Как найти общее уравнение прямой в пространстве

Уравнения прямых в пространстве

Уравнение прямой как линии пересечения двух плоскостей

Пусть в координатном пространстве Oxyz (в прямоугольной системе координат) две плоскости заданы общими уравнениями

begin{aligned}rho_{1}colon & ,A_{1}cdot x+B_{1}cdot y+C_{1}cdot z+D_{1}=0;\[2pt] rho_{2}colon & ,A_{2}cdot x+B_{2}cdot y+C_{2}cdot z+D_{2}=0,end{aligned}

в которых коэффициенты при неизвестных непропорциональны, т.е. operatorname{rang}!begin{pmatrix}A_{1}&B_{1}&C_{1}\A_{2}&B_{2}&C_{2}end{pmatrix}=2. Это условие означает, что плоскости rho_{1} и rho_{2}пересекаются (см. условие (4.25)), поскольку их нормали vec{n}_{1}=A_{1}vec{i}+B_{1}vec{j}+C_{1}vec{k} и vec{n}_{2}=A_{2}vec{i}+B_{2}vec{j}+C_{2}vec{k} неколлинеарны (рис.4.25). Тогда линия пересечения плоскостей описывается системой уравнений

begin{cases} A_{1}cdot x+D_{1}cdot y+C_{1}cdot z+D_{1}=0,\ A_{2}cdot x+D_{2}cdot y+C_{2}cdot z+D_{2}=0. end{cases}

(4.31)

Система (4.31) называется общим уравнением прямой в пространстве.

Общее уравнение прямой в пространстве как пересечение двух плоскостей


Пример 4.13. В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1;2;3), B(3;0;2), C(7;4;6) треугольника (рис.4.26). Требуется составить уравнение прямой, содержащей высоту AH треугольника.

Решение. Прямая AH является линией пересечения двух плоскостей: плоскости rho_{1}, треугольника ABC и плоскости rho_{2}, проходящей через точку A перпендикулярно вектору overrightarrow{BC} (рис.4.26). По формуле (4.21) составим уравнение плоскости rho_{1}, проходящей через три точки A,,B,,C:

begin{vmatrix}x-1&y-2&z-3\3-1&0-2&2-3\7-1&4-2&6-3end{vmatrix}= begin{vmatrix} x-1&y-2&z-3\ 2&-2&-1\ 6&2&3 end{vmatrix}=0 quad Leftrightarrow quad x+3y-4z+5=0.

По формуле (4.14) составим уравнение плоскости rho_{2}, проходящей через точку A перпендикулярно вектору overrightarrow{BC}=(7-3)vec{i}+(4-0)vec{j}+(6-2)vec{k}=4vec{i}+4vec{j}+4vec{k}:

4cdot(x-1)+4cdot(y-2)+4cdot(z-3)=0 quad Leftrightarrow quad x+y+z-6=0.

Следовательно, общее уравнение (4.31) прямой AH имеет вид begin{cases}x+3y-4z+5=0,\x+y+z-6=0.end{cases}


Параметрическое уравнение прямой в пространстве

Напомним, что направляющий вектором прямой называется ненулевой вектор, коллинеарный этой прямой, т.е. принадлежащий или параллельный ей.

Пусть в координатном пространстве Oxyz заданы точка M_{0}(x_{0}, y_{0}, z_{0}) и ненулевой вектор vec{p}= avec{i}+ bvec{j}+ cvec{k} (рис.4.27). Требуется составить уравнение прямой, коллинеарной вектору vec{p} и проходящей через точку M_{0}(x_{0},y_{0},z_{0}).

Выберем на прямой произвольную точку M_{0}(x,y,z). Обозначим vec{r}=overrightarrow{OM}, vec{r}_{0}=overrightarrow{OM_{0}} — радиус-векторы точек M(x,y,z) и M_{0}(x_{0},y_{0},z_{0}) (рис.4.28).

Параметрическое уравнение прямой в пространстве и направляющий вектор прямой

Точка M принадлежит заданной прямой тогда и только тогда, когда векторы overrightarrow{M_{0}M} и vec{p} коллинеарны. Запишем условие коллинеарности: overrightarrow{M_{0}M}=tvec{p}, где t — некоторое действительное число (параметр). Учитывая, что overrightarrow{M_{0}M}=vec{r}-vec{r}_{0}, получим векторное параметрическое уравнение прямой в пространстве:

vec{r}=vec{r}_{0}+tcdotvec{p}, quad tinmathbb{R},,

(4.32)

где vec{p} — направляющий вектор прямой, а vec{r}_{0} — радиус-вектор заданной точки M_{0}(x_{0},y_{0},z_{0}) принадлежащей прямой.

Координатная форма записи уравнения (4.32) называется параметрическим уравнением прямой в пространстве

begin{cases}x=x_{0}+acdot t,\y=y_{0}+bcdot t,\z=z_{0}+ccdot t,end{cases}tinmathbb{R},,

(4.33)

где a,b,c — координаты направляющего вектора vec{p} прямой. Параметр t в уравнениях (4.32),(4.33) имеет следующий геометрический смысл: величина t пропорциональна расстоянию от заданной точки M_{0}(x_{0}, y_{0}, z_{0}) до точки M(x,y,z)equiv M(x_{0}+at,y_{0}+bt,z_{0}+ct). Физический смысл параметра t в параметрических уравнениях (4.32),(4.33) — это время при равномерном и Прямолинейном движении точки M(x,y,z) по прямой. При t=0 точка M(x,y,z) совпадает с заданной точкой M_{0}. При возрастании параметра t движение происходит в направлении направляющего вектора.


Каноническое уравнение прямой в пространстве

Выразим параметр t из каждого уравнения системы (4.33): t=frac{x-x_{0}}{a},, t=frac{y-y_{0}}{b},, t=frac{z-z_{0}}{c}, а затем исключим этот параметр:

frac{x-x_{0}}{a}=frac{y-y_{0}}{b}=frac{z-z_{0}}{c}, quad a^2+b^2+c^2ne0.

(4.34)

Уравнение (4.34) называется каноническим уравнением прямой в пространстве. В этом уравнении коэффициенты a,b,c не равны нулю одновременно, так как это координаты направляющего вектора прямой.


Замечания 4.6.

1. Если один или два из трех знаменателей дробей в (4.34) равны нулю, то считается, что соответствующий числитель дроби равен нулю. Например:

а) каноническое уравнение frac{x-x_{0}}{0}=frac{y-y_{0}}{0}=frac{z-z_{0}}{c} — это уравнение begin{cases}x=x_{0},\y=y_{0}end{cases} прямой, параллельной оси аппликат (рис.4.29,а);

б) каноническое уравнение frac{x-x_{0}}{a}=frac{y-y_{0}}{b}=frac{z-z_{0}}{0} — это уравнение begin{cases}z=z_{0},\dfrac{x-x_{0}}{a}=dfrac{y-y_{0}}{b}end{cases} прямой, параллельной координатной плоскости Oxy (рис.4.29,б).

