Как найти общий перпендикуляр двух скрещивающихся прямых



5.5.3. Как найти прямую, содержащую общий перпендикуляр?

в) Эта задачка посложнее будет. «Чайникам» рекомендую пропустить данный пункт, не хочу охлаждать вашу искреннюю симпатию к

аналитической геометрии =) Кстати, и более подготовленным читателям, возможно, лучше тоже повременить – дело в том, что по сложности эту задачу

надо бы поставить последней в параграфе, но по логике изложения она должна располагаться здесь. …Впрочем, танцуйте читайте все! 🙂

Итак, требуется найти уравнения прямой , которая содержит общий

перпендикуляр скрещивающихся прямых.

Общий перпендикуляр скрещивающихся прямых – это отрезок, соединяющий данные прямые и перпендикулярный данным прямым:

Вот наш красавец:  – общий перпендикуляр прямых . Он

единственный. Другого такого нет. Нам же требуется составить уравнения прямой ,

которая содержит данный отрезок.

Что известно о прямой «эм»? Известен её направляющий вектор , найденный

в предыдущем пункте. Но, к сожалению, мы не знаем ни одной точки, принадлежащей прямой «эм», не знаем и концов перпендикуляра – точек . Где эта перпендикулярная прямая пересекает две исходные прямые? В Африке, в

Антарктиде? Из первоначального обзора и анализа условия вообще не видно, как решать задачу….

Но есть хитрый ход, связанный с использованием параметрических уравнений прямой.

Решение оформим по пунктам:

1) Перепишем уравнения первой прямой в параметрической форме:

Рассмотрим точку . Координат мы не знаем. НО. Если точка

принадлежит данной прямой, то её координатам  соответствует вполне

конкретное значение параметра, обозначим его через . Тогда координаты

точки запишутся в виде:
, или:

Жизнь налаживается, одна неизвестная – это всё-таки не три неизвестных.

2) Аналогичные действия проведём со второй прямой. Перепишем её уравнения в параметрическом

виде:

Если точка  принадлежит данной прямой, то при вполне конкретном

значении  её координаты должны удовлетворять

параметрическим уравнениям:
, или:

3) Запишем вектор . Ну и что, что нам не известны координаты точек – это же не

мешает из координат конца вектора  вычесть соответствующие координаты начала :

4) Вектор , как и ранее найденный вектор , является направляющим вектором прямой . Таким образом, они коллинеарны, и один вектор можно линейно

выразить через другой с некоторым коэффициентом пропорциональности «лямбда»:
или покоординатно:

Получилась самая, что ни на есть обычная система линейных уравнений с тремя неизвестными , которая стандартно разрешима, например, методом Крамера. Но так извращаться мы, конечно, не будем. Выразим из

3-го уравнения  и подставим эту «лямбду» в первые два уравнения:

Из 2-го уравнения выразим  и подставим в 1-е уравнение:
, а «лямбда» нам не потребуется.

То, что значения параметров получились одинаковыми – чистая случайность.

5) Небо полностью проясняется, подставим найденные значения  в наши

точки:
       

Сам вектор  нам не нужен, так как уже найден его коллега .

И после длинного пути всегда интересно выполнить проверку. Подставим координаты точки  в уравнения :

 –  получены верные равенства.

Подставим координаты  в уравнения :

 – получены верные равенства.

Вывод: найденные точки действительно принадлежат соответствующим прямым.

6) Заключительный аккорд: составим уравнения прямой  по точке  (можно взять ) и направляющему вектору :

В принципе, можно подобрать «хорошую» точку с целыми координатами, но это уже косметика.

5.5.4. Как найти расстояние между скрещивающимися прямыми?

5.5.2. Скрещивающиеся прямые

| Оглавление |



Автор: Aлeксaндр Eмeлин

Общий перпендикуляр к двум скрещивающимся прямым. Расстояние между скрещивающимися прямыми

Теорема. Пусть p1 и p2 – две произвольные скрещивающиеся прямые скрещивающиеся прямые . Если рассмотреть всевозможные прямые A1A2, такие, что точка A1 лежит на прямой p1, а точка A2 лежит на прямой p2, то будут выполнены следующие два утверждения:

  1. Среди всех прямых A1A2 существует единственная прямая, перпендикулярная к прямой p1 и к прямой p2 ( общий перпендикуляр к двум скрещивающимся прямым ).
  2. Среди всех отрезков A1A2наименьшую длину имеет отрезок общего перпендикуляра к двум скрещивающимся прямым.

