Как найти общие уравнения прямой в пространстве

Уравнения прямых в пространстве

Уравнение прямой как линии пересечения двух плоскостей

Пусть в координатном пространстве Oxyz (в прямоугольной системе координат) две плоскости заданы общими уравнениями

begin{aligned}rho_{1}colon & ,A_{1}cdot x+B_{1}cdot y+C_{1}cdot z+D_{1}=0;\[2pt] rho_{2}colon & ,A_{2}cdot x+B_{2}cdot y+C_{2}cdot z+D_{2}=0,end{aligned}

в которых коэффициенты при неизвестных непропорциональны, т.е. operatorname{rang}!begin{pmatrix}A_{1}&B_{1}&C_{1}\A_{2}&B_{2}&C_{2}end{pmatrix}=2. Это условие означает, что плоскости rho_{1} и rho_{2}пересекаются (см. условие (4.25)), поскольку их нормали vec{n}_{1}=A_{1}vec{i}+B_{1}vec{j}+C_{1}vec{k} и vec{n}_{2}=A_{2}vec{i}+B_{2}vec{j}+C_{2}vec{k} неколлинеарны (рис.4.25). Тогда линия пересечения плоскостей описывается системой уравнений

begin{cases} A_{1}cdot x+D_{1}cdot y+C_{1}cdot z+D_{1}=0,\ A_{2}cdot x+D_{2}cdot y+C_{2}cdot z+D_{2}=0. end{cases}

(4.31)

Система (4.31) называется общим уравнением прямой в пространстве.

Общее уравнение прямой в пространстве как пересечение двух плоскостей


Пример 4.13. В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1;2;3), B(3;0;2), C(7;4;6) треугольника (рис.4.26). Требуется составить уравнение прямой, содержащей высоту AH треугольника.

Решение. Прямая AH является линией пересечения двух плоскостей: плоскости rho_{1}, треугольника ABC и плоскости rho_{2}, проходящей через точку A перпендикулярно вектору overrightarrow{BC} (рис.4.26). По формуле (4.21) составим уравнение плоскости rho_{1}, проходящей через три точки A,,B,,C:

begin{vmatrix}x-1&y-2&z-3\3-1&0-2&2-3\7-1&4-2&6-3end{vmatrix}= begin{vmatrix} x-1&y-2&z-3\ 2&-2&-1\ 6&2&3 end{vmatrix}=0 quad Leftrightarrow quad x+3y-4z+5=0.

По формуле (4.14) составим уравнение плоскости rho_{2}, проходящей через точку A перпендикулярно вектору overrightarrow{BC}=(7-3)vec{i}+(4-0)vec{j}+(6-2)vec{k}=4vec{i}+4vec{j}+4vec{k}:

4cdot(x-1)+4cdot(y-2)+4cdot(z-3)=0 quad Leftrightarrow quad x+y+z-6=0.

Следовательно, общее уравнение (4.31) прямой AH имеет вид begin{cases}x+3y-4z+5=0,\x+y+z-6=0.end{cases}


Параметрическое уравнение прямой в пространстве

Напомним, что направляющий вектором прямой называется ненулевой вектор, коллинеарный этой прямой, т.е. принадлежащий или параллельный ей.

Пусть в координатном пространстве Oxyz заданы точка M_{0}(x_{0}, y_{0}, z_{0}) и ненулевой вектор vec{p}= avec{i}+ bvec{j}+ cvec{k} (рис.4.27). Требуется составить уравнение прямой, коллинеарной вектору vec{p} и проходящей через точку M_{0}(x_{0},y_{0},z_{0}).

Выберем на прямой произвольную точку M_{0}(x,y,z). Обозначим vec{r}=overrightarrow{OM}, vec{r}_{0}=overrightarrow{OM_{0}} — радиус-векторы точек M(x,y,z) и M_{0}(x_{0},y_{0},z_{0}) (рис.4.28).

Параметрическое уравнение прямой в пространстве и направляющий вектор прямой

Точка M принадлежит заданной прямой тогда и только тогда, когда векторы overrightarrow{M_{0}M} и vec{p} коллинеарны. Запишем условие коллинеарности: overrightarrow{M_{0}M}=tvec{p}, где t — некоторое действительное число (параметр). Учитывая, что overrightarrow{M_{0}M}=vec{r}-vec{r}_{0}, получим векторное параметрическое уравнение прямой в пространстве:

vec{r}=vec{r}_{0}+tcdotvec{p}, quad tinmathbb{R},,

(4.32)

где vec{p} — направляющий вектор прямой, а vec{r}_{0} — радиус-вектор заданной точки M_{0}(x_{0},y_{0},z_{0}) принадлежащей прямой.

Координатная форма записи уравнения (4.32) называется параметрическим уравнением прямой в пространстве

begin{cases}x=x_{0}+acdot t,\y=y_{0}+bcdot t,\z=z_{0}+ccdot t,end{cases}tinmathbb{R},,

(4.33)

где a,b,c — координаты направляющего вектора vec{p} прямой. Параметр t в уравнениях (4.32),(4.33) имеет следующий геометрический смысл: величина t пропорциональна расстоянию от заданной точки M_{0}(x_{0}, y_{0}, z_{0}) до точки M(x,y,z)equiv M(x_{0}+at,y_{0}+bt,z_{0}+ct). Физический смысл параметра t в параметрических уравнениях (4.32),(4.33) — это время при равномерном и Прямолинейном движении точки M(x,y,z) по прямой. При t=0 точка M(x,y,z) совпадает с заданной точкой M_{0}. При возрастании параметра t движение происходит в направлении направляющего вектора.


Каноническое уравнение прямой в пространстве

Выразим параметр t из каждого уравнения системы (4.33): t=frac{x-x_{0}}{a},, t=frac{y-y_{0}}{b},, t=frac{z-z_{0}}{c}, а затем исключим этот параметр:

frac{x-x_{0}}{a}=frac{y-y_{0}}{b}=frac{z-z_{0}}{c}, quad a^2+b^2+c^2ne0.

(4.34)

Уравнение (4.34) называется каноническим уравнением прямой в пространстве. В этом уравнении коэффициенты a,b,c не равны нулю одновременно, так как это координаты направляющего вектора прямой.


Замечания 4.6.