Прямые в пространстве, параллельные координатным плоскостям

2. Направляющий вектор vec{p} прямой определяется неоднозначно. Например, любой ненулевой вектор lambdacdotvec{p}, где lambdainmathbb{R}, также является направляющим вектором для той же прямой.

Переход от общего уравнение к каноническому

3. Для перехода от общего уравнения прямой (4.31) к каноническому (4.34) нужно выполнить следующие действия:

1) найти любое решение (x_{0},y_{0},z_{0}) системы begin{cases} A_{1}cdot x+B_{1}cdot y+C_{1}cdot z+D_{1}=0,\ A_{2}cdot x+B_{2}cdot y+C_{2}cdot z+D_{2}=0, end{cases} определяя тем самым координаты точки M_{0}(x_{0},y_{0},z_{0}), принадлежащей прямой;

2) найти направляющий вектор vec{p} прямой как векторное произведение нормалей vec{n}_{1}=A_{1}vec{i}+B_{1}vec{j}+C_{1}vec{k}, vec{n}_{2}= A_{2}vec{i}+ B_{2}vec{j}+ C_{2}vec{k}, заданных плоскостей:

vec{p}= begin{bmatrix}vec{n}_{1},vec{n}_{2}end{bmatrix}= acdotvec{i}+ bcdotvec{j}+ ccdotvec{k}= begin{vmatrix} vec{i}&vec{j}&vec{k}\ A_{1}&B_{1}&C_{1}\ A_{2}&B_{2}&C_{2} end{vmatrix}.

3) записать каноническое уравнение (4.34) с учетом пунктов 1 и 2.

4. Чтобы перейти от канонического уравнения к общему, достаточно двойное равенство (4.34) записать в виде системы

left{!begin{aligned}frac{x-x_{0}}{a}&=frac{y-y_{0}}{b},,\frac{y-y_{0}}{b}&=frac{z-z_{0}}{c},,end{aligned}right. и привести подобные члены.

5. Чтобы перейти от канонического уравнения к параметрическому, следует приравнять каждую дробь в уравнении (4.34) параметру t и записать полученные равенства в виде системы (4.33):

frac{x-x_{0}}{a}=frac{y-y_{0}}{b}=frac{z-z_{0}}{c}=t quad Leftrightarrow quad begin{cases}x=x_{0}+acdot t,\y=y_{0}+bcdot t,\z=z_{0}+ccdot t,end{cases} tinmathbb{R},.

6. Если в каноническом уравнении (4.34) прямой фиксировать координаты x_{0},y_{0},z_{0} точки M_{0}, а коэффициентам a,b,c придавать произвольные значения (не равные нулю одновременно), то получим уравнение связки прямых с центром в точке M_{0}(x_{0},y_{0},z_{0}), т.е. совокупность всех прямых, проходящих через точку M_{0}.

7. Параметрическое (4.33) и каноническое (4.34) уравнения прямой, полученные в прямоугольной системе координат, имеют тот же вид в любой другой аффинной системе координат. Геометрический смысл коэффициентов в уравнениях остается прежним.


Пример 4.14. В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1;2;3), B(3;0;2), C(7;4;6) треугольника (рис. 4.30). Требуется:

В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1,2,3), B(3,0,2), C(7,4,6) треугольника

а) составить каноническое уравнение прямой, содержащей высоту AH треугольника;

б) составить общее уравнение прямой, содержащей биссектрису AL треугольника.

Решение. а) Общее уравнение прямой AH получено в примере 4.13: begin{cases}x+3cdot y-4cdot z+5=0,\x+y+z-6=0.end{cases} Перейдем от общего уравнения к каноническому.

1) Найдем любое решение (x_{0},y_{0},z_{0}) системы, например, x_{0}=1, y_{0}=2, z_{0}=3 (это координаты точки A(1;2;3)).

2) Найдем направляющий вектор vec{p} прямой как векторное произведение нормалей vec{n}_{1}=vec{i}+3vec{j}-4vec{k}, vec{n}_{2}=vec{i}+vec{j}+vec{k} заданных плоскостей

vec{p}= begin{bmatrix}vec{n}_{1},vec{n}_{2}end{bmatrix}= begin{vmatrix} vec{i}&vec{j}&vec{k}\ 1&3&-4\ 1&1&1 end{vmatrix}= 7cdotvec{i}-5cdotvec{j}-2cdotvec{k},.

3) Запишем каноническое уравнение (4.34): frac{x-1}{7}=frac{y-2}{-5}=frac{z-3}{-2}.

б) Сначала составим каноническое уравнение прямой AL. Для этого нужно найти направляющий вектор vec{l} этой прямой. Учитывая, что диагональ ромба является биссектрисой, vec{l}=vec{b}+vec{c}, где vec{b} и vec{c} — единичные векторы, одинаково направленные с векторами overrightarrow{AB} и overrightarrow{AC} соответственно. Находим

begin{gathered}overrightarrow{AB}= 2cdotvec{i}-2cdotvec{j}-1cdotvec{k}, quad begin{vmatrix}overrightarrow{AB}end{vmatrix}=3, quad vec{b}= frac{overrightarrow{AB}}{begin{vmatrix} overrightarrow{AB}end{vmatrix}}= frac{2}{3}cdot vec{i}-frac{2}{3} cdotvec{j}-frac{1}{3}cdot vec{k},;\[3pt] overrightarrow{AC}= 6cdot vec{i}+ 2cdotvec{j}+3cdotvec{k}, quad begin{vmatrix} overrightarrow{AC} end{vmatrix}=7, quad vec{c}= frac{overrightarrow{AC}}{begin{vmatrix} overrightarrow{AC}end{vmatrix}}= frac{6}{7}cdotvec{i}+ frac{2}{7}cdotvec{j}+ frac{3}{7}cdotvec{k},;\[3pt] vec{l}=vec{a}+vec{c}= left(frac{2}{3}cdotvec{i}-frac{2}{3}cdotvec{j}-frac{1}{3}cdotvec{k}right)+ left(frac{6}{7}cdotvec{i}+frac{2}{7}cdotvec{j}+frac{3}{7}cdotvec{k}right)= frac{32}{21}cdotvec{i}-frac{8}{21}cdotvec{j}+frac{2}{21}cdotvec{k},. end{gathered}

Составляем каноническое уравнение прямой ALcolon,frac{x-1}{32/21}=frac{y-2}{-8/21}=frac{z-3}{2/21}.

Записывая двойное равенство в виде системы, получаем общее уравнение прямой AL:

left{!begin{aligned}frac{x-1}{32/21}&=frac{y-2}{-8/21},\ frac{y-2}{-8/21}&=frac{z-3}{2/21},end{aligned}right.  quad Leftrightarrow quad begin{cases}x+4cdot y-9=0,\ y+4cdot z-14=0.end{cases}


Расстояние от точки до прямой, заданной каноническим уравнением

Расстояние от точки до прямой в пространстве

Найдем расстояние d от точки M_{1}(x_{1},y_{1},z_{1}) до прямой l, заданной каноническим уравнением (рис.4.31)):

lcolon, frac{x-x_{0}}{a}= frac{y-y_{0}}{b}= frac{z-z_{0}}{c},.

