+y=frac{e^x}{x}, text{ при } y(1)=e, y'(1)=3e.$$
Решение

Так как правая часть диффура не подходит под табличный формат, то не получится подбирать частное решение по правой части как делали это в предыдущем примере. Воспользуется методом Лагранжа или как его еще называют вариация произвольной постоянной. Для начала найдем общее решение однородного уравнения $$y”-2y’+y=0.$$

Составляем характеристический многочлен и находим его корни: $$lambda^2-2lambda+1=0$$ $$(lambda-1)^2 = 0 Rightarrow lambda = 1 text{ с кратностью 2}.$$ Так как корень кратный, то общее решение однородного уравнения записывается следующим образом $$y = C_1 e^x + C_2 xe^x.$$

Теперь необходимо варьировать постоянные $C_1$ и $C_2$ на соответствующие функции $C_1 (x)$ и $C_2 (x)$. Теперь получившееся решение следует записать в виде $y = C_1 (x) e^x + C_2 (x) xe^x$. Здесь заметим, что $y_1 = e^x$ и $y_2 = xe^x$. Это нужно для дальнейшего хода решения, а именно построения системы уравнений.

Составляем систему уравнений и решаем её методом Крамера $$begin{cases} C_1 ‘(x) e^x+C_2 ‘(x) xe^x = 0 \C_1 ‘(x) e^x + C_2 ‘(x) (e^x+xe^x) = frac{e^x}{x} end{cases}.$$ Находим главный определитель системы $$Delta = begin{vmatrix} e^x & xe^x \ e^x & e^x+xe^x end{vmatrix} = e^x(e^x+xe^x)-xe^{2x} = e^{2x}.$$ Вычисляем дополнительные определители: $$Delta_1 = begin{vmatrix} 0 & xe^x \ frac{e^x}{x} & e^x + xe^x end{vmatrix} = -xe^x frac{e^x}{x} = e^{2x}$$ $$Delta_2 = begin{vmatrix} e^x & 0 \ e^x & frac{e^x}{x} end{vmatrix} = e^x frac{e^x}{x} = frac{e^{2x}}{x}.$$

Итак, получаем решение системы уравнений $$C_1 ‘(x) = frac{Delta_1}{Delta} = frac{e^{2x}}{e^{2x}} = 1, qquad C_2 ‘(x) = frac{Delta_2}{Delta} = frac{e^{2x}}{x} frac{1}{e^{2x}} = frac{1}{x}.$$ Далее интегрируем полученные решения, чтобы избавиться от производной: $$C_1(x) = int 1 dx = x+tilde{C_1}$$ $$C_2(x)=int frac{dx}{x}=ln|x|+tilde{C_2}.$$

Подставляем полученные $C_1(x)$ и $C_2(x)$ в общее решение однородного уравнения и записываем общее решение неоднородного дифференциального уравнения $$y = (x+tilde{C_1}) e^x + (ln|x|+tilde{C_2}) xe^x.$$ По условию нам требуется найти частное решение при условиях $y(1)=e$ и $y'(1)=3e$. Поэтому находим сначала производную $$y’=e^x+(x+tilde{C_1})e^x+e^x+(ln|x|+tilde{C_2})(e^x+xe^x), $$ раскрываем скобки $$y’ = 2e^x+xe^x+tilde{C_1}e^x+e^xln|x|+xe^xln|x|+tilde{C_2}e^x+tilde{C_2}xe^x,$$ а затем составляем систему уравнений $$begin{cases} y'(1)=3e+tilde{C_1}e+2tilde{C_2}e = 3e \ y(1) = e+tilde{C_1}e + tilde{C_2}e = e end{cases} Rightarrow begin{cases} tilde{C_1}+2tilde{C_2}=0 \ tilde{C_1}+tilde{C_2}=0 end{cases} Rightarrow begin{cases} tilde{C_2} = 0 \ tilde{C_1}=0 end{cases}.$$

Теперь можно записать частное решение к задаче $$y = xe^x + xln|x|e^x = xe^x(1+ln|x|).$$

Ответ
$$y = xe^x(1+ln|x|)$$

Существует целый ряд задач, в которых установить прямую связь между величинами, применяемыми для описания процесса, не получается. Единственное, что можно сделать, это получить равенство, запись которого включает производные исследуемых функций, и решить его. Решение дифференциального уравнения позволяет установить непосредственную связь между величинами.

В этом разделе мы займемся разбором решений дифференциальных уравнений, неизвестная функция в которых является функцией одной переменной. Мы построили теоретическую часть таким образом, чтобы даже человек с нулевым представлением о дифференциальных уравнениях мог без труда получить необходимые знания и справиться с приведенными задачами.

Если какие-то термины окажутся для вас новыми, обратитесь к разделу «Определения и понятия теории дифференциальных уравнений». А тем временем перейдем к рассмотрению вопроса о видах дифференциальных уравнений.

Для каждого из видов дифференциальных уравнений применяется свой метод решения. В этом разделе мы рассмотрим все эти методы, приведем примеры с подробными разборами решения. После ознакомления с темой вам необходимо будет определять вид дифференциального уравнения и выбирать наиболее подходящий из методов решения поставленной задачи.

Возможно, прежде чем приступить к решению дифференциальных уравнений, вам придется освежить в памяти такие темы как «Методы интегрирования» и «Неопределенные интегралы».

Начнем ознакомление с темой мы с видов обыкновенных дифференциальных уравнений 1-го порядка. Эти уравнения могут быть разрешены относительно производной. Затем перейдем в ОДУ 2-го и высших порядков. Также мы уделим внимание системам дифференциальных уравнений.

Напомним, что y’=dxdy, если y является функцией аргумента x.

Дифференциальные уравнения первого порядка

Простейшие дифференциальные уравнения первого порядка вида y’=f(x)

Начнем с примеров таких уравнений.