1. Если один или два из трех знаменателей дробей в (4.34) равны нулю, то считается, что соответствующий числитель дроби равен нулю. Например:

а) каноническое уравнение frac{x-x_{0}}{0}=frac{y-y_{0}}{0}=frac{z-z_{0}}{c} — это уравнение begin{cases}x=x_{0},\y=y_{0}end{cases} прямой, параллельной оси аппликат (рис.4.29,а);

б) каноническое уравнение frac{x-x_{0}}{a}=frac{y-y_{0}}{b}=frac{z-z_{0}}{0} — это уравнение begin{cases}z=z_{0},\dfrac{x-x_{0}}{a}=dfrac{y-y_{0}}{b}end{cases} прямой, параллельной координатной плоскости Oxy (рис.4.29,б).

Прямые в пространстве, параллельные координатным плоскостям

2. Направляющий вектор vec{p} прямой определяется неоднозначно. Например, любой ненулевой вектор lambdacdotvec{p}, где lambdainmathbb{R}, также является направляющим вектором для той же прямой.

Переход от общего уравнение к каноническому

3. Для перехода от общего уравнения прямой (4.31) к каноническому (4.34) нужно выполнить следующие действия:

1) найти любое решение (x_{0},y_{0},z_{0}) системы begin{cases} A_{1}cdot x+B_{1}cdot y+C_{1}cdot z+D_{1}=0,\ A_{2}cdot x+B_{2}cdot y+C_{2}cdot z+D_{2}=0, end{cases} определяя тем самым координаты точки M_{0}(x_{0},y_{0},z_{0}), принадлежащей прямой;

2) найти направляющий вектор vec{p} прямой как векторное произведение нормалей vec{n}_{1}=A_{1}vec{i}+B_{1}vec{j}+C_{1}vec{k}, vec{n}_{2}= A_{2}vec{i}+ B_{2}vec{j}+ C_{2}vec{k}, заданных плоскостей:

vec{p}= begin{bmatrix}vec{n}_{1},vec{n}_{2}end{bmatrix}= acdotvec{i}+ bcdotvec{j}+ ccdotvec{k}= begin{vmatrix} vec{i}&vec{j}&vec{k}\ A_{1}&B_{1}&C_{1}\ A_{2}&B_{2}&C_{2} end{vmatrix}.

3) записать каноническое уравнение (4.34) с учетом пунктов 1 и 2.

4. Чтобы перейти от канонического уравнения к общему, достаточно двойное равенство (4.34) записать в виде системы

left{!begin{aligned}frac{x-x_{0}}{a}&=frac{y-y_{0}}{b},,\frac{y-y_{0}}{b}&=frac{z-z_{0}}{c},,end{aligned}right. и привести подобные члены.

5. Чтобы перейти от канонического уравнения к параметрическому, следует приравнять каждую дробь в уравнении (4.34) параметру t и записать полученные равенства в виде системы (4.33):

frac{x-x_{0}}{a}=frac{y-y_{0}}{b}=frac{z-z_{0}}{c}=t quad Leftrightarrow quad begin{cases}x=x_{0}+acdot t,\y=y_{0}+bcdot t,\z=z_{0}+ccdot t,end{cases} tinmathbb{R},.

6. Если в каноническом уравнении (4.34) прямой фиксировать координаты x_{0},y_{0},z_{0} точки M_{0}, а коэффициентам a,b,c придавать произвольные значения (не равные нулю одновременно), то получим уравнение связки прямых с центром в точке M_{0}(x_{0},y_{0},z_{0}), т.е. совокупность всех прямых, проходящих через точку M_{0}.

7. Параметрическое (4.33) и каноническое (4.34) уравнения прямой, полученные в прямоугольной системе координат, имеют тот же вид в любой другой аффинной системе координат. Геометрический смысл коэффициентов в уравнениях остается прежним.


Пример 4.14. В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1;2;3), B(3;0;2), C(7;4;6) треугольника (рис. 4.30). Требуется:

В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1,2,3), B(3,0,2), C(7,4,6) треугольника

а) составить каноническое уравнение прямой, содержащей высоту AH треугольника;

б) составить общее уравнение прямой, содержащей биссектрису AL треугольника.

Решение. а) Общее уравнение прямой AH получено в примере 4.13: begin{cases}x+3cdot y-4cdot z+5=0,\x+y+z-6=0.end{cases} Перейдем от общего уравнения к каноническому.

1) Найдем любое решение (x_{0},y_{0},z_{0}) системы, например, x_{0}=1, y_{0}=2, z_{0}=3 (это координаты точки A(1;2;3)).

2) Найдем направляющий вектор vec{p} прямой как векторное произведение нормалей vec{n}_{1}=vec{i}+3vec{j}-4vec{k}, vec{n}_{2}=vec{i}+vec{j}+vec{k} заданных плоскостей

vec{p}= begin{bmatrix}vec{n}_{1},vec{n}_{2}end{bmatrix}= begin{vmatrix} vec{i}&vec{j}&vec{k}\ 1&3&-4\ 1&1&1 end{vmatrix}= 7cdotvec{i}-5cdotvec{j}-2cdotvec{k},.

3) Запишем каноническое уравнение (4.34): frac{x-1}{7}=frac{y-2}{-5}=frac{z-3}{-2}.

б) Сначала составим каноническое уравнение прямой AL. Для этого нужно найти направляющий вектор vec{l} этой прямой. Учитывая, что диагональ ромба является биссектрисой, vec{l}=vec{b}+vec{c}, где vec{b} и vec{c} — единичные векторы, одинаково направленные с векторами overrightarrow{AB} и overrightarrow{AC} соответственно. Находим

begin{gathered}overrightarrow{AB}= 2cdotvec{i}-2cdotvec{j}-1cdotvec{k}, quad begin{vmatrix}overrightarrow{AB}end{vmatrix}=3, quad vec{b}= frac{overrightarrow{AB}}{begin{vmatrix} overrightarrow{AB}end{vmatrix}}= frac{2}{3}cdot vec{i}-frac{2}{3} cdotvec{j}-frac{1}{3}cdot vec{k},;\[3pt] overrightarrow{AC}= 6cdot vec{i}+ 2cdotvec{j}+3cdotvec{k}, quad begin{vmatrix} overrightarrow{AC} end{vmatrix}=7, quad vec{c}= frac{overrightarrow{AC}}{begin{vmatrix} overrightarrow{AC}end{vmatrix}}= frac{6}{7}cdotvec{i}+ frac{2}{7}cdotvec{j}+ frac{3}{7}cdotvec{k},;\[3pt] vec{l}=vec{a}+vec{c}= left(frac{2}{3}cdotvec{i}-frac{2}{3}cdotvec{j}-frac{1}{3}cdotvec{k}right)+ left(frac{6}{7}cdotvec{i}+frac{2}{7}cdotvec{j}+frac{3}{7}cdotvec{k}right)= frac{32}{21}cdotvec{i}-frac{8}{21}cdotvec{j}+frac{2}{21}cdotvec{k},. end{gathered}

Составляем каноническое уравнение прямой ALcolon,frac{x-1}{32/21}=frac{y-2}{-8/21}=frac{z-3}{2/21}.