Искомое расстояние равно высоте параллелограмма, построенного на векторах

vec{p}=avec{i}+bvec{j}+cvec{k} и vec{m}=overrightarrow{M_{0}M_{1}}=(x_{1}-x_{0})vec{i}+(y_{1}-y_{0})vec{j}+(z_{1}-z_{0})vec{k}, то есть.

d=frac{begin{vmatrix}begin{bmatrix}vec{m},vec{p}end{bmatrix}end{vmatrix}}{begin{vmatrix}vec{p}end{vmatrix}}= frac{sqrt{begin{vmatrix}x_{1}-x_{0}&y_{1}-y_{0}\a&bend{vmatrix}^2+ begin{vmatrix}y_{1}-y_{0}&z_{1}-z_{0}\b&cend{vmatrix}^2+ begin{vmatrix}x_{1}-x_{0}&z_{1}-z_{0}\a&cend{vmatrix}^2}}{sqrt{a^2+b^2+c^2}},.

(4.35)


Уравнение прямой, проходящей через две заданные точки

Уравнение прямой в пространстве, проходящей через две заданные точки

Пусть в координатном пространстве Oxyz заданы две точки M_{0}(x_{0},y_{0},z_{0}) и M_{1}(x_{1},y_{1},z_{1}). Требуется составить уравнение прямой, проходящей через заданные точки.

Как показано в разд., точка M(x,y,z) принадлежит прямой M_{0}M_{1} тогда и только тогда, когда ее радиус-вектор overrightarrow{OM} удовлетворяет условию (рис.4.32): overrightarrow{OM}= (1-t)cdot overrightarrow{OM_{0}}+ tcdotoverrightarrow{OM_{1}}, где t — некоторое действительное число (параметр). Это уравнение, а также его координатную форму

begin{pmatrix}x\y\zend{pmatrix}= (1-t)cdot!begin{pmatrix}x_{0}\y_{0}\z_{0}end{pmatrix}+tcdot!begin{pmatrix}x_{1}\y_{1}\z_{1}end{pmatrix}! quad Leftrightarrow quad !begin{cases} x=(1-t)cdot x_{0}+tcdot x_{1},\ y=(1-t)cdot y_{0}+tcdot y_{1},\ z=(1-t)cdot z_{0}+tcdot z_{1}.end{cases} tinmathbb{R}

(4.36)

будем называть аффинным уравнением прямой, проходящей через две точки M_{0}(x_{0},y_{0},z_{0}) и M_{1}(x_{1},y_{1},z_{1}).

Выражая параметр t из каждого уравнения системы (4.36), получаем: frac{x-x_{0}}{x_{1}-x_{0}}=frac{y-y_{0}}{y_{1}-y_{0}}=frac{z-z_{0}}{z_{1}-z_{0}}=t. Исключая параметр t, приходим к уравнению прямой, проходящей через две точки M_{0}(x_{0},y_{0},z_{0}) и M_{1}(x_{1},y_{1},z_{1}):

frac{x-x_{0}}{x_{1}-x_{0}}=frac{y-y_{0}}{y_{1}-y_{0}}=frac{z-z_{0}}{z_{1}-z_{0}},.

(4.37)

Уравнение (4.37) можно получить из канонического уравнения (4.34), выбирая в качестве направляющего вектора vec{p}=avec{i}+bvec{j}+cvec{k} вектор overrightarrow{M_{0}M_{1}}=(x_{1}-x_{0})vec{i}+(y_{1}-y_{0})vec{j}+(z_{1}-z_{0})vec{k}, т.е. подставляя a=x_{1}-x_{0}, b=y_{1}-y_{0}, c=z_{1}-z_{0}.


Треугольник в пространстве по координатам вершин, его высота и медиана

Пример 4.15. В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1;2;3), B(3;0;2), C(7;4;6) треугольника (рис.4.33). Требуется:

а) составить уравнение прямой BC;

б) составить уравнение прямой, содержащей медиану AM треугольника;

в) найти высоту h=|AH| треугольника, опущенную на сторону BC.

Решение. а) Записываем уравнение (4.37) прямой, проходящей через точки B(3;0;2), C(7;4;6):

frac{x-3}{7-3}=frac{y-0}{4-0}=frac{z-2}{6-2}~ Leftrightarrow~ frac{x-3}{1}=frac{y}{1}=frac{z-2}{1},.

б) Находим координаты середины M стороны BCcolon M(5;2;4). Составляем уравнение (4.37) прямой AM:

frac{x-1}{5-1}=frac{y-2}{2-2}=frac{z-3}{4-3}~ Leftrightarrow~ frac{x-1}{4}=frac{y-2}{0}=frac{z-3}{1},.

в) Искомую высоту h находим по формуле (4.35), полагая vec{m}=overrightarrow{BA}=-2vec{i}+2vec{j}+vec{k} и vec{p}=vec{i}+vec{j}+vec{k}:

h=|AH|=frac{begin{vmatrix}begin{bmatrix}vec{m},vec{p}end{bmatrix}end{vmatrix}}{begin{vmatrix}vec{p}end{vmatrix}}= frac{sqrt{begin{vmatrix}-2&2\1&1end{vmatrix}^2+begin{vmatrix}2&1\1&1end{vmatrix}^2+begin{vmatrix}-2&1\1&1end{vmatrix}^2}}{sqrt{1^2+1^2+1^2}}=frac{sqrt{16+1+9}}{sqrt{3}}= sqrt{frac{26}{3}},.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Материал этой статьи продолжает тему прямой в пространстве. От геометрического описания пойдем к алгебраическому: зададим прямую при помощи уравнений в фиксированной прямоугольной системе координат трехмерного пространства. Приведем общую информацию, расскажем о видах уравнений прямой в пространстве и их связи между собой.

Уравнение прямой в пространстве: общие сведения

Определение 1

Уравнение прямой на плоскости в прямоугольной системе координат Oxy – это линейное уравнение с переменными x и y, которому отвечают координаты всех точек прямой и не удовлетворяют координаты никаких прочих точек.

Если речь идет о прямой в трехмерном пространстве, все несколько иначе: не существует такого линейного уравнения с тремя переменными x, y, z, которому бы отвечали только координаты точек заданной прямой. В самом деле, уравнение Ax+By+Cz+D=0, где x, y, z – переменные, а А, В, С и D – некоторые действительные числа (А, В, С одновременно не равны нулю) – это общее уравнение плоскости. Тогда как же задать прямую линию в прямоугольной системе координат Oxyz? Найдем ответ на этот вопрос в следующих пунктах темы.

Уравнение прямой в пространстве как уравнение двух пересекающихся плоскостей

Вспомним аксиому:

Определение 2

Когда две плоскости в пространстве имеют общую точку, существует их общая прямая, на которой находятся все общие точки этих плоскостей.

Рассмотрим это утверждение в алгебраическом толковании.