Пример 1

y’=0, y’=x+ex-1, y’=2xx2-73

Оптимальным для решения дифференциальных уравнений f(x)·y’=g(x) является метод деления обеих частей на f(x). Решение относительно производной позволяет нам прийти к уравнению вида y’=g(x)f(x). Оно является эквивалентом исходного уравнения при f(x) ≠ 0.

Пример 2

Приведем примеры подобных дифференциальных уравнений:

ex·y’=2x+1, (x+2)·y’=1

Мы можем получить ряд дополнительных решений в тех случаях, когда существуют значения аргумента х, при которых функции f(x) и g(x) одновременно обращаются в 0. В качестве дополнительного решения в уравнениях f(x)·y’=g(x) при заданных значениях аргумента может выступать любая функция, определенная для заданного значения х.

Пример 3

Наличие дополнительных решений возможно для дифференциальных уравнений x·y’=sin x, (x2-x)·y’=ln(2×2-1)

Ознакомиться с теоретической частью и примерами решения задач таких уравнений вы можете в разделе «Простейшие дифференциальные уравнения 1-го порядка».

Дифференциальные уравнения с разделяющимися переменными вида f1(y)·g1(x)dy=f2(y)·g2(x)dx или f1(y)·g1(x)·y’=f2(y)·g2(x)

Поговорим теперь об уравнениях с разделенными переменными, которые имеют вид f(y)dy=g(x)dx. Как следует из названия, к данному виду дифференциальных уравнений относятся выражения, которые содержат переменные х и у, разделенные знаком равенства. Переменные находятся в разных частях уравнения, по обе стороны от знака равенства.

Решить уравнения с разделенными переменными можно путем интегрирования обеих его частей: ∫f(y)dy=∫f(x)dx

Пример 4

К числу дифференциальных уравнений с разделенными переменными можно отнести следующие из них:

y23dy=sin xdx, eydy=(x+sin 2x)dx

Для того, чтобы прийти от ДУ с разделяющимися переменными к ДУ с разделенными переменными, необходимо разделить обе части уравнения на произведение f2(y) ⋅ g1(x). Так мы придем к уравнению f1(y)f2(y)dy=g2(x)g1(x)dx. Преобразование можно будет считать эквивалентным в том случае, если одновременно f2(y) ≠ 0 и g1(x) ≠ 0. Если хоть одно из условий не будет соблюдаться, мы можем потерять часть решений.

Пример 5

В качестве примеров дифференциальных уравнений с разделяющимися переменными можно привести следующие из них: dydx=y·(x2+ex), (y2+arccos y)·sin x·y’=cos xy.

К уравнениям с разделяющимися переменными мы можем прийти от ряда дифференциальных уравнений других видов путем замены переменных. Например, мы можем подставить в исходное уравнение z = ax+by. Это позволит нам перейти к дифференциальному уравнению с разделяющимися переменными от дифференциального уравнения вида y’=f(ax+by), a,b∈R.

Пример 6

Подставив z = 2x+3y в уравнение y’=1e2x+3y получаем dzdx=3+2ezez.

Заменив z=xy или z=yx в выражениях y’=fxy или y’=fyx, мы переходим к уравнениям с разделяющимися переменными.

Пример 7

Если произвести замену z=yx в исходном уравнении y’=yx·lnyx+1, получаем x·dzdx=z·ln z.

В ряде случаев прежде, чем производить замену, необходимо произвести преобразования исходного уравнения.

Пример 8

Предположим, что в условии задачи нам дано уравнение y’=y2-x22xy. Нам необходимо привести его к виду y’=fxy или y’=fyx. Для этого нам нужно разделить числитель и знаменатель правой части исходного выражения на x2 или y2.

Пример 9

Нам дано уравнение y’=fa1x+b1y+c1a2x+b2y+c2, a1, b1, c1, a2, b2, c2 ∈R.

Для того, чтобы привести исходное уравнение к виду y’=fxy или y’=fyx, нам необходимо ввести новые переменные u=x-x1v=y-y1, где (x1;y1) является решением системы уравнений a1x+b1y+c1=0a2x+b2y+c2=0

Введение новых переменных u=x-1v=y-2 в исходное уравнение y’=5x-y-33x+2y-7 позволяет нам получить уравнение вида dvdu=5u-v3u+2v.

Теперь выполним деление числителя и знаменателя правой части уравнения на u. Также примем, что z=uv. Получаем дифференциальное уравнение с разделяющимися переменными u·dzdu=5-4z-2z23+2z.

Подробный разбор теории и алгоритмов решения задач мы привели в разделе «Дифференциальные уравнения с разделяющимися переменными».

Линейные неоднородные дифференциальные уравнения первого порядка y’+P(x)·y=Q(x)

Приведем примеры таких уравнений.

Пример 10

К числу линейных неоднородных дифференциальных уравнений 1-го порядка относятся:

y’-2xy1+x2=1+x2;y’-xy=-(1+x)e-x

Для решения уравнений этого вида применяется метод вариации произвольной постоянной. Также мы можем представить искомую функцию у в виде произведения y(x) = u(x)v(x). Алгоритмы применения обоих методов мы привели в разделе «Линейные неоднородные дифференциальные уравнения первого порядка».

Дифференциальное уравнение Бернулли y’+P(x)y=Q(x)ya

Приведем примеры подобных уравнений.

Пример 11

К числу дифференциальных уравнений Бернулли можно отнести:

y’+xy=(1+x)e-xy23;y’+yx2+1=arctgxx2+1·y2

Для решения уравнений этого вида можно применить метод подстановки z=y1-a, которая выполняется для того, чтобы свести исходное уравнение к линейному дифференциальному уравнению 1-го порядка. Также применим метод представления функции у в качестве y(x) = u(x)v(x).

Алгоритм применения обоих методов приведен в разделе «Дифференциальное уравнение Бернулли». Там же можно найти подробный разбор решения примеров по теме.