Доказательство. Докажем сначала существование общего перпендикуляра к двум скрещивающимся прямым.

Через произвольную точку прямой p1 проведем прямую , параллельную прямой параллельную прямой p2 , а через произвольную точку прямой p2 проведем прямую , параллельную прямой параллельную прямой p1 . Обозначим буквой α плоскость, проходящую через прямые p1 и , а буквой β плоскость, проходящую через прямые p2 и (рис 1).

Поскольку прямая p1 параллельна прямой , лежащей на плоскости β , то по признаку параллельности прямой и плоскости прямая p1 параллельна плоскости β. Точно так же, поскольку прямая параллельна прямой p2 , лежащей на плоскости β , то прямая по признаку параллельности прямой и плоскости параллельна плоскости β. Таким образом, плоскость α содержит две пересекающиеся прямые p1 и , паралельные плоскости β. В силу признака параллельности плоскостей заключаем, что плоскости α и β параллельны.

Спроектируем прямую p1 на плоскость β. Получим прямую , являющуюся проекцией прямой проекцией прямой p1, и обозначим точку пересечения прямых p2 и буквой B2 (рис. 2).

Спроектируем теперь прямую p2 на плоскость α . Получим прямую , являющуюся проекцией прямой проекцией прямой p2 , и обозначим точку пересечения прямых p1 и буквой B1 (рис. 3).

Доказательство существования общего перпендикуляра к двум скрещивающимся прямым завершено.

Докажем, что построенная прямая B1B2 является единственным общим перпендикуляром к прямым p1 и p2 .

Таким образом, общий перпендикуляр к прямым p1 и p2 является линией пересечения плоскостей γ и δ, то есть прямой B1B2 .

Доказательство единственности общего перпендикуляра к двум скрещивающимся прямым завершено. Утверждение 1 доказано.

Перейдем к доказательству утверждения 2. Для этого рассмотрим произвольный отрезок A1A2 , у которого конец A1 лежит на плоскости α , а конец A2 лежит на плоскости β . Опустим перпендикуляр из точки A1 на плоскость β и обозначим основание этого перпендикуляра символом A3 (рис. 4).

Если отрезок A1A2 не является перпендикуляром к плоскостям α и β, то точка A3 не совпадет с точкой A2 , и треугольник A1A2A3 будет прямоугольным треугольником с гипотенузой A1A2 и катетом A1A3. Поскольку в прямоугольном треугольнике длина катета меньше длины гипотенузы, то

Четыре способа решения задач на нахождение расстояния между скрещивающимися прямыми

Разделы: Математика

Среди огромного количества стереометрических задач в учебниках геометрии, в различных сборниках задач, пособиях по подготовке в ВУЗы крайне редко встречаются задачи на нахождение расстояния между скрещивающимися прямыми. Возможно, это обусловлено как узостью их практического применения (относительно школьной программы, в отличие от “выигрышных” задач на вычисление площадей и объемов), так и сложностью данной темы.

Практика проведения ЕГЭ показывает, что многие учащиеся вообще не приступают к выполнению заданий по геометрии, входящих в экзаменационную работу. Для обеспечения успешного выполнения геометрических заданий повышенного уровня сложности необходимо развивать гибкость мышления, способность анализировать предполагаемую конфигурацию и вычленять в ней части, рассмотрение которых позволяет найти путь решения задачи.

Школьный курс предполагает изучение четырех способов решения задач на нахождение расстояния между скрещивающимися прямыми. Выбор способа обусловлен, в первую очередь, особенностями конкретной задачи, предоставленными ею возможностями для выбора, и, во вторую очередь, способностями и особенностями “пространственного мышления” конкретного учащегося. Каждый из этих способов позволяет решить самую главную часть задачи – построение отрезка, перпендикулярного обеим скрещивающимся прямым (для вычислительной же части задач деление на способы не требуется).

Основные способы решения задач на нахождение расстояния между скрещивающимися прямыми

Нахождение длины общего перпендикуляра двух скрещивающихся прямых, т.е. отрезка с концами на этих прямых и перпендикулярного каждой из этих прямых.

Нахождение расстояния от одной из скрещивающихся прямых до параллельной ей плоскости, проходящей через другую прямую.

Нахождение расстояния между двумя параллельными плоскостями, проходящими через заданные скрещивающиеся прямые.

Нахождение расстояния от точки, являющейся проекцией одной из скрещивающихся прямых, на перпендикулярную ей плоскость (так называемый “экран”) до проекции другой прямой на ту же самую плоскость.

Проведем демонстрацию всех четырех способов на следующей простейшей задаче: “В кубе с ребром а найти расстояние между любым ребром и диагональю не пересекающей его грани”. Ответ: .

hскр перпендикулярна плоскости боковой грани, содержащей диагональ d и перпендикулярна ребру, следовательно, hскр и является расстоянием между ребром а и диагональю d.

Плоскость A параллельна ребру и проходит через данную диагональ, следовательно, данная hскр является не только расстоянием от ребра до плоскости A, но и расстоянием от ребра до данной диагонали.

Плоскости A и B параллельны и проходят через две данные скрещивающиеся прямые, следовательно, расстояние между этими плоскостями равно расстоянию между двумя скрещивающимися прямыми.

Плоскость A перпендикулярна ребру куба. При проекции на A диагонали d данная диагональ обращается в одну из сторон основания куба. Данная hскр является расстоянием между прямой, содержащей ребро, и проекцией диагонали на плоскость C, а значит и между прямой, содержащей ребро, и диагональю.

Остановимся подробнее на применении каждого способа для изучаемых в школе многогранников.

Применение первого способа достаточно ограничено: он хорошо применяется лишь в некоторых задачах, так как достаточно сложно определить и обосновать в простейших задачах точное, а в сложных – ориентировочное местоположение общего перпендикуляра двух скрещивающихся прямых. Кроме того, при нахождении длины этого перпендикуляра в сложных задачах можно столкнуться с непреодолимыми трудностями.

Задача 1. В прямоугольном параллелепипеде с размерами a, b, h найти расстояние между боковым ребром и не пересекающейся с ним диагональю основания.

Пусть AHBD. Так как А1А перпендикулярна плоскости АВСD , то А1А AH.

AH перпендикулярна обеим из двух скрещивающихся прямых, следовательно AH?- расстояние между прямыми А1А и BD. В прямоугольном треугольнике ABD, зная длины катетов AB и AD, находим высоту AH, используя формулы для вычисления площади прямоугольного треугольника. Ответ:

Задача 2. В правильной 4-угольной пирамиде с боковым ребром L и стороной основания a найти расстояние между апофемой и стороной основания, пересекающей боковую грань, содержащую эту апофему.

SHCD как апофема, ADCD, так как ABCD – квадрат. Следовательно, DH – расстояние между прямыми SH и AD. DH равно половине стороны CD. Ответ:

Применение этого способа также ограничено в связи с тем, что если можно быстро построить (или найти уже готовую) проходящую через одну из скрещивающихся прямых плоскость, параллельную другой прямой, то затем построение перпендикуляра из любой точки второй прямой к этой плоскости (внутри многогранника) вызывает трудности. Однако в несложных задачах, где построение (или отыскивание) указанного перпендикуляра трудностей не вызывает, данный способ является самым быстрым и легким, и поэтому доступен.

Задача 2. Решение уже указанной выше задачи данным способом особых трудностей не вызывает.

Плоскость EFM параллельна прямой AD, т. к AD || EF. Прямая MF лежит в этой плоскости, следовательно, расстояние между прямой AD и плоскостью EFM равно расстоянию между прямой AD и прямой MF. Проведем OHAD. OHEF, OHMO, следовательно, OH(EFM), следовательно, OH – расстояние между прямой AD и плоскостью EFM, а значит, и расстояние между прямой AD и прямой MF. Находим OH из треугольника AOD.

Ответ:

Задача 3. В прямоугольном параллелепипеде с размерами a,b и h найти расстояние между боковым ребром и не пересекающейся с ним диагональю параллелепипеда.

Прямая AA1 параллельна плоскости BB1D1D, B1D принадлежит этой плоскости, следовательно расстояние от AA1 до плоскости BB1D1D равно расстоянию между прямыми AA1 и B1D. Проведем AHBD. Также, AH B1B, следовательно AH(BB1D1D), следовательно AHB1D, т. е. AH – искомое расстояние. Находим AH из прямоугольного треугольника ABD.

Ответ:

Задача 4. В правильной шестиугольной призме A:F1 c высотой h и стороной основания a найти расстояние между прямыми:

Рассмотрим плоскость E1EDD1. A1E1EE1, A1E1E1D1, следовательно

A1E1 (E1EDD1). Также A1E1 AA1. Следовательно, A1E1 является расстоянием от прямой AA1 до плоскости E1EDD1. ED1(E1EDD1)., следовательно AE1 – расстояние от прямой AA1 до прямой ED1. Находим A1E1 из треугольника F1A1E1 по теореме косинусов. Ответ:

б) AF и диагональю BE1.

Проведем из точки F прямую FH перпендикулярно BE. EE1FH, FHBE, следовательно FH(BEE1B1), следовательно FH является расстоянием между прямой AF и (BEE1B1), а значит и расстоянием между прямой AF и диагональю BE1. Ответ:

Применение этого способа крайне ограничено, так как плоскость, параллельную одной из прямых (способ II) строить легче, чем две параллельные плоскости, однако способ III можно использовать в призмах, если скрещивающиеся прямые принадлежат параллельным граням, а также в тех случаях, когда в многограннике несложно построить параллельные сечения, содержащие заданные прямые.

а) Плоскости BAA1B1 и DEE1D1 параллельны, так как AB || ED и AA1 || EE1. ED1DEE1D1, AA1(BAA1B1), следовательно, расстояние между прямыми AA1 и ED1 равно расстоянию между плоскостями BAA1B1 и DEE1D1. A1E1AA1, A1E1A1B1, следовательно, A1E1BAA1B1. Аналогично доказываем, что A1E1(DEE1D1). Т.о., A1E1 является расстоянием между плоскостями BAA1B1 и DEE1D1, а значит, и между прямыми AA1 и ED1. Находим A1E1 из треугольника A1F1E1, который является равнобедренным с углом A1F1E1, равным . Ответ:

б) Расстояние между AF и диагональю BE1 находится аналогично.

Ответ:.

Задача 5. В кубе с ребром а найти расстояние между двумя непересекающимися диагоналями двух смежных граней.

Данная задача рассматривается как классическая в некоторых пособиях, но, как правило, ее решение дается способом IV, однако является вполне доступной для решения с помощью способа III.

Некоторую трудность в данной задаче вызывает доказательство перпендикулярности диагонали A1C обеим параллельным плоскостям (AB1D1 || BC1D). B1CBC1 и BC1A1B1, следовательно, прямая BC1 перпендикулярна плоскости A1B1C, и следовательно, BC1A1C. Также, A1CBD. Следовательно, прямая A1C перпендикулярна плоскости BC1D. Вычислительная же часть задачи особых трудностей не вызывает, так как hскр = EF находится как разность между диагональю куба и высотами двух одинаковых правильных пирамид A1AB1D1 и CC1BD.

Ответ:

Данный способ имеет достаточно широкое применение. Для задач средней и повышенной трудности его можно считать основным. Нет необходимости применять его только тогда, когда один из трех предыдущих способов работает проще и быстрее, так как в таких случаях способ IV может только усложнить решение задачи, или сделать его труднодоступным. Данный способ очень выгодно использовать в случае перпендикулярности скрещивающихся прямых, так как нет необходимости построения проекции одной из прямых на “экран”

Задача 5. Все та же “классическая” задача (с непересекающимися диагоналями двух смежных граней куба) перестает казаться сложной, как только находится “экран” – диагональное сечение куба.

Рассмотрим плоскость A1B1CD. C1F (A1B1CD), т. к. C1FB1C и C1FA1B1. Тогда проекцией C1D на “экран” будет являться отрезок DF. Проведем EMDF. Отрезок EM и будет являться расстоянием между двумя непересекающимися диагоналями двух смежных граней. Находим EM из прямоугольного треугольника EDF. Ответ:.

Задача 6. В правильной треугольной пирамиде найти расстояние и угол между скрещивающимися прямыми: боковым ребром l и стороной основания a.

В данной и аналогичных ей задачах способ IV быстрее других способов приводит к решению, так как построив сечение, играющее роль “экрана”, перпендикулярно AC (треугольник BDM), видно, что далее нет необходимости строить проекцию другой прямой (BM) на этот экран. DH – искомое расстояние. DH находим из треугольника MDB, используя формулы площади. Ответ: .

Общий перпендикуляр двух скрещивающихся прямых уравнение

Признак

a α, b α = A , A a (чертеж 2.1.2). Допустим, что прямые a и b не скрещивающиеся, то есть они пересекаются. Тогда существует плоскость β, которой принадлежат прямые a и b . В этой плоскости β лежат прямая a и точка A . Поскольку прямая a и точка A вне ее определяют единственную плоскость, то β = α. Но b β и b α, следовательно, равенство β = α невозможно.

Теорема

Две скрещивающиеся прямые имеют общий перпендикуляр, и при том только один. Он является общим перпендикуляром параллельных плоскостей, проходящих через эти прямые.

Доказательство

Пусть a и b – данные скрещивающиеся прямые. Проведем через них параллельные плоскости α и β. Прямые, пересекающие прямую a и перпендикулярные плоскости α, лежат в одной плоскости (γ). Эта плоскость пересекает плоскость β по прямой a`, параллельной a. Пусть B – точка пересечения прямых a` и b. Тогда прямая AB, перпендикулярная плоскости α, перпендикулярна и плоскости β, так как β параллельна α. Отрезок AB – общий перпендикуляр плоскостей α и β, а значит, и прямых a и b.
Докажем, что этот общий перпендикуляр единственный. Допустим, что у прямых a и b есть другой общий перпендикуляр CD. Проведем через точку С прямую b`, параллельную b. Прямая CD перпендикулярна прямой b, а значит, и b`. Так как она перпендикулярна прямой a, то она перпендикулярна плоскости α, а значит, параллельна прямой AB. Выходит, что через прямые AB и CD, как через параллельные, можно провести плоскость. В этой плоскости будут лежать наши скрещивающиеся прямые AC и BD, а это невозможно, что и требовалось доказать.

Расстоянием между двумя скрещивающимися прямыми называется длина их общего перпендикуляра.

[spoiler title=”источники:”]

http://urok.1sept.ru/articles/614270

http://hystory-for-vki.narod.ru/index/0-71

[/spoiler]

1.5.
Лекция 5.

Прямая
в пространстве. Задачи о прямых

и
плоскостях

Уравнения
прямой, проходящей через данную точку
и параллельной данному вектору. Уравнение
прямой, проходящей через две заданные
точки. Расстояние от точки до прямой.
Расстояние между непараллельными
прямыми. Проекция точки на плоскость.
Проекция точки на прямую. Проекция
прямой на плоскость параллельно заданному
вектору. Общий перпендикуляр к двум
скрещивающимся прямым.

Уравнение
прямой, проходящей через данную точку

и
параллельной данному вектору

Существует,
причем единственная, прямая
,
содержащая заданную точку

и параллельная ненулевому вектору
.
Такой вектор называется направляющим
вектором прямой
.
Для произвольной точки

пространства имеем (рис. 10) логическую
цепочку

Уравнение


(5.1)

называется
векторным
уравнением прямой
.
Вектор

называют вектором
сдвига

прямой.

Условие
параллельности векторов

и

можно записать в виде

,

или

.
(5.2)

Уравнение
(5.2) называется векторно-параметрическим
уравнением прямой
.
Расписывая его в декартовой системе
координат, получим параметрические
уравнения прямой


(5.3)

Если
параметр

пробегает
,
точка с координатами

из (5.3) пробегает прямую.

Рис.
10. Уравнение прямой

Условие
(5.1) коллинеарности векторов в координатах
примет вид пропорции


(5.4)

где
.

Если
обращается в нуль одна из координат
направляющего вектора, например
,
то уравнения прямой принимают вид

Эта
прямая лежит в плоскости
.

Уравнение
прямой, проходящей через две заданные

точки

и

В
качестве направляющего вектора прямой
можно взять вектор
,
а в качестве данной точки прямой – точку

.
Тогда уравнение (5.1) примет вид

или
в координатах

Расстояние
от точки до прямой

Пусть
прямая

задана уравнением
,
а точка

– радиус-вектором
.
Расстояние от точки до прямой равно
можно найти, разделив площадь
параллелограмма, построенного на
векторах

и
,
на длину его основания (рис. 11).

Рис.
11. Расстояние от точки до прямой

В
результате получим формулу расстояния
от точки до прямой


(5.5)

Упражнение.
Записать расстояние от точки до прямой
в прямоугольных декартовых координатах.

Расстояние
между непараллельными прямыми

Рассмотрим
две непараллельные прямые

Существуют
параллельные плоскости

и

такие, что

.

В
качестве направляющих векторов обеих
плоскостей можно взять пару векторов
,
,
а в качестве начальных точек – точки с
радиус-векторами

и
,
соответственно, для плоскостей
,
.
Искомое расстояние между прямыми можно
найти, разделив объем параллелепипеда,
построенного на векторах
,
,

на площадь его основания (рис. 12). Получим

Рис.
12. Расстояние между непараллельными
прямыми

Из
приведенных рассуждений получаем также

Предложение.
Прямые

и

пересекаются тогда и только тогда, когда

Проекция
точки на плоскость

Найдем
радиус-вектор проекции точки

на плоскость
,
заданную уравнением

Прямая

проходит через

и перпендикулярна плоскости. Подставляя
значение для

из уравнения прямой в уравнение плоскости,
получим
.
Отсюда
.
Подставив найденное значение

в уравнение прямой, получим радиус-вектор
искомой проекции

Проекция
точки на прямую

Пусть
прямая

задана уравнением

и дана точка

с радиус-вектором
.
Построим плоскость
,
перпендикулярную прямой

и проходящую через точку
.
В качестве нормального к плоскости

вектора можно взять вектор
,
а в качестве начальной точки плоскости
– точку
.
Тогда

есть уравнение искомой плоскости. Точка
пересечения этой плоскости с прямой

и есть проекция точки

на прямую
.
Найдем эту точку, решая относительно

и

систему уравнений

Подставляя

из первого уравнения во второе, получим

Отсюда

и

.

Подставляя
найденное значение

в первое уравнение системы, получим
радиус-вектор искомой точки

Проекция
прямой на плоскость параллельно заданному
вектору

Пусть
плоскость

задана уравнением
,
прямая

– уравнением
.
Требуется составить уравнение проекции
прямой

на плоскость

параллельно вектору
.
Будем считать, что векторы

не коллинеарны, ибо в противном случае
проекцией прямой на плоскость является
точка. Направляющий вектор

проекции можно искать в виде комбинации
,
перпендикулярной вектору

(рис. 13).

Рис.
13. Проекция прямой на плоскость

Так
как длина вектора с
нам безразлична, то мы можем положить
.

Из
условия

получим

и

Найдем
радиус-вектор точки пересечения плоскости

и прямой
.

Подставляя
значение

из уравнения прямой в уравнение плоскости,
получим
.
Отсюда
.
При этом значении

уравнение прямой даст искомый радиус-вектор

Имея
радиус-вектор

начальной точки проекции и ее направляющий
вектор
,
запишем, наконец, уравнение проекции

Другой
вариант решения этой задачи заключается
в построении проекции как пересечения
двух плоскостей: плоскости

и плоскости
,
порожденной векторами

и проходящей через точку пересечения
прямой

с плоскостью
.

Общий
перпендикуляр к двум скрещивающимся
прямым

Пусть
прямые

и
не
параллельны, т.е..
Вектор

перпендикулярен обеим прямым. Поэтому
плоскость


(5.6)

проходит
через первую прямую и общий перпендикуляр,
а плоскость


(5.7)

– через
вторую прямую и общий перпендикуляр к
обеим прямым. Следовательно, общий
перпендикуляр можно задать системой
уравнений (5.6) и (5.7) как пересечение
плоскостей. Чтобы найти его начальную
точку, можно решить совместно уравнение
первой прямой и уравнение плоскости
(5.7). Направляющим вектором является
вектор
.

Рассмотрим
другой способ решения этой задачи. На
первой прямой возьмем произвольную
точку

с радиус-вектором
,
а на второй – точку

с радиус-вектором
.
Подберем значения параметров

так, чтобы вектор

был
перпендикулярен обоим векторам

и
.
Для этого мы должны решить относительно

систему

Преобразуем
ее
к
виду

Главный
определитель этой системы

отличен
от нуля. По правилу Крамера эта система
имеет единственное решение

Тем
самым определятся точки

и
.
Осталось записать уравнение прямой
через эти точки.

Изложенный
метод годится для построения общего
перпендикуляра к двум скрещивающимся
прямым в пространстве размерности и
выше трех.

Упражнения

5.1.
Точка

определяется радиус-вектором
.
Составить уравнение прямой, проходящей
через точку

перпендикулярно плоскости
.

5.2.
Точка

определяется радиус-вектором
.
Составить уравнение плоскости, проходящей
через точку

перпендикулярно прямой
.

5.3.
Составить векторное уравнение плоскости,
проходящей через прямую
и
точку
,
не лежащую на этой прямой.

5.4.
Даны точка

и плоскость
.
Найти радиус-вектор точки
,
симметричной с

относительно плоскости.

5.5.
Даны точка

и прямая
.
Найти радиус-вектор точки
,
симметричной с

относительно прямой.

5.6.
Составить уравнение прямой, пересекающей
прямую

под прямым углом и проходящей через
точку
,
не лежащую на данной прямой (перпендикуляра,
опущенного из точки

на прямую
.

5.7.
Составить уравнение прямой, пересекающей
две скрещивающиеся прямые

и

и проходящей через точку
,
не лежащую ни на одной из этих прямых.

5.8.
Найти расстояние между двумя параллельными
плоскостями

и
.

5.9.
Составить уравнение прямой, которая
параллельна прямой

и пересекает прямые
,
.

Вопросы
для самопроверки

1.
Дайте геометрическую иллюстрацию
векторно-параметрическому уравнению
прямой.

2.
Как перейти от векторно-параметрического
уравнения прямой к каноническим и
параметрическим уравнениям?

3.
Как найти направляющий вектор прямой,
проходящей через две заданные точки?

4.
Как найти направляющий вектор прямой,
являющийся пересечением двух плоскостей?

33

Соседние файлы в папке Analiticheskaya_geom

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

11
Авг 2013

Категория: Справочные материалы

Скрещивающиеся прямые

2013-08-11
2013-08-11

Скрещивающиеся прямые – прямые, которые невозможно поместить в одну плоскость, то есть они не параллельны и не пересекаются.

п

Признак скрещивающихся прямых

Если одна из прямых лежит в плоскости, а вторая пересекает эту плоскость в точке, отличной от точек первой прямой, то такие прямые – скрещивающиеся.

Расстояние между скрещивающимися прямыми

неп

Через две скрещивающиеся прямые можно провести две параллельные плоскости (единственным образом).

Расстояние между скрещивающимися прямыми – есть расстояние между этими плоскостями.

Общий перпендикуляр к двум скрещивающимся прямым

ло

Общим перпендикуляром к двум скрещивающимся прямым называется отрезок, перпендикулярный каждой из двух скрещивающихся прямых, концы которого лежат на этих прямых.

Длина общего перпендикуляра равна расстоянию между скрещивающимися прямыми.

Угол между скрещивающимися прямыми

Углом между двумя скрещивающимися прямыми называется угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым.

(Одну из прямых можно  вполне и не переносить параллельно самой себе, а ограничиться только параллельным переносом одной из прямых до пересечения со второй).

угол между скрещивающимися прямыми

Автор: egeMax |

Нет комментариев

Добавить комментарий