Записывая двойное равенство в виде системы, получаем общее уравнение прямой AL:

left{!begin{aligned}frac{x-1}{32/21}&=frac{y-2}{-8/21},\ frac{y-2}{-8/21}&=frac{z-3}{2/21},end{aligned}right.  quad Leftrightarrow quad begin{cases}x+4cdot y-9=0,\ y+4cdot z-14=0.end{cases}


Расстояние от точки до прямой, заданной каноническим уравнением

Расстояние от точки до прямой в пространстве

Найдем расстояние d от точки M_{1}(x_{1},y_{1},z_{1}) до прямой l, заданной каноническим уравнением (рис.4.31)):

lcolon, frac{x-x_{0}}{a}= frac{y-y_{0}}{b}= frac{z-z_{0}}{c},.

Искомое расстояние равно высоте параллелограмма, построенного на векторах

vec{p}=avec{i}+bvec{j}+cvec{k} и vec{m}=overrightarrow{M_{0}M_{1}}=(x_{1}-x_{0})vec{i}+(y_{1}-y_{0})vec{j}+(z_{1}-z_{0})vec{k}, то есть.

d=frac{begin{vmatrix}begin{bmatrix}vec{m},vec{p}end{bmatrix}end{vmatrix}}{begin{vmatrix}vec{p}end{vmatrix}}= frac{sqrt{begin{vmatrix}x_{1}-x_{0}&y_{1}-y_{0}\a&bend{vmatrix}^2+ begin{vmatrix}y_{1}-y_{0}&z_{1}-z_{0}\b&cend{vmatrix}^2+ begin{vmatrix}x_{1}-x_{0}&z_{1}-z_{0}\a&cend{vmatrix}^2}}{sqrt{a^2+b^2+c^2}},.

(4.35)


Уравнение прямой, проходящей через две заданные точки

Уравнение прямой в пространстве, проходящей через две заданные точки

Пусть в координатном пространстве Oxyz заданы две точки M_{0}(x_{0},y_{0},z_{0}) и M_{1}(x_{1},y_{1},z_{1}). Требуется составить уравнение прямой, проходящей через заданные точки.

Как показано в разд., точка M(x,y,z) принадлежит прямой M_{0}M_{1} тогда и только тогда, когда ее радиус-вектор overrightarrow{OM} удовлетворяет условию (рис.4.32): overrightarrow{OM}= (1-t)cdot overrightarrow{OM_{0}}+ tcdotoverrightarrow{OM_{1}}, где t — некоторое действительное число (параметр). Это уравнение, а также его координатную форму

begin{pmatrix}x\y\zend{pmatrix}= (1-t)cdot!begin{pmatrix}x_{0}\y_{0}\z_{0}end{pmatrix}+tcdot!begin{pmatrix}x_{1}\y_{1}\z_{1}end{pmatrix}! quad Leftrightarrow quad !begin{cases} x=(1-t)cdot x_{0}+tcdot x_{1},\ y=(1-t)cdot y_{0}+tcdot y_{1},\ z=(1-t)cdot z_{0}+tcdot z_{1}.end{cases} tinmathbb{R}

(4.36)

будем называть аффинным уравнением прямой, проходящей через две точки M_{0}(x_{0},y_{0},z_{0}) и M_{1}(x_{1},y_{1},z_{1}).

Выражая параметр t из каждого уравнения системы (4.36), получаем: frac{x-x_{0}}{x_{1}-x_{0}}=frac{y-y_{0}}{y_{1}-y_{0}}=frac{z-z_{0}}{z_{1}-z_{0}}=t. Исключая параметр t, приходим к уравнению прямой, проходящей через две точки M_{0}(x_{0},y_{0},z_{0}) и M_{1}(x_{1},y_{1},z_{1}):

frac{x-x_{0}}{x_{1}-x_{0}}=frac{y-y_{0}}{y_{1}-y_{0}}=frac{z-z_{0}}{z_{1}-z_{0}},.

(4.37)

Уравнение (4.37) можно получить из канонического уравнения (4.34), выбирая в качестве направляющего вектора vec{p}=avec{i}+bvec{j}+cvec{k} вектор overrightarrow{M_{0}M_{1}}=(x_{1}-x_{0})vec{i}+(y_{1}-y_{0})vec{j}+(z_{1}-z_{0})vec{k}, т.е. подставляя a=x_{1}-x_{0}, b=y_{1}-y_{0}, c=z_{1}-z_{0}.


Треугольник в пространстве по координатам вершин, его высота и медиана

Пример 4.15. В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1;2;3), B(3;0;2), C(7;4;6) треугольника (рис.4.33). Требуется:

а) составить уравнение прямой BC;

б) составить уравнение прямой, содержащей медиану AM треугольника;

в) найти высоту h=|AH| треугольника, опущенную на сторону BC.

Решение. а) Записываем уравнение (4.37) прямой, проходящей через точки B(3;0;2), C(7;4;6):

frac{x-3}{7-3}=frac{y-0}{4-0}=frac{z-2}{6-2}~ Leftrightarrow~ frac{x-3}{1}=frac{y}{1}=frac{z-2}{1},.

б) Находим координаты середины M стороны BCcolon M(5;2;4). Составляем уравнение (4.37) прямой AM:

frac{x-1}{5-1}=frac{y-2}{2-2}=frac{z-3}{4-3}~ Leftrightarrow~ frac{x-1}{4}=frac{y-2}{0}=frac{z-3}{1},.