Допустим, в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz и задано, что прямая a – это линия пересечения двух плоскостей α и β, которые соответственно описываются уравнениями плоскости A1x+B1y+C1z+D1=0 и A2x+B2y+C2z+D2=0. Поскольку прямая a – это множество общих точек плоскостей α и β, то координаты любой точки прямой a будут одновременно отвечать обоим уравнениям. Никакие прочие точки одновременно удовлетворять условия обоих уравнений не будут.

Таким образом, координаты любой точки прямой a в прямоугольной системе координат станут частным решением системы линейных уравнений вида

A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0

Общее же решение системы уравнений  _A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0 определит координаты каждой точки прямой a, т.е. по сути задает саму прямую a.

Уравнение прямой в пространстве как уравнение двух пересекающихся плоскостей

Резюмируем: прямая в пространстве в прямоугольной системе координат Oxyz может быть задана системой уравнений двух плоскостей, которые пересекаются:

A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0

Приведем пример описания прямой линии в пространстве при помощи системы уравнений:

x+3y-21z+113y+14z-2=0

Навык определения прямой линии уравнениями пересекающихся плоскостей необходим при решении задач на нахождение координат точки пересечения прямой и плоскости или нахождение координат точки пересечения двух прямых в пространстве.

Подробнее изучить эту тему можно, обратившись к статье об уравнениях прямой в пространстве, уравнениях двух пересекающихся прямых.

Заметим, что существует несколько способов описания прямой в пространстве. В практике прямую чаще задают не двумя пересекающимися плоскостями, а направляющим вектором прямой и точкой, принадлежащей этой прямой. В подобных случаях легче задать канонические и параметрические уравнения прямой в пространстве. Поговорим о них ниже.

Параметрические уравнения прямой в пространстве

x=x1+ax·λy=y1+ay·λz=z1+az·λ, где x1, y1, z1 – координаты некой точки прямой; аx, аy и az  (одновременно не равны нулю) – координаты направляющего вектора прямой. а·λ – некий параметр, принимающий любые действительные значения.

Любое значение параметра λ позволяет, используя параметрические уравнения прямой в пространстве, определить тройку чисел (x, y, z), соответствующую некой точке прямой (отсюда и название такого вида уравнений). Например, пусть λ=0, тогда из параметрических уравнений прямой в пространстве получим координаты:

x=x1+ax·0y=y1+ay·0z=z1+az·0⇔x=x1y=y1z=z1

Рассмотрим конкретный пример:

Пример 1

Пусть прямая задана параметрическими уравнениями вида x=3+2·axy=-2·ayz=2+2·az.

Заданная прямая проходит через точку М1(3, 0, 2); направляющий вектор этой прямой имеет координаты2, -2, 2.

Ответ: 2, -2, 2,

Продолжение изучения этой темы можно найти в статье о параметрических уравнениях прямой в пространстве.

Канонические уравнения прямой в пространстве

Если разрешить каждое из параметрических уравнений прямой

x=x1+ax·λy=y1+ay·λz=z1+az·λ относительно параметра λ, возможно просто перейти к каноническим уравнениям прямой в пространстве x-x1ax=y-y1ay=z-z1az.

Канонические уравнения прямой в пространстве задают прямую, которая проходит через точку М1(x1, y1, z1), и у которой направляющий вектор равен a→=(ax, ay, az). Например, задана прямая, описываемая каноническим уравнением x-11=y2=z+57. Эта прямая проходит через точку с координатами (1, 0, -5), ее направляющий вектор имеет координаты (1, 2, -7).

Отметим, что одно или два числа из чисел аx, аy и аz в канонических уравнениях прямой могут быть равны нулю (все три числа не могут быть равны нулю, поскольку направляющий вектор не может быть нулевым). В таком случае запись вида x-x1ax=y-y1ay=z-z1az является формальной (поскольку в знаменателях одной или двух дробей будут нули) и понимать ее нужно как:

x=x1+ax·λy=y1+ay·λz=z1+az·λ, где λ∈R.

Если одно из чисел аx, аy и az канонического уравнения прямой равно нулю, то прямая лежит в какой-то из координатных плоскостей, или в плоскости, ей параллельной. Если два из чисел аx, аy и az равны нулю, то прямая или совпадает с какой-либо из координатных осей, или параллельна ей. К примеру, прямая, описываемая каноническим уравнением x+43=y-52=z+20, лежит в плоскости z=-2, параллельной координатной плоскости Oxy, а координатная ось Oy описывается каноническими  уравнениями x0=y1=z0.

Графические иллюстрации подобных случаев, составление канонических уравнений прямой в пространстве, примеры решения типовых задач, а также алгоритм перехода от канонических уравнений к другим видам уравнений прямой в пространстве рассмотрены в статье о канонических уравнениях прямой в пространстве.

1. Общее уравнение прямой.

Прямая в пространстве
может быть задана как пересечение двух
плоскостей:

.
(1)

О1.
Геометрическое место точек пространства,
удовлетворяющих системе уравнений (1),
называется
прямой
в пространстве
,
а
система уравнений (1) называется общим
уравнением прямой
.

З1. Для того чтобы
система уравнений (1) определяла прямую
в пространстве необходимо и достаточно,
чтобы нормальные вектора плоскостей,

определяющих
прямую,
ибыли неколлинеарными, т.е. выполняется
одно из неравенств:или.

Пусть прямая
проходит через точку

параллельно вектору
,
который называется направляющим
вектором прямой

(см. Лекцию
№ 7
),
тогда ее уравнение называется каноническим
и имеет вид:

.
(2)

З2. Если в уравнении
(2) одна из проекций направляющего вектора
равна 0, то это означает, что прямая
перпендикулярна соответствующей
координатной оси.

Пример 1.
Как расположена прямая
относительно координатных осей.

Согласно замечанию
2 эта прямая будет перпендикулярна осям
абсцисс и ординат (параллельна оси
аппликат) и будет проходить через точку

.

Приравняв каждую
дробь уравнения (2) параметру
,
получимпараметрическое
уравнение прямой:

Пример 2.
Записать уравнение прямой
в параметрическом виде.

Приравняем каждую
дробь к параметру
:.
Если пря-

мая проходит через
две известные точки
и,
то ее уравнение имеет вид (см.Лекцию
№ 7
):
и назы-ваетсяуравнением
прямой
,
проходящей
через две заданные точки
.

2. Основные задачи.

а) Переход
от общего уравнения прямой к каноническому.

Пусть прямая задана общим уравнением
.
Для того, чтобы перейти от этого уравнения
прямой к каноническому, поступают
следующим образом:

находят
координаты любой точки, удовлетворяющие
приведенной системе, для чего одну из
переменных величин, например
,
полагают равной нулю и решают систему
линейных алгебраических уравнений
относительно оставшихся переменных
величин;

направляющий
вектор
прямой находят как векторное произведение
нормальных векторов

и
:

;

зная
точку, через которую проходит прямая,
и направляющий вектор прямой записывают
каноническое уравнение прямой.

