Как составить уравнение сторон треугольника по координатам его вершин?
Зная координаты вершин треугольника, можно составить уравнение прямой, проходящей через 2 точки.
Пример.
Дано: ΔABC, A(-5;1), B(7;-4), C(3;7)
Составить уравнения сторон треугольника.
Решение:
1) Составим уравнение прямой AB, проходящей через 2 точки A и B.
Для этого в уравнение прямой y=kx+b подставляем координаты точек A(-5;1), B(7;-4) и из полученной системы уравнений находим k и b:
Таким образом, уравнение стороны AB
2) Прямая BC проходит через точки B(7;-4) и C(3;7):
Отсюда уравнение стороны BC —
3) Прямая AC проходит через точки A(-5;1) и C(3;7):
Уравнение стороны AC —
Решить треугольник Онлайн по координатам
Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольника:
1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;
2) система линейных неравенств, определяющих треугольник;
2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;
3) внутренние углы по теореме косинусов;
4) площадь треугольника;
5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;
10) параметры вписанной и описанной окружностей и их уравнения.
Внимание! Этот сервис не работает в браузере IE (Internet Explorer).
Запишите координаты вершин треугольника и нажмите кнопку.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
По известным координатам вершин треугольника А(4;4), В(-6;-1), С(-2;-4) записать для его сторон уравнения в общем виде и уравнение в общем виде биссектрисы угла АВС.
Решение
Так как нам известны координаты вершин, то проще всего получить уравнение стороны в канонической форме – формула, от которого легко перейти к уравнению в общей форме. Для канонического уравнения нам нужны координаты точки, принадлежащей стороне и координаты направляющего вектора (параллельного рассматриваемому).
1. Найдем уравнение стороны АВ. В качестве точки прямой можно взять точку А с заданными координатами, а в качестве направляющего вектора – вектор АВ. Найдем координаты вектора АВ:
2. Тогда каноническое уравнение стороны АВ запишется:
3. Аналогично можно получить уравнения остальных сторон треугольника: для стороны ВС: координаты вектора
4. Откуда каноническое уравнение:
Следовательно, общее уравнение: 3x+4y+22=0.
5. Для стороны CА: координаты направляющего вектора
6. Каноническое уравнение:
7. Выведем общее уравнение для биссектрисы. Известно, что биссектриса делит угол пополам. Если на сторонах АВ и ВС треугольника отложить орты (соответственно a и b) и построить на них ромб, то диагональ ромба также поделит угол пополам (по своему свойству) и, значит, ее можно будет взять направляющей биссектрисы. Вектор, построенный на диагонали ромба, равен сумме векторов a и b).
8. Для нахождения орта a необходимо знать координаты вектора BA:
соответственно a определится как:
9. Аналогично определим орт b:
Теперь определим их сумму:
10. Тогда каноническое уравнение биссектрисы:
Раздел V.
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ
И В ПРОСТРАНСТВЕ
В раздел включены
задачи, которые рассматриваются в теме
«Аналитическая геометрия на плоскости
и в пространстве»: составление различных
уравнений прямых на плоскости и в
пространстве; определение взаимного
расположения прямых на плоскости,
прямых, прямой и плоскости, плоскостей
в пространстве; изображение кривых
второго порядка. Необходимо отметить,
что в данном разделе представлены задачи
экономического содержания, при решении
которых применяются сведения из
аналитической геометрии на плоскости.
При решении задач
аналитической геометрии целесообразно
воспользоваться учебными пособиями
следующих авторов: Д.В. Клетеника, Н. Ш.
Кремера, Д.Т. Письменного В.И. Малыхина,
т.к. в данной литературе рассматривается
более широкий круг задач, которые можно
использовать для самостоятельной
подготовки по данной теме. Применение
аналитической геометрии к решению
экономических задач изложено в учебных
изданиях М.С. Красса и В.И. Ермакова.
Задача 5.1. Даны
координаты вершин треугольника АВС.
Необходимо
а) написать
уравнения сторон треугольника;
б) написать
уравнение высоты треугольника проведенной
из вершины С
к стороне АВ
и найти ее длину;
в) написать
уравнение медианы треугольника,
проведенной из вершины В
к стороне АС;
г) найти углы
треугольника и установить его вид
(прямоугольный, остроугольный,
тупоугольный);
д) найти длины
сторон треугольника и определить его
тип (разносторонний, равнобедренный,
равносторонний);
е) найти координаты
центра тяжести (точка пересечения
медиан) треугольника АВС;
ж) найти координаты
ортоцентра (точка пересечения высот)
треугольника АВС.