Уравнения в полных дифференциалах P(x,y)dx+Q(x,y)dy=0

Если для любых значений x и y выполняется ∂P(x,y)∂y=∂Q(x,y)∂x, то этого условия необходимо и достаточно, чтобы выражение P(x, y)dx+Q(x, y)dy представляло собой полный дифференциал некоторой функции U(x, y)=0, то есть, dU(x, y)=P(x, y)dx+Q(x, y)dy. Таким образом, задача сводится к восстановлению функции U(x, y)=0 по ее полному дифференциалу.

Пример 12

Выражение, расположенное в левой части записи уравнения (x2-y2)dx-2xydy=0 представляет собой полный дифференциал функции x33-xy2+C=0

Для более подробного ознакомления с теорией и алгоритмами решения примеров можно обратиться к разделу «Уравнения в полных дифференциалах».

Дифференциальные уравнения второго порядка

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами  y”+py’+qy=0, p,q∈R

Линейное однородное дифференциальное уравнение с постоянными коэффициентами обычно решается достаточно просто. Нам необходимо найти корни характеристического уравнения k2+pk+q=0. Здесь возможны три варианта в зависимости от различных p и q:

  • действительные и различающиеся корни характеристического уравнения k1≠k2, k1, k2∈R;
  • действительные и совпадающие k1=k2=k, k∈R;
  • комплексно сопряженные k1=α+i·β, k2=α-i·β.

Значения корней характеристического уравнения определяет, как будет записано общее решение дифференциального уравнения. Возможные варианты:

  • y=C1ek1x+C2ek2x;
  • y=C1ekx+C2xekx;
  • y=ea·x·(C1cos βx+C2sin βx).
Пример 13

Предположим, что у нас есть линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами y”+3y’=0. Найдем корни характеристического уравнения k2+3k=0. Это действительные и различные k1 =-3 и k2=0. Это значит, что общее решение исходного уравнения будет иметь вид:

y=C1ek1x+C2ek2x⇔y=C1e-3x+C2e0x⇔y=C1e-3x+C2

Восполнить пробелы в теоретической части и посмотреть подробный разбор примеров по теме можно в статье «Линейные однородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами».

Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами y”+py’+qy=f(x), p,q∈R

Основным способом решение уравнений данного вида является нахождение суммы общего решения y0, которое соответствует линейному однородному дифференциальному уравнению y”+py’+qy=0, и частного решения y~ исходного уравнения. Получаем: y=y0+y~.

Способ нахождения y0 мы рассмотрели в предыдущем пункте. Найти частное решение y~ мы можем методом неопределенных коэффициентов при определенном виде функции f(x), которая расположена в правой части записи исходного выражения. Также применим метод вариации произвольных постоянных.

Пример 14

К числу линейных неоднородных дифференциальных уравнений 2-го порядка с постоянными коэффициентами относятся:

y”-2y’=(x2+1)ex;y”+36y=24sin(6x)-12cos(6x)+36e6x

Теоретические выкладки и подробный разбор примеров по теме можно найти в разделе «ЛНДУ 2-го порядка с постоянными коэффициентами».

Линейные однородные дифференциальные уравнения (ЛОДУ) y”+p(x)·y’+q(x)·y=0 и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка y”+p(x)·y’+q(x)·y=f(x)

Линейные однородные и неоднородные дифференциальные уравнения и постоянными коэффициентами являются частными случаями дифференциальных уравнений этого вида.

На некотором отрезке [a; b] общее решение линейного однородного дифференциального уравнения y”+p(x)·y’+q(x)·y=0 представлено линейной комбинацией двух линейно независимых частных решений y1 и y2 этого уравнения, то есть, y=C1y1+C2y2.

Частные решения мы можем выбрать из систем независимых функций:

1) 1, x, x2, …, xn2) ek1x, ek2x, …, eknx3) ek1x, x·ek1x, …, xn1·ek1x,ek2x, x·ek2x, …, xn2·ek2x,…ekpx, x·ekpx, …, xnp·ekpx4) 1, chx, shx

Однако существуют примеру уравнений, для которых частные решения не могут быть представлены в таком виде.

Пример 15

Возьмем для примера линейное однородное дифференциальное уравнение xy”-xy’+y=0.

Общее решение линейного неоднородного дифференциального уравнения y”+p(x)·y’+q(x)·y=f(x) мы можем найти в виде суммы y=y0+y~, где y0 – общее решение соответствующего ЛОДУ, а y~ частное решение исходного дифференциального уравнения. Найти y0 можно описанным выше способом. Определить y~ нам поможет метод вариации произвольных постоянных.

Пример 16

Возьмем для примера линейное неоднородное дифференциальное уравнение xy”-xy’+y=x2+1.

Более подробно этот раздел освещен на странице «Линейные дифференциальные уравнения второго порядка».

Дифференциальные уравнения высших порядков

Дифференциальные уравнения, допускающие понижение порядка

Мы можем провести замену y(k)=p(x) для того, чтобы понизить порядок исходного дифференциального уравнения F(x, y(k), y(k+1), …, y(n))=0, которое не содержит искомой функции и ее производных до k-1 порядка.

В этом случае y(k+1)=p'(x), y(k+2)=p”(x), …, y(n)=p(n-k)(x), и исходное дифференциальное уравнение сведется к F1(x, p, p’, …, p(n-k))=0. После нахождения его решения p(x) останется вернуться к замене y(k)=p(x) и определить неизвестную функцию y.

Пример 17

Дифференциальное уравнение y”’xln(x)=y” после замены y”=p(x) станет уравнением с разделяющимися переменными y”=p(x), и его порядок с третьего понизится до первого.

В уравнении, которое не содержит аргумента х и имеет вид F(y, y’, y”, …, y(n))=0, порядок может быть заменен на единицу следующим образом: необходимо провести замену dydx=p(y), где p(y(x)) будет сложной функцией. Применив правило дифференцирования, получаем:

d2ydx2=dpdydydx=dpdyp(y)d3ydx3=ddpdyp(y)dx=d2pdy2dydxp(y)+dpdydpdydydx==d2pdy2p2(y)+dpdy2p(y)
Полученный результаты подставляем в исходное выражение. При этом мы получим дифференциальное уравнение, порядок которого на единицу меньше, чем у исходного.