в) Искомую высоту h находим по формуле (4.35), полагая vec{m}=overrightarrow{BA}=-2vec{i}+2vec{j}+vec{k} и vec{p}=vec{i}+vec{j}+vec{k}:

h=|AH|=frac{begin{vmatrix}begin{bmatrix}vec{m},vec{p}end{bmatrix}end{vmatrix}}{begin{vmatrix}vec{p}end{vmatrix}}= frac{sqrt{begin{vmatrix}-2&2\1&1end{vmatrix}^2+begin{vmatrix}2&1\1&1end{vmatrix}^2+begin{vmatrix}-2&1\1&1end{vmatrix}^2}}{sqrt{1^2+1^2+1^2}}=frac{sqrt{16+1+9}}{sqrt{3}}= sqrt{frac{26}{3}},.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Материал этой статьи продолжает тему прямой в пространстве. От геометрического описания пойдем к алгебраическому: зададим прямую при помощи уравнений в фиксированной прямоугольной системе координат трехмерного пространства. Приведем общую информацию, расскажем о видах уравнений прямой в пространстве и их связи между собой.

Уравнение прямой в пространстве: общие сведения

Определение 1

Уравнение прямой на плоскости в прямоугольной системе координат Oxy – это линейное уравнение с переменными x и y, которому отвечают координаты всех точек прямой и не удовлетворяют координаты никаких прочих точек.

Если речь идет о прямой в трехмерном пространстве, все несколько иначе: не существует такого линейного уравнения с тремя переменными x, y, z, которому бы отвечали только координаты точек заданной прямой. В самом деле, уравнение Ax+By+Cz+D=0, где x, y, z – переменные, а А, В, С и D – некоторые действительные числа (А, В, С одновременно не равны нулю) – это общее уравнение плоскости. Тогда как же задать прямую линию в прямоугольной системе координат Oxyz? Найдем ответ на этот вопрос в следующих пунктах темы.

Уравнение прямой в пространстве как уравнение двух пересекающихся плоскостей

Вспомним аксиому:

Определение 2

Когда две плоскости в пространстве имеют общую точку, существует их общая прямая, на которой находятся все общие точки этих плоскостей.

Рассмотрим это утверждение в алгебраическом толковании.

Допустим, в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz и задано, что прямая a – это линия пересечения двух плоскостей α и β, которые соответственно описываются уравнениями плоскости A1x+B1y+C1z+D1=0 и A2x+B2y+C2z+D2=0. Поскольку прямая a – это множество общих точек плоскостей α и β, то координаты любой точки прямой a будут одновременно отвечать обоим уравнениям. Никакие прочие точки одновременно удовлетворять условия обоих уравнений не будут.

Таким образом, координаты любой точки прямой a в прямоугольной системе координат станут частным решением системы линейных уравнений вида

A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0

Общее же решение системы уравнений  _A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0 определит координаты каждой точки прямой a, т.е. по сути задает саму прямую a.

Уравнение прямой в пространстве как уравнение двух пересекающихся плоскостей

Резюмируем: прямая в пространстве в прямоугольной системе координат Oxyz может быть задана системой уравнений двух плоскостей, которые пересекаются:

A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0

Приведем пример описания прямой линии в пространстве при помощи системы уравнений:

x+3y-21z+113y+14z-2=0

Навык определения прямой линии уравнениями пересекающихся плоскостей необходим при решении задач на нахождение координат точки пересечения прямой и плоскости или нахождение координат точки пересечения двух прямых в пространстве.

Подробнее изучить эту тему можно, обратившись к статье об уравнениях прямой в пространстве, уравнениях двух пересекающихся прямых.

Заметим, что существует несколько способов описания прямой в пространстве. В практике прямую чаще задают не двумя пересекающимися плоскостями, а направляющим вектором прямой и точкой, принадлежащей этой прямой. В подобных случаях легче задать канонические и параметрические уравнения прямой в пространстве. Поговорим о них ниже.

Параметрические уравнения прямой в пространстве

x=x1+ax·λy=y1+ay·λz=z1+az·λ, где x1, y1, z1 – координаты некой точки прямой; аx, аy и az  (одновременно не равны нулю) – координаты направляющего вектора прямой. а·λ – некий параметр, принимающий любые действительные значения.

Любое значение параметра λ позволяет, используя параметрические уравнения прямой в пространстве, определить тройку чисел (x, y, z), соответствующую некой точке прямой (отсюда и название такого вида уравнений). Например, пусть λ=0, тогда из параметрических уравнений прямой в пространстве получим координаты:

x=x1+ax·0y=y1+ay·0z=z1+az·0⇔x=x1y=y1z=z1

Рассмотрим конкретный пример:

Пример 1

Пусть прямая задана параметрическими уравнениями вида x=3+2·axy=-2·ayz=2+2·az.

Заданная прямая проходит через точку М1(3, 0, 2); направляющий вектор этой прямой имеет координаты2, -2, 2.

Ответ: 2, -2, 2,

Продолжение изучения этой темы можно найти в статье о параметрических уравнениях прямой в пространстве.

Канонические уравнения прямой в пространстве

Если разрешить каждое из параметрических уравнений прямой

x=x1+ax·λy=y1+ay·λz=z1+az·λ относительно параметра λ, возможно просто перейти к каноническим уравнениям прямой в пространстве x-x1ax=y-y1ay=z-z1az.

Канонические уравнения прямой в пространстве задают прямую, которая проходит через точку М1(x1, y1, z1), и у которой направляющий вектор равен a→=(ax, ay, az). Например, задана прямая, описываемая каноническим уравнением x-11=y2=z+57. Эта прямая проходит через точку с координатами (1, 0, -5), ее направляющий вектор имеет координаты (1, 2, -7).

Отметим, что одно или два числа из чисел аx, аy и аz в канонических уравнениях прямой могут быть равны нулю (все три числа не могут быть равны нулю, поскольку направляющий вектор не может быть нулевым). В таком случае запись вида x-x1ax=y-y1ay=z-z1az является формальной (поскольку в знаменателях одной или двух дробей будут нули) и понимать ее нужно как:

x=x1+ax·λy=y1+ay·λz=z1+az·λ, где λ∈R.

Если одно из чисел аx, аy и az канонического уравнения прямой равно нулю, то прямая лежит в какой-то из координатных плоскостей, или в плоскости, ей параллельной. Если два из чисел аx, аy и az равны нулю, то прямая или совпадает с какой-либо из координатных осей, или параллельна ей. К примеру, прямая, описываемая каноническим уравнением x+43=y-52=z+20, лежит в плоскости z=-2, параллельной координатной плоскости Oxy, а координатная ось Oy описывается каноническими  уравнениями x0=y1=z0.