Пример 3.
Записать уравнение прямой
в каноническом и параметрическом виде.

Положив
,
получим СЛАУСкладывая уравнения, найдем.
Подставив это значение переменнойво второе уравнение системы, по-лучим.
Таким образом, прямая проходит через
точку
.
Найдем направляющий вектор прямой как
векторное произведение нормальных
векторов заданных плоскостей:

б)
Угол
между пересекающимися прямыми.

Угол
между двумя пересека-ющимися прямыми
определяется как угол между их
направляющими векторами
.
Если прямые
иимеют направляющие вектора

и
,

соответственно,
то угол между прямыми определяется по
формуле:

.

Сл1.
Если
прямые перпендикулярны (),
тоусловием
перпен-дикулярности
прямых
является
равенство:
.

Сл2.
Если прямые параллельны, то направляющие
вектора коллинеарны, следовательно,
условие
параллельности прямых
:

.

в)
Координаты
точки пересечения прямой и плоскости.

Пусть прямая
задана общим уравнением,
а плоскостьуравнением.Так
как точка пересечения прямой и плоскости
принадлежит одновременно обоим этим
объектам, то ее координаты находят из
решения системы уравнений
:

.

Если прямая
задана
каноническим уравнением,

а плоскость
уравнением,
то поступают по следующей

схеме:

переходят
от канонического уравнения прямой к
параметрическому, т.е. записывают
уравнение прямой в виде
;

полученные
выражения подставляют в уравнение
заданной плоскости

и
находят параметр
:
.

Рассмотрим возможные
случаи:

1) если
выполняются условия
,
то прямая не пересекает плоскость
(прямая параллельна плоскости);

2) при
условиях
прямая лежит на плоскости;

3) если
,
прямая пересекает плоскость в одной
точке.

вычисляют
координаты точки пересечения, подставив
найденное значение
в параметрическое уравнение прямой


.

г)
Угол
между прямой и плоскостью.

Пусть дана плоскость
с нормальным вектороми пересекающая ее прямаяс направляющим вектором

(Рис.
53).

Рис.
53.
Угол между
прямой

и
плоскостью.

Угол
является углом между прямойи плоскостью.
Угол между нормальным вектором плоскости
и прямой обозначим через.
Из рисунка видно, что.
Следовательно,

.

Сл1.
Если прямая
перпендикулярна плоскости (),
тоусловие
перпендикулярности прямой и плоскости
имеет вид
:

.

Сл2.
Если прямая
параллельна плоскости (),
то направляющий вектор прямой и нормальный
вектор плоскости перпендикулярны (),
следовательно,условие
параллельности прямой и плоскости
:

.

21

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Прямая в пространстве – это линия, которая проходит от одной точки к другой, а также за пределы этих точек в бесконечность. Есть несколько видов уравнения прямой в пространстве: каноническое, параметрическое, угол между двумя прямыми в пространстве и т. д. Про это расскажем в данной статье и для наглядности предоставим несколько примеров.

Параметрическое и каноническое уравнение прямой в пространстве

Параметрическое и каноническое уравнение прямой рассматривается практически так, как и для прямой на плоскости. Значит, нужно составить уравнение прямой L, которая проходит через данную точку M_{1} (x_{1}, y_{1}, z_{1}) параллельно направляющему вектору overline{S} = (l, m, p).

Пусть, M(x, y, z) in{L} – произвольная точка прямой, тогда векторы overline{M_{1}M} = (x - x_{1}, y - y_{1}, z - z_{1}) и overline{S} коллинеарные, а это значит, что координаты их пропорциональны, поэтому получаем:

{x - x_{1}over{l}} = {y - y_{1}over{m}} = {z - z_{1}over{p}}

(1)

это и есть канонические уравнения прямой.

Приравнивая каждую из дробей (1) к параметру t, запишем параметрические уравнения прямой:

left{ begin{aligned} x = lt + x_{0}\ y = mt + y_{0}\ z = pt + z_{0} end{aligned}

(2)

Уравнение прямой в пространстве, которая проходит через две заданные точки

Уравнение прямой в пространстве – тема очень лёгкая, так как здесь самое важное – знать нужную формулу. Тогда легко можно решить любую задачу.

Итак, через две точки M_{1}(x_{1}, y_{1}z_{1} и M_{2}(x_{2}, y_{2}, z_{2}) можно не только геометрично провести линию, но и сложить её уравнения.

За направляющий вектор возьмём overline{S} =  overline{M_{1}M} = (x_{2} - x_{1}, y_{2} - y_{1}, z_{2} - z_{1}), тогда по формуле (1) у нас получается:

{x - x_{1}over{x_{2} - x_{1}}} = {y - y_{1}over{y_{2} - y_{1}}} = {z - z_{1}over{z_{2} - z_{1}}}

(3)

 уравнение прямой в пространстве, которые проходят через две заданные точки.

Нужна помощь в написании работы?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать работу

Общее уравнение прямой – переход к каноническому уравнению

Объяснение про общее уравнение прямой начнём с прямой, которая задана двумя плоскостями, что пересекаются по этой прямой.

Пусть известны их уравнения:

left{begin{aligned}A_{1}x + B_{1}y + C_{1}z + D_{1} = 0\A_{2}x + B_{2}y + C{2}z + D_{2} = 0 end{aligned}

(4)

Тогда система (4) называется общим уравнением прямой.

Чтобы перейти к каноническим уравнениям вида (1), необходимо найти вектор overline{S} и точку M_{0} этой прямой.

Точку M_{0} находим, как один из решений системы (4). Например, положив в (4) z = 0 находим x_{0}, y_{0}, тогда и точку M_{0} (x_{0}, y_{0}, 0). Направляющий вектор overline{S}, который параллелен к каждой из плоскостей P_{1} и P_{2} и перпендикулярен к их нормальным векторам overline{n_{1}} = (A_{1}, B_{1}, C_{1}) и overline{n_{2}} = (A_{2}, B_{2}, C_{2}), то есть overline{S}perp{overline{n_{1}}}, overline{S}perp{overline{n_{2}}}. (см. рис. 1). Поэтому вектор overline{S} можно найти при помощи векторного произведения overline{n_{1}} и overline{n_{2}}

overline{S} = overline{n}_{1} x overline{n}_{2} = begin{vmatrix} overline{i}&overline{j}&overline{k}\ A_{1}&B_{1}&C_{1}\ A_{2}&B_{2}&C_{2} end{vmatrix}

Найдены координаты M_{0} и overline{S} подставим в каноническое уравнение (1).