Пример 18

Рассмотрим решение уравнения 4y3y”=y4-1. Путем замены dydx=p(y) приведем исходное выражение к уравнению с разделяющимися переменными 4y3pdpdy=y4-1.

Более подробно решения задач по теме рассмотрены в разделе «Дифференциальные уравнения, допускающие понижение порядка».

Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами y(n)+fn-1·y(n-1)+…+f1·y’+f0·y=0 и y(n)+fn-1·y(n-1)+…+f1·y’+f0·y=f(x)

Решение уравнений данного вида предполагает выполнение следующих простых шагов:

  • находим корни характеристического уравнения kn+fn-1·kn-1+…+f1·k+f0=0;
  • записываем общее решение ЛОДУ y0 в стандартной форме, а общее решение ЛНДУ представляем суммой y=y0+y~, где y~ – частное решение неоднородного дифференциального уравнения. 

Нахождение корней характеристического уравнения подробно описано в разделе «Решение уравнений высших степеней». Для нахождения y~ целесообразно использовать метод вариации произвольных постоянных.

Пример 19

Линейному неоднородному ДУ с постоянными коэффициентами y(4)+y(3)-5y”+y’-6y=xcosx+sinx соответствует линейное однородное ДУ y(4)+y(3)-5y”+y’-6y=0.

Более детальный разбор теории и примеров по теме вы можете найти на странице « Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами».

Линейные однородные и неоднородные дифференциальные уравнения высших порядков y(n)+fn-1(x)·y(n-1)+…+f1(x)·y’+f0(x)·y=0 и y(n)+fn-1(x)·y(n-1)+…+f1(x)·y’+f0(x)·y=f(x)

Найти решение ЛНДУ высших порядков можно благодаря сумме y=y0+y~, где y0 – общее решение соответствующего ЛОДУ, а y~ – частное решение неоднородного дифференциального уравнения.

y0 представляет собой линейную комбинацию линейно независимых функций y1, y2, …, yn, каждая из которых является частным решением ЛОДУ, то есть, обращает равенство y(n)+fn-1(x)·y(n-1)+…+f1(x)·y’+f0(x)·y=0 в тождество. Частные решения y1, y2, …, yn обычно подбираются из известных систем линейно независимых функций. Подобрать их далеко не всегда просто и возможно, в этом и заключается основная проблема.

После того, как мы найдем общее решение ЛОДУ, найти частное решение соответствующего ЛНДУ можно благодаря методу вариации произвольных постоянных. Итак, y=y0+y~=∑Cj·yj+y~j=1n

Получить более подробную информацию по теме можно в разделе «Дифференциальные уравнения высших порядков».

Системы дифференциальных уравнений вида dxdt=a1x+b1y+c1dydt=a2x+b2y+c2

Данная тема подробно разобрана на странице «Системы дифференциальных уравнений». Там же приведены примеры задач с подробных разбором.

Численное
решение дифференциальных уравнений

Многие
задачи науки и техники сводятся к решению
обыкновенных дифференциальных уравнений
(ОДУ). ОДУ называются такие уравнения,
которые содержат одну или несколько
производных от искомой функции. В общем
виде ОДУ можно записать следующим
образом:

,
где x – независимая переменная,  –
i-ая производная от искомой функции. n –
порядок уравнения. Общее решение ОДУ
n–го порядка содержит n произвольных
постоянных ,
т.е. общее решение имеет вид .

Для
выделения единственного решения
необходимо задать n дополнительных
условий. В зависимости от способа задания
дополнительных условий существуют два
различных типа задач: задача Коши и
краевая задача. Если дополнительные
условия задаются в одной точке, то такая
задача называется задачей Коши.
Дополнительные условия в задаче Коши
называются начальными условиями. Если
же дополнительные условия задаются в
более чем одной точке, т.е. при различных
значениях независимой переменной, то
такая задача называется краевой. Сами
дополнительные условия называются
краевыми или граничными.

Ясно,
что при n=1 можно говорить только о задачи
Коши.

Примеры
постановки задачи Коши
:

Примеры
краевых задач
:

Решить
такие задачи аналитически удается лишь
для некоторых специальных типов
уравнений.

Численные
методы решения задачи Коши для ОДУ
первого порядка

Постановка
задачи
.
Найти решение ОДУ первого порядка

 на
отрезке  при
условии 

При
нахождении приближенного решения будем
считать, что вычисления проводятся с
расчетным шагом ,
расчетными узлами служат точки  промежутка
[x0, xn].

Целью
является построение таблицы

xi

x0

x1

xn

yi

y0

y1

yn

т.е.
ищутся приближенные значения y в узлах
сетки.

Интегрируя
уравнение на отрезке ,
получим

Вполне
естественным (но не единственным) путем
получения численного решения является
замена в нем интеграла какой–либо
квадратурной формулой численного
интегрирования. Если воспользоваться
простейшей формулой левых прямоугольников
первого порядка

,

то
получим явную
формулу Эйлера
:

.

Порядок
расчетов:

Зная ,
находим ,
затем  т.д.

Геометрическая
интерпретация метода Эйлера
:

Пользуясь
тем, что в точке x0 известно
решение y(x0) = y0 и
значение его производной ,
можно записать уравнение касательной
к графику искомой функции  в
точке :.
При достаточно малом шаге h ордината  этой
касательной, полученная подстановкой
в правую часть значения ,
должна мало отличаться от ординаты y(x1)
решенияy(x)
задачи Коши. Следовательно,
точка  пересечения
касательной с прямой x = x1 может
быть приближенно принята за новую
начальную точку. Через эту точку снова
проведем прямую ,
которая приближенно отражает поведение
касательной к  в
точке .
Подставляя сюда  (т.е.
пересечение с прямой x = x2),
получим приближенное значение y(x)
в точке x2 и
т.д. В итоге для i–й
точки получим формулу Эйлера.

Явный
метод Эйлера имеет первый порядок
точности или аппроксимации.