Графические иллюстрации подобных случаев, составление канонических уравнений прямой в пространстве, примеры решения типовых задач, а также алгоритм перехода от канонических уравнений к другим видам уравнений прямой в пространстве рассмотрены в статье о канонических уравнениях прямой в пространстве.

1. Общее уравнение прямой.

Прямая в пространстве
может быть задана как пересечение двух
плоскостей:

.
(1)

О1.
Геометрическое место точек пространства,
удовлетворяющих системе уравнений (1),
называется
прямой
в пространстве
,
а
система уравнений (1) называется общим
уравнением прямой
.

З1. Для того чтобы
система уравнений (1) определяла прямую
в пространстве необходимо и достаточно,
чтобы нормальные вектора плоскостей,

определяющих
прямую,
ибыли неколлинеарными, т.е. выполняется
одно из неравенств:или.

Пусть прямая
проходит через точку

параллельно вектору
,
который называется направляющим
вектором прямой

(см. Лекцию
№ 7
),
тогда ее уравнение называется каноническим
и имеет вид:

.
(2)

З2. Если в уравнении
(2) одна из проекций направляющего вектора
равна 0, то это означает, что прямая
перпендикулярна соответствующей
координатной оси.

Пример 1.
Как расположена прямая
относительно координатных осей.

Согласно замечанию
2 эта прямая будет перпендикулярна осям
абсцисс и ординат (параллельна оси
аппликат) и будет проходить через точку

.

Приравняв каждую
дробь уравнения (2) параметру
,
получимпараметрическое
уравнение прямой:

Пример 2.
Записать уравнение прямой
в параметрическом виде.

Приравняем каждую
дробь к параметру
:.
Если пря-

мая проходит через
две известные точки
и,
то ее уравнение имеет вид (см.Лекцию
№ 7
):
и назы-ваетсяуравнением
прямой
,
проходящей
через две заданные точки
.

2. Основные задачи.

а) Переход
от общего уравнения прямой к каноническому.

Пусть прямая задана общим уравнением
.
Для того, чтобы перейти от этого уравнения
прямой к каноническому, поступают
следующим образом:

находят
координаты любой точки, удовлетворяющие
приведенной системе, для чего одну из
переменных величин, например
,
полагают равной нулю и решают систему
линейных алгебраических уравнений
относительно оставшихся переменных
величин;

направляющий
вектор
прямой находят как векторное произведение
нормальных векторов

и
:

;

зная
точку, через которую проходит прямая,
и направляющий вектор прямой записывают
каноническое уравнение прямой.

Пример 3.
Записать уравнение прямой
в каноническом и параметрическом виде.

Положив
,
получим СЛАУСкладывая уравнения, найдем.
Подставив это значение переменнойво второе уравнение системы, по-лучим.
Таким образом, прямая проходит через
точку
.
Найдем направляющий вектор прямой как
векторное произведение нормальных
векторов заданных плоскостей:

б)
Угол
между пересекающимися прямыми.

Угол
между двумя пересека-ющимися прямыми
определяется как угол между их
направляющими векторами
.
Если прямые
иимеют направляющие вектора

и
,

соответственно,
то угол между прямыми определяется по
формуле:

.

Сл1.
Если
прямые перпендикулярны (),
тоусловием
перпен-дикулярности
прямых
является
равенство:
.

Сл2.
Если прямые параллельны, то направляющие
вектора коллинеарны, следовательно,
условие
параллельности прямых
:

.

в)
Координаты
точки пересечения прямой и плоскости.

Пусть прямая
задана общим уравнением,
а плоскостьуравнением.Так
как точка пересечения прямой и плоскости
принадлежит одновременно обоим этим
объектам, то ее координаты находят из
решения системы уравнений
:

.

Если прямая
задана
каноническим уравнением,

а плоскость
уравнением,
то поступают по следующей

схеме:

переходят
от канонического уравнения прямой к
параметрическому, т.е. записывают
уравнение прямой в виде
;

полученные
выражения подставляют в уравнение
заданной плоскости

и
находят параметр
:
.

Рассмотрим возможные
случаи:

1) если
выполняются условия
,
то прямая не пересекает плоскость
(прямая параллельна плоскости);

2) при
условиях
прямая лежит на плоскости;

3) если
,
прямая пересекает плоскость в одной
точке.

вычисляют
координаты точки пересечения, подставив
найденное значение
в параметрическое уравнение прямой


.

г)
Угол
между прямой и плоскостью.

Пусть дана плоскость
с нормальным вектороми пересекающая ее прямаяс направляющим вектором

(Рис.
53).

Рис.
53.
Угол между
прямой

и
плоскостью.

Угол
является углом между прямойи плоскостью.
Угол между нормальным вектором плоскости
и прямой обозначим через.
Из рисунка видно, что.
Следовательно,

.

Сл1.
Если прямая
перпендикулярна плоскости (),
тоусловие
перпендикулярности прямой и плоскости
имеет вид
:

.

Сл2.
Если прямая
параллельна плоскости (),
то направляющий вектор прямой и нормальный
вектор плоскости перпендикулярны (),
следовательно,условие
параллельности прямой и плоскости
:

.

21

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Общие уравнения прямой в пространстве. Прямую в пространстве можно рассматривать как линию пересечения двух плоскостей. Если плоскости π1: A1x + B1y + C1z + D1 = 0, π2: A2x + B2y + C2z + D2 = 0 не параллельны, то пересекаются по прямой. Точка M(x; y; z) принадлежит этой прямой тогда и только тогда, когда ее координаты удовлетворяют уравнению каждой из плоскостей, т.е. являются решениями системы уравнений

Система уранений

которую называют общими уравнениями прямой.

Векторное уравнение прямой. Описание прямой в пространстве при помощи общих уравнений — не единственный способ. Прямую L в пространстве можно также однозначно задать любой ее точкой M0 и параллельным ей ненулевым вектором s.

Любой ненулевой вектор, параллельный прямой, называют направляющим вектором прямой.