К каждому из
пунктов а) – в) решения сделать рисунки
в системе координат. На рисунках
обозначить соответствующие пунктам
задачи линии и точки.
Данные к условию
задачи, соответствующие вариантам:
1)
2)
3)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17) 18) ; |
4)
5)
6)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29) 30). |
Пример 5.1
Даны координаты
вершин треугольника АВС:
.
Необходимо а) написать уравнения сторон
треугольника; б) написать уравнение
высоты треугольника проведенной из
вершины С
к стороне АВ
и найти ее длину; в) написать уравнение
медианы треугольника, проведенной из
вершины В
к стороне АС;
г) найти длины сторон треугольника и
определить его тип (разносторонний,
равнобедренный, равносторонний); д)
найти углы треугольника и установить
его вид (прямоугольный, остроугольный,
тупоугольный); е) найти координаты центра
тяжести (точка пересечения медиан)
треугольника АВС;
ж) найти координаты ортоцентра (точка
пересечения высот) треугольника АВС.
Решение
а)
Для каждой стороны треугольника известны
координаты двух точек, которые лежат
на искомых линиях, значит уравнения
сторон треугольника – уравнения прямых,
проходящих через две заданные точки
, |
(5.1) |
где
и
соответствующие координаты точек.
Таким образом,
подставляя в формулу (5.1) координаты
соответствующих прямым точек получаем
,
,
,
откуда после
преобразований записываем уравнения
сторон
,
,
.
На рис. 7 изобразим
соответствующие сторонам треугольника
прямые.
Ответ:
,
,
.
Рис. 7 |
б)
Пусть
– высота, проведенная из вершины
к стороне
.
Поскольку
проходит через точку
перпендикулярно вектору
,
то составим уравнение прямой по следующей
формуле
, |
(5.2) |
где
– координаты вектора перпендикулярного
искомой прямой,
– координаты точки, принадлежащей этой
прямой. Найдем координаты вектора,
перпендикулярного прямой
,
и подставим в формулу (5.2)
,
,
,
,
.
Найдем длину высоты
CH
как расстояние от точки
до прямой
, |
(5.3) |
где
– уравнение прямой
,
– координаты точки
.
В предыдущем пункте
было найдено
.
Подставив данные
в формулу (5.3), получим
,
На рис. 8 изобразим
треугольник и найденную высоту СН.
Ответ:
.
Рис. |
в)
медиана
треугольника
делит сторону
на две равные части, т.е. точка
является серединой отрезка
.
Исходя из этого, можно найти координаты
точки
, |
(5.4) |
где
и
– координаты соответственно точек
и
,
подставив которые в формулы (5.4), получим
;
.
Уравнение медианы
треугольника
составим как уравнение прямой, проходящей
через точки
и
по формуле (5.1)
,
.
Ответ:
(рис. 9).
Рис. |
г)
Длины сторон треугольника найдем как
длины соответствующих векторов, т.е.
,
,
.
Стороны
и
треугольника
равны, значит, треугольник является
равнобедренным с основанием
.
Ответ:
треугольник
равнобедренный с основанием
;
,
.
д)
Углы треугольника
найдем как углы между векторами,
исходящими из соответствующих вершин
данного треугольника, т.е.
,
,
.
Поскольку треугольник
равнобедренный с основанием
,
то
,
Углы между векторами
вычислим по формуле (4.4), для которой
потребуются скалярные произведения
векторов
,
.
Найдем координаты
и модули векторов, необходимых для
вычисления углов
,
;
,
,
.
Подставляя
найденные данные в формулу (4.4), получим
,
,
Поскольку значения
косинусов всех найденных углов
положительны, то треугольник
является остроугольным.
Ответ:
треугольник
остроугольный;
,
,
.
е)
Пусть
– центр тяжести треугольника
,
тогда координаты
точки
можно найти, по формулам (5.5)
, |
(5.5) |
где
,
и
– координаты соответственно точек
,
и
,
следовательно,
,
.
Ответ:
– центр тяжести треугольника
.
ж) Пусть
– ортоцентр треугольника
.