Если
использовать формулу правых
прямоугольников: ,
то придем к методу

.

Этот
метод называют неявным
методом Эйлера
,
поскольку для вычисления неизвестного
значения  по
известному значению  требуется
решать уравнение, в общем случае
нелинейное.

Неявный
метод Эйлера имеет первый порядок
точности или аппроксимации.

Модифицированный
метод Эйлера:
 в
данном методе вычисление  состоит
из двух этапов:

Данная
схема называется еще методом предиктор
– корректор (предсказывающее –
исправляющее). На первом этапе приближенное
значение предсказывается с невысокой
точностью (h), а на втором этапе это
предсказание исправляется, так что
результирующее значение имеет второй
порядок точности.

Методы
Рунге – Кутта:
 идея
построения явных методов Рунге–Кутты p–го
порядка заключается в получении
приближений к значениям y(xi+1)
по формуле вида

,

где

…………………………………………….

.

Здесь an, bnj, pn
некоторые фиксированные числа (параметры).

При
построения методов Рунге–Кутты параметры
функции  (an, bnj, pn)
подбирают таким образом, чтобы получить
нужный порядок аппроксимации.

Схема
Рунге – Кутта четвертого порядка
точности
:

Пример.
Решить задачу Коши:

.

Рассмотреть
три метода: явный метод Эйлера,
модифицированный метод Эйлера, метод
Рунге – Кутта.

Точное
решение: 

Расчетные
формулы по явному методу Эйлера для
данного примера:

Расчетные
формулы модифицированного метода
Эйлера:

Расчетные
формулы метода Рунге – Кутта:

x

y1

y2

y3

точное

0

1.0000

1.0000

1.0000

1.0000

0.1

1.2000

1.2210

1.2221

1.2221

0.2

1.4420

1.4923

1.4977

1.4977

0.3

1.7384

1.8284

1.8432

1.8432

0.4

2.1041

2.2466

2.2783

2.2783

0.5

2.5569

2.7680

2.8274

2.8274

0.6

3.1183

3.4176

3.5201

3.5202

0.7

3.8139

4.2257

4.3927

4.3928

0.8

4.6747

5.2288

5.4894

5.4895

0.9

5.7377

6.4704

6.8643

6.8645

1

7.0472

8.0032

8.5834

8.5836

y1 –
метод Эйлера, y2 – модифицированный
метод Эйлера, y3 – метод Рунге Кутта.

Видно,
что самым точным является метод Рунге
– Кутта.

Численные
методы решения систем ОДУ первого
порядка

Рассмотренные
методы могут быть использованы также
для решения систем дифференциальных
уравнений первого порядка.

Покажем
это для случая системы двух уравнений
первого порядка:

Явный
метод Эйлера:

Модифицированный
метод Эйлера:

Схема
Рунге – Кутта четвертого порядка
точности:

К решению
систем уравнений ОДУ сводятся также
задачи Коши для уравнений высших
порядков. Например, рассмотрим задачу
Коши для уравнения второго порядка

Введем
вторую неизвестную функцию .
Тогда задача Коши заменяется следующей:

Т.е. в
терминах предыдущей задачи: .

Пример.
Найти решение задачи Коши
:

 на
отрезке [0,1].

Точное
решение: 

Действительно:

Решим
задачу явным методом Эйлера, модифицированным
методом Эйлера и Рунге – Кутта с шагом
h=0.2.

Введем
функцию .

Тогда
получим следующую задачу Коши для
системы двух ОДУ первого порядка:

Явный
метод Эйлера:

Модифицированный
метод Эйлера:

Метод
Рунге – Кутта:

Схема
Эйлера:

X

y

z

y
теор

z
теор

y-y
теор

0

1

0

1

0

0

0.2

1

-0.2

0.983685

-0.14622

0.016315

0.4

0.96

-0.28

0.947216

-0.20658

0.012784

0.6

0.904

-0.28

0.905009

-0.20739

0.001009

0.8

0.848

-0.2288

0.866913

-0.16826

0.018913

1

0.80224

-0.14688

0.839397

-0.10364

0.037157

Модифицированный
метод Эйлера:

X

ycv

zcv

y

z

y
теор

z
теор

y-y
теор

0

1

0

1

0

1

0

0

0.2

1

-0.2

1

-0.18

0.983685

-0.14622

0.016315

0.4

0.96

-0.28

0.962

-0.244

0.947216

-0.20658

0.014784

0.6

0.904

-0.28

0.9096

-0.2314

0.905009

-0.20739

0.004591

0.8

0.848

-0.2288

0.85846

-0.17048

0.866913

-0.16826

0.008453

1

0.80224

-0.14688

0.818532

-0.08127

0.839397

-0.10364

0.020865

Схема
Рунге – Кутта:

x

Y

z

k1

l1

k2

l2

k3

l3

k4

l4

0

1

0

0

-1

-0.1

-0.7

-0.07

-0.75

-0.15

-0.486

0.2

0.983667

-0.1462

-0.1462

-0.49127

-0.19533

-0.27839

-0.17404

-0.31606

-0.20941

-0.13004

0.4

0.947189

-0.20654

-0.20654

-0.13411

-0.21995

0.013367

-0.2052

-0.01479

-0.2095

0.112847

0.6

0.904977

-0.20734

-0.20734

0.10971

-0.19637

0.208502

-0.18649

0.187647

-0.16981

0.27195

0.8

0.866881

-0.16821

-0.16821

0.269542

-0.14126

0.332455

-0.13497

0.317177

-0.10478

0.369665

1

0.839366

-0.1036

-0.1036

0.367825

-0.06681

0.40462

-0.06313

0.393583

-0.02488

0.423019

Max(y-y
теор)=4*10-5

Метод
конечных разностей решения краевых
задач для ОДУ

Постановка
задачи
:
найти решение линейного дифференциального
уравнения

,
(1)

удовлетворяющего
краевым условиям:.
(2)

Теорема. Пусть .
Тогда существует единственное решение
поставленной задачи.