Если точка M принадлежит прямой L, то это эквивалентно тому, что вектор M0M коллинеарен вектору s (рис. 6.1). Так как s ≠ 0, то вектор s является базисом в пространстве V1 коллинеарных ему векторов. Поэтому для некоторого числа t выполняется равенство M0M = ts. Так как M0M = OMOM0 = r — r0, где r и r0радиус-векторы точек M и M0 соответственно, то условие M ∈ L можно записать в виде уравнения

r = r0 + ts, (6.2)

которое называют векторным уравнением прямой в пространстве.

Рис 6.1.	Уравнения прямой в пространстве

Параметрические уравнения прямой в пространстве. Предположим, что известны координаты {l; m; n} направляющего вектора s прямой L и точки M0(x0; y0; z0) ∈ L в прямоугольной системе координат. Обозначим через (x; y; z) координаты произвольной точки M.

Критерием принадлежности точки M прямой L является условие коллинеарности векторов M0M = {x — x0; y — y0; z — z0} и s (см. рис. 6.1), что равносильно пропорциональности их координат (см. теорему 2.6). Обозначив через t коэффициент пропорциональности, получим равенства x — x0 = tl, y — y0 = tm, z — z0 = tn. Но тогда

Равенства x >
<p>и (6.3) называют <i>параметрическими уравнениями прямой в пространстве</i>. Шесть коэффициентов в системе уравнений (6.3) имеют наглядный геометрический смысл: они представляют собой координаты одной точки на прямой, соответствующей t = 0, и координаты направляющего вектора прямой, который соединяет точки, соответствующие значениям параметра t = 0 и t = 1.</p>
<p>Итак, если задана система трех уравнений вида (6.3), в которой хотя бы один из коэффициентов l, m, n отличен от нуля, то эта система определяет в пространстве прямую, причем тройка коэффициентов x<sub>0</sub>, y<sub>0</sub>, z<sub>0</sub> задает на прямой точку, а тройка коэффициентов l, m, n представляет собой координаты направляющего вектора прямой.</p>
<p><b>Канонические уравнения прямой в пространстве</b>. Как и в случае прямой на плоскости, из параметрических уравнений (6.3) можно исключить параметр t и записать результат в виде</p>
<p>(x - x<sub>0</sub>)/l = (y - y<sub>0</sub>)/m = (z - z<sub>0</sub>)/n  (6.4)</p>
<p>Уравнения (6.4) называют <i>каноническими уравнениями прямой</i> в пространстве.</p>
<p>Канонические уравнения представляют собой, по существу, другую форму записи условия коллинеарности векторов <span class=M0M и s, состоящую в пропорциональности их координат (см. следствие 2.1).

В знаменателе канонических уравнений допускается нулевое значение. Чтобы понять смысл нулевых значений параметров l, m, n, обратим внимание на параметрические уравнения прямой (6.3), в которых нет проблемы нулевых знаменателей. Например, при l = 0 из (6.3) следует, что x = x0. Мы видим, что если в канонических уравнениях один из знаменателей (или два, но не все три) равен нулю, то соответствующий числитель тоже равен нулю.

Уравнения прямой, проходящей через две точки. Каждая прямая в пространстве однозначно задается любыми двумя своими различными точками. Если известны координаты этих точек M1(x1; y1; z1) и M2(x2; y2; z2), то в качестве направляющего вектора прямой подходит ненулевой вектор M1M2 = {x2 — x1; y2 — y1; z2 — z1}. Зная его координаты и координаты точки M1 на прямой, можно записать канонические уравнения прямой (6.4). В результате получим

(x – x1)/(x2 – x1) = (y – y1)/(y2 – y1) = (z – z1)/(z2 – z1) –

уравнения прямой, проходящей через две точки.

Пример 6.1. Точки M1(1;2;3) и M2(3; 2; 1) определяют проходящую через них прямую
(x – 1)/ (3 – 1) = (y – 2)/ (2 – 2) = (z – 3)/ (1 – 3). Нуль в знаменателе второй дроби означает, что для координат всех точек прямой выполнено равенство y = 2. Поэтому прямая расположена в плоскости y – 2 = 0, параллельной координатной плоскости xOz и пересекающей ось ординат в точке с ординатой 2.

Изменение формы уравнений прямой. Переход от канонических уравнений прямой к параметрическим и обратно достаточно очевиден и сводится к введению или исключению параметра t. Одна форма уравнений непосредственно записывается по другой, так как в них используются одни и те же параметры, задающие координаты точки на прямой и координаты направляющего вектора.

Пример 6.2. Найдем координаты точки B, симметричной точке A(2; 3; — 1) относительно
прямой L: (x – 1)/1 = (y + 2)/-1 = (z – 1)/2.

В вычислениях будем опираться на следующее геометрическое построение точки B: а) через точку A проводим плоскость π, перпендикулярную прямой L; б) находим точку M пересечения прямой L и плоскости π; в) отрезок AM удлиняем до отрезка AB так, чтобы точка M оказалась в середине отрезка AB (рис. 6.2).

Рис 6.2.	Уравнения прямой в пространстве

Так как плоскость π перпендикулярна прямой L, то в качестве нормального вектора n плоскости можно выбрать направляющий вектор прямой L: n = {1; — 1; 2}. По известным координатам нормального вектора плоскости п и принадлежащей ей точки A записываем уравнение плоскости π в виде (5.2): 1(х — 2) + (—1)(у — 3) + 2(z + 1) = 0.

Чтобы найти координаты точки M пересечения прямой и плоскости по их уравнениям, запишем параметрические уравнения прямой L: х = 1 + t, у = —2 — t, z = 1 + 2t. Подставив эти выражения для координат точки на прямой в уравнение плоскости, для параметра t получим уравнение (1 + t — 2) — (—2 — t — 3) + 2(1 + 2t + 1) = 0, решение которого дает значение параметра для точки M. Найдя это значение t = —4/3 и подставив его в параметрические уравнения прямой, получим координаты точки пересечения x = 1 — 4/3 = —1/3, у = —2 + 4/3 = —2/3, z =1 — 8/3 = —5/3. Поскольку эта точка должна делить отрезок AB пополам, ее координаты, согласно (4.13), равны полусумме соответствующих координат точек A и B. Следовательно, обозначив через (хB; уB; zB) координаты точки B, получим равенства (2 + xB)/2 = -1/3(3 + yB)/2 = – 2/3(-1 + zB)/2 = -5/3. Отсюда xB = -8/3, yB = -13/3, zB = -7/3#

Достаточно просто выполняется переход от канонических уравнений к общим. Нетрудно увидеть, что на самом деле канонические уравнения представляют собой особую форму записи общих уравнений. Действительно, двойное равенство (6.4) равносильно системе двух линейных уравнений

(x – x0)/l – (y – y0)/m = 0, (x – x0)/l – (z – z0)/n = 0, (6.5)

которые представляют собой частный вид общих уравнений прямой в пространстве.