Найдем координаты точки
как координаты точки пересечения высот
треугольника. Уравнение высоты
было найдено в пункте б).
Найдем уравнение высоты
:
,
,
,
.
Поскольку
,
то решение системы
является координатами
точки
,
откуда находим
.
Ответ:
– ортоцентр треугольника
.
Задача 5.2.
Фиксированные издержки на предприятии
при выпуске некоторой продукции
составляют F
руб. в месяц, переменные издержки – V0
руб. за
единицу продукции, при этом выручка
составляет R0
руб. за единицу изготовленной продукции.
Составить функцию прибыли P(q)
(q
– количество произведенной продукции);
построить ее график и определить точку
безубыточности.
Данные к условию
задачи, соответствующие вариантам:
1)
;
2)
;
3)
;
4)
;
5)
;
6)
;
7)
;
8)
;
9)
;
10)
;
11)
;
12)
;
13)
;
14)
;
15)
;
16)
;
17)
;
18)
;
19)
;
20)
;
21)
;
22)
;
23)
;
24)
;
25)
;
26)
;
27)
;
28)
;
29)
;
30)
.
Пример 5.2
Фиксированные
издержки на предприятии при выпуске
некоторой продукции составляют
руб. в месяц, переменные издержки –
руб. за единицу
продукции, при этом выручка составляет
руб. за единицу
изготовленной продукции. Составить
функцию прибыли P(q)
(q
– количество произведенной продукции);
построить ее график и определить точку
безубыточности.
Решение
Вычислим совокупные
издержки на производстве при выпуске
q
единиц некоторой продукции
.
Если будет продано
q
единиц продукции, то совокупный доход
составит
.
Исходя из полученных
функций совокупного дохода и совокупных
издержек, найдем функцию прибыли
,
,
.
Точка
безубыточности – точка, в которой
прибыль равна нулю, или точка, в которой
совокупные издержки равны совокупному
доходу
,
,
откуда находим
– точка безубыточности.
Для построения
графика (рис. 10) функции прибыли найдем
еще одну точку
.
Рис. 10
Ответ:
функция прибыли
,
точка безубыточности
.
Задача 5.3. Законы
спроса и предложения на некоторый товар
соответственно определяются уравнениями
p=pD(q),
p=pS(q),
где p
– цена на товар, q
– количество товара. Предполагается,
что спрос определяется только ценой
товара на рынке pС,
а предложение – только ценой pS,
получаемой поставщиками. Необходимо
а) определить
точку рыночного равновесия;
б) точку равновесия
после введения налога, равного t.
Определить увеличение цены и уменьшение
равновесного объема продаж;
в) найти субсидию
s,
которая приведет к увеличению объема
продаж на q0
ед. относительно изначального
(определенного в пункте а));
г) найти новую
точку равновесия и доход правительства
при введении налога, пропорционального
цене и равного N%;
д) определить,
сколько денег будет израсходовано
правительством на скупку излишка при
установлении минимальной цены, равной
p0.
К каждому пункту
решения сделать рисунок в системе
координат. На рисунке обозначить
соответствующие пункту задачи линии и
точки.
Данные к условию
задачи, соответствующие вариантам:
1)
;
2)
;
3)
;
4)
;
5)
;
6)
;
7)
;
8)
;
9)
;
10)
;
11)
;
12)
;
13)
;
14)
;
15)
;
16)
;
17)
;
18)
;
19)
;
20)
;
21)
;
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Как составить уравнение сторон треугольника по трём координатам вершин?
Знаток
(457),
закрыт
12 лет назад
Рафиль Ахматдинов
Профи
(857)
12 лет назад
Пусть координаты вершин А (Ха, Уа) ; В (Хв, Нв) ; С (Хс, Ус) .
Уравнение стороны АВ (У-Уа) /(Ув-Уа) =(Х-Ха) /(Хв-Ха) или (У-Ув) /(Уа-Ув) =(Х-Хв) /(Ха-Хв) ,
где У и Х это текущие координаты, т. е буквы, а остальные величины – числа
Например, координаты вершин А (2, 3); В (5, -2); С (0, 0),
тогда уравнение АВ: (У-3)/(-2-3)=(Х-2)/(5-2) или (У+2)/(3+2)=(Х-5)/(2-5), дальше арифметика.
Аналогично и остальные стороны, главное не перепутать позиции чисел.