Все известные виды проводников обладают определенными свойствами, в том числе и электрическим сопротивлением. Это качество нашло свое применение в резисторах, представляющих собой элементы цепи с точно установленным сопротивлением. Они позволяют выполнять регулировку тока и напряжения с высокой точностью в схемах. Все подобные сопротивления имеют свои индивидуальные качества. Например, мощность при параллельном и последовательном соединении резисторов будет различной. Поэтому на практике очень часто используются различные методики расчетов, благодаря которым возможно получение точных результатов.
Свойства и технические характеристики резисторов
Как уже отмечалось, резисторы в электрических цепях и схемах выполняют регулировочную функцию. С этой целью используется закон Ома, выраженный формулой: I = U/R. Таким образом, с уменьшением сопротивления происходит заметное возрастание тока. И, наоборот, чем выше сопротивление, тем меньше ток. Благодаря этому свойству, резисторы нашли широкое применение в электротехнике. На этой основе создаются делители тока, использующиеся в конструкциях электротехнических устройств.
Помимо функции регулировки тока, резисторы применяются в схемах делителей напряжения. В этом случае закон Ома будет выглядеть несколько иначе: U = I x R. Это означает, что с ростом сопротивления происходит увеличение напряжения. На этом принципе строится вся работа устройств, предназначенных для деления напряжения. Для делителей тока используется параллельное соединение резисторов, а для делителей напряжения – последовательное.
На схемах резисторы отображаются в виде прямоугольника, размером 10х4 мм. Для обозначения применяется символ R, который может быть дополнен значением мощности данного элемента. При мощности свыше 2 Вт, обозначение выполняется с помощью римских цифр. Соответствующая надпись наносится на схеме возле значка резистора. Мощность также входит в состав маркировки, нанесенной на корпус элемента. Единицами измерения сопротивления служат ом (1 Ом), килоом (1000 Ом) и мегаом (1000000 Ом). Ассортимент резисторов находится в пределах от долей ома до нескольких сотен мегаом. Современные технологии позволяют изготавливать данные элементы с довольно точными значениями сопротивления.
Важным параметром резистора считается отклонение сопротивления. Его измерение осуществляется в процентах от номинала. Стандартный ряд отклонений представляет собой значения в виде: +20, +10, +5, +2, +1% и так далее до величины +0,001%.
Большое значение имеет мощность резистора. По каждому из них во время работы проходит электрический ток, вызывающий нагрев. Если допустимое значение рассеиваемой мощности превысит норму, это приведет к выходу из строя резистора. Следует учитывать, что в процессе нагревания происходит изменение сопротивления элемента. Поэтому если устройства работают в широких диапазонах температур, применяется специальная величина, именуемая температурным коэффициентом сопротивления.
Для соединения резисторов в схемах используются три разных способа подключения — параллельное, последовательное и смешанное. Каждый способ обладает индивидуальными качествами, что позволяет применять данные элементы в самых разных целях.
Мощность при последовательном соединение
При соединение резисторов последовательно электрический ток по очереди проходит через каждое сопротивление. Значение тока в любой точке цепи будет одинаковым. Данный факт определяется с помощью закона Ома. Если сложить все сопротивления, приведенные на схеме, то получится следующий результат: R = 200+100+51+39 = 390 Ом.
Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять I = U/R = 100/390 = 0,256 A. На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле: P = I2 x R = 0,2562 x 390 = 25,55 Вт.
Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:
- P1 = I2 x R1 = 0,2562 x 200 = 13,11 Вт;
- P2 = I2 x R2 = 0,2562 x 100 = 6,55 Вт;
- P3 = I2 x R3 = 0,2562 x 51 = 3,34 Вт;
- P4 = I2 x R4 = 0,2562 x 39 = 2,55 Вт.
Если сложить полученные мощность, то полная Р составит: Р = 13,11+6,55+3,34+2,55 = 25,55 Вт.
Мощность при параллельном соединение
При параллельном подключении все начала резисторов соединяются с одним узлом схемы, а концы – с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же.
Прежде чем вычислять силу тока, необходимо выполнить расчет полной проводимости всех резисторов, применяя следующую формулу:
- 1/R = 1/R1+1/R2+1/R3+1/R4 = 1/200+1/100+1/51+1/39 = 0,005+0,01+0,0196+0,0256 = 0,06024 1/Ом.
- Поскольку сопротивление является величиной, обратно пропорциональной проводимости, его значение составит: R = 1/0,06024 = 16,6 Ом.
- Используя значение напряжения в 100 В, по закону Ома рассчитывается сила тока: I = U/R = 100 x 0,06024 = 6,024 A.
- Зная силу тока, мощность резисторов, соединенных параллельно, определяется следующим образом: P = I2 x R = 6,0242 x 16,6 = 602,3 Вт.
- Расчет силы тока для каждого резистора выполняется по формулам: I1 = U/R1 = 100/200 = 0,5A; I2 = U/R2 = 100/100 = 1A; I3 = U/R3 = 100/51 = 1,96A; I4 = U/R4 = 100/39 = 2,56A. На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.
Существует еще одна формула, позволяющая рассчитать мощность при параллельном подключении резисторов: P1 = U2/R1 = 1002/200 = 50 Вт; P2 = U2/R2 = 1002/100 = 100 Вт; P3 = U2/R3 = 1002/51 = 195,9 Вт; P4 = U2/R4 = 1002/39 = 256,4 Вт. Сложив мощности отдельных резисторов, получится их общая мощность: Р = Р1+Р2+Р3+Р4 = 50+100+195,9+256,4 = 602,3 Вт.
Таким образом, мощность при последовательном и параллельном соединении резисторов определяется разными способами, с помощью которых можно получить максимально точные результаты.
Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы. Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи. Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.
Понятие электрической мощности и способы ее расчета
С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.
В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.
Через напряжение и ток
Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I
Где:
- P – активная мощность;
- U – напряжение приложенное к участку цепи;
- I — сила тока, протекающего через соответствующий участок.
Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.
Через напряжение и сопротивление
Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома для участка цепи, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:
I = U/R
Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:
P = U*(U/R)=U2/R
Где,
- P – величина нагрузки;
- U – приложенная разность потенциалов;
- R – сопротивление нагрузки.
Через ток и сопротивление
Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.
Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:
U=I*R
после того как выражение подставить в формулу мощности, получим:
P = (I*R)*I =I2*R
Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.
Полная мощность в цепи переменного тока
Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:
Где,
- S – полная мощность
- P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
- Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.
Также составляющие вычисляются через тригонометрические функции, так:
P = U*I*cosφ
Q = U*I*sinφ
что активно используется в расчете электрических машин.
Пример расчета полной мощности для электродвигателя
Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.
Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:
S = 3*Uф*Iф
В случае выполнения расчетов с линейным напряжением, чтобы найти мощность формула примет вид:
Активная и реактивная мощности будут вычисляться по аналогии с сетями переменного тока, как было рассмотрено ранее.
Теперь рассмотрим вычисления на примере конкретной электрической машины асинхронного типа. Следует отметить, что официальная производительность, указываемая в паспортных данных электродвигателя – это полезная мощность, которую двигатель может выдать при совершении оборотов вала. Однако полезная кардинально отличается от полной, которую можно вычислить за счет коэффициента мощности.
Как видите, для вычислений с шильда мы возьмем следующую информацию об электродвигателе:
- полезная производительность – 3 кВт, а в переводе на систему измерения – 3000 Вт;
- коэффициент полезного действия – 80%, а в пересчете для вычислений будем пользоваться показателем 0,8;
- тригонометрическая функция соотношения активных и реактивных составляющих – 0,74%;
- напряжение, при соединении обмоток треугольником составит 220 В;
- сила тока при том же способе соединения – 13,3 А.
С таким перечнем характеристик можно воспользоваться несколькими способами:
S = 1,732*220*13,3 = 5067 Вт
Чтобы найти искомую величину, сначала определяем активную составляющую:
P = Pполезная / КПД = 3000/0.8 = 3750 Вт
Далее полную по способу деления активной на коэффициент cos φ:
S = P/cos φ = 3750/0.74 = 5067 Вт
Как видите, и в первом, и во втором случае искомая величина получилась одинакового значения.
Примеры задач
Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.
Как видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:
P = U2/R = 81 / (10+20+30) = 1.35 Вт
Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:
Как видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:
Rобщ = (R1*R2) / (R1+R2) = (10*15) / (10+15) = 6 Ом
Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:
P = I2*R = 25*6 = 150 Вт
Видео по теме
Все известные виды проводников обладают определенными свойствами, в том числе и электрическим сопротивлением. Это качество нашло свое применение в резисторах, представляющих собой элементы цепи с точно установленным сопротивлением. Они позволяют выполнять регулировку тока и напряжения с высокой точностью в схемах. Все подобные сопротивления имеют свои индивидуальные качества. Например, мощность при параллельном и последовательном соединении резисторов будет различной. Поэтому на практике очень часто используются различные методики расчетов, благодаря которым возможно получение точных результатов.
Смешанное соединение резисторов
Смешанное соединение резисторов — это комбинация последовательного и параллельного соединения. Иногда такую комбинацию называют последовательно-параллельным соединением.
Пример цепи со смешанным соединением резисторов:
Для расчета эквивалентного сопротивления таких соединений всю цепь разбивают на простейшие участки и придерживаются следующего алгоритма:
Определяется общее сопротивление участков с параллельным соединением резисторов. | |
Если эти участки содержат последовательно соединенные резисторы, то сначала вычисляют их общее сопротивление. | |
После промежуточных расчетов схема перерисовывается, и получается цепь из последовательно соединенных эквивалентных сопротивлений. | |
Далее рассчитывается сопротивление полученной простой схемы. |
Трехфазное подключение нагревателей
Соединение треугольником
Номинальное напряжение каждого нагревательного элемента идентично напряжению между фазами при соединении треугольником.
Соединение звездой
Номинальное напряжение нагревательных элементов равно напряжению между фазами трехфазной проводки, деленному на корень из 3 или 1,732
Пример подключения: 3 нагревательных элемента мощностью 1000 Вт 230 В, подключенные к трехфазной сети 400 В, генерируют 3000 Вт. 3 нагревательных элемента мощностью 1000 Вт 400 В, подключенные к трехфазному источнику питания 400 В, генерируют 1000 Вт.
Подробнее про трехфазное подключение ТЭНов читайте в нашей статье — треугольник или звезда для подключения нагревателей
Как правильно подключать нагреватели: параллельно или последовательно?
Итак, следует ли подключать нагреватели параллельно или последовательно? Этот вопрос возникает, когда к источнику питания необходимо подключить более одного нагревателя. Любое количество нагревателей может быть подключено параллельно, но обычно только два нагревателя подключаются последовательно. Надежное последовательное подключение более двух нагревателей является сложной задачей. Если нагреватели соединены последовательно, отказ одного нагревателя останавливает работу всех ТЭНов в цепочке. При параллельном подключении нагревателей отказ одного ТЭНа обычно не влияет на другие нагреватели.
Чаще всего при подключении используется два ТЭНа. В этом случае, если нагреватели соединены последовательно, напряжение каждого ТЭНа должно быть равно половине общего доступного напряжения. Например, два нагревателя на 240 вольт, подключенные последовательно к источнику питания на 480 вольт. Также мощность каждого нагревателя должна быть одинаковой. (Если мощность и напряжение каждого нагревателя не равны, нагреватели не будут делить общее напряжение поровну.) Если два нагревателя подключены параллельно, напряжение каждого нагревателя должно быть таким же, как напряжение питания.
Параллельное соединение
Количество нагревательных элементов может быть 2, 3 или любое другое число (x). Тогда общее сопротивление равно: R = r / 2 либо R = r / 3 либо R = r / x, где r — сопротивление одного нагревателя
Мощность общую вычислим по формуле:
P = 2*p либо P = 3*.p либо P = x*p, где р – мощность одного ТЭНа
Например: 2 параллельно подключенных нагревательных элемента на 1000 Вт 230 В, работающие от 230 В, генерируют 2000 Вт при 230 В с R = 26,45 Ом 3 параллельно подключенных нагревательных элемента на 1000 Вт 230 В, работающие от 230 В, генерируют 3000 Вт при 230 В с R = 17,63 Ом и т. д.
Выводы
При параллельном подключении ТЭНов напряжение на каждом нагревателе будет одинаковое, общая мощность равна сумме мощностей отдельных нагревателей и выход одного ТЭНа из строя не нарушит работы остальных.
При последовательном подключении нагревателей общее сопротивление будет складываться из значений сопротивления каждого отдельного ТЭНа, напряжение на каждый отдельный нагреватель будет рассчитываться по формуле Uобщ/количество нагревателей (для одинаковых ТЭНов), соответственно общая мощность уменьшается во столько раз, сколько ТЭНов в системе.
Одна из причин однозначного выбора заключается в том, что некоторые нагреватели не могут надежно работать при одном напряжении. Это связано с физическими размерами нагревателя, а также с параметрами мощности и напряжения. В основном нужно подбирать ТЭНы с оптимальным размером греющей спирали, чтобы не было необходимости в последовательном подключении нескольких нагревателей. Помните, что параллельно все нагреватели имеют одинаковое напряжение, но последовательно каждый нагреватель имеет одинаковый ток. По сути, вы можете подключить ТЭНы последовательно только тогда, когда у вас есть два нагревателя одинаковой мощности и напряжения, при этом их суммарная мощность будет меньше. В большинстве случаев ТЭНы подключаются параллельно.
Если у Вас остались вопросы, обращайтесь к нам по телефону или по электронной почте. Наши специалисты помогут вам с выбором нагревательных элементов и проконсультируют по вопросам их подключения. Мы производим промышленные нагреватели, ик излучатели а также комплектующие материалы к системам нагрева.
Мощность при последовательном соединение
При соединение резисторов последовательно электрический ток по очереди проходит через каждое сопротивление. Значение тока в любой точке цепи будет одинаковым. Данный факт определяется с помощью закона Ома. Если сложить все сопротивления, приведенные на схеме, то получится следующий результат: R = 200+100+51+39 = 390 Ом.
Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять I = U/R = 100/390 = 0,256 A. На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле: P = I2 x R = 0,2562 x 390 = 25,55 Вт.
Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:
- P1 = I2 x R1 = 0,2562 x 200 = 13,11 Вт;
- P2 = I2 x R2 = 0,2562 x 100 = 6,55 Вт;
- P3 = I2 x R3 = 0,2562 x 51 = 3,34 Вт;
- P4 = I2 x R4 = 0,2562 x 39 = 2,55 Вт.
Если сложить полученные мощность, то полная Р составит: Р = 13,11+6,55+3,34+2,55 = 25,55 Вт.
Давайте рассмотрим немного расчетов по подключению ТЭНов.
Общие формулы
Мощность (Ватт) |
Напряжение (Вольт) |
Сила тока (Ампер) |
Сопротивление (Ом) |
Рассмотрим последовательное или параллельное подключение нескольких одинаковых нагревательных элементов с различными схемами соединения. Для произведения расчетов нам понадобятся такие характеристики:
R = полное сопротивление P = общая мощность U и I соответственно напряжение и сила тока
Последовательное подключение ТЭНов
Аналогично предыдущему случаю возьмем 2, 3 или х одинаковых ТЭНов, каждый из