Самым сложным является переход от общих уравнений к каноническим или параметрическим.

Так как плоскости π1 и π2, соответствующие отдельным уравнениям из общих у (6.1) прямой, не параллельны, то хотя бы один из определителей второго порядка Формула определителей второго порядка Формула определителей второго порядка , представляющих собой координаты векторного произведения нормальныхвекторов этих плоскостей, не равен нулю. Предполагая, что первый из этих определителей является ненулевым: Формула изложим три способа перехода от общих уравнений к каноническим или параметрическим.

Первый способ состоит в том, что в системе (6.1) для z назначают два различных значения и по формулам Крамера находят два различных решения системы двух уравнений с двумя неизвестными х и у. Эти два решения системы (6.1) дают координаты двух разных точек M1 и M2 на прямой. А две известные точки прямой позволяют найти уравнение прямой, проходящей через две точки, которое фактически совпадает с каноническими уравнениями прямой.

Рис 6.3.	Уравнения прямой в пространстве

Отметим, что в качестве направляющего вектора s прямой, заданной общими уравнениями (6.1), можно выбрать n1×n2 — векторное произведение двух нормальных векторов плоскостей (рис. 6.3). Действительно, это векторное произведение является вектором, который ортогонален каждому нормальному вектору, а потому он параллелен как одной, так и другой плоскости, т.е. параллелен их линии пересечения. Нахождение одной точки на прямой и ее направляющего вектора можно рассматривать как второй способ перехода от общих уравнений прямой к ее каноническим уравнениям.

Пример 6.3. Найдем канонические уравнения прямой, совпадающей с линией пересечения плоскостей π1: х — у + z — 2 = 0, π2: х + у — z = 0.

Чтобы найти координаты некоторой точки на прямой, подставляем в уравнения плоскостей z = 0 и решаем соответствующую систему двух линейных уравнений относительно х и у

Система двух линейных уравнений

Значения х =1 и у = —1 единственного решения системы получаются сложением и вычитанием уравнений системы. Итак, точка с координатами (1; —1; 0) расположена на прямой.

В качестве направляющего вектора прямой берем векторное произведение n1 × n2 нормальных векторов n1 = {1; — 1; 1} и n2 = {1; 1; —1} плоскостей π1 и π2. По формуле (3.2) для вычисления векторного произведения в координатах находим

По формуле (3.2) для вычисления векторного произведения в координатах находим

т.е. направляющим вектором прямой будет s = {0;2; 2}. Найденный вектор s для простоты
заменим коллинеарным ему вектором {0; 1; 1}.

Проведенные вычисления позволяют написать канонические уравнения искомой прямой

(x – 1)/0 = (y + 1)/1 = z/1. #

Третий способ перехода от общих уравнений прямой к ее каноническим или параметрическим уравнениям состоит в следующем. Решаем систему (6.1) по правилу Крамера относительно неизвестных х и у, рассматривая неизвестное z как параметр:

Правило Крамера

Обозначив z через t и добавив уравнение z = t, получим параметрические уравнения прямой:

Правило Крамера

Прямая в пространстве – это линия, которая проходит от одной точки к другой, а также за пределы этих точек в бесконечность. Есть несколько видов уравнения прямой в пространстве: каноническое, параметрическое, угол между двумя прямыми в пространстве и т. д. Про это расскажем в данной статье и для наглядности предоставим несколько примеров.

Параметрическое и каноническое уравнение прямой в пространстве

Параметрическое и каноническое уравнение прямой рассматривается практически так, как и для прямой на плоскости. Значит, нужно составить уравнение прямой L, которая проходит через данную точку M_{1} (x_{1}, y_{1}, z_{1}) параллельно направляющему вектору overline{S} = (l, m, p).

Пусть, M(x, y, z) in{L} – произвольная точка прямой, тогда векторы overline{M_{1}M} = (x - x_{1}, y - y_{1}, z - z_{1}) и overline{S} коллинеарные, а это значит, что координаты их пропорциональны, поэтому получаем:

{x - x_{1}over{l}} = {y - y_{1}over{m}} = {z - z_{1}over{p}}

(1)

это и есть канонические уравнения прямой.

Приравнивая каждую из дробей (1) к параметру t, запишем параметрические уравнения прямой:

left{ begin{aligned} x = lt + x_{0}\ y = mt + y_{0}\ z = pt + z_{0} end{aligned}

(2)

Уравнение прямой в пространстве, которая проходит через две заданные точки

Уравнение прямой в пространстве – тема очень лёгкая, так как здесь самое важное – знать нужную формулу. Тогда легко можно решить любую задачу.

Итак, через две точки M_{1}(x_{1}, y_{1}z_{1} и M_{2}(x_{2}, y_{2}, z_{2}) можно не только геометрично провести линию, но и сложить её уравнения.

За направляющий вектор возьмём overline{S} =  overline{M_{1}M} = (x_{2} - x_{1}, y_{2} - y_{1}, z_{2} - z_{1}), тогда по формуле (1) у нас получается:

{x - x_{1}over{x_{2} - x_{1}}} = {y - y_{1}over{y_{2} - y_{1}}} = {z - z_{1}over{z_{2} - z_{1}}}

(3)

 уравнение прямой в пространстве, которые проходят через две заданные точки.

Нужна помощь в написании работы?

Написание учебной работы за 1 день от 100 рублей. Посмотрите отзывы наших клиентов и узнайте стоимость вашей работы.

Подробнее

Общее уравнение прямой – переход к каноническому уравнению

Объяснение про общее уравнение прямой начнём с прямой, которая задана двумя плоскостями, что пересекаются по этой прямой.

Пусть известны их уравнения:

left{begin{aligned}A_{1}x + B_{1}y + C_{1}z + D_{1} = 0\A_{2}x + B_{2}y + C{2}z + D_{2} = 0 end{aligned}

(4)

Тогда система (4) называется общим уравнением прямой.