Например, от общих уравнений прямой:

left{begin{aligned} 2x + 7y - z - 4 = 0\ 4x - 9y - 2z - 8 = 0 end{aligned}

Перейдём к каноническим, положив в системе y = 0 (при нём относительно больше коэффициенты). найдём x = 2, z = 0, M_{0} (2, 0, 0). Нормальные векторы overline{n_{1}} = (2, 7, -1) и overline{n_{2}} = (4, -9, -2). Тогда направляющий вектор

Уравнение прямой

Рис. 1

 overline{S} = overline{n}_{1} x overline{n}_{2} = begin{vmatrix} overline{i}&overline{j}&overline{k}\ 2&7&-1\ 4&-9&-2 end{vmatrix} = -23overline{i} - 0overline{j} - 46overline{k},

и канонические уравнения станут:

{x - 2over{-23}} = {y - 0over{0}} = {z - 0over{-46}}arrowvert * (-23)to{x - 1over{1}} = {yover{0}} = {zover{2}}.

Угол между двумя прямыми в пространстве. Условия параллельности и перпендикулярности прямых

Угол между двумя прямыми (varphi):

{x - x_{1}over{l_{1}}} = {y - y_{1}over{m_{1}}} = {z - z_{1}over{p_{1}}} и {x - x_{2}over{l_{2}}} = {y - y_{2}over{m_{2}}} = {z - z_{2}over{p_{2}}}

равен углу между их направляющими векторами overline{S_{1}} = (l_{1}, m_{1}, p_{1}) и overline{S_{2}} = (l_{2}, m_{2}, p_{2}), поэтому

{cosvarphi = cos(overline{S}_{1}}, overline{S}_{2}}) = {l_{1}l_{2} + m_{1}m_{2} + p_{1}p_{2}}over{sqrt{l_{1}^2 + m_{1}^2 + p_{1}^2}} * {sqrt{l_{2}^2 + m_{2}^2 + p_{2}^2}}

(5)

Условия параллельности и перпендикулярности прямых соответственно запишутся:

{l_{1}over{l_{2}}} = {m_{1}over{m_{2}}} = {p_{1}over{p_{2}}} и l_{1}l_{2} + m_{1}m_{2} + p_{1}p_{2} = 0.

(6)

Примеры решения задач

Давайте рассмотрим первый пример, где можно двумя способами построить прямую:

Задача

При точке M (1, 5, 2) и направляющем векторе overline{S} = (3, 0, 4) необходимо:

  1. составить каноническое уравнение прямой;
  2. построить эту прямую.

Решение

1) По формуле (1) запишем каноническое уравнение прямой l:

{x - 1over{3}} = {y - 5over{0}} = {z - 2over{4}} = (t).

2) Рассмотрим два способа построения прямой l.

Первый способ

В системе координат XYZ строим вектор overline{S} = (3, 0, 4) и точку M (1, 5, 2) и проводим через точку M прямую параллельную вектору overline{S}.

Второй способ

По формуле (2) запишем каноническое уравнение прямой в параметрическом виде:

left{begin{aligned} x = 3t + 1\ y = 0 * t + 5\ z = 4t + 2 end{aligned} right

Уравнение прямой

На рисунке видно, что при произвольных значениях t из системы находим координаты соответствующих точек, которые принадлежат прямой l. Так при t = 1 находим координаты M_{1}(4, 5, 6).  Через две точки M и M_{1} проводим прямую l.

Очевидно, что найти острый угол между прямыми совершенно не сложно при знании темы и определённых формул. Давайте разберём такой пример:

Задача

Найти острый угол между прямыми:

{x - 4over{6}} = {y + 2over{-2}} = {zover{3}}, {x + {2}over{-2}} = {y - {5}over{-1}} = {z + 1over{-2}}

(7)

Решение

По формуле (7) получаем:

costheta = {6 * (-2) + (-2)(-1) + 3 * (-2)}over{sqrt{6^2 + (-2)^2 + 3^2} * sqrt{(-2)^2 + (-1)^2 + (-2)^2} = {-12 +2 -6over{7 * 3}} = -{16over21}.

Так как costheta = -{16over{21}} < 0, тогда угол theta тупой, theta = arccos (-{16over{21}}, а острый угол varphi = 180^0 - theta.

Ответ

varphi = arccos{16over{21}}.

Рассмотрим последний пример, где нужно составить уравнение. Здесь, как и в каждой задаче, важно знать и понимать, какой формулой нужно воспользоваться.

Задача

Составить уравнение прямой l,  которая проходит через точку M(2, -4, 3) и параллельна прямой x = -5t + 4, y = 2t, z = 8t - 5.

Решение

От параметрического уравнения  переходим к каноническому {x - 4over{(-5)}} = {yover{2}} = {z + 5over{8}}tooverline{S} = (-5, 2, 8) При условии параллельности прямых overline{S}||overline{S_{1}} то есть направляющим вектором новой прямой может служить известный вектор overline{S} = (-5, 2, 8) и по формуле (1) у нас получается:

{x - 2over{-5}} = {y - 4over{2}} = {z - 3over{8}}.

Ответ

{x - 2over{-5}} = {y - 4over{2}} = {z - 3over{8}}.

Пряма́я — одно из фундаментальных понятий евклидовой геометрии. При систематическом изложении геометрии прямые линии обычно принимаются за одно из исходных (неопределяемых) понятий[1], их свойства и связь с другими понятиями (например, точки и плоскости) определяются аксиомами геометрии[2].

Прямая, наряду с окружностью, относится к числу древнейших геометрических фигур. Античные геометры считали эти две кривые «совершенными» и поэтому признавали только построения с помощью циркуля и линейки. Евклид описал линию как «длину без ширины», которая «равно лежит на всех своих точках»[3].

Аналоги прямых могут быть определены также в некоторых типах неевклидовых пространств. Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то отрезок прямой можно определить как самую короткую кривую, соединяющую эти точки. Например, в римановой геометрии роль прямых играют геодезические линии, которые являются кратчайшими; на сфере кратчайшими являются дуги больших кругов[4].

Свойства прямой в евклидовой геометрии[править | править код]

Участки прямой, ограниченные двумя её точками, называются отрезками.

  • Через любую точку можно провести бесконечно много прямых.
  • Через любые две несовпадающие точки можно провести единственную прямую.
  • Две несовпадающие прямые на плоскости или пересекаются в единственной точке[5], или являются параллельными (следует из предыдущего).
  • В трёхмерном пространстве существуют три варианта взаимного расположения двух несовпадающих прямых:
    • прямые пересекаются;
    • прямые параллельны;
    • прямые скрещиваются.
  • Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия задается на плоскости уравнением первой степени (линейное уравнение).

Уравнения прямой на плоскости[править | править код]

Способы задания прямой:
scriptstyle {y=kx+b,;{frac  {x}{a}}+{frac  {y}{b}}=1} или scriptstyle {xcos theta +ysin theta -p=0}

Общее уравнение прямой[править | править код]

Общее уравнение прямой линии на плоскости в декартовых координатах:

Ax+By+C=0,

где A,B и C — произвольные постоянные, причём постоянные A и B не равны нулю одновременно.

При A=0 прямая параллельна оси Ox, при B=0 — параллельна оси Oy.

Вектор с координатами (A,B) называется нормальным вектором, он перпендикулярен прямой.

При C=0 прямая проходит через начало координат.

Также уравнение можно переписать в виде

A(x-x_{0})+B(y-y_{0})=0.

Уравнение прямой с угловым коэффициентом[править | править код]

Уравнение прямой линии, пересекающей ось Oy в точке (0,;b) и образующей угол varphi с положительным направлением оси Ox:

y=kx+b,quad k={mathrm  {tg}},varphi .

Коэффициент k называется угловым коэффициентом прямой.

В этом виде невозможно представить прямую, параллельную оси Oy. (Иногда в этом случае формально говорят, что угловой коэффициент «обращается в бесконечность».)

Получение уравнения прямой в отрезках

Уравнение прямой в отрезках[править | править код]

Уравнение прямой линии, пересекающей ось Ox в точке (a,;0) и ось Oy в точке (0,;b):

{frac  {x}{a}}+{frac  {y}{b}}=1quad (aneq 0,;bneq 0).

В этом виде невозможно представить прямую, проходящую через начало координат.

Нормальное уравнение прямой[править | править код]

{displaystyle xcos theta +ysin theta -p=0,}

где p — длина перпендикуляра, опущенного на прямую из начала координат, а theta  — угол (измеренный в положительном направлении) между положительным направлением оси Ox и направлением этого перпендикуляра. Если p=0, то прямая проходит через начало координат, а угол theta =varphi +{frac  {pi }{2}} задаёт угол наклона прямой.

Если прямая задана общим уравнением Ax+By+C=0, то отрезки a и b, отсекаемые ею на осях, угловой коэффициент k, расстояние прямой от начала координат p, cos theta и sin theta выражаются через коэффициенты A, B и C следующим образом:

a=-{frac  {C}{A}},quad b=-{frac  {C}{B}},quad k={mathrm  {tg}},varphi =-{frac  {A}{B}},quad varphi =theta -{frac  {pi }{2}},
p={frac  {C}{pm {sqrt  {A^{2}+B^{2}}}}},quad cos theta ={frac  {A}{pm {sqrt  {A^{2}+B^{2}}}}},quad sin theta ={frac  {B}{pm {sqrt  {A^{2}+B^{2}}}}}.

Во избежание неопределённости знак перед радикалом выбирается так, чтобы соблюдалось условие p>0. В этом случае cos theta и sin theta являются направляющими косинусами положительной нормали прямой — перпендикуляра, опущенного из начала координат на прямую. Если C=0, то прямая проходит через начало координат и выбор положительного направления произволен.

Уравнение прямой, проходящей через две заданные несовпадающие точки[править | править код]

Если заданы две несовпадающие точки с координатами (x_1,;y_1) и (x_2,;y_2), то прямая, проходящая через них, задаётся уравнением

{begin{vmatrix}x&y&1\x_{1}&y_{1}&1\x_{2}&y_{2}&1end{vmatrix}}=0

или

{frac  {y-y_{1}}{y_{2}-y_{1}}}={frac  {x-x_{1}}{x_{2}-x_{1}}}

или в общем виде

left(y_{1}-y_{2}right)x+left(x_{2}-x_{1}right)y+left(x_{1}y_{2}-x_{2}y_{1}right)=0.

Получение векторного параметрического уравнения прямой

Векторное параметрическое уравнение прямой[править | править код]

Векторное параметрическое уравнение прямой задается вектором {vec  {r}}_{0}, конец которого лежит на прямой, и направляющим вектором прямой {vec  {u}}. Параметр t пробегает все действительные значения.

{vec  {r}}={vec  {r_{0}}}+t{vec  {u}}.

Параметрические уравнения прямой[править | править код]

Параметрические уравнения прямой могут быть записаны в виде:

{begin{cases}x=x_{0}+a_{x}t,\y=y_{0}+a_{y}t,end{cases}}

где t — произвольный параметр, a_{x},;a_{y} — координаты x и y направляющего вектора прямой. При этом

k={frac  {a_{y}}{a_{x}}},quad a={frac  {a_{y}x_{0}-a_{x}y_{0}}{a_{y}}},quad b={frac  {a_{x}y_{0}-a_{y}x_{0}}{a_{x}}},
p={frac  {a_{x}y_{0}-a_{y}x_{0}}{pm {sqrt  {a_{x}^{2}+a_{y}^{2}}}}},quad cos theta ={frac  {a_{x}}{pm {sqrt  {a_{x}^{2}+a_{y}^{2}}}}},quad sin theta ={frac  {a_{y}}{pm {sqrt  {a_{x}^{2}+a_{y}^{2}}}}}.

Смысл параметра t аналогичен параметру в векторно-параметрическом уравнении.

Каноническое уравнение прямой[править | править код]

Каноническое уравнение получается из параметрическиx уравнений делением одного уравнения на другое:

{frac  {x-x_{0}}{y-y_{0}}}={frac  {a_{x}}{a_{y}}}Longleftrightarrow {frac  {x-x_{0}}{a_{x}}}={frac  {y-y_{0}}{a_{y}}}

где {displaystyle a_{x},a_{y}} — координаты x и y направляющего вектора прямой, x_{0} и y_0 координаты точки, принадлежащей прямой.

Уравнение прямой в полярных координатах[править | править код]

Уравнение прямой в полярных координатах rho и varphi :

rho (Acos varphi +Bsin varphi )+C=0

или

{displaystyle rho cos(varphi -theta )=p.}

Тангенциальное уравнение прямой[править | править код]

Тангенциальное уравнение прямой на плоскости:

xi x+eta y=1.

Числа xi и eta называются её тангенциальными, линейными или плюккеровыми координатами.

Уравнения прямой в пространстве[править | править код]

Векторное параметрическое уравнение прямой в пространстве:

{vec  r}={vec  {r}}_{0}+t{vec  a},quad tin (-infty ,;+infty ),

где {vec  {r}}_{0} — радиус-вектор некоторой фиксированной точки M_{0}, лежащей на прямой, vec a — ненулевой вектор, коллинеарный этой прямой (называемый её направляющим вектором), {vec {r}} — радиус-вектор произвольной точки прямой.

Параметрические уравнения прямой в пространстве:

x=x_{0}+talpha ,;y=y_{0}+tbeta ,;z=z_{0}+tgamma ,quad tin (-infty ,;+infty ),

где (x_{0},;y_{0},;z_{0}) — координаты
некоторой фиксированной точки M_{0}, лежащей на прямой; (alpha ,;beta ,;gamma ) — координаты вектора, коллинеарного этой прямой.

Каноническое уравнение прямой в пространстве:

{frac  {x-x_{0}}{alpha }}={frac  {y-y_{0}}{beta }}={frac  {z-z_{0}}{gamma }},

где (x_{0},;y_{0},;z_{0}) — координаты
некоторой фиксированной точки M_{0}, лежащей на прямой; (alpha ,;beta ,;gamma ) — координаты вектора, коллинеарного этой прямой.

Общее векторное уравнение прямой[уточнить] в пространстве:

Поскольку прямая является пересечением двух различных плоскостей, заданных соответственно общими уравнениями:
({vec  r},;{vec  N}_{1})+D_{1}=0 и ({vec  r},;{vec  N}_{2})+D_{2}=0,

то уравнение прямой можно задать системой этих уравнений:

{begin{cases}({vec  r},;{vec  N}_{1})+D_{1}=0,\({vec  r},;{vec  N}_{2})+D_{2}=0.end{cases}}

Векторное уравнение прямой в пространстве[6]:196-199:

Уравнение прямой в пространстве можно записать в виде векторного произведения радиуса-вектора произвольной точки этой прямой {vec {r}} на фиксированный направляющий вектор прямой vec a:
[{vec  r},{vec  a}]={vec  M},

где фиксированный вектор vec M, ортогональный вектору vec a, можно найти, подставляя в это уравнение радиус-вектор какой-нибудь одной известной точки прямой.

Взаимное расположение точек и прямых на плоскости[править | править код]

Три точки (x_1,;y_1), (x_2,;y_2) и (x_{3},;y_{3}) лежат на одной прямой тогда и только тогда, когда выполняется условие

{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}=0.

Отклонение точки (x_1,;y_1) от прямой Ax+By+C=0 может быть найдено по формуле

delta ={frac  {Ax_{1}+By_{1}+C}{pm {sqrt  {A^{2}+B^{2}}}}},

где знак перед радикалом противоположен знаку C. Отклонение по модулю равно расстоянию между точкой и прямой; оно положительно, если точка и начало координат лежат по разные стороны от прямой, и отрицательно, если по одну сторону.

В пространстве расстояние от точки (x_{1},;y_{1},;z_{1}) до прямой, заданной параметрическим уравнением

{begin{cases}x=x_{0}+talpha ,\y=y_{0}+tbeta ,quad tin mathbb{R} \z=z_{0}+tgamma ,end{cases}}

можно найти как минимальное расстояние от заданной точки до произвольной точки прямой. Коэффициент t этой точки может быть найден по формуле

t_{min }={frac  {alpha (x_{1}-x_{0})+beta (y_{1}-y_{0})+gamma (z_{1}-z_{0})}{alpha ^{2}+beta ^{2}+gamma ^{2}}}.

Взаимное расположение нескольких прямых на плоскости[править | править код]

Две прямые, заданные уравнениями

A_{1}x+B_{1}y+C_{1}=0,quad A_{2}x+B_{2}y+C_{2}=0

или

y=k_{1}x+b_{1},quad y=k_{2}x+b_{2}

пересекаются в точке

x={frac  {B_{1}C_{2}-B_{2}C_{1}}{A_{1}B_{2}-A_{2}B_{1}}}={frac  {b_{1}-b_{2}}{k_{2}-k_{1}}},quad y={frac  {C_{1}A_{2}-C_{2}A_{1}}{A_{1}B_{2}-A_{2}B_{1}}}={frac  {k_{2}b_{1}-k_{1}b_{2}}{k_{2}-k_{1}}}.

Угол gamma _{{12}} между пересекающимися прямыми определяется формулой

{mathrm  {tg}},gamma _{{12}}={frac  {A_{1}B_{2}-A_{2}B_{1}}{A_{1}A_{2}+B_{1}B_{2}}}={frac  {k_{2}-k_{1}}{1+k_{1}k_{2}}}.

При этом под gamma _{{12}} понимается угол, на который надо повернуть первую прямую (заданную параметрами A_{1}, B_1, C_{1}, k_{1} и b_{1}) вокруг точки пересечения против часовой стрелки до первого совмещения со второй прямой.

Эти прямые параллельны, если A_{1}B_{2}-A_{2}B_{1}=0 или k_{1}=k_{2}, и перпендикулярны, если A_{1}A_{2}+B_{1}B_{2}=0 или k_{1}=-{frac  {1}{k_{2}}}.

Любую прямую, параллельную прямой с уравнением A_{1}x+B_{1}y+C_{1}=0, можно выразить уравнением A_{1}x+B_{1}y+C=0. При этом расстояние между этими прямыми будет равно

delta=frac{C_1-C}{pmsqrt{A_1^2+B_1^2}};

Если же уравнение прямой задано как y_1=kx_1+b_1, а уравнение прямой параллельной ей y=kx+b, то расстояние можно вычислить, как

delta=frac{|b_1-b|}{sqrt{1+k^2}}.

Если знак перед радикалом противоположен C_{1}, то delta будет положительным, когда вторая прямая и начало координат лежат по разные стороны от первой прямой.

Для того, чтобы три прямые

A_{1}x+B_{1}y+C_{1}=0,quad A_{2}x+B_{2}y+C_{2}=0,quad A_{3}x+B_{3}y+C_{3}=0

пересекались в одной точке или были параллельны друг другу, необходимо и достаточно, чтобы выполнялось условие

{begin{vmatrix}A_{1}&B_{1}&C_{1}\A_{2}&B_{2}&C_{2}\A_{3}&B_{3}&C_{3}end{vmatrix}}=0.

Если {displaystyle A_{2}=-B_{1}} и {displaystyle B_{2}=A_{1}}, то прямые {displaystyle A_{1}x+B_{1}y+C_{1}=0} и {displaystyle A_{2}x+B_{2}y+C_{2}=0} перпендикулярны.

Некоторые специальные типы прямых[править | править код]

  • Прямая Александрова
  • Прямая Симсона
  • Прямая Суслина[en]
  • Прямая Эйлера
  • Числовая прямая

Примечания[править | править код]

  1. Coxeter, 1969, p. 4
  2. Математическая энциклопедия, 1984, с. 721—722.
  3. Прокл Диадох. Комментарий к первой книге «Начал» Евклида / Университет Дмитрия Пожарского. — М., 2013. — С. 116. — 368 с.
  4. Норден А. П. Краткий курс дифференциальной геометрии. — М.: Физматгиз, 1958. — С. 214—215. — 244 с.
  5. Faber, Appendix B, p. 300.
  6. Гусятников П.Б., Резниченко С.В. Векторная алгебра в примерах и задачах. — М.: Высшая школа, 1985. — 232 с.

Литература[править | править код]

  • Маркушевич А. И. Замечательные кривые, Популярные лекции по математике. — Выпуск 4. — Гостехиздат, 1952 г. — 32 стр.
  • Прямая // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1984. — Т. 4.
  • Coxeter, H.S.M (1969), Introduction to Geometry (2nd ed.), New York: John Wiley & Sons, ISBN 0-471-18283-4
  • Faber, Richard L. (1983), Foundations of Euclidean and Non-Euclidean Geometry, New York: Marcel Dekker, ISBN 0-8247-1748-1
  • Pedoe, Dan (1988), Geometry: A Comprehensive Course, Mineola, NY: Dover, ISBN 0-486-65812-0
  • Wylie, Jr., C.R. (1964), Foundations of Geometry, New York: McGraw-Hill, ISBN 0-07-072191-2

Ссылки[править | править код]

  • Прямая на плоскости, справочник математических формул «Прикладная математика»
  • Прямая в пространстве, справочник математических формул «Прикладная математика»

Добавить комментарий