К данной
задаче сводится, например, задача об
определении прогибов балки, которая на
концах опирается шарнирно.

Основные
этапы метода конечных разностей:

1) область
непрерывного изменения аргумента
([a,b]) заменяется дискретным множеством
точек, называемых узлами: .

2) Искомая
функция непрерывного аргумента x,
приближенно заменяется функцией
дискретного аргумента на заданной
сетке, т.е. .
Функция  называется
сеточной.

3) Исходное
дифференциальное уравнение заменяется
разностным уравнением относительно
сеточной функции. Такая замена называется
разностной аппроксимацией.

Таким
образом, решение дифференциального
уравнения сводится к отысканию значений
сеточной функции в узлах сетки, которые
находятся из решения алгебраических
уравнений.

Аппроксимация
производных.

Для
аппроксимации (замены) первой производной
можно воспользоваться формулами:

 –
правая разностная производная,

 –
левая разностная производная,

 –
центральная разностная производная.

т.е.,
возможно множество способов аппроксимации
производной.

Все эти
определения следуют из понятия производной
как предела: .

Опираясь
на разностную аппроксимацию первой
производной можно построить разностную
аппроксимацию второй производной:

(3)

Аналогично
можно получить аппроксимации производных
более высокого порядка.

Определение. Погрешностью
аппроксимации n- ой производной называется
разность: .

Для
определения порядка аппроксимации
используется разложение в ряд Тейлора.

Рассмотрим
правую разностную аппроксимацию первой
производной:

Т.е.
правая разностная производная имеет первый
по h
 порядок
аппроксимации.

Аналогично
и для левой разностной производной.

Центральная
разностная производная имеет второй
порядок аппроксимации
.

Аппроксимация
второй производной по формуле (3) также
имеет второй порядок аппроксимации.

Для того
чтобы аппроксимировать дифференциальное
уравнение необходимо в нем заменить
все производные их аппроксимациями.
Рассмотрим задачу (1), (2) и заменим в(1)
производные:

.

В
результате получим:

 (4)

Порядок
аппроксимации исходной задачи равен
2, т.к. вторая и первая производные
заменены с порядком 2, а остальные –
точно.

Итак,
вместо дифференциальных уравнений (1),
(2) получена система линейных уравнений
для определения  в
узлах сетки.

Схему
можно представить в виде:

т.е.,
получили систему линейных уравнений с
матрицей:

Данная
матрица является трехдиагональной,
т.е. все элементы, которые расположены
не на главной диагонали и двух прилегающих
к ней диагоналях равны нулю.

Решая
полученную систему уравнений, мы получим
решение исходной задачи.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    04.02.201662.35 Кб12шпор НИТ.docx

Обыкновенное дифференциальное уравне́ние (ОДУ) — дифференциальное уравнение для функции от одной переменной. (Этим оно отличается от уравнения в частных производных, где неизвестная — функция нескольких переменных.) Таким образом, ОДУ — уравнения вида

F(x,y,y',y'',...,y^{{(n)}})=0,qquad (1)

где y(x) — неизвестная функция (возможно, вектор-функция, тогда F, как правило, тоже вектор-функция со значениями в пространстве той же размерности; в этом случае говорят о системе дифференциальных уравнений), зависящая от независимой переменной x, штрих означает дифференцирование по x. Число n (порядок старшей производной, входящей в данное уравнение) называется порядком дифференциального уравнения (1).

Независимая переменная x часто интерпретируется (особенно в дифференциальных уравнениях, возникающих в физических и других естественно-научных задачах) как время, поэтому её часто обозначают буквой t. Переменная y — некоторая величина (или совокупность величин, если y является вектор-функцией), изменяющаяся со временем. Например, y может означать набор координат точки в пространстве; в этом случае уравнение (1) описывает движение точки в пространстве, то есть изменение её координат с течением времени. Независимая переменная x обычно принимает вещественные значения, однако рассматриваются и дифференциальные уравнения, в которых переменная x комплексная (так называемые уравнения с комплексным временем).

Наиболее часто встречаются дифференциальные уравнения вида

y^{{(n)}}=f(x,y,y',y'',...,y^{{(n-1)}}),qquad (2)

в которых старшая производная y^{{(n)}} выражается в виде функции от переменных x, y и производных {displaystyle y^{(i)}} порядков меньше n. Такие дифференциальные уравнения называются нормальными или разрешёнными относительно производной.

В противоположность уравнениям вида (2), дифференциальные уравнения вида (1) называются уравнениями, не разрешёнными относительно производной или неявными дифференциальными уравнениями.

Классическим решением дифференциального уравнения (2) называется n раз дифференцируемая функция y(x), удовлетворяющая уравнению во всех точках своей области определения. Обычно существует целое множество таких функций, и для выбора одного из них требуется наложить на него дополнительное условие. Начальным условием для уравнения (2) называется условие

y(x_{0})=y_{0}, y'(x_{0})=y_{0}^{{(1)}},y''(x_{0})=y_{0}^{{(2)}},,ldots ,,y^{{(n-1)}}(x_{0})=y_{0}^{{(n-1)}},qquad (3)

где x_{0} — некоторое фиксированное значение независимой переменной (фиксированный момент времени), а y_0 и y_{0}^{{(i)}} — соответственно, фиксированные значения функции y и всех её производных до порядка n-1 включительно. Дифференциальное уравнение (2) вместе с начальным условием (3) называется начальной задачей или задачей Коши:

left{{begin{array}{lcl}y^{{(n)}}=f(x,y,y',y'',...,y^{{(n-1)}}),\{}\y(x_{0})=y_{0}, y'(x_{0})=y_{0}^{{(1)}},y''(x_{0})=y_{0}^{{(2)}},,ldots ,,y^{{(n-1)}}(x_{0})=y_{0}^{{(n-1)}}.end{array}}right.

Теорема существования и единственности решения обыкновенного дифференциального уравнения описывает совокупность всех решений обыкновенного дифференциального уравнения. Является основным теоретическим положением при изучении обыкновенных дифференциальных уравнений.[1]

Теорема Пикара утверждает, что при достаточно общих ограничениях на функцию f, стоящую в правой части уравнения (2), задача Коши для этого уравнения имеет единственное решение, определённое на некотором интервале оси времени x, содержащем начальное значение x_{0} (этот интервал, вообще говоря, может не совпадать со всей осью).
Основные задачи и результаты теории дифференциальных уравнений: существование и единственность решения различных задач для ОДУ, методы решения простейших ОДУ, качественное исследование решений ОДУ без нахождения их явного вида.

История[править | править код]

Дифференциальные уравнения встречались уже в работах И. Ньютона и Г. Лейбница; термин «дифференциальные уравнения» принадлежит Лейбницу. Ньютон при создании исчисления «флюксий» и «флюент» ставил две задачи: по данному соотношению между флюентами определить соотношение между флюксиями; по данному уравнению, содержащему флюксии, найти соотношение между флюентами. С современной точки зрения, первая из этих задач (вычисление по функциям их производных) относится к дифференциальному исчислению, а вторая составляет содержание теории обыкновенных дифференциальных уравнений. Задачу нахождения неопределённого интеграла F(x) функции f(x) Ньютон рассматривал просто как частный случай его второй задачи. Такой подход был для Ньютона как создателя основ математического естествознания вполне оправданным: в очень большом числе случаев законы природы, управляющие теми или иными процессами, выражаются в форме дифференциальных уравнений, а расчёт течения этих процессов сводится к решению дифференциального уравнения.[2]

Основное открытие Ньютона, то, которое он счёл нужным засекретить и опубликовал лишь в виде анаграммы, состоит в следующем: «Data aequatione quotcunque fluentes quantitae involvente fluxiones invenire et vice versa». В переводе на современный математический язык это означает: «Полезно решать дифференциальные уравнения». В настоящее время теория дифференциальных уравнений представляет собой трудно обозримый конгломерат большого количества разнообразных идей и методов, в высшей степени полезный для всевозможных приложений и постоянно стимулирующий теоретические исследования во всех отделах математики.[3]
[4]

Примеры[править | править код]

  • Одно из простейших применений дифференциальных уравнений — решение нетривиальной задачи нахождения траектории тела по известным проекциям ускорения. Например, в соответствии со вторым законом Ньютона, ускорение тела пропорционально сумме действующих сил; соответствующее дифференциальное уравнение имеет вид m{ddot  {x}}=F(x,t). Зная действующие силы (правая часть), можно решить это уравнение и, учитывая начальные условия (координаты и скорость в начальный момент времени), найти траекторию движения точки.
  • Дифференциальное уравнение y'=y, вместе с начальным условием y(0)=1, задаёт экспоненту: y(x)=e^{x}. Если x обозначает время, то эта функция описывает, например, рост популяции в условиях неограниченности ресурсов, а также и многое другое.
  • Решением дифференциального уравнения y'=f(x), правая часть которого не зависит от неизвестной функции, является неопределённый интеграл
{displaystyle y(x)=int !f(x),dx+C,}

где C — произвольная константа.

Дифференциальные уравнения первого порядка[править | править код]

Уравнения с разделяющимися переменными[править | править код]

Дифференциальное уравнение {dot  {y}}=f(x,y) называется уравнением с разделяющимися (отделяющимися) переменными, если его правая часть представима в виде y'=f_{1}(x)f_{2}(y). Тогда, в случае f_{2}(y)neq 0, общим решением уравнения является int !{frac  {dy}{f_{2}(y)}}=int !f_{1}(x),dx.

Примеры физических задач, приводящих к уравнениям с разделяющимися переменными[править | править код]

Охлаждение тела[править | править код]

Пусть T — температура тела, T_{0} — температура окружающей среды (T>T_{0}). Пусть Q — количество теплоты, c — удельная теплоёмкость. Тогда количество теплоты, передаваемое окружающей среде до выравнивания температур, выражается формулой Q=mc(T-T_{0}), или, в дифференциальной форме, dQ=mc,dT. С другой стороны, скорость отдачи тепла можно выразить в виде dQ=-k(T-T_{0}),dt, где k — некий коэффициент пропорциональности. Исключая из этих двух уравнений dQ, получаем уравнение с разделяющимися переменными:

mc,dT=-k(T-T_{0}),dt.

Общим решением этого уравнения является семейство функций T=T_{0}+Ce^{{-{frac  {kt}{mc}}}}.

Однородные уравнения[править | править код]

Дифференциальное уравнение {dot  {y}}=f(x,y) называется однородным, если f(x,y) — однородная функция нулевой степени. Функция f(x,y) называется однородной степени k, если для любого lambda >0 выполняется равенство {displaystyle f(lambda x,lambda y)=lambda ^{k}f(x,y)}.

Замена {displaystyle y(x)=xz(x)} приводит при x>0 однородное уравнение к уравнению с разделяющимися переменными:

{displaystyle f(x,xz)=x^{0}f(1,z)=f(1,z)}
{displaystyle {dot {y}}=x{dot {z}}+z}

Подставив в исходное уравнение, получаем:

{displaystyle {dot {z}}={frac {1}{x}}(f(1,z)-z)},

что является уравнением с разделяющимися переменными.

Квазиоднородные уравнения[править | править код]

Дифференциальное уравнение {dot  {y}}=f(x,y) называется квазиоднородным, если для любого lambda >0 выполняется соотношение {displaystyle fleft(lambda ^{alpha }x,lambda ^{beta }yright)=lambda ^{beta -alpha }f(x,y)}.

Данное уравнение решается заменой {displaystyle y=z^{frac {beta }{alpha }}}:

{dot  {z}}={frac  {alpha }{beta }}left(z^{{-{frac  {1}{alpha }}}}right)^{{beta -alpha }}fleft(x,z^{{frac  {beta }{alpha }}}right)

В силу квазиоднородности, положив {displaystyle lambda =z^{-{frac {1}{alpha }}}}, получаем:

left(z^{{-{frac  {1}{alpha }}}}right)^{{beta -alpha }}fleft(x,z^{{frac  {beta }{alpha }}}right)=fleft({frac  {x}{z}},1right)
{dot  {z}}={frac  {alpha }{beta }}fleft({frac  {x}{z}},1right),

что, очевидно, является однородным уравнением.

Линейные уравнения[править | править код]

Дифференциальное уравнение {displaystyle y'+a(x)y=b(x)} называется линейным и может быть решено тремя методами: методом интегрирующего множителя, методом вариации постоянной или методом Бернулли.

Метод интегрирующего множителя[править | править код]

Пусть задана функция mu (x) — интегрирующий множитель, в виде:

{displaystyle mu (x)=e^{int !a(x),dx}}

Умножим обе части исходного уравнения на mu (x), получим:

{displaystyle {dot {y}}e^{int !a(x),dx}+ya(x)e^{int !a(x),dx}=b(x)mu (x)}

Легко заметить, что левая часть является производной функции {displaystyle mu (x)y(x)} по x. Поэтому уравнение можно переписать:

{displaystyle (mu (x)y(x))'=b(x)mu (x)}

Проинтегрируем:

{displaystyle y(x)mu (x)=int !b(x)mu (x),dx+C}

Таким образом, решение линейного уравнения будет:

{displaystyle y(x)=e^{-int !a(x),dx}left(int !b(x)mu (x),dx+Cright)}

Метод вариации постоянной (метод Лагранжа)[править | править код]

Рассмотрим однородное уравнение {displaystyle {dot {y}}+a(x)y=0}. Очевидно, это уравнение с разделяющимися переменными, его решение:

{displaystyle y(x)=ce^{-int !a(x),dx}}

Решения исходного уравнения будем искать в виде:

{displaystyle y(x)=c(x)e^{-int !a(x),dx}}

Подставив полученное решение в исходное уравнение:

{displaystyle {dot {c}}=b(x)e^{int !a(x),dx}},

получаем:

{displaystyle c(x)=c_{1}+int !b(x)e^{int !a(x),dx},dx},

где c_{1} — произвольная константа.

Таким образом, решение исходного уравнения можно получить путём подстановки c(x) в решение однородного уравнения:

y(x)=e^{{-int !a(x),dx}}left(c_{1}+int !b(x)e^{{int !a(x),dx}},dxright)

Уравнение Бернулли[править | править код]

Дифференциальное уравнение {dot  {y}}+a(x)y=b(x)y^{n} называется уравнением Бернулли (при n=0 или n=1 получаем неоднородное или однородное линейное уравнение). При n=2 является частным случаем уравнения Риккати. Названо в честь Якоба Бернулли, опубликовавшего это уравнение в 1695 году. Метод решения с помощью замены, сводящей это уравнение к линейному, нашёл его брат Иоганн Бернулли в 1697 году.

Биномиальное дифференциальное уравнение[править | править код]

Это уравнение вида

{displaystyle left(y'right)^{m}=f(x,y),} где m — натуральное число, а f(x,y) — многочлен от двух переменных[5].

Литература[править | править код]

Учебники[править | править код]

  • Арнольд В. И. Обыкновенные дифференциальные уравнения, — Любое издание.
  • Арнольд В. И. Дополнительные главы теории обыкновенных дифференциальных уравнений, — Любое

издание.

  • Арнольд В. И. Геометрические методы в теории обыкновенных дифференциальных уравнений, — Любое издание.
  • Арнольд В. И., Ильяшенко Ю. С. Обыкновенные дифференциальные уравнения, — Итоги науки и техн. Сер. Совр. пробл. мат. Фундам. направ., 1985, том 1.
  • Петровский И. Г. Лекции по теории обыкновенных дифференциальных уравнений, — Любое издание.
  • Понтрягин Л. С. Обыкновенные дифференциальные уравнения, — Любое издание.
  • Степанов В. В. Курс дифференциальных уравнений, — Любое издание.
  • Трикоми Ф. Дифференциальные уравнения, — Любое издание.
  • Филиппов А. Ф. Введение в теорию дифференциальных уравнений, — Любое издание.
  • Филипс Г. Дифференциальные уравнения, — Любое издание.
  • Хартман Ф. Обыкновенные дифференциальные уравнения, — Любое издание.
  • Эльсгольц Л. Э. Дифференциальные уравнения и вариационное исчисление, — Любое издание.
  • Зайцев, В. Ф., Полянин, А. Д. Обыкновенные дифференциальные уравнения в 2 ч. Часть 1. — М.: Издательство Юрайт, 2022. — 385 с. — (Высшее образование). — ISBN 978-5-534-02685-6.
  • Зайцев, В. Ф., Полянин, А. Д. Обыкновенные дифференциальные уравнения в 2 ч. Часть 2. — М.: Издательство Юрайт, 2022. — 196 с. — (Высшее образование). — ISBN 978-5-534-02690-0.

Задачники[править | править код]

  • Филиппов А. Ф. Сборник задач по дифференциальным уравнениям, — Любое издание.

Справочники[править | править код]

  • Камке Э. Справочник по обыкновенным дифференциальным уравнениям, — Любое издание.
  • Зайцев В. Ф., Полянин А. Д. Справочник по обыкновенным дифференциальным уравнениям, — Любое издание.

Примечания[править | править код]

  1. Л.С. Понтрягин Дифференциальные уравнения и их приложения. – М., Наука, 1988. – c. 15
  2. [bse.sci-lib.com/article029636.html БСЭ. Дифференциальные уравнения.]
  3. Арнольд В. И. Дополнительные главы теории обыкновенных дифференциальных уравнений.
  4. Арнольд В. И. Геометрические методы в теории обыкновенных дифференциальных уравнений.
  5. Zwillinger, D. Handbook of Differential Equations (неопр.). — 3rd ed.. — Boston, MA: Academic Press, 1997. — С. 120.

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных ссылок

  • bse.sci-lib.com/article029636.html

Добавить комментарий