Чтобы перейти к каноническим уравнениям вида (1), необходимо найти вектор overline{S} и точку M_{0} этой прямой.

Точку M_{0} находим, как один из решений системы (4). Например, положив в (4) z = 0 находим x_{0}, y_{0}, тогда и точку M_{0} (x_{0}, y_{0}, 0). Направляющий вектор overline{S}, который параллелен к каждой из плоскостей P_{1} и P_{2} и перпендикулярен к их нормальным векторам overline{n_{1}} = (A_{1}, B_{1}, C_{1}) и overline{n_{2}} = (A_{2}, B_{2}, C_{2}), то есть overline{S}perp{overline{n_{1}}}, overline{S}perp{overline{n_{2}}}. (см. рис. 1). Поэтому вектор overline{S} можно найти при помощи векторного произведения overline{n_{1}} и overline{n_{2}}

overline{S} = overline{n}_{1} x overline{n}_{2} = begin{vmatrix} overline{i}&overline{j}&overline{k}\ A_{1}&B_{1}&C_{1}\ A_{2}&B_{2}&C_{2} end{vmatrix}

Найдены координаты M_{0} и overline{S} подставим в каноническое уравнение (1).

Например, от общих уравнений прямой:

left{begin{aligned} 2x + 7y - z - 4 = 0\ 4x - 9y - 2z - 8 = 0 end{aligned}

Перейдём к каноническим, положив в системе y = 0 (при нём относительно больше коэффициенты). найдём x = 2, z = 0, M_{0} (2, 0, 0). Нормальные векторы overline{n_{1}} = (2, 7, -1) и overline{n_{2}} = (4, -9, -2). Тогда направляющий вектор

Уравнение прямой

Рис. 1

 overline{S} = overline{n}_{1} x overline{n}_{2} = begin{vmatrix} overline{i}&overline{j}&overline{k}\ 2&7&-1\ 4&-9&-2 end{vmatrix} = -23overline{i} - 0overline{j} - 46overline{k},

и канонические уравнения станут:

{x - 2over{-23}} = {y - 0over{0}} = {z - 0over{-46}}arrowvert * (-23)to{x - 1over{1}} = {yover{0}} = {zover{2}}.

Угол между двумя прямыми в пространстве. Условия параллельности и перпендикулярности прямых

Угол между двумя прямыми (varphi):

{x - x_{1}over{l_{1}}} = {y - y_{1}over{m_{1}}} = {z - z_{1}over{p_{1}}} и {x - x_{2}over{l_{2}}} = {y - y_{2}over{m_{2}}} = {z - z_{2}over{p_{2}}}

равен углу между их направляющими векторами overline{S_{1}} = (l_{1}, m_{1}, p_{1}) и overline{S_{2}} = (l_{2}, m_{2}, p_{2}), поэтому

{cosvarphi = cos(overline{S}_{1}}, overline{S}_{2}}) = {l_{1}l_{2} + m_{1}m_{2} + p_{1}p_{2}}over{sqrt{l_{1}^2 + m_{1}^2 + p_{1}^2}} * {sqrt{l_{2}^2 + m_{2}^2 + p_{2}^2}}

(5)

Условия параллельности и перпендикулярности прямых соответственно запишутся:

{l_{1}over{l_{2}}} = {m_{1}over{m_{2}}} = {p_{1}over{p_{2}}} и l_{1}l_{2} + m_{1}m_{2} + p_{1}p_{2} = 0.

(6)

Примеры решения задач

Давайте рассмотрим первый пример, где можно двумя способами построить прямую:

Задача

При точке M (1, 5, 2) и направляющем векторе overline{S} = (3, 0, 4) необходимо:

  1. составить каноническое уравнение прямой;
  2. построить эту прямую.

Решение

1) По формуле (1) запишем каноническое уравнение прямой l:

{x - 1over{3}} = {y - 5over{0}} = {z - 2over{4}} = (t).

2) Рассмотрим два способа построения прямой l.

Первый способ

В системе координат XYZ строим вектор overline{S} = (3, 0, 4) и точку M (1, 5, 2) и проводим через точку M прямую параллельную вектору overline{S}.

Второй способ

По формуле (2) запишем каноническое уравнение прямой в параметрическом виде:

left{begin{aligned} x = 3t + 1\ y = 0 * t + 5\ z = 4t + 2 end{aligned} right

Уравнение прямой

На рисунке видно, что при произвольных значениях t из системы находим координаты соответствующих точек, которые принадлежат прямой l. Так при t = 1 находим координаты M_{1}(4, 5, 6).  Через две точки M и M_{1} проводим прямую l.

Очевидно, что найти острый угол между прямыми совершенно не сложно при знании темы и определённых формул. Давайте разберём такой пример:

Задача

Найти острый угол между прямыми:

{x - 4over{6}} = {y + 2over{-2}} = {zover{3}}, {x + {2}over{-2}} = {y - {5}over{-1}} = {z + 1over{-2}}

(7)

Решение

По формуле (7) получаем:

costheta = {6 * (-2) + (-2)(-1) + 3 * (-2)}over{sqrt{6^2 + (-2)^2 + 3^2} * sqrt{(-2)^2 + (-1)^2 + (-2)^2} = {-12 +2 -6over{7 * 3}} = -{16over21}.

Так как costheta = -{16over{21}} < 0, тогда угол theta тупой, theta = arccos (-{16over{21}}, а острый угол varphi = 180^0 - theta.

Ответ

varphi = arccos{16over{21}}.

Рассмотрим последний пример, где нужно составить уравнение. Здесь, как и в каждой задаче, важно знать и понимать, какой формулой нужно воспользоваться.

Задача

Составить уравнение прямой l,  которая проходит через точку M(2, -4, 3) и параллельна прямой x = -5t + 4, y = 2t, z = 8t - 5.

Решение

От параметрического уравнения  переходим к каноническому {x - 4over{(-5)}} = {yover{2}} = {z + 5over{8}}tooverline{S} = (-5, 2, 8) При условии параллельности прямых overline{S}||overline{S_{1}} то есть направляющим вектором новой прямой может служить известный вектор overline{S} = (-5, 2, 8) и по формуле (1) у нас получается:

{x - 2over{-5}} = {y - 4over{2}} = {z - 3over{8}}.

Ответ

{x - 2over{-5}} = {y - 4over{2}} = {z - 3over{8}}.

Добавить комментарий