Как найти общую формулу числового ряда

    Формулы и уравнения рядов

  • Числовые ряды
  • Функциональные ряды
  • Тригонометрические ряды. Ряд Фурье

Примеры решения рядов здесь.

Числовые ряды

Факториал и двойные факториалы:

n{!}=1*2...(n-1)*n,

(2n){!!}=2*4*...*2*n,

(2n-1){!!}=1*3*5*...*(2*n-1),

n{!}=sqrt{2*{pi}*n}*(n/e)^n — формула Стирлинга.

Геометрическая прогрессия:

b_n=b_1*q^{n-1},~S_n={b_1*(1-q^n)}/{1-q},~S={b_1}/{1-q}, |q|<1.

Основные определения и теоремы о рядах:

{un} — заданная бесконечная числовая последовательность,

sum{n=1}{infty}{u_n}=u_1+u_2+...+u_n+...числовой ряд,
unчлены ряда,
S_1=u_1,~S_2=u_1+u+2,~...,~S_n=u_1+u_2+...+u_nчастичные суммы ряда.

Сумма ряда:

{exists}S=lim{n{right}infty}{S_n} sum{n=1}{infty}{u_n} сходится, Sсумма ряда.

S_n{right}infty или overline{exists}S ряд сходится и суммы нет.

Отбрасывание конечного числа членов ряда не влияет на его сходимость (но влияет на сумму).

Свойства сходящихся рядов:

{exists}sum{n=1}{infty}{u_n}=S~doubleright~sum{n=1}{infty}{Cu_n}=CS

{exists}sum{n=1}{infty}{a_n}=A,~sum{n=1}{infty}{b_n}=B~doubleright~sum{n=1}{infty}{a_n+b_n}=A{pm}B.

    Теоремы сравнения рядов с положительными членами:
    sum{n=1}{infty}{u_n},~{u_n} ≥ 0, sum{n=1}{infty}{v_n},~{v_n} ≥ 0.

  1. u_nv_n
    Если sum{n=1}{infty}{v_n} сходится, то sum{n=1}{infty}{u_n} сходится;
    если sum{n=1}{infty}{u_n} расходится, то sum{n=1}{infty}{v_n} расходится.
  2. lim{n{right}infty}{{u_n}/{v_n}}=k, vn ≠ 0, 0 < k < ∞.
    Либо и sum{n=1}{infty}{u_n}, и sum{n=1}{infty}{v_n} сходятся,
    либо и sum{n=1}{infty}{u_n}, и sum{n=1}{infty}{v_n} расходятся.
    Достаточные признаки сходимости числовых рядов с положительными членами (un > 0)

  • Признак Даламбера
    Если существует lim{n{right}infty}{{u_{n+1}}/{u_n}}=l, то sum{n=1}{infty}{u_n}: сходится, если l < 1; расходится, если l > 1; признак не дает ответа, если l = 0.
  • Признак Коши
    Если существует lim{n{right}infty}{root{n}{u_n}}=l, то sum{n=1}{infty}{u_n}: сходится, если l < 1; расходится, если l > 1; признак не дает ответа, если l = 0.
  • Интегральный признак сходимости
    1) un > 0; 2) unun+1; 3) f(x) — непрерывная невозрастающая функция, f(n) = un.
    Либо и sum{n=1}{infty}{u_n}, и int{1}{infty}{f(x)dx} сходятся,
    либо и sum{n=1}{infty}{u_n}, и int{1}{infty}{f(x)dx} расходятся.
    Примеры числовых рядов

  1. sum{n=1}{infty}{1/{n_a}}: сходится, если a > 1; расходится, если a ≤ 1.
  2. sum{n=1}{infty}{{a^n}/n}: сходится, если a < 1; расходится, если a ≥ 1.
  3. sum{n=1}{infty}{1/{n(n+1)}=1}: сходится.
  4. sum{n=0}{infty}{aq^n}=a/{1-q}: сходятся, |q| < 1; расходятся, |q| ≥ 1.
  5. sum{n=1}{infty}{1/{n{!}}},: сходится; sum{n=0}{infty}{1/{n{!}}}=e.
  6. sum{n=1}{infty}{1/{{n}ln^{a}{n}}}: сходится, если a > 1; расходится, если a ≤ 1.
  7. sum{n=1}{infty}{1/{2^{n}{n}}}=ln{2}.
  8. sum{n=1}{infty}{{(-1)^{n-1}}/n}=ln{2}: сходится условно.
  9. sum{n=1}{infty}{{(-1)^{n-1}}/{n^2}}={{pi}^2}/12: сходится абсолютно.
  10. sum{n=1}{infty}{{(-1)^{n}}/{n{!}}}=1/e: сходится абсолютно.

Функциональные ряды

Функциональный ряд – сумма вида sum{n=1}{infty}{f_n(x)},~f_n(x),~n~{in}~N,~x~{in}~D.

При x=x_0~{in}~D из функционального ряда получается числовой ряд sum{n=1}{infty}{f_n(x_0)}.

Если для x_0~{in}~D числовой ряд сходится, то точка x_0 называется точкой сходимости функционального ряда. Если в каждой точке x~{in}~D_1~{subset}~D числовые ряды сходятся, то функциональный ряд называется сходящимся в области D_1. Совокупность всех точек сходимости образует область сходимости функционального ряда.

S_k(x)=sum{n=1}{k}{f_n(x)} – частичные суммы ряда. Функциональный ряд сходится к функции f(x), если lim{k{right}{infty}}{S_k(x)}=f(x).

Равномерная сходимость

Функциональный ряд, сходящийся для всех x~{in}~D_1~{subset}~D_1 из области сходимости, называется равномерно сходящимся в этой области, если ∀ε > 0 существует не зависящий от x номер N(ε), такой, что при n > N(ε) выполняется неравенство Rn(x) < ε для всех x из области сходимости, где R_n(x)=sum{k=n+1}{infty}{f_k(x)} — остаток ряда.

Геометрический смысл равномерной сходимости:
Рисунок к теме: Геометрический смысл равномерной сходимости
если окружить график функции y = f(x) «ε-полоской», определяемой соотношением f(x)−ε > y > f(x)+ε, то графики всех частичных сумм Sk(x), начиная с достаточно большого k, ∀x ∈ [a, b] целиком лежат в этой «ε-полоске», окружающей график предельной функции y = f(x).

sum{n=1}{infty}{f_n(x)} — называется мажорируемым в области , если существует такой сходящийся числовой ряд sum{n=1}{infty}{u_n}, un > 0, что для ∀xD fn(x) ≤ un, n = 1, 2, …. Ряд sum{n=1}{infty}{u_n} называется мажорантой ряда sum{n=1}{infty}{f_n(x)}.

Признак Вейерштрасса (признак равномерной сходимости функционального ряда): функциональный ряд сходится равномерно в области сходимости, если он является мажорируемым в этой области.

Степенные ряды:
sum{n=0}{infty}{a_n(x-x_0)^n} — степенной ряд по степеням x-x_0.
При x_0=0~sum{n=0}{infty}{{a_n}{x^n}} – степенной ряд по степеням x.

Область сходимости степенного ряда:
Радиус сходимости, интервал сходимости R, x ∈ (-R, R):
R=1/{lim{n{right}{infty}}{delim{|}{{a_{n+1}}/{a_n}}{|}}}={lim{n{right}{infty}}{delim{|}{{a_n}/{a_{n+1}}}{|}}} или R=1/{lim{n{right}{infty}}{root{n}{delim{|}{a_n}{|}}}}
При |x| < R ряд сходится, при |x| > R – расходится;
в точках x = ±R – дополнительное исследование.

На интервале сходимости ряд sum{n=0}{infty}{{a_n}x^n} сходится абсолютно;
на любом отрезке из интервала сходимости он сходится равномерно.

    Свойства степенных рядов

  1. Степенной ряд sum{n=0}{infty}{{a_n}x^n} сходится равномерно на [−R′, R′]
    R′ < R, его можно почленно дифференцировать и интегрировать в интервале сходимости.
  2. {(sum{n=0}{infty}{{a_n}x^n})}{prime}=sum{n=0}{infty}{{a_n}{(x^n)_x}{prime}}, int{}{}{(sum{n=0}{infty}{{a_n}x^n})dx}=sum{n=0}{infty}{a_n}int{}{}{x^n{dx}}.
  3. Ряды, полученные почленным дифференцированием и интегрированием, имеют тот же интервал сходимости.
    Разложение элементарных функций в степенные ряды
    f(x)=sum{n=0}{infty}{{a_n}x^n}=f(0)+{{f{prime}(0)}/{1{!}}}*x+{{f^{n}(0)}/{n{!}}}*x^n+{cdots}

  1. e^x=1+x+{x^2}/{2{!}}+{cdots}=sum{n=0}{infty}{{x^n}/{n{!}}}, x ∈ (−∞; ∞).
  2. sh{x}={e^x-e^{-x}}/2=x+{x^3}/{3{!}}+{x^5}/{5{!}}+{cdots}+{x^{2n+1}}/{(2n+1){!}}+{cdots}=sum{n=0}{infty}{{x^{2n+1}}/{(2n+1){!}}},
    x ∈ (−∞; ∞).
  3. ch{x}={e^x+e^{-x}}/2=1+{x^2}/{2{!}}+{cdots}+{x^{2n}}/{(2n){!}}+{cdots}=sum{n=0}{infty}{{x^{2n}}/{(2n){!}}}, x ∈ (−∞; ∞).
  4. sin{x}=x-{x^3}/{3{!}}+{x^5}/{5{!}}-{cdots}=sum{n=0}{infty}{{(-1)^n}*{{x^{2n+1}}/{(2n+1){!}}}}, x ∈ (−∞; ∞).
  5. cos{x}=1-{x^2}/{2{!}}+{x^4}/{4{!}}-{x^6}/{6{!}}+{cdots}=sum{n=0}{infty}{{(-1)^n}*{{x^{2n}}/{(2n){!}}}}, x ∈ (−∞; ∞).
  6. ln(1+x)=x-{x^2}/{2{!}}+{x^3}/{3{!}}-{x^4}/{4{!}}+{cdots}=sum{n=0}{infty}{{{{(-1)^{n-1}}/{n+1}}}*x^{n+1}}=
    {}=sum{n=1}{infty}{{{{(-1)^{n-1}}/{n}}}*x^{n}}, x ∈ (−1; 1].
  7. ln(1-x)=-x-{x^2}/{2{!}}-{x^3}/{3{!}}-{x^4}/{4{!}}+{cdots}={-}sum{n=0}{infty}{{{{x^{n+1}}/{n+1}}}}=
    {}={-}sum{n=1}{infty}{{{{x^{n}}/{n}}}}, x ∈ [−1; 1).
  8. ln({1+x}/{1-x})=2*(x+{x^3}/3+{x^5}/5+{x^7}/7+{cdots})=2*sum{n=0}{infty}{{{{x^{2n+1}}/{2n+1}}}},
    x ∈ (−1; 1).
  9. arcsin{x}=x+sum{n=1}{infty}{{{1*3*5{cdots}(2n-1)}/{2*4*6{cdots}(2n-1)}}*{{{x^{2n+1}}/{2n+1}}}}, x ∈ [−1; 1].
  10. arctg{x}=x-{x^3}/{3}+{x^5}/{5}-{cdots}=sum{n=1}{infty}{{(-1)^{n-1}}*{{x^{2n-1}}/{2n-1}}}, x ∈ [−1; 1].
  11. (1+x)^m=1+sum{n=1}{infty}{{{m*(m-1){cdots}(m-n+1)}/{n{!}}}*x^n}, x ∈ (−1; 1).
  12. 1/{1+x}=1-x+x^2-x^3+{cdots}=sum{n=0}{infty}{(-1)^n*x^n}, x ∈ (−1; 1).
  13. 1/{1-x}=1+x+x^2+x^3+{cdots}=sum{n=0}{infty}{x^n}, x ∈ (−1; 1).
  14. sqrt{1+x}=1+{1/2}*x-{1/{2*4}}*x^2+{{1*3}/{2*4*6}}*x^3-{cdots}, x ∈ (−1; 1).
  15. 1/{sqrt{1+x}}=1-{1/2}*x+{{1*3}/{2*4}}*x^2-{{1*3*5}/{2*4*6}}*x^3+{cdots}, x ∈ (−1; 1].

Тригонометрические ряды

Ряд Фурье для функции с произвольным периодом Т=2l, f(x+2l) = f(x):
f(x)={{a_0}/2}+sum{n=1}{infty}{({a_n}*cos{{n*{pi}}/l}*x+{b_n}*sin{{n*{pi}}/l}*x)},
где a_0={1/l}*int{-l}{l}{f(x)dx}, a_n={1/l}*int{-l}{l}{f(x)cos{{n*{pi}}/l}*xdx}, b_n={1/l}*int{-l}{l}{f(x)sin{{n*{pi}}/l}*xdx},

    Разложение в ряд Фурье непериодических функций, заданных на отрезке x ∈ [0; l] или на отрезке x ∈ [-l; l]
    Произвольная функция f(x) задана на отрезке [0; l]; на отрезок [-l; 0] она может быть продолжена произвольным образом:
    {varphi}(x)=delim{[}{matrix{2}{1}{{f(x),~x{in}delim{[}{0;~l}{]}~} {{f_1}(x),~x{in}delim{[}{-l;~0}{]}~}}}{},~{f_1}(x) – некоторая кусочно-монотонная функция.
    Наиболее часто встречающиеся продолжения:

  • f1(x)=f(-x), x ∈ [-l; 0] (четное продолжение)
    f(x)={{a_0}/2}+sum{n=1}{infty}{{a_n}*cos{{n*{pi}*x}/l}},
    где a_n={2/l}*int{0}{l}{f(x)cos{{n*{pi}*x}/l}~dx}, x ∈ [0; l] n = 0, 1, 2,…
  • f1(x) = —f(−x), x ∈ [-l; 0]
    (нечетное продолжение)
    f(x)=sum{n=1}{infty}{{b_n}*sin{{n*{pi}*x}/l}},
    где b_n={2/l}*int{0}{l}{f(x)sin{{n*{pi}*x}/l}~dx}, x ∈ [0; l] n = 1, 2,…
  • На всю действительную ось ϕ(x) продолжается периодически с периодом 2l, ϕ(x) = ϕ(x + 2l). Функция ϕ(x) разлагается в ряд Фурье, причем в точках x = ±l выполняется условие: S(l)={{varphi}(l-0)+{varphi}(l+0)}/2, где {varphi}(l-0)=f(l-0),~{varphi}(l+0)={varphi}({-}l+0)=f({-}l+0), то есть, S(l)={f(l-0)+f({-}l+0)}/2,~S({-}l)=S(l).
    f(l-0)=lim{x{right}l-0}{f(x)} – левый предел f(x) в точке x = l,
    f(l+0)=lim{x{right}l+0}{f(x)} – правый предел f(x) в точке x = l.

Общий член ряда представляе собой рациональную дробь. Выполним разложение дроби на простейшие с помощью метода неопределенных коэффициентов:

$$ frac{1}{(2n+1)(2n+3)} = frac{A}{2n+1} + frac{B}{2n+3} = frac{A(2n+3)+B(2n+1)}{(2n+1)(2n+3)} $$

Приравниваем числитель последней дроби к числителю первой дроби:

$$ A(2n+3)+B(2n+1) = 1 $$

Раскрываем скобки:

$$ 2An + 3A + 2Bn + B = 1 $$

Теперь определяем находим неизвестные коэффициенты:

$$ begin{cases} n^0: &2A+2B=0 \ n^1: &3A+B=1 end{cases}Rightarrow begin{cases} A=frac{1}{2} \ B=-frac{1}{2} end{cases} $$

После разложения общий член ряда записывается следующим образом:

$$ a_n =frac{1}{(2n+1)(2n+3)}=frac{1}{2} frac{1}{2n+1} – frac{1}{2} frac{1}{2n+3} $$

Далее составим частичную сумму ряда: $$ S_n = a_1 + a_2 + a_3 + a_4 + … + a_n $$

$$ a_1 = frac{1}{2} bigg (frac{1}{3}-frac{1}{5}bigg ) $$

$$ a_2 = frac{1}{2} bigg (frac{1}{5}-frac{1}{7}bigg ) $$

$$ a_3 = frac{1}{2} bigg (frac{1}{7}-frac{1}{9}bigg ) $$

$$ …………………………………. $$

$$ a_{n-1}=frac{1}{2} bigg (frac{1}{2n-1}-frac{1}{2n+1} bigg ) $$

$$ a_n = frac{1}{2} bigg (frac{1}{2n+1}-frac{1}{2n+3} bigg ) $$

Замечание

Достаточно часто читатели нам присылают просьбы найти суммы своих рядов по причине того, что они не понимают, откуда получается $ a_{n-1} $.

Обратите внимание, чтобы составить $ a_{n-1} $ необходимо подставить в $ a_n $ вместо буковки $ n $ выражение $ n-1 $. После выполнить раскрытие скобок.

Итого, получаем:

$$ S_n = frac{1}{2} bigg (frac{1}{3}-frac{1}{5}bigg ) + frac{1}{2} bigg (frac{1}{5}-frac{1}{7}bigg ) + frac{1}{2} bigg (frac{1}{7}-frac{1}{9}bigg ) + … $$

$$ … + frac{1}{2} bigg (frac{1}{2n-1}-frac{1}{2n+1} bigg ) + frac{1}{2} bigg (frac{1}{2n+1}-frac{1}{2n+3} bigg ) = $$

Выносим дробь одну вторую $ frac{1}{2} $ за скобки:

$$ = frac{1}{2} bigg (frac{1}{3}-frac{1}{5}+frac{1}{5}-frac{1}{7}+frac{1}{7}-frac{1}{9} … + $$

$$ + … frac{1}{2n-1} – frac{1}{2n+1} + frac{1}{2n+1} – frac{1}{2n+3} bigg) = $$

Замечаем, что в скобках есть подобные слагаемые, которые взаимно уничтожаются. Остаются только лишь два из них:

$$ S_n = frac{1}{2}bigg (frac{1}{3}-frac{1}{2n+3} bigg ) $$

Теперь осталось вычислить предел частичной суммы $ S_n $. Если он существует и конечен, то он является суммой ряда, а сам ряд сходится:

$$ S=lim_{ntoinfty} S_n = lim_{ntoinfty} frac{1}{2}bigg (frac{1}{3}-frac{1}{2n+3} bigg ) = $$

$$ = frac{1}{2} lim_{ntoinfty} bigg (frac{1}{3}-frac{1}{2n+3} bigg ) = frac{1}{2} cdot frac{1}{3} = frac{1}{6} $$

Содержание:

Числовые ряды:

При решении ряда математических задач, в том числе и в приложениях математики в экономике, приходится рассматривать суммы, составленные из бесконечного множества слагаемых. Из теории действительных чисел известно лишь, что означает сумма любого конечного числа чисел. Задача суммирования бесконечного множества слагаемых решается в теории рядов.

Основные понятия. Сходимость ряда

Определение. Числовым рядом называется бесконечная последовательность чисел Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Числа Числовые ряды - основные понятия с примерами решения называются членами ряда, а член Числовые ряды - основные понятия с примерами решенияобщим или Числовые ряды - основные понятия с примерами решения-м членом ряда.

Ряд (13.1) считается заданным, если известен его общий член Числовые ряды - основные понятия с примерами решеният.е. задана функция Числовые ряды - основные понятия с примерами решения натурального аргумента. Например, ряд с общим членомЧисловые ряды - основные понятия с примерами решения имеет вид

Числовые ряды - основные понятия с примерами решения

Более сложной является обратная задача: по нескольким первым членам ряда написать общий член. Эта задача имеет бесконечно много решений, но иногда удается найти самое естественное решение.

Пример:

Найти в простейшей форме общий член ряда:

Числовые ряды - основные понятия с примерами решения

Решение:

Нетрудно убедиться, что для ряда а) общий член Числовые ряды - основные понятия с примерами решения а для ряда б) Числовые ряды - основные понятия с примерами решения

Рассмотрим суммы конечного числа членов ряда:

Числовые ряды - основные понятия с примерами решения

Сумма п первых членов ряда Числовые ряды - основные понятия с примерами решения называется Числовые ряды - основные понятия с примерами решения-й частичной суммой ряда.

Определение. Ряд называется сходящимся, если существует конечный предел последовательности его частичных сумм, т.е.

Числовые ряды - основные понятия с примерами решения

Число Числовые ряды - основные понятия с примерами решения называется суммой ряда. В этом смысле можно записать

Числовые ряды - основные понятия с примерами решения

Если конечного предела последовательности частичных сумм не существует, то ряд называется расходящимся.

Пример:

Исследовать сходимость геометрического ряда, т.е. ряда, составленного из членов геометрической профессии

Числовые ряды - основные понятия с примерами решения

Решение:

Необходимо установить, при каких значениях знаменателя профессии Числовые ряды - основные понятия с примерами решения ряд (13.4) сходится и при каких — расходится.

Из школьного курса алгебры известно, что сумма Числовые ряды - основные понятия с примерами решения первых членов геометрической профессии, т.е. Числовые ряды - основные понятия с примерами решения-я частичная сумма ряда при Числовые ряды - основные понятия с примерами решения равна Числовые ряды - основные понятия с примерами решения

Возможно несколько случаев:

1) если Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения т.е. ряд сходится и его сумма Числовые ряды - основные понятия с примерами решения

2) если Числовые ряды - основные понятия с примерами решения следовательно, Числовые ряды - основные понятия с примерами решения и ряд расходится;

3) если Числовые ряды - основные понятия с примерами решения то ряд (13.4) примет видЧисловые ряды - основные понятия с примерами решения его Числовые ряды - основные понятия с примерами решения-я частичная сумма Числовые ряды - основные понятия с примерами решеният.е. ряд расходится;

4) если Числовые ряды - основные понятия с примерами решения то ряд (13.4) примет вид Числовые ряды - основные понятия с примерами решения Числовые ряды - основные понятия с примерами решения при Числовые ряды - основные понятия с примерами решения четном и Числовые ряды - основные понятия с примерами решения — при Числовые ряды - основные понятия с примерами решения нечетном, следовательно, Числовые ряды - основные понятия с примерами решения не существует, и ряд расходится.

Таким образом, геометрический ряд сходится к сумме Числовые ряды - основные понятия с примерами решенияпри Числовые ряды - основные понятия с примерами решения и расходится при Числовые ряды - основные понятия с примерами решения

Пример:

Найти сумму ряда

Числовые ряды - основные понятия с примерами решения

Решение:

Числовые ряды - основные понятия с примерами решения-я частичная сумма ряда

Числовые ряды - основные понятия с примерами решенияУчитывая, что Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения Отсюда Числовые ряды - основные понятия с примерами решеният.е. сумма ряда Числовые ряды - основные понятия с примерами решения

Свойства сходящихся рядов. 1. Если ряд Числовые ряды - основные понятия с примерами решениясходится и имеет сумму Числовые ряды - основные понятия с примерами решения, то и ряд Числовые ряды - основные понятия с примерами решения (полученный умножением данного ряда на число Числовые ряды - основные понятия с примерами решения) также сходится и имеет сумму Числовые ряды - основные понятия с примерами решения.

2. Если ряды Числовые ряды - основные понятия с примерами решениясходятся и их суммы соответственно равны Числовые ряды - основные понятия с примерами решения то и ряд Числовые ряды - основные понятия с примерами решения(представляющий сумму данных рядов) также сходится, и его сумма равна Числовые ряды - основные понятия с примерами решения

Свойства 1 и 2 непосредственно вытекают из свойств пределов числовых последовательностей.

3. Если ряд сходится, то сходится и ряд, полученный из данного путем отбрасывания (или приписывания) конечного числа членов.

Пусть в сходящемся ряде (13.1) отброшены Числовые ряды - основные понятия с примерами решения членов (в принципе можно отбрасывать члены с любыми номерами, лишь бы их было конечное число). Покажем, что полученный ряд

Числовые ряды - основные понятия с примерами решения

имеющий частичную сумму Числовые ряды - основные понятия с примерами решения также сходится.

Очевидно, что Числовые ряды - основные понятия с примерами решения Отсюда следует, что при фиксированном Числовые ряды - основные понятия с примерами решения конечный предел Числовые ряды - основные понятия с примерами решения существует тогда и только тогда, когда существует конечный предел Числовые ряды - основные понятия с примерами решения. А это и означает, что ряд (13.7) сходится. ■

Ряд (13.7), полученный из данного отбрасыванием его первых Числовые ряды - основные понятия с примерами решения членов, называется Числовые ряды - основные понятия с примерами решения-м остатком ряда.

Если сумму Числовые ряды - основные понятия с примерами решения-го остатка ряда обозначить через Числовые ряды - основные понятия с примерами решения т.е.

Числовые ряды - основные понятия с примерами решения

то сумму ряда (13.1) можно представить в виде

Числовые ряды - основные понятия с примерами решения

В результате мы подошли к свойству 4.

4. Для того чтобы ряд (13.1) сходился, необходимо и достаточно, чтобы при Числовые ряды - основные понятия с примерами решения остаток ряда стремился к нулю, т.е. чтобы Числовые ряды - основные понятия с примерами решения

Это свойство вытекает из теоремы о связи бесконечно малых с пределами функций (см. § 6.3).

Установить сходимость (расходимость) ряда путем определения Числовые ряды - основные понятия с примерами решения и вычисления Числовые ряды - основные понятия с примерами решения (как это сделано в примерах 13.2, 13.3) возможно далеко не всегда из-за принципиальных трудностей при нахождении Числовые ряды - основные понятия с примерами решения(суммировании Числовые ряды - основные понятия с примерами решения членов ряда). Проще это можно сделать на основании признаков сходимости, к изучению которых мы переходим.

Необходимый признак сходимости. Гармонический ряд

Теорема (необходимый признак сходимости). Если ряд сходится, то предел его общего члена Числовые ряды - основные понятия с примерами решения при Числовые ряды - основные понятия с примерами решения равен нулю, т.е.

Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решенияВыразим Числовые ряды - основные понятия с примерами решения-й член ряда через сумму его Числовые ряды - основные понятия с примерами решения и Числовые ряды - основные понятия с примерами решения членов, т.е. Числовые ряды - основные понятия с примерами решения Так как ряд сходится, то Числовые ряды - основные понятия с примерами решения и Числовые ряды - основные понятия с примерами решения Поэтому

Числовые ряды - основные понятия с примерами решения

Пример №1

Проверить выполнение необходимого признака для ряда (13.6).

Решение:

Выше было доказано, что ряд (13.6) сходится, и действительно Числовые ряды - основные понятия с примерами решения т.е. необходимый признак сходимости выполняется. ►

Следствие. Если предел общего члена ряда (13.1) при Числовые ряды - основные понятия с примерами решенияне равен нулю, т.е. Числовые ряды - основные понятия с примерами решения то ряд расходится.

Предположим противное, т.е. ряд (13.1) сходится. Но в этом случае из приведенной выше теоремы следует Числовые ряды - основные понятия с примерами решения, что противоречит условию, заданному в следствии, т.е. ряд (13.1) расходится. ■

Пример №2

Исследовать сходимость ряда Числовые ряды - основные понятия с примерами решения

Решение:

Числовые ряды - основные понятия с примерами решения т.е. необходимый признак сходимости не выполняется, следовательно, ряд расходится. ►

Замечание. Следует подчеркнуть, что рассмотренная теорема выражает лишь необходимый, но недостаточный признак сходимости ряда. Если Числовые ряды - основные понятия с примерами решения то из этого еще не следует, что ряд сходится.

В качестве примера рассмотрим ряд

Числовые ряды - основные понятия с примерами решения

называемый гармоническим.

Необходимый признак сходимости выполнен: Числовые ряды - основные понятия с примерами решения Докажем, что, несмотря на это, гармонический ряд расходится.

Числовые ряды - основные понятия с примерами решенияВначале получим вспомогательное неравенство. С этой целью запишем сумму первых Числовые ряды - основные понятия с примерами решения членов ряда:

Числовые ряды - основные понятия с примерами решения

Найдем разность

Числовые ряды - основные понятия с примерами решения

Заменяя в сумме каждое слагаемое наименьшим, равным Числовые ряды - основные понятия с примерами решенияпридем к вспомогательному неравенству

Числовые ряды - основные понятия с примерами решения

Предположим противное, т.е. что гармонический ряд сходится, тогда Числовые ряды - основные понятия с примерами решения и, переходя к пределу в неравенстве (см. § 6.5), получим, что Числовые ряды - основные понятия с примерами решения

Мы пришли к противоречию, следовательно, наше предположение о сходимости гармонического ряда неверно, т.е. гармонический ряд расходится. ■

В следующих двух параграфах рассмотрим достаточные признаки сходимости.

Ряды с положительными членами

Теорема (признак сравнения). Пусть даны два ряда с положительными членами:Числовые ряды - основные понятия с примерами решения причем члены первого ряда не превосходят членов второго, т.е. при любом Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Тогда: а) если сходится ряд 2, то сходится и ряд 1; б) если расходится ряд 1, то расходится и ряд 2.

Числовые ряды - основные понятия с примерами решенияа) Пусть частичные суммы рядов 1 и 2 соответственно равны Числовые ряды - основные понятия с примерами решения. По условию ряд 2 сходится, следовательно, существует Числовые ряды - основные понятия с примерами решениятак как члены ряда 2 положительны. Рассмотрим последовательность частичных сумм Числовые ряды - основные понятия с примерами решения ряда 1. Эта последовательность является: возрастающей (так как с ростом Числовые ряды - основные понятия с примерами решения увеличивается сумма Числовые ряды - основные понятия с примерами решения положительных слагаемых) и ограниченной (так как Числовые ряды - основные понятия с примерами решения в силу условия (13.11), т.е. Числовые ряды - основные понятия с примерами решения).

Следовательно, на основании признака существования предела (см. § 6.5) последовательность Числовые ряды - основные понятия с примерами решения имеет предел, т.е. ряд 1 сходится.

б) Применим метод доказательства от противного. Предположим, что ряд 2 сходится. Тогда согласно первой части теоремы сходится и ряд 1, что противоречит предположению; т.е. ряд 2 расходится. ■

Замечание. Так как сходимость ряда не изменяется при отбрасывании конечного числа членов ряда, то условие (13.11) не обязательно должно выполняться с первых членов рядов и только для членов с одинаковыми номерами Числовые ряды - основные понятия с примерами решения. Достаточно, чтобы оно выполнялось, начиная с некоторого номера Числовые ряды - основные понятия с примерами решения или чтобы имело место неравенство Числовые ряды - основные понятия с примерами решения где Числовые ряды - основные понятия с примерами решения — некоторое целое число.

Пример №3

Исследовать сходимость ряда

Числовые ряды - основные понятия с примерами решения

Решение:

Сравним данный ряд со сходящимся геометрическим рядом Числовые ряды - основные понятия с примерами решения (его знаменатель Числовые ряды - основные понятия с примерами решения).

Так как члены данного ряда, начиная со второго, меньше членов сходящегося геометрического ряда Числовые ряды - основные понятия с примерами решенияи вообще Числовые ряды - основные понятия с примерами решения то на основании признака сравнения ряд сходится. ►

Пример №4

Исследовать сходимость ряда

Числовые ряды - основные понятия с примерами решения

Решение:

Сравним данный ряд с гармоническим Числовые ряды - основные понятия с примерами решенияЧисловые ряды - основные понятия с примерами решения, мысленно отбросив его первый член, равный 1 (что, естественно, не повлияет на расходимость ряда). Так как Числовые ряды - основные понятия с примерами решения и вообще Числовые ряды - основные понятия с примерами решения (ибо Числовые ряды - основные понятия с примерами решеният.е. члены данного ряда больше членов расходящегося гармонического ряда, то на основании признака сравнения ряд расходится. ►

Числовые ряды - основные понятия с примерами решения

сходится при Числовые ряды - основные понятия с примерами решения расходится при Числовые ряды - основные понятия с примерами решения здесь же отметим, что при Числовые ряды - основные понятия с примерами решения расходимость ряда (13.12) следует из признака сравнения, так как в этом случае члены ряда Числовые ряды - основные понятия с примерами решения больше соответствующих членов гармонического рядаЧисловые ряды - основные понятия с примерами решения а в частном случае при Числовые ряды - основные понятия с примерами решения сходимость ряда (13.12) может быть доказана сравнением этого ряда со сходящимся (13.6)).

Нестандартность применения признака сравнения заключается в том, что надо не только подобрать соответствующий «эталонный» ряд, но и доказать неравенство (13.11), для чего часто требуется преобразование рядов (например, отбрасывание или приписывание конечного числа членов, умножение на определенные числа и т.п.). В ряде случаев более простым оказывается предельный признак сравнения.

Теорема (предельный признак сравнения)

Теорема (предельный признак сравнения). Если Числовые ряды - основные понятия с примерами решения — ряды с положительными членами и существует конечный предел отношения их общих членов Числовые ряды - основные понятия с примерами решениято ряды одновременно сходятся либо расходятся.

Числовые ряды - основные понятия с примерами решенияТак как Числовые ряды - основные понятия с примерами решения, то по определению предела числовой последовательности (см. § 6.1) для любого Числовые ряды - основные понятия с примерами решениясуществует такой номер Числовые ряды - основные понятия с примерами решения, что для всех Числовые ряды - основные понятия с примерами решениявыполняется неравенство

Числовые ряды - основные понятия с примерами решения

Если ряд Числовые ряды - основные понятия с примерами решения сходится, то сходится ряд Числовые ряды - основные понятия с примерами решения и в силу признака сравнения будет сходиться рядЧисловые ряды - основные понятия с примерами решения аналогично, если сходится ряд Числовые ряды - основные понятия с примерами решениясходится ряд Числовые ряды - основные понятия с примерами решения и сходится Числовые ряды - основные понятия с примерами решения. Таким образом, из сходимости одного ряда следует сходимость другого. Утверждение теоремы о расходимости рядов доказывается аналогично. 

Пример №5

Исследовать сходимость ряда Числовые ряды - основные понятия с примерами решения

Решение:

Сравним данный ряд с расходящимся гармоническимЧисловые ряды - основные понятия с примерами решения (выбор такого ряда для сравнения может подсказать то, что при больших Числовые ряды - основные понятия с примерами решения). Так как Числовые ряды - основные понятия с примерами решенияЧисловые ряды - основные понятия с примерами решения то данный ряд, так же как и гармонический, расходится. ►

Весьма удобным на практике является признак Даламбера.

Теорема (признак Даламбера)

Теорема (признак Даламбера). Пусть для ряда Числовые ряды - основные понятия с примерами решения с положительными членами существует предел отношения Числовые ряды - основные понятия с примерами решения-го члена к Числовые ряды - основные понятия с примерами решения-му члену Числовые ряды - основные понятия с примерами решенияТогда, если Числовые ряды - основные понятия с примерами решениято ряд сходится; если Числовые ряды - основные понятия с примерами решения то ряд расходится; если Числовые ряды - основные понятия с примерами решения то вопрос о сходимости ряда остается нерешенным.

 Из определения предела последовательности следует, что для любогоЧисловые ряды - основные понятия с примерами решения существует такой номер Числовые ряды - основные понятия с примерами решения, что для всех Числовые ряды - основные понятия с примерами решения выполняется неравенство Числовые ряды - основные понятия с примерами решения 1) Пусть Числовые ряды - основные понятия с примерами решения Выберем Числовые ряды - основные понятия с примерами решения настолько малым, что число

Числовые ряды - основные понятия с примерами решения

Последнее неравенство будет выполняться для всех Числовые ряды - основные понятия с примерами решения, т.е. для Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решенияЧисловые ряды - основные понятия с примерами решения

Получили, что члены ряда Числовые ряды - основные понятия с примерами решения меньше соответствующих членов геометрического ряда Числовые ряды - основные понятия с примерами решения Числовые ряды - основные понятия с примерами решениясходящегося при Числовые ряды - основные понятия с примерами решения Следовательно, на основании признака сравнения этот ряд сходится, а значит, сходится и рассматриваемый ряд Числовые ряды - основные понятия с примерами решения отличающийся от полученного на первые Числовые ряды - основные понятия с примерами решения членов.

2) Пусть Числовые ряды - основные понятия с примерами решения Возьмем Числовые ряды - основные понятия с примерами решения настолько малым, что Числовые ряды - основные понятия с примерами решения Тогда из условия Числовые ряды - основные понятия с примерами решения следует, что Числовые ряды - основные понятия с примерами решения Это означает, что члены ряда возрастают, начиная с номера Числовые ряды - основные понятия с примерами решенияпоэтому предел общего члена ряда не равен нулю, т.е. не выполнен необходимый признак сходимости, и ряд расходится. ■

Пример №6

Исследовать сходимость рядов:

Числовые ряды - основные понятия с примерами решения

Решение:

а) Так как Числовые ряды - основные понятия с примерами решенияЧисловые ряды - основные понятия с примерами решения то по признаку Даламбера ряд сходится.

б) Так как Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения то по признаку Даламбера ряд расходится. ►

Замечание 1. Если Числовые ряды - основные понятия с примерами решения то ряд расходится.

Замечание 2. Если Числовые ряды - основные понятия с примерами решения то, как отмечалось выше, признак Даламбера ответа о сходимости ряда не дает, и рекомендуется перейти к другим признакам сходимости.

Теорема (интегральный признак сходимости)

Теорема (интегральный признак сходимости). Пусть дан рядЧисловые ряды - основные понятия с примерами решения члены которого положительны и не возрастают, т.е.Числовые ряды - основные понятия с примерами решенияа функция Числовые ряды - основные понятия с примерами решения, определенная при Числовые ряды - основные понятия с примерами решениянепрерывная и невозрастающая и

Числовые ряды - основные понятия с примерами решения

Тогда для сходимости ряда Числовые ряды - основные понятия с примерами решения необходимо и достаточно, чтобы сходился несобственный интеграл Числовые ряды - основные понятия с примерами решения

Рассмотрим ряд

Числовые ряды - основные понятия с примерами решения

Его Числовые ряды - основные понятия с примерами решения-й частичной суммой будет

Числовые ряды - основные понятия с примерами решения

Сходимость ряда (13.14) означает существование предела последовательности его частичных сумм (13.15), т.е. сходимость несобственного интеграла Числовые ряды - основные понятия с примерами решенияпоскольку Числовые ряды - основные понятия с примерами решенияВ силу монотонности функции Числовые ряды - основные понятия с примерами решения на любом отрезке Числовые ряды - основные понятия с примерами решения или, учитывая (13.13),

Числовые ряды - основные понятия с примерами решения

Интегрируя (13.16) на отрезкеЧисловые ряды - основные понятия с примерами решения получим

Числовые ряды - основные понятия с примерами решения

откуда

Числовые ряды - основные понятия с примерами решения

Если ряд Числовые ряды - основные понятия с примерами решения сходится, то по признаку сравнения рядов в силу первого неравенства (13.17) должен сходиться ряд (13.14), а значит, и несобственный интеграл Числовые ряды - основные понятия с примерами решения Обратно, если сходится J/(jc)c&, т.е. ряд (13.14), то согласно тому же признаку сравнения на основании второго неравенства (13.17) будет сходиться ряд Числовые ряды - основные понятия с примерами решения а следовательно, и данный ряд Числовые ряды - основные понятия с примерами решения

Пример №7

Исследовать сходимость обобщенного гармонического ряда Числовые ряды - основные понятия с примерами решения

Решение:

Пусть Числовые ряды - основные понятия с примерами решенияФункция Числовые ряды - основные понятия с примерами решения при Числовые ряды - основные понятия с примерами решения (а значит, и при Числовые ряды - основные понятия с примерами решения) положительная и невозрастающая (точнее убывающая). Поэтому сходимость ряда равносильна сходимости несобственного интеграла Числовые ряды - основные понятия с примерами решения Имеем Числовые ряды - основные понятия с примерами решения Если Числовые ряды - основные понятия с примерами решения

Если Числовые ряды - основные понятия с примерами решения то

Числовые ряды - основные понятия с примерами решения Итак, данный ряд сходится при Числовые ряды - основные понятия с примерами решения и расходится при Числовые ряды - основные понятия с примерами решения

Ряды с членами произвольного знака

Знакочередующиеся ряды. Под знакочередующимся рядом понимается ряд, в котором члены попеременно то положительны, то отрицательны

Числовые ряды - основные понятия с примерами решения

Теорема (признак Лейбница). Если члены знакочередующегося ряда убывают по абсолютной величине Числовые ряды - основные понятия с примерами решения и предел его общего члена при Числовые ряды - основные понятия с примерами решения равен нулю, т.е.Числовые ряды - основные понятия с примерами решениято ряд сходится, а его сумма не превосходит первого члена: Числовые ряды - основные понятия с примерами решения.

 Рассмотрим последовательность частичных сумм четного числа членов при Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Эта последовательность возрастающая (так как с ростом Числовые ряды - основные понятия с примерами решения увеличивается число положительных слагаемых в скобках) и ограниченная (это видно из того, что Числовые ряды - основные понятия с примерами решения можно представить в виде

Числовые ряды - основные понятия с примерами решения

откуда следует, что Числовые ряды - основные понятия с примерами решения). На основании признака существования предела (см. § 6.5) последовательность Числовые ряды - основные понятия с примерами решения имеет предел Числовые ряды - основные понятия с примерами решения

Попутно заметим, что, переходя к пределу в неравенстве Числовые ряды - основные понятия с примерами решенияполучим, что Числовые ряды - основные понятия с примерами решения

Теперь рассмотрим последовательность частичных сумм нечетного числа членов при Числовые ряды - основные понятия с примерами решения Очевидно, что Числовые ряды - основные понятия с примерами решенияЧисловые ряды - основные понятия с примерами решения поэтому, учитывая необходимый признак сходимости ряда,

Числовые ряды - основные понятия с примерами решения

Итак, при любом Числовые ряды - основные понятия с примерами решения (четном или нечетном) Числовые ряды - основные понятия с примерами решения т.е. ряд сходится. Рис. 13.1 иллюстрирует сходимость Числовые ряды - основные понятия с примерами решения к числу Числовые ряды - основные понятия с примерами решения слева при четном Числовые ряды - основные понятия с примерами решения и справа при нечетном Числовые ряды - основные понятия с примерами решения. ■

Числовые ряды - основные понятия с примерами решения

Из рис. 13.1 вытекает еще одна оценка для суммы Числовые ряды - основные понятия с примерами решения сходящегося знакочередующегося ряда, удовлетворяющего условиям теоремы Лейбница: при любом Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Пример №8

Исследовать сходимость ряда

Числовые ряды - основные понятия с примерами решения

Решение:

Так как члены знакочередующегося ряда убывают по абсолютной величине Числовые ряды - основные понятия с примерами решения и предел общего члена Числовые ряды - основные понятия с примерами решения то по признаку Лейбница ряд сходится. ►

Замечание. В теореме Лейбница существенно не только условие Числовые ряды - основные понятия с примерами решения но и условие Числовые ряды - основные понятия с примерами решения Так, например, для ряда ,

Числовые ряды - основные понятия с примерами решениявторое условие нарушено и, хотя Числовые ряды - основные понятия с примерами решения ряд расходится. Это видно, если данный ряд представить (после попарного сложения его членов) в виде Числовые ряды - основные понятия с примерами решения

т.е. «удвоенного» гармонического ряда.

Следствие. Погрешность при приближенном вычислении суммы сходящегося знакочередующегося ряда, удовлетворяющего условиям теоремы Лейбница, по абсолютной величине не превышает абсолютной величины первого отброшенного члена.

По формуле (13.9) сумму сходящегося ряда можно представить как сумму Числовые ряды - основные понятия с примерами решения членов ряда и суммы Числовые ряды - основные понятия с примерами решения-гo остатка ряда, т.е. Числовые ряды - основные понятия с примерами решения Полагая приближенно Числовые ряды - основные понятия с примерами решения мы допускаем погрешность, равную Числовые ряды - основные понятия с примерами решения Так как при четном Числовые ряды - основные понятия с примерами решения Числовые ряды - основные понятия с примерами решения-й остаток знакочередующегося ряда Числовые ряды - основные понятия с примерами решения представляет ряд, удовлетворяющий условиям теоремы Лейбница, то его сумма Числовые ряды - основные понятия с примерами решения не превосходит первого члена Числовые ряды - основные понятия с примерами решения Так как при нечетном Числовые ряды - основные понятия с примерами решения для Числовые ряды - основные понятия с примерами решения-го остатка рядаЧисловые ряды - основные понятия с примерами решения его сумма Числовые ряды - основные понятия с примерами решения то, очевидно, что при любом Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Пример №9

Какое число членов ряда Числовые ряды - основные понятия с примерами решения надо взять, чтобы вычислить его сумму с точностью до 0,001?

Решение:

По условию Числовые ряды - основные понятия с примерами решения Учитывая следствие теоремы Лейбница (13.18), запишем более сильное неравенствоЧисловые ряды - основные понятия с примерами решения или Числовые ряды - основные понятия с примерами решения откуда Числовые ряды - основные понятия с примерами решения и Числовые ряды - основные понятия с примерами решения или Числовые ряды - основные понятия с примерами решения т.е. необходимо взять не менее 31 члена ряда. ►

Знакопеременные ряды. Пусть Числовые ряды - основные понятия с примерами решения знакопеременный ряд (13.1), в котором любой его член Числовые ряды - основные понятия с примерами решения может быть как положительным, так и отрицательным.

Теорема (достаточный признак сходимости знакопеременного ряда). Если ряд, составленный из абсолютных величин членов данного ряда (13.1)

Числовые ряды - основные понятия с примерами решения

сходится, то сходится и данный ряд.

 Обозначим Числовые ряды - основные понятия с примерами решения суммы абсолютных величин членов данного ряда (13.1), входящих в него со знаком «плюс» и «минус».

Тогда частичная сумма данного ряда Числовые ряды - основные понятия с примерами решения а ряда, составленного из абсолютных величин его членов, Числовые ряды - основные понятия с примерами решения По условию ряд (13.19) сходится, следовательно, существует конечный предел Числовые ряды - основные понятия с примерами решения

Последовательности Числовые ряды - основные понятия с примерами решения являются возрастающими (так как с увеличением Числовые ряды - основные понятия с примерами решения увеличиваются Числовые ряды - основные понятия с примерами решения) и ограниченными

Числовые ряды - основные понятия с примерами решения значит, существуют пределы Числовые ряды - основные понятия с примерами решения и Числовые ряды - основные понятия с примерами решения и соответственно предел частичной суммы данного ряда

Числовые ряды - основные понятия с примерами решения т.е. ряд (13.1) сходится. ■

Следует отметить, что обратное утверждение неверно. Ряд (13.19) может расходиться, а ряд (13.1) сходиться. Например, ряд Числовые ряды - основные понятия с примерами решения сходится по признаку Лейбница, а ряд из абсолютных величин его членов Числовые ряды - основные понятия с примерами решения(гармонический ряд) расходится.

Поэтому введем следующие определения.

Определение 1. Ряд называется абсолютно сходящимся, если сходится как сам ряд, так и ряд, составленный из абсолютных величин его членов.

Определение 2. Ряд называется условно сходящимся, если сам ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится.

Таким образом, рассмотренный выше ряд Числовые ряды - основные понятия с примерами решения— абсолютно сходящийся, а ряд Числовые ряды - основные понятия с примерами решения условно сходящимся.

Грубо говоря, различие между абсолютно сходящимися и условно сходящимися рядами заключается в следующем: абсолютно сходящиеся ряды сходятся в основном в силу того, что их члены быстро убывают, а условно сходящиеся — в результате того, что положительные и отрицательные слагаемые уничтожают друг друга.

Свойства абсолютно и условно сходящихся рядов существенно отличаются. Абсолютно сходящиеся ряды по своим свойствам напоминают конечные суммы, их можно складывать, перемножать, переставлять местами члены ряда.

Условно сходящиеся ряды такими свойствами не обладают.

Возьмем, например, ряд Числовые ряды - основные понятия с примерами решенияПереставим члены местами и сгруппируем их следующим образом:

Числовые ряды - основные понятия с примерами решения

Перепишем ряд в виде:

Числовые ряды - основные понятия с примерами решения

т.е. от перестановки членов ряда сумма его уменьшилась в 2 раза.

Можно показать (теорема Римана), что от перестановки членов условно сходящегося ряда можно получить ряд, имеющий любую наперед заданную сумму, и даже расходящийся ряд.

Пример №10

Найти сумму ряда Числовые ряды - основные понятия с примерами решения доказав его сходимость.

Решение:

Очевидно, что общий член ряда Числовые ряды - основные понятия с примерами решения

Представим сумму Числовые ряды - основные понятия с примерами решения членов ряда в виде Числовые ряды - основные понятия с примерами решения Так как при Числовые ряды - основные понятия с примерами решения последовательность Числовые ряды - основные понятия с примерами решения имеет конечный предел, то ряд сходится, и его сумма

Числовые ряды - основные понятия с примерами решения

Пример №11

Исследовать сходимость ряда:

Числовые ряды - основные понятия с примерами решения

Решение:

а) Проверим выполнение необходимого признака сходимости, найдя предел общего члена:

Числовые ряды - основные понятия с примерами решения

Для вычисления предела отношения двух бесконечно больших функций натурального аргумента правило Лопиталя непосредственно применять нельзя, ибо для таких функций не определено понятие производной. Поэтому применяя теорему о «погружении» дискретного аргумента Числовые ряды - основные понятия с примерами решения в непрерывный Числовые ряды - основные понятия с примерами решения, получим Числовые ряды - основные понятия с примерами решения

следовательно, ряд расходится.

б) Очевидно, что задан ряд с положительными членами, так как Числовые ряды - основные понятия с примерами решения ибо аргумент синуса Числовые ряды - основные понятия с примерами решения при любом Числовые ряды - основные понятия с примерами решения. Так как члены данного ряда меньше членов сходящегося геометрического ряда со знаменателем

Числовые ряды - основные понятия с примерами решения(ибо при Числовые ряды - основные понятия с примерами решения), то данный ряд сходится.

в) Представим общий член ряда в виде

Числовые ряды - основные понятия с примерами решенияПрименим предельный признак сравнения, сравнив данный ряд со сходящимся «эталонным» рядом (13.12) при Числовые ряды - основные понятия с примерами решения Так как предел отношения общих членов двух рядов

Числовые ряды - основные понятия с примерами решенияЧисловые ряды - основные понятия с примерами решения

есть конечное число, не равное нулю, то данный ряд, так же как и «эталонный», сходится.

г) Применим признак Даламбера, заметив, что общий член ряда Числовые ряды - основные понятия с примерами решения имеет вид Числовые ряды - основные понятия с примерами решения

Тогда Числовые ряды - основные понятия с примерами решенияи Числовые ряды - основные понятия с примерами решения т.е. данный ряд сходится.

д) Применим признак Даламбера:

Числовые ряды - основные понятия с примерами решения

т.е. вопрос о сходимости ряда остается открытым. Проверим выполнение необходимого признака (с этого можно было начать исследование): Числовые ряды - основные понятия с примерами решения т.е. необходимый признак выполнен, но вопрос о сходимости ряда по-прежнему не решен.

Применим признак сравнения в более простой предельной форме. Сравним данный ряд, например, с гармоническим.

Числовые ряды - основные понятия с примерами решеният.е. ответа о сходимости ряда нет. Аналогичная картина (Числовые ряды - основные понятия с примерами решения или Числовые ряды - основные понятия с примерами решения) наблюдается и при использовании других «эталонных» рядов (см. § 13.3). Применим, наконец, признак сравнения в обычной форме. Сравним данный ряд с тем же гармоническим рядом, у которого отброшен первый член:

Числовые ряды - основные понятия с примерами решенияТак как члены рассматриваемого ряда больше членов расходящегося гармонического ряда Числовые ряды - основные понятия с примерами решенияЧисловые ряды - основные понятия с примерами решения и вообще

Числовые ряды - основные понятия с примерами решения что вытекает из очевидного неравенства Числовые ряды - основные понятия с примерами решения), то данный ряд расходится. ►

Пример №12

Исследовать сходимость ряда:

Числовые ряды - основные понятия с примерами решения

Решение:

а) Предел общего члена ряда Числовые ряды - основные понятия с примерами решения так как знаменатель дроби стремится к нулю, а числитель колеблется, принимая значения 1 (при четном Числовые ряды - основные понятия с примерами решения) и —1 (при нечетном Числовые ряды - основные понятия с примерами решения). Следовательно, необходимый признак сходимости не выполнен, и ряд расходится.

б) Так как члены знакочередующегося ряда, начиная со второго, убывают по абсолютной величине —

Числовые ряды - основные понятия с примерами решения

и предел общего члена Числовые ряды - основные понятия с примерами решения (это можно установить, например, с помощью правила Лопиталя), то по признаку Лейбница ряд сходится. Ряд Числовые ряды - основные понятия с примерами решения составленный из абсолютных величин членов данного ряда, расходится, так как его члены больше членов расходящегося гармонического ряда, умноженного на Числовые ряды - основные понятия с примерами решения Следовательно, данный ряд условно сходящийся.

в) Ряд, составленный из абсолютных величин членов данного ряда, сходится, так как его члены меньше членов сходящегося ряда (13.12) при Числовые ряды - основные понятия с примерами решенияследовательно, данный ряд сходится и притом абсолютно. ►

Определение ряда и его сходимость

Пусть

Числовые ряды - основные понятия с примерами решения

бесконечная последовательность чисел.

Определение 27.1.1. Выражение

Числовые ряды - основные понятия с примерами решения

называется числовым рядом, а элементы последовательности Числовые ряды - основные понятия с примерами решениячленами ряда.

Поскольку выражение (27.1.2) рассматривается как единое целое, то для задания ряда необходимо задать каждый его член Числовые ряды - основные понятия с примерами решения Обычно член ряда задается как некоторая функция от своего номера. Аналитическое выражение этой функции называют общим членом ряда. Например, общим членом ряда геометрической прогрессии Числовые ряды - основные понятия с примерами решения является Числовые ряды - основные понятия с примерами решения

Припишем теперь определенный смысл выражению (27.1.2), т.е. введем определение.

Определение 27.1.2. Сумма n первых членов ряда (27.1.2) Числовые ряды - основные понятия с примерами решения называется n-ой частичной суммой этого ряда.

Ясно, что первая, вторая, третья и т.д. частичные суммы ряда Числовые ряды - основные понятия с примерами решения

составляют бесконечную последовательность: Числовые ряды - основные понятия с примерами решения

Определение 27.1.3. Ряд (27.1.2) называется сходящимся, если последовательность Числовые ряды - основные понятия с примерами решенияего частичных сумм имеет конечный предел:Числовые ряды - основные понятия с примерами решения

Значение S этого предела называется суммой ряда (27.1.2). Ряд (27.1.2) называется расходящимся, если последовательность его частичных сумм предела не имеет (например, если члены последовательности возрастают по модулю неограниченно).

Содержание теории числовых рядов состоит в установлении сходимости или расходимости тех или иных рядов и в вычислении сумм сходящихся рядов.

В принципе можно доказывать сходимость или расходимость каждого ряда, а также вычислять сумму сходящегося ряда, опираясь непосредственно на определения сходимости и суммы. Для этого в каждом случае составляется аналитическое выражение для n- ой частичной суммы ряда и находится предел этого выражения при возрастании n.

Пример:

Для ряда Числовые ряды - основные понятия с примерами решения-я частичная сумма Числовые ряды - основные понятия с примерами решения, и предел ееЧисловые ряды - основные понятия с примерами решения, поэтому этот ряд сходится и его сумма равна 1.

Пример:

Последовательность вида

Числовые ряды - основные понятия с примерами решения

называется геометрической прогрессией, где а – первый член, а

q – её знаменатель; выражение Числовые ряды - основные понятия с примерами решения называется общим членом геометрической прогрессии.

Числовой рядЧисловые ряды - основные понятия с примерами решения члены которого являются членами геометрической прогрессии, называется геометрическим рядом со знаменателем q .

Если в прогрессии (27.1.3) имеется только конечное число членов, то прогрессия называется конечной; в противном случае, если за каждым членом прогрессии следует ещё хотя бы один член, то прогрессия называется бесконечной.

В случае конечной прогрессии Числовые ряды - основные понятия с примерами решенияможно говорить о сумме всех её членов Числовые ряды - основные понятия с примерами решения, которую можно назвать n- ой частичной суммой геометрического ряда.

Известно, что при Числовые ряды - основные понятия с примерами решения, эта сумма равна Числовые ряды - основные понятия с примерами решения. Из определения 27.1.3 следует, что суммой геометрического ряда

Числовые ряды - основные понятия с примерами решения

называется предел её частичных сумм Числовые ряды - основные понятия с примерами решения при неограниченном возрастании n:

Числовые ряды - основные понятия с примерами решения

Так как а и q от n не зависят, то последнюю формулу представим в виде:

Числовые ряды - основные понятия с примерами решения

Если Числовые ряды - основные понятия с примерами решения то предел Числовые ряды - основные понятия с примерами решения равен нулю, и мы получаем

Числовые ряды - основные понятия с примерами решения, т.е. при Числовые ряды - основные понятия с примерами решения прогрессия (27.1.5) сходится. Следователь-

но, сходится и ряд (27.1.4). Если же Числовые ряды - основные понятия с примерами решения, то предел справа в равенстве (27.1.5) не существует и, следовательно, ряд (27.1.4) расходится.

Итак, мы привели примеры, в которых исследование сходимости рядов проводили, применяя определение 27.1.3., т.е. вычисляли частичные суммы и находили предел их последовательностей. Ясно, что в общем случае, составление аналитического выражения для n- ой частичной суммы трудный вопрос. Кроме того, при исследовании рядов нередко значения сумм не представляют интереса, т.к. нужно определить только сходится ряд или нет. Поэтому представляют интерес методы анализа рядов, когда не требуется вычислять суммы рядов. Далее перейдем к изложению таких методов.

Свойства сходящихся рядов

Пусть дан ряд

Числовые ряды - основные понятия с примерами решения

Определение 27.2.1. Ряд Числовые ряды - основные понятия с примерами решенияназывается n-м остатком ряда (27.2.1.)

Очевидно, m- я частичная суммаn -го остатка ряда равна разности Числовые ряды - основные понятия с примерами решениячастичных сумм самого ряда. Кроме того, Числовые ряды - основные понятия с примерами решения, откуда, переходя к пределу по m при Числовые ряды - основные понятия с примерами решения, получим Числовые ряды - основные понятия с примерами решения

Предел слева есть сумма исходного ряда, а предел справа-сумма Числовые ряды - основные понятия с примерами решения его n – го остатка: Числовые ряды - основные понятия с примерами решения. Ясно, что из существования предела в левой части равенства следует существование другого предела в правой части и наоборот. Поэтому если сходится один из остатков ряда, то сходится и сам ряд. Точно так же из сходимости ряда следует сходимость каждого его остатка. Кроме того, справедлива следующая теорема.

Теорема 27.2.1. Если ряд (27.2.1) сходится, то сумма его n-го остатка с ростом n стремится к нулю.

Доказательство. Выше показано, что Числовые ряды - основные понятия с примерами решения. Так как это равенство справедливо для любого n, то мы можем перейти в нем по n к пределу:Числовые ряды - основные понятия с примерами решения

Но для сходящегося ряда Числовые ряды - основные понятия с примерами решения, поэтому Числовые ряды - основные понятия с примерами решения

Рассмотрим теперь свойства сходящихся рядов, которые позволяют действовать с ними, как с конечными суммами.

Теорема 27.2.2. Если ряд

Числовые ряды - основные понятия с примерами решения

имеет сумму S, то ряд

Числовые ряды - основные понятия с примерами решения

полученный из предыдущего умножением всех членов на одно и тоже число a, имеет сумму aS.

Доказательство. Обозначим последовательность частичных сумм ряда (27.2.2) Числовые ряды - основные понятия с примерами решения Тогда последовательность частичных сумм ряда (27.2.3) очевидно будет иметь вид:Числовые ряды - основные понятия с примерами решения. И поэтому Числовые ряды - основные понятия с примерами решения. Так как ряд

(27.2.2) сходится, то Числовые ряды - основные понятия с примерами решениясуществует и, следовательно, существует предел Числовые ряды - основные понятия с примерами решения ив силу этого же равенства он равен aS.

Теорема 27.2.3. Если ряды

Числовые ряды - основные понятия с примерами решения и Числовые ряды - основные понятия с примерами решениясходятся, а их суммы соответственно равныЧисловые ряды - основные понятия с примерами решения, то и рядЧисловые ряды - основные понятия с примерами решенияназываемый суммой данных рядов, также сходится и его сумма равна сумме сумм данных рядов Числовые ряды - основные понятия с примерами решения, другими словами, сходящиеся ряды можно почленно складывать.

Доказательство. Пусть Числовые ряды - основные понятия с примерами решения и

Числовые ряды - основные понятия с примерами решения . Тогда n -ая частичная сумма Числовые ряды - основные понятия с примерами решения ряда

Числовые ряды - основные понятия с примерами решения будет равнаЧисловые ряды - основные понятия с примерами решения и так как Числовые ряды - основные понятия с примерами решения существуют, то

Числовые ряды - основные понятия с примерами решения существует и равенЧисловые ряды - основные понятия с примерами решения, т.е.

Числовые ряды - основные понятия с примерами решения

Следствие. Разность двух сходящихся рядов-ряд сходящийся.

Теорема 27.2.4. Свойства сходимости или расходимости ря-,ki не нарушается, если в ряде исключить или приписать к нему любое конечное число членов.

Доказательство. ПустьЧисловые ряды - основные понятия с примерами решения два ряда, причём второй получается из первого исключением первых двух членов. Тогда, если Числовые ряды - основные понятия с примерами решения – n-я частичная сумма первого ряда, а Числовые ряды - основные понятия с примерами решения – n-я частичная сумма второго ряда, то, очевидно, что

Числовые ряды - основные понятия с примерами решения

Из этого равенства следует, что, если Числовые ряды - основные понятия с примерами решения имеет предел, то Числовые ряды - основные понятия с примерами решения также имеет предел. Ясно, что эти пределы будут различны, а, именно Числовые ряды - основные понятия с примерами решения Если же Числовые ряды - основные понятия с примерами решения не имеет предела, то Числовые ряды - основные понятия с примерами решения также не имеет предела. Числовые ряды - основные понятия с примерами решения

Теорема 27.2.5. (Необходимое условие сходимости ряда). Если ряд Числовые ряды - основные понятия с примерами решения сходится, то его общий член стремится к нулю, т.е.

Числовые ряды - основные понятия с примерами решения

Доказательство. Пусть ряд Числовые ряды - основные понятия с примерами решения сходится и его сумма равна S. Из определения n -ой частичной суммы следует, что общий член ряда можно представить в виде разности и-ой частичной суммы и (n-1)-ой частичной суммы: Числовые ряды - основные понятия с примерами решения. Переходя к пределу в этом равенстве, получим утверждение теоремы:

Числовые ряды - основные понятия с примерами решения

Отметим, что условие (27.2.4) не является достаточным, т.е. общий член может стремиться к нулю, но ряд все же может быть расходящимся. Но если общий член ряда не стремится к нулю, то ряд будет расходящийся.

  • Заказать решение задач по высшей математике

Пример №13

Исследуем на сходимость гармонический ряд

Числовые ряды - основные понятия с примерами решения

Решение:

Вначале находим предел общего члена: Числовые ряды - основные понятия с примерами решения. Нетрудно, однако, показать, что сумма n первых членов гармонического ряда беспредельно возрастает. Для этого сгруппируем слагаемые, начиная со второго, в группы из 1, 2, 4, 8,… членов:Числовые ряды - основные понятия с примерами решения так что в k – ой группе будет Числовые ряды - основные понятия с примерами решения членов. Fx л и в каждой групп заменим все члены последним, то получим ряд:

Числовые ряды - основные понятия с примерами решения сумма n первых членов которого, равнаЧисловые ряды - основные понятия с примерами решения, очевидно, стремится к Числовые ряды - основные понятия с примерами решения :

Числовые ряды - основные понятия с примерами решения Но сумма n первых членов заданного гармонического ряда больше суммы n первых членов преобразованного ряда, т.е. Числовые ряды - основные понятия с примерами решения. Тогда Числовые ряды - основные понятия с примерами решения, что означает, чтоЧисловые ряды - основные понятия с примерами решения следовательно, гармонический ряд расходится.

Пример №14

Найти формулу для общего члена ряда

Числовые ряды - основные понятия с примерами решения

считая, что каждый его последующий член определяется по тому же закону, по которому образованы записанные члены, и найти ею сумму.

Решение:

Каждый член данного ряда представляет собой дробь, числитель которой равен 1, а знаменатель равен произведению двух последовательных натуральных чисел Числовые ряды - основные понятия с примерами решения . Следовательно, искомая формула общего члена ряда имеет вид:

Числовые ряды - основные понятия с примерами решения

Для вычисления суммы ряда составим n -ую частичную сумму:

Числовые ряды - основные понятия с примерами решения

Представим выражение для общего члена в виде разности:

Числовые ряды - основные понятия с примерами решения

тогда

Числовые ряды - основные понятия с примерами решения

Переходя к пределу, получаем сумму ряда:

Числовые ряды - основные понятия с примерами решения

Пример №15

Исследовать сходимость ряда

Числовые ряды - основные понятия с примерами решения

Решение:

Общий член ряда определяется формулой Числовые ряды - основные понятия с примерами решения

Вычислим предел модуля общего члена:Числовые ряды - основные понятия с примерами решения

Так как предел общего члена не стремится к нулю, то ряд расходится.

Признаки сходимости числовых знакоположительных рядов

Рассмотрим числовые ряды с положительными членами. Существует много приёмов, называемых признаками сходимости, позволяющих установить сходимость или расходимость числовых рядов Так мы познакомились с методом исследования сходимости ряда на основании выяснения имеет ли предел последовательность частичных сумм. Стремление к нулю члена ряда по мерс роста его номера также является признаком сходимости, хотя только необходимым. Ниже мы приведём ряд достаточных признаков сходимости.

Признаки сравнения

Теорема 27.3.1. (I признак сравнения). Пусть Числовые ряды - основные понятия с примерами решения

и

Числовые ряды - основные понятия с примерами решения

два ряда, причём члены первого ряда, начиная с некоторого номера k , не превосходят соответствующих членов второго

Числовые ряды - основные понятия с примерами решения

Тогда из сходимости ряда (27.3.2) следует сходимость ряда (27.3.1), а из расходимости ряда (27.3.1) следует расходимость ряда (27.3.2).

Доказательство. Так как исключение конечного числа членов ряда не влияет на его сходимость (теорема 27.2.4.), то достаточно доказать теорему для случая когда неравенства (27.3.3) выполняются для k = 1.

Пусть Числовые ряды - основные понятия с примерами решения последовательности частичных сумм рядов (27.3.1) и (27.3.2) соответственно. Это возрастающие последовательности, так как члены рядов неотрицательные числа. В силу неравенств (27.3.3), имеем Числовые ряды - основные понятия с примерами решения

Пусть ряд (27.3.2) сходится. Тогда сходится соответствующая последовательность частичных сумм ряда (27.3.2), т.е.Числовые ряды - основные понятия с примерами решения

Поскольку выполняются неравенства (27.3.3), то члены последовательности частичных сумм ряда (27.3.1) удовлетворяют неравенствуЧисловые ряды - основные понятия с примерами решения для всех т. Следовательно, последовательность Числовые ряды - основные понятия с примерами решения возрастает и ограничена: Числовые ряды - основные понятия с примерами решения

Поэтому, в силу признака Больцано-Всйсрштраса, последовательность частичных сумм ряда (27.3.1) сходится. По определению 27.1.3, сходится и ряд (27.3.1).

Пусть теперь ряд (27.3.1) расходится. Это значит, что его частичные суммы неограниченно возрастают. Но тогда, в силу неравенств (27.3.3), неограниченно возрастают и частичные суммы ряда (27.3.2), что означает, что этот ряд расходится. 

Пример №16

Пусть дан ряд Числовые ряды - основные понятия с примерами решения

Исследуем его сходимость.

Решение:

Необходимый признак выполняется, т.е. Числовые ряды - основные понятия с примерами решения

Для исследования сходимости заданного ряда применим 1 признак

сравнения (теорему 27.3.1). Сравним заданный рядЧисловые ряды - основные понятия с примерами решенияс гармоничсским рядом Числовые ряды - основные понятия с примерами решения. Так как выполняются неравенстваЧисловые ряды - основные понятия с примерами решениято ряд Числовые ряды - основные понятия с примерами решениярасходится, потому что расходится гармонический ряд.

Пример №17

Исследовать сходимость ряда Числовые ряды - основные понятия с примерами решения

Решение:

Очевидно, что предел общего члена при возрастании т стремится к нулю.

Сравним данный ряд, общий член которого Числовые ряды - основные понятия с примерами решенияс гармоническим рядомЧисловые ряды - основные понятия с примерами решения который сходится, так как Числовые ряды - основные понятия с примерами решения

Поскольку Числовые ряды - основные понятия с примерами решения для Числовые ряды - основные понятия с примерами решения т.е. выполняются неравенства (27.3.3), то на основании первого признака сравнения заключаем, что исследуемый ряд также сходится.

Теорема 27.3.2. (II признак сравнения). Если для рядовЧисловые ряды - основные понятия с примерами решения иЧисловые ряды - основные понятия с примерами решения отношение общих членов Числовые ряды - основные понятия с примерами решения стремится к некоторому положительному и конечному пределу:

Числовые ряды - основные понятия с примерами решения

то ряды Числовые ряды - основные понятия с примерами решениясходятся или расходятся одновременно.

Доказательство. Предельное соотношение (27.3.4), в силу определения Числовые ряды - основные понятия с примерами решенияозначает, что, начиная с некоторою номера N ,

выполняется неравенствоЧисловые ряды - основные понятия с примерами решения. Это неравенство равносильно неравенству:

Числовые ряды - основные понятия с примерами решения

Обозначив Числовые ряды - основные понятия с примерами решения, неравенство (27.3.5) запишется в виде:

Числовые ряды - основные понятия с примерами решения

Предположим, что ряд Числовые ряды - основные понятия с примерами решения сходится. Поскольку выполняется неравенство Числовые ряды - основные понятия с примерами решения то, из первого признака сравнения, следует сходимость ряда Числовые ряды - основные понятия с примерами решения в силу теоремы 27.2.2, и ряда Числовые ряды - основные понятия с примерами решения . Если же ряд Числовые ряды - основные понятия с примерами решениярасходится, то расходится и ряд Числовые ряды - основные понятия с примерами решения по теореме 27.2.2. Тогда, поскольку выполняется неравенство Числовые ряды - основные понятия с примерами решения, расходится и ряд Числовые ряды - основные понятия с примерами решения в силу I признака сравнения. Аналогично рассуждая можно показать, что из сходимости ряда Числовые ряды - основные понятия с примерами решения следует сходимость ряда Числовые ряды - основные понятия с примерами решения по I признаку сравнения с использованием теоремы 27.2.2. 13Числовые ряды - основные понятия с примерами решения

Последовательность Числовые ряды - основные понятия с примерами решения называется сходящейся, если существует такое вещественное число а , что для любого положительного числа Числовые ряды - основные понятия с примерами решения найдется номер Числовые ряды - основные понятия с примерами решения такой, что для всехЧисловые ряды - основные понятия с примерами решения выполняется неравенство Числовые ряды - основные понятия с примерами решения

Пример №18

Исследовать сходимость ряда Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Решение:

Очевидно, что Числовые ряды - основные понятия с примерами решения. Поэтому, воспользуемся признаком сравнения, сравнив заданный ряд с гармоническим. Найдем предел отношения общих членов исследуемого ряда и гармонического:

Числовые ряды - основные понятия с примерами решения

Теорема 27.3.2 выполняется, поэтому из расходимости гармонического ряда Числовые ряды - основные понятия с примерами решенияследует расходимость исследуемого ряда.

Признаки Д’Аламбсра и Коши

Иногда вместо признаков сравнения оказываются полезными некоторые специальные признаки сходимости ряда. Отметим среди них признаки Д’Аламбсра и Коши, непосредственно получающиеся из признаков сравнения, если в качестве ряда сравнения взять соответствующим образом выбранную геометрическую прогрессию.

Теорема 27.3.3. (признак Д’Аламбера). Если для ряда

Числовые ряды - основные понятия с примерами решения

с положительными членами существует такой номер Числовые ряды - основные понятия с примерами решения, начиная с которого, т.е. при Числовые ряды - основные понятия с примерами решения, отношение последующего члена к предыдущему удовлетворяет неравенству: Числовые ряды - основные понятия с примерами решения, то ряд (27.3.6) сходится. Если же существует номер Числовые ряды - основные понятия с примерами решения, начиная с которого, т.е. при Числовые ряды - основные понятия с примерами решения отношение последующего члена к предыдущему больше единицы:Числовые ряды - основные понятия с примерами решения то ряд (27.3.6) расходится.

Доказательство. Пусть 0 Числовые ряды - основные понятия с примерами решения q Числовые ряды - основные понятия с примерами решения 1 и пусть существует такой номер Числовые ряды - основные понятия с примерами решения, что при Числовые ряды - основные понятия с примерами решения. выполняется неравенство:Числовые ряды - основные понятия с примерами решенияПерепишем это неравенство в виде: Числовые ряды - основные понятия с примерами решения. Тогда, начиная с номера Числовые ряды - основные понятия с примерами решения буду последовательно выполнятся неравенства:

Числовые ряды - основные понятия с примерами решения

Ряд Числовые ряды - основные понятия с примерами решения, являясь суммой член геометрической прогрессии со знаменателем Числовые ряды - основные понятия с примерами решения, сходите Из неравенств (27.3.7) следует, что по I признаку сравнения, сходится и ряд Числовые ряды - основные понятия с примерами решениязначит и весь ряд (27.3.6

т.к. на сходимость ряда не влияет исключение конечного числа е^ членов.

Если же существует такое Числовые ряды - основные понятия с примерами решения, что выполняется неравенствЧисловые ряды - основные понятия с примерами решения для всех Числовые ряды - основные понятия с примерами решения, то, переписав его в виде Числовые ряды - основные понятия с примерами решения, можно для всех Числовые ряды - основные понятия с примерами решения, последовательно записать следующие неравенство

Числовые ряды - основные понятия с примерами решения

Так как по предположению Числовые ряды - основные понятия с примерами решения, то n-ный член ряда будучи ограниченным снизу положительной постоянной не стремится к нулю. Следовательно, не выполняется необходимое условие сходимости ряда, и поэтому ряд (27.3.6) расходится. Числовые ряды - основные понятия с примерами решения

Следствие 1. Пусть существует предел отношения последующего члена ряда (27.3.6) к предыдущему равный r :

Числовые ряды - основные понятия с примерами решения

Тогда, еслиЧисловые ряды - основные понятия с примерами решения то ряд (27.3.6) сходится: если же Числовые ряды - основные понятия с примерами решения то ряд (21.3.6) расходится.

Доказательство. Воспользовавшись определением предела, для фиксированного Числовые ряды - основные понятия с примерами решения, можно утверждать, что начиная с некоторого номера Числовые ряды - основные понятия с примерами решения, для всех Числовые ряды - основные понятия с примерами решения, все отношения Числовые ряды - основные понятия с примерами решения будут отличатся от значения предела r на число Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Рассмотрим правую часть двойного неравенства: Числовые ряды - основные понятия с примерами решения . Тогда сославшись на доказанную теорему 27.3.3, в случае если r Числовые ряды - основные понятия с примерами решения1, получаем сходимость ряда. Рассматривая левую часть неравенства

Числовые ряды - основные понятия с примерами решения , получаем расходимость ряда приr > 1. Следствие доказано.

Пример №19

Рассмотрим ряд Числовые ряды - основные понятия с примерами решения, сходимость которого исследуем, используя признак Даламбера, т.е. следствие 1.

Решение:

Выпишем вначале значения Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Затем вычислим предел отношения последующего члена ряда к предыдущему:

Числовые ряды - основные понятия с примерами решения

Так как этот предел меньше 1, то, в силу следствия 1, данный ряд сходится.

Заметим, что при исследовании сходимости ряда обычно (как правило, но не всегда) применяют следствие 1 из теоремы 27.3.3.

Теорема 27.3.4. (признак Kouiu). Если для ряда

Числовые ряды - основные понятия с примерами решения

с положительными членами, начиная с некоторого номера Числовые ряды - основные понятия с примерами решения. выполняется неравенство Числовые ряды - основные понятия с примерами решениядля всех Числовые ряды - основные понятия с примерами решения, то ряд (27.3.6) сходится. Если же существует такой номер Числовые ряды - основные понятия с примерами решения, начиная с которого выполняется неравенство Числовые ряды - основные понятия с примерами решения для всех Числовые ряды - основные понятия с примерами решения, то данный ряд расходится.

Доказательство. Пусть существует такой номер Числовые ряды - основные понятия с примерами решения, что при всехЧисловые ряды - основные понятия с примерами решения выполняется неравенство Числовые ряды - основные понятия с примерами решения Тогда, возводя обе части неравенства в степень n, получим Числовые ряды - основные понятия с примерами решения. Так как сходится геометрический ряд Числовые ряды - основные понятия с примерами решения, то на основании признака сравнения, получаем, что ряд Числовые ряды - основные понятия с примерами решения сходится. Если же существует номер Числовые ряды - основные понятия с примерами решения, такой что Числовые ряды - основные понятия с примерами решения для всех Числовые ряды - основные понятия с примерами решения, то ясно, что Числовые ряды - основные понятия с примерами решения, и значитЧисловые ряды - основные понятия с примерами решения (не выполняется необходимый признак сходимости), поэтому ряд Числовые ряды - основные понятия с примерами решениярасходится.Числовые ряды - основные понятия с примерами решения

Следствие 2. Пусть существует предел корня n -ой степени из n-го члена ряда (27.3.9):

Числовые ряды - основные понятия с примерами решения

Тогда, если Числовые ряды - основные понятия с примерами решения, то ряд (27.3.9) сходится, если жеЧисловые ряды - основные понятия с примерами решения, то ряд (27.3.9) расходится.

Доказательство. Из определения предела следует, что для фиксированного Числовые ряды - основные понятия с примерами решения существует номер Числовые ряды - основные понятия с примерами решения, начиная с которого выполняется неравенство Числовые ряды - основные понятия с примерами решения Это неравенство равносильно неравенствуЧисловые ряды - основные понятия с примерами решения. Из правой части неравенства следуетЧисловые ряды - основные понятия с примерами решения, поскольку Числовые ряды - основные понятия с примерами решениясколь угодно малое число. Тогда из теоремы 27.3.4, получаем сходимость ряда (27.3.9). Рассматривая левую часть неравенстваЧисловые ряды - основные понятия с примерами решения, получимЧисловые ряды - основные понятия с примерами решения и еслиЧисловые ряды - основные понятия с примерами решения, то из теоремы 27.3.4 следует расходимость ряда (27.3.9). Следствие доказано.

Пример №20

Рассмотрим ряд Числовые ряды - основные понятия с примерами решения, сходимость которого исследуем по признаку Коши, т.е. применим следствие 2.

Решение:

Выпишем значение n-го члена ряда Числовые ряды - основные понятия с примерами решения н вычислим предел корня n -ой степени: Числовые ряды - основные понятия с примерами решения

Так как этот предел меньше 1, то, согласно следствию 2, ряд сходится.

Замечание. Если пределы (27.3.8) и (27.3.10) равны 1, то для исследования сходимости ряда (27.3.9) нужно применять другие признаки, с которыми можно ознакомиться в [3].

Интегральный признак сходимости

Рассмотрим признак, достоинство которого состоит в исключительно высокой его чувствительности. Этим признаком проводится исследование сходимости там, где сформулированные признаки Д’Аламбсра и Коши «не работают».

Каждый член числового ряда Числовые ряды - основные понятия с примерами решения можно рассматривать как значение функции f от его номера:

Числовые ряды - основные понятия с примерами решения

Эта функция определена пока только для целых положительных значений аргумента. Поэтому, доопределив значение функции f для всех нецелых значений аргумента, больших единицы, мы сможем, говорить о функции f(x), принимающей значения для любого Числовые ряды - основные понятия с примерами решения и при х = n, равные членам числового ряда. Теорема 27.3.5. Пусть дан ряд

Числовые ряды - основные понятия с примерами решения

члены которого положительны и не возрастают Числовые ряды - основные понятия с примерами решения Если функция f, определённая для всех Числовые ряды - основные понятия с примерами решения, неотрицательна и монотонно убывает, то ряд (27.3.11) сходится или расходится тогда и только тогда, когда сходится или

расходится интеграл Числовые ряды - основные понятия с примерами решения

Доказательство. Пусть члены ряда (27.3.11) удовлетворяют условиям теоремы. Изобразим их графически, откладывая по оси Ох независимую переменную, а по оси Оу – соответствующие значения Числовые ряды - основные понятия с примерами решения . Числовые ряды - основные понятия с примерами решения

При таком графическом изображении сумма n первых членов ряда Числовые ряды - основные понятия с примерами решенияпредставляет сумму площадей описанных прямоугольников, которая заключает внутри себя площадь, ограниченной кривой Числовые ряды - основные понятия с примерами решения, осью Ох и прямыми Числовые ряды - основные понятия с примерами решения и поэтому будет выполняться неравенство:

Числовые ряды - основные понятия с примерами решения

С другой стороны, криволинейная трапеция содержит сумму площадей вписанных прямоугольников, которая равна Числовые ряды - основные понятия с примерами решения Поэтому, выполняется неравенство:

Числовые ряды - основные понятия с примерами решения

Из (27.3.12) и (27.3.13) следует неравенство:

Числовые ряды - основные понятия с примерами решения

Предположим, что несобственный интеграл Числовые ряды - основные понятия с примерами решения сходится. Это означает, что Числовые ряды - основные понятия с примерами решения является конечным числом. Тогда из неравенства (27.3.14) следует, что последовательность частичных сумм Числовые ряды - основные понятия с примерами решения возрастающая и ограничена при всех n. Тогда в силу теоремы: “возрастающая последовательность, ограниченная сверху, сходится”, числовой ряд (27.3.11) сходится. Если же несобствснный интегралЧисловые ряды - основные понятия с примерами решения расходится, т.е. Числовые ряды - основные понятия с примерами решения, то из неравенства (27.3.12) следует, что последовательность частичных суммЧисловые ряды - основные понятия с примерами решения не ограничена. Тогда в силу определения 27.1.3 ряд будет расходящимся. Числовые ряды - основные понятия с примерами решения

Пример №21

Исследовать сходимость ряда Числовые ряды - основные понятия с примерами решения

Решение:

Применим интегральный признак. Рассмотрим функцию Числовые ряды - основные понятия с примерами решения которая положительна и убывает при х> 2, и исследуем сходимость несобственного интеграла:

Числовые ряды - основные понятия с примерами решения

Так как несобственный интеграл расходится, то расходится и рядЧисловые ряды - основные понятия с примерами решения в силу инте1рального признака Коши.

Замечание. Исследовать сходимость данного ряда при помощи следствий 1 и 2 не представляется возможным, так как соответствующие пределы равны 1.

Пример №22

Исследовать сходимость ряда Дирихле

Числовые ряды - основные понятия с примерами решения

Решение:

Если Числовые ряды - основные понятия с примерами решения, то общий член ряда Числовые ряды - основные понятия с примерами решения не стремится к нулю. На основании следствия из необходимого признака сходимости, следует расходимость ряда Дирихле при Числовые ряды - основные понятия с примерами решения.

Пусть а > 0, тогда необходимый признак, очевидно, выполняется. Применим интегральный признак Коши. Введем функцию

Числовые ряды - основные понятия с примерами решения, которая положительная и не возрастает при Числовые ряды - основные понятия с примерами решения и исследуем сходимость несобственного интегралаЧисловые ряды - основные понятия с примерами решения

Вычислим определенный интеграл, записанный под знаком предела:

Числовые ряды - основные понятия с примерами решения

ЕслиЧисловые ряды - основные понятия с примерами решения существует и равен Числовые ряды - основные понятия с примерами решения а при Числовые ряды - основные понятия с примерами решения указанный предел не существует.

Таким образом, при a>1 несобственный интеграл Числовые ряды - основные понятия с примерами решения сходится, следовательно, сходится и ряд Дирихле, а при Числовые ряды - основные понятия с примерами решения несобственный интеграл расходится, следовательно, расходится и ряд Дирихле.

  • Знакопеременные ряды
  • Степенные ряды
  • Элементы матричного анализа
  • Уравнение линии
  • Несобственные интегралы
  • Дифференциальные уравнения первого порядка
  • Линейные дифференциальные уравнения второго порядка
  • Системы дифференциальных уравнений

Нахождение общего члена ряда по заданным первым членам. Первая часть.

Числовой ряд можно задать по-разному. Чаще всего просто используют запись вида $sumlimits_{n=1}^{infty}u_n$. Однако изредка указывают несколько первых членов ряда, по которым нужно восстановить общий член ряда. Честно говоря, подобные задачи не имеют единственного решения, и это будет продемонстрировано в примере №1. Впрочем, есть некие общие приёмы, которые применяют в стандартных случаях.

Для начала стоит запомнить несколько последовательностей. Например, квадраты натуральных чисел, т.е. последовательность $u_n=n^2$. Вот несколько первых членов этой последовательности:

$$
begin{equation}
1;; 4;; 9;; 16;; 25;; 36;; 49;; 64; ;81; ldots
end{equation}
$$

Как мы получили эти числа? показатьскрыть

Также стоит иметь в виду члены последовательности $u_n=n^3$. Вот несколько первых её членов:

$$
begin{equation}
1;; 8;; 27;; 64;; 125;; 216;; 343;; 512;;729; ldots
end{equation}
$$

Кроме того, для формирования общего члена ряда частенько используется последовательность $u_n=n!$, несколько первых членов которой таковы:

$$
begin{equation}
1;; 2;; 6;; 24;; 120;; 720;; 5040; ldots
end{equation}
$$

Что обозначает “n!”? показатьскрыть

Часто используются также арифметическая и геометрическая прогрессии. Если первый член арифметической прогрессии равен $a_1$, а разность равна $d$, то общий член арифметической прогрессии записывается с помощью такой формулы:

$$
begin{equation}
a_n=a_1+dcdot (n-1)
end{equation}
$$

Что такое арифметическая прогрессия? показатьскрыть

Стоит также отметить геометрическую прогрессию. Если первый член прогрессии равен $b_1$, а знаменатель равен $q$, то общий член геометрической прогрессии задаётся такой формулой:

$$
begin{equation}
b_n=b_1cdot q^{n-1}
end{equation}
$$

Что такое геометрическая прогрессия? показатьскрыть

Во всех изложенных ниже примерах члены рядов будем обозначать буквами $u_1$ (первый член ряда), $u_2$ (второй член ряда) и так далее. Запись $u_n$ будет обозначать общий член ряда.

Пример №1

Найти общий член ряда $frac{1}{7}+frac{2}{9}+frac{3}{11}+frac{4}{13}+ldots$.

Решение

Суть таких задач состоит в том, чтобы заметить закономерность, которая присуща первым членам ряда. И на основании этой закономерности сделать вывод о виде общего члена. Что означает фраза “найти общий член”? Она означает, что необходимо найти такое выражение, подставляя в которое $n=1$ получим первый член ряда, т.е. $frac{1}{7}$; подставляя $n=2$ получим второй член ряда, т.е. $frac{2}{9}$; подставляя $n=3$ получим третий член ряда, т.е. $frac{3}{11}$ и так далее. Нам известны первые четыре члена ряда:

$$
u_1=frac{1}{7};; u_2=frac{2}{9};; u_3=frac{3}{11};; u_4=frac{4}{13}.
$$

Давайте двигаться постепенно. Все известные нам члены ряда – дроби, поэтому резонно предположить, что и общий член ряда тоже представлен дробью:

$$
u_n=frac{?}{?}
$$

Наша задача – выяснить, что же скрывается под знаками вопроса в числителе и знаменателе. Сначала обратимся к числителю. В числителях известных нам членов ряда стоят числа 1, 2, 3 и 4. Заметьте, что номер каждого члена ряда равен числителю. У первого члена в числителе стоит единица, у второго – двойка, у третьего – тройка, у четвёртого – четвёрка.

Ряд

Логично предположить, что у n-го члена в числителе будет стоять $n$:

$$
u_n=frac{n}{?}
$$

Кстати сказать, к этому выводу мы можем прийти и иным путём, более формальным. Что представляет собой последовательность 1, 2, 3, 4? Отметим, что каждый последующий член этой последовательности на 1 больше, чем предыдущий. Мы имеем дело с четырьмя членами арифметической прогрессии, первый член которой $a_1=1$, а разность $d=1$. Используя формулу (4), получим выражение общего члена прогрессии:

$$
a_n=1+1cdot (n-1)=1+n-1=n.
$$

Итак, угадывание или формальный расчёт – дело вкуса. Главное – мы записали числитель общего члена ряда. Перейдём к знаменателю.

В знаменателях мы имеем последовательность 7, 9, 11, 13. Это четыре члена арифметической прогрессии, первый член которой равен $b_1=7$, а разность $d=2$. Общий член прогрессии найдем, используя формулу (4):

$$
b_n=7+2cdot (n-1)=7+2n-2=2n+5.
$$

Полученное выражение, т.е. $2n+5$, и будет знаменателем общего члена ряда. Итак:

$$
u_n=frac{n}{2n+5}.
$$

Общий член ряда получен. Давайте проверим, подходит ли найденная нами формула $u_n=frac{n}{2n+5}$ для вычисления уже известных членов ряда. Найдём члены $u_1$, $u_2$, $u_3$ и $u_4$ по формуле $u_n=frac{n}{2n+5}$. Результаты, естественно, должны совпасть с заданными нам по условию первыми четырьмя членами ряда.

$$
u_1=frac{1}{2cdot 1+5}=frac{1}{7};; u_2=frac{2}{2cdot 2+5}=frac{2}{9};; u_3=frac{3}{2cdot 3+5}=frac{3}{11};; u_4=frac{4}{2cdot 4+5}=frac{4}{13}.
$$

Всё верно, результаты совпадают. Заданный в условии ряд можно записать теперь в такой форме: $sumlimits_{n=1}^{infty}frac{n}{2n+5}$. Общий член ряда имеет вид $u_n=frac{n}{2n+5}$.

В принципе, если речь идёт о стандартном примере, то можно считать, что ответ получен. Однако если вам интересно поисследовать вопрос более детально, то прошу читать далее. Вопрос вот в чём: является ли найденное выше представление общего члена единственным? Ответ на этот вопрос далеко не столь очевидный, как кажется на первый взгляд. Например, давайте продолжим заданный в условии ряд таким образом:

$$
frac{1}{7}+frac{2}{9}+frac{3}{11}+frac{4}{13}+0+0+0+0+0+0+0+ldots
$$

Разве такой ряд не имеет право на существование? Ещё как имеет. И для этого ряда можно записать, что

$$
u_1=frac{1}{7};; u_2=frac{2}{9};; u_3=frac{3}{11};; u_4=frac{4}{13}; ; u_n=0; (n≥ 5).
$$

Можно записать и иное продолжение. Например, такое:

$$
frac{1}{7}+frac{2}{9}+frac{3}{11}+frac{4}{13}+frac{1}{5}+frac{1}{6}+frac{1}{7}+frac{1}{8}+frac{1}{9}+frac{1}{10}+ldots
$$

И такое продолжение ничему не противоречит. При этом можно записать, что

$$
u_1=frac{1}{7};; u_2=frac{2}{9};; u_3=frac{3}{11};; u_4=frac{4}{13}; ; u_n=frac{1}{n}; (n≥ 5).
$$

Если первые два варианта показались вам чересчур формальными, то предложу третий. Давайте запишем общий член в таком виде:

$$
u_n=frac{n}{n^4-10n^3+35n^2-48n+29}.
$$

Вычислим первые четыре члена ряда, используя предложенную формулу общего члена:

begin{aligned}
& u_1=frac{1}{1^4-10cdot 1^3+35cdot 1^2-48cdot 1+29}=frac{1}{7};\
& u_2=frac{2}{2^4-10cdot 2^3+35cdot 2^2-48cdot 2+29}=frac{2}{9};\
& u_3=frac{3}{3^4-10cdot 3^3+35cdot 3^2-48cdot 3+29}=frac{3}{11};\
& u_4=frac{4}{4^4-10cdot 4^3+35cdot 4^2-48cdot 4+29}=frac{4}{13}.
end{aligned}

Как видите, предложенная формула общего члена вполне корректна. И таких вариаций можно придумать бесконечно много, их количество ничем не ограничено. В стандартных примерах, конечно, используется стандартный набор неких известных последовательностей (прогрессии, степени, факториалы и т.д.). Однако в таких задачах всегда присутствует неопределённость, и об этом желательно помнить.

Во всех последующих примерах эта неоднозначность оговариваться не будет. Решать станем стандартными способами, которые приняты в большинстве задачников.

Ответ: общий член ряда: $u_n=frac{n}{2n+5}$.

Пример №2

Записать общий член ряда $frac{1}{1cdot 5}+frac{1}{3cdot 8}+frac{1}{5cdot 11}+frac{1}{7cdot 14}+frac{1}{9cdot 17}+ldots$.

Решение

Нам известны первые пять членов ряда:

$$
u_1=frac{1}{1cdot 5};; u_2=frac{1}{3cdot 8}; ; u_3=frac{1}{5cdot 11}; ; u_4=frac{1}{7cdot 14}; ; u_5=frac{1}{9cdot 17}.
$$

Все известные нам члены ряда – дроби, значит и общий член ряда будем искать в виде дроби:

$$
u_n=frac{?}{?}.
$$

Сразу обратим внимание на числитель. Во всех числителях стоят единицы, поэтому и в числителе общего члена ряда будет единица, т.е.

$$
u_n=frac{1}{?}.
$$

Теперь обратимся к знаменателю. В знаменателях известных нам первых членов ряда расположены произведения чисел: $1cdot 5$, $3cdot 8$, $5cdot 11$, $7cdot 14$, $9cdot 17$. Первые из этих чисел таковы: 1, 3, 5, 7, 9. Данная последовательность имеет первый член $a_1=1$, а каждый последующий получается из предыдущего прибавлением числа $d=2$. Иными словами, это первые пять членов арифметической прогрессии, общий член которой можно записать с помощью формулы (4):

$$
a_n=1+2cdot (n-1)=1+2n-2=2n-1.
$$

В произведениях $1cdot 5$, $3cdot 8$, $5cdot 11$, $7cdot 14$, $9cdot 17$ вторые числа таковы: 5, 8, 11, 14, 17. Это элементы арифметической прогрессии, первый член которой $b_1=5$, а знаменатель $d=3$. Общий член этой прогрессии запишем с помощью всё той же формулы (4):

$$
b_n=5+3cdot (n-1)=5+3n-3=3n+2.
$$

Сведём результаты воедино. Произведение в знаменателе общего члена ряда таково: $(2n-1)(3n+2)$. А сам общий член ряда имеет следующий вид:

$$
u_n=frac{1}{(2n-1)(3n+2)}.
$$

Для проверки полученного результата найдём по формуле $u_n=frac{1}{(2n-1)(3n+2)}$ те четыре первых члена ряда, которые нам известны:

begin{aligned}
& u_1=frac{1}{(2cdot 1-1)(3cdot 1+2)}=frac{1}{1cdot 5};\
& u_2=frac{1}{(2cdot 2-1)(3cdot 2+2)}=frac{1}{3cdot 8};\
& u_3=frac{1}{(2cdot 3-1)(3cdot 3+2)}=frac{1}{5cdot 11};\
& u_4=frac{1}{(2cdot 4-1)(3cdot 4+2)}=frac{1}{7cdot 14};\
& u_5=frac{1}{(2cdot 5-1)(3cdot 5+2)}=frac{1}{9cdot 17}.
end{aligned}

Итак, формула $u_n=frac{1}{(2n-1)(3n+2)}$ позволяет точно вычислить члены ряда, известные из условия. При желании заданный ряд можно записать так:

$$
sumlimits_{n=1}^{infty}frac{1}{(2n-1)(3n+2)}=frac{1}{1cdot 5}+frac{1}{3cdot 8}+frac{1}{5cdot 11}+frac{1}{7cdot 14}+frac{1}{9cdot 17}+ldots
$$

Ответ: общий член ряда: $u_n=frac{1}{(2n-1)(3n+2)}$.

Продолжение этой темы рассмотрим в второй и третьей частях.

Пусть
задана бесконечная последовательность
чисел .
Выражение

                                                                                                                 
(97)

называется числовым
рядом
.
Числа  называются членами этого
ряда. Член  ряда
(97), стоящий на 
месте, считая от начала, называется
общим членом этого ряда. Ряд (97) считается
заданным, если известен общий член его,
выраженный как функция номера .

Выражение
(97) удобно обозначать следующим образом:.

Сумма
конечного числа n первых
членов ряда называетсяn-ой частичной суммой
ряда.

Рассмотрим
частичные суммы:        

Если
существует конечный предел ,
то его называют суммой ряда
(97) и говорят, что ряд (97) сходится.

Если  не
существует (например ,
при ),
то говорят, что ряд (97) расходится и суммы
не имеет.

Пример
7.1.1.
 Определить
сходимость числового ряда

                                                    .                                               
(98)


Решение. Данный
числовой ряд – сумма всех членов
геометрической прогрессии с первым
членом  и
знаменателем   Вычисляя
сумму первых  чисел,
получаем:

 или .

Переходя
к вычислению предела, заметим, что в
зависимости от значений  и  частичная
сумма ряда принимает различные значения.

1). Если , то при . Значит, в случае ряд (98) сходится и его сумма .

2). Если , то и тогда при , т.Е. Не существует. Таким образом, в случае ряд (98) расходится.

3) Если , то ряд (98) имеет вид: . В этом случае , т.Е. Ряд расходится.

Если  то .
В этом случае: 

Следовательно,
частичная сумма предела не имеет.

Таким
образом, сумма членов геометрической
прогрессии (с первым членом отличным
от нуля) сходится только тогда, когда
знаменатель прогрессии по абсолютной
величине меньше единицы. ►

Теорема. Если
сходится ряд, получившийся из данного
ряда (97) отбрасыванием нескольких его
членов, то сходится и сам данный ряд.
Обратно, если сходится данный ряд, то
сходится и ряд, получившийся из данного
отбрасыванием нескольких членов.

Теорема. Если
ряд (97) сходится и его сумма равная S,
то ряд

                                                                                                     (99)

где  –
произвольное действительное число, так
же сходится и его сумма равна.

Теорема.

                                               ,                                                         (100)

                                                                                                          (101)

сходятся
и их суммы, соответственно равны  и ,
то ряды

                                             ,                                                    (102)

                                                                                                  (103)

также
сходятся и их суммы равные
соответственно  и .

Теорема. (Необходимый
признак сходимости ряда). Если ряд
сходится, то его n-й член
стремится к нулю при неограниченном
возрастании n.

Следствие. Если n-й член
ряда не стремится к нулю, то ряд расходится.

Пример
7.1.2.
 Определить
сходимость числового ряда .

Решение. Воспользуемся
необходимым признаком сходимости ряда.
Для данного числового ряда записываем
формулу общего члена и вычисляем предел

.

Так
как предел не равен нулю, то исходный
ряд расходится. ►

Подчеркнем,
что рассмотренный признак является
только необходимым, но не является
достаточным, то есть из того, что nй
член ряда стремится к нулю, ещё не
следует, что ряд сходится – ряд может
и расходиться.

Пример
7.1.3.
 Определить
сходимость числового ряда

                                                    .                                                       (104)

Решение. Для
данного числового ряда записываем
формулу общего члена и вычисляем
предел .
Необходимый признак выполнен. Докажем,
однако, что
исходный ряд расходится. Распишем его
подробнее:

                                   (105)

и
составим вспомогательный ряд:

              .                                   (106)

Ряд
(106) строится следующим образом: его
первый член равен 1, второй – ,
третий и четвёртый равны ,
члены с пятого по восьмой равны ,
члены с девятого по 16-й равны ,
с 17-го по 32-й – ,
и т.д.

Обозначим
через Sn(1) сумму
первых n членов
гармонического ряда (105), а через Sn(2) сумму
первых n членов
ряда (106). Так как каждый член ряда (105)
больше соответствующего члена ряда
(106), то для ( 2)
выполнено

                                                         .                                                                 (107)

Подсчитаем
частичные суммы ряда (106) для значений n равных
степеням двойки: 21,
22,
23,
24,
25 и
т.д. Имеем:

,

,

,

,

Заметим,
что ,
и т.д. Следовательно ,
т.е. частичные суммы Sn(2) при  неограниченно
увеличиваются или .
Но тогда из соотношения (107) следует,
что .
Таким образом, исходный числовой ряд
расходится. Числовой ряд (104) часто
называютгармоническим.

Пусть
даны два ряда с положительными членами

                                                    ,                                                        (108)

                                                    .                                                         (109)

Для
них справедливы следующие утверждения.

Теорема (Первый
признак сравнения числовых рядов). Пусть
члены ряда (108) не больше соответствующих
членов ряда (109), т.е. при n=1,
2, …

                                                              .                                                                   (110)

Тогда,
если ряд (109) сходится, то сходится и ряд
(108).

Пример
7.1.4.
 Определить
сходимость числового ряда .

Решение. Поскольку
все слагаемые данного числового ряда
положительны, воспользуемся теоремой
первым признаком сравнения. Все члены
исходного ряда больше соответствующих
членов ряда ,
члены которого образуют геометрическую
прогрессию со знаменателем .
В примере 7.1.1 было показано, что такие
числовые ряды ()
сходятся. Более того, сумма этого ряда
равна  и,
следовательно, сумма первоначального
ряда не больше чем .►

Теорема (Второй
признак сравнения числовых рядов). Пусть
члены ряда (108) не меньше соответствующих
членов ряда (109), т.е. при n=1,
2, …

                                                              .                                                                  (111)

Тогда,
если ряд (109) расходится, то расходится
и ряд (108).

Пример
7.1.5.
 Определить
сходимость числового ряда .

Решение. Поскольку
все слагаемые данного числового ряда
положительны, воспользуемся вторым
признаком сравнения. Так как ,
то члены данного ряда больше соответствующих
членов гармонического ряда ,
который расходится (см. пример 7.1.3).
Поэтому исходный числовой ряд также
расходится. ►

Теорема (Признак
сходимости Даламбера).Пусть дан числовой
ряд (97) с положительными членами. Если
отношение (n+1)-го члена к n-му члену
при  имеет
конечный предел, т.е.

                                                         ,                                                               (112)

то
      1) при <1 –
ряд сходится;

  2)
при >1 –
ряд расходится.

Замечание. Ряд
будет расходиться и в том случае, когда .
Это следует из того, что если ,
то, начиная с некоторого номера n=N,
будет иметь место неравенство: >1.
Следовательно, >.

Пример
7.1.6.
 Исследовать
сходимость ряда 

Решение. Воспользуемся
признаком сходимости Даламбера. Определим
формулу общего члена числового ряда и
составим отношение .
Вычисляя предел, получим

<1.

Таким
образом, исходный ряд сходится. ►

Пример
7.1.7.
 Исследовать
сходимость ряда .

Решение. Воспользуемся
признаком сходимости Даламбера. Определим
формулу общего члена числового ряда и
составим отношение .
Вычисляя предел, получим

 >
1.

Таким
образом, исходный ряд расходится. ►

Признак
Даламбера дает ответ на вопрос о том
сходится ли данный положительный ряд
в случае, когда  существует
и отличен от 1. Если же этот предел не
существует или ,
то признак Даламбера не дает возможности
установить, сходится ряд или расходится,
так как в этом случае ряд может оказаться
или сходящимся, или расходящимся. Для
решения вопроса о сходимости надо
применить какой-либо другой признак.

Если ,
но отношение  для
всех номеров n,
начиная с некоторого больше 1, то ряд
расходится. Это следует из того, что
если >1,
то  >  и
общий член ряда не стремится к 0 при n.

Пример
7.1.8.
 Исследовать
сходимость ряда .

Решение. Воспользуемся
признаком сходимости Даламбера. Определим
формулу общего члена числового ряда и
составим предел отношения

.

В
данном случае ряд расходится, так как >1
для всех n. Действительно,

>1   >  1>0.

Пример
7.1.9.
 Определить
сходимость числового ряда .

Решение. Применяя
признак сходимости Даламбера к
гармоническому ряду, получаем .
Признак Даламбера в данном случае не
дает ответа на вопрос о сходимости, но
в примере 7.1.3 была установлена расходимость
данного числового ряда. ►

Пример
7.1.10.
 Исследовать
сходимость ряда .

Решение. Воспользуемся
признаком сходимости Даламбера. Определим
формулу общего члена числового ряда и
составим предел отношения

.

На
основании признака Даламбера сходимость
установить нельзя. Однако, так как ,
то можно преобразовать данный ряд

Вычисляя
частичные суммы  и
предел, получаем

.

Таким
образом, исходный ряд сходится. ►

Теорема (Признак
Коши). Если для ряда с положительными
членами (97) величина  имеет
конечный предел  при ,
т.е.

,

то      
1) при <
1 – ряд сходится;

           2)
при >
1 – ряд расходится.

Замечание. Как
и в признаке Даламбера, случай ,
требует дополнительного исследования.
Среди рядов, удовлетворяющих этому
условию, могут встретиться как сходящиеся,
так и расходящиеся. Так для гармонического
ряда имеем: ,
но он расходится. Рассмотрим другой
числовой ряд .
Для него так же имеет место равенство ,
но он сходится по первому признаку
сходимости. Заметим, что если отбросить
первый член, то члены оставшегося ряда
будут меньше соответствующих членов
ряда ,
который сходится (см. пример 7.1.10).

Пример
7.1.11.
 Исследовать
сходимость ряда 

Решение. Воспользуемся
признаком сходимости Коши. Определим
формулу общего члена числового ряда и
вычислим предел .

Так
как предел конечен и меньше единицы, то
по признаку Коши исходный числовой ряд
сходится. ►

Приведем
без доказательства признак сходимости
числовых рядов с положительными членами,
который удобно использовать, когда
признаки Даламбера и Коши не дают ответа
на вопрос о сходимости ряда.

Теорема (Интегральный
признак сходимости).Пусть дан ряд ,
члены которого положительны и не
возрастают, т.е. ,
а функция ,
определена  при ,
непрерывная и не возрастающая и .
Тогда для сходимости ряда  необходимо
и достаточно, чтобы сходился несобственный
интеграл .

Пример
7.1.12.
 Исследовать
сходимость обобщенного гармонического
ряда .

Решение. Пусть .
Функция  при  (а
значит и при )
положительна и невозрастающая (точнее
убывающая). Поэтому сходимость ряда
равносильна сходимости несобственного
интеграла .
Имеем .

Если ,
то .

Если ,
то 

Итак,
данный обобщенный гармонический ряд
сходится при  и
расходится при .

Знакочередующимся
рядом называется ряд

                                           ,                                                       (113)

где ,
– положительные числа.

Теорема (Признак
Лейбница). Если в знакочередующемся
ряде (113) члены таковы, что

                                                                                                                      (114)

и

                                                                                                                             (115)

то
ряд (113) сходится, его сумма положительна
и не превосходит первого члена.

Замечание. Теорема
Лейбница справедлива, если неравенства
(114) выполняются, начиная с некоторого
номера N.

Теорема
Лейбница иллюстрируется геометрически
следующим образом. На числовой прямой
будем откладывать (рис. 21)частичные
суммы:

,

Рис.
21. Геометрический смысл теоремы Лейбница

Тогда
точки, соответствующие частичным суммам
будут приближаться к некоторой
точке S. При
этом точки, соответствующие чётным
суммам располагаются слева от S,
а нечетным суммам – справа от S.

Пример
7.1.13.
 Исследовать
сходимость ряда .

Решение. Поскольку
данный ряд является знакочередующимся,
воспользуемся признаком сходимости
Лейбница. Определим формулу общего
члена числового ряда и проверим условия
теоремы. Имеем:

1)                      1
 > ;

2)                      .

Так
как оба условия выполнены, то исходный
ряд сходится по признаку Лейбница. ►

Пример
7.1.14.
 Исследовать
сходимость ряда 

Решение. Поскольку
данный ряд является знакочередующимся,
воспользуемся признаком Лейбница.
Определим формулу общего члена числового
ряда и проверим условия теоремы. Имеем:

3)                      1
 > ;

4)                      .

Так
как оба условия выполнены, то исходный
ряд сходится по признаку Лейбница. ►

Ряд
называется знакопеременным,
если среди его членов имеются как
положительные так и отрицательные.

Знакочередующиеся
ряды являются частным случаем
знакопеременных рядов.

Теорема. Если
знакопеременный ряд

                                                                                                              (116)

таков,
что ряд, составленный из абсолютных
величин его членов

                                                                                                          (117)

сходится,
то, и данный знакопеременный ряд также
сходится.

Пример
7.1.15.
 Исследовать
сходимость ряда

                                                                       (118)

где  –
любое число.

Решение. Наряду
с данным рядом, рассмотрим два следующих
ряда:

                                 ,                                 (119)

                                                                                                   (120)

Ряд
(120) сходится (см. замечание к теореме
Коши). Так как члены ряда (119) не больше
соответствующих членов ряда (120), т.е.

,

то
по первому признаку сравнения ряд (119)
сходится. Следовательно, по теореме ряд
(118) так же сходится. ►

Знакопеременный
ряд называется абсолютно сходящимся,
если сходится ряд, составленный из
абсолютных величин его членов.

Если
знакопеременный ряд сходится, а ряд,
составленный из абсолютных величин его
членов, расходится, то данный знакопеременный
ряд называется условно сходящимся.

Пример
7.1.16.
 Исследовать
сходимость ряда .

Решение. Данный знакопеременный
ряд является условно сходящимся, так
как ряд, составленный из абсолютных
величин его членов, есть гармонический
ряд ,
который расходится. Сам же ряд сходится
(см. пример 7.1.13) по признаку Лейбница. ►

Пример
7.1.17.
 Исследовать
сходимость ряда .

Решение.
Данный знакопеременный ряд абсолютно
сходящийся, так как ряд, составленный
из абсолютных величин его членов

сходится
(см. пример 7.1.6). ►

Теорема. (Погрешности
при вычислении сумм сходящегося
знакопеременного ряда).  Если ряд
сходится абсолютно, то он остается
абсолютно сходящимся при любой
перестановке его членов. При этом сумма
ряда не зависит от порядка его членов.

Теорема.  
Если ряд сходится условно, то какое бы
мы не задали число А, можно так переставить
его члены, чтобы его сумма оказалась в
точности равной А. Более того, можно так
переставить члены условно сходящегося
ряда, чтобы ряд, полученный после
перестановки, оказался расходящимся.

Пример
7.1.18.
 Исследовать
сходимость ряда

                                                                                                                   (121)

Решение. Докажем,
что данный знакопеременный ряд сходится
не абсолютно. Обозначим его сумму
через .
Очевидно, что >0.
Сделаем перестановку членов этого ряда
следующим образом:

                   .                  
(122)

Покажем,
что полученный ряд сходится, но его
сумма  в
два раза меньше суммы ряда (121), т.е.
равна .
Обозначим через  и  частичные
суммы рядов (121) и (122). Рассмотрим
сумму 3членов
ряда (122):

.

Вычислим
предел суммы ,
учитывая, что сумма ряда (121) равна :

.

Заметим,
что

,

.

Таким
образом,  т.е.
в данном случае сумма ряда (122) изменилась
после перестановки его членов (уменьшилась
в 2 раза). ►

Добавить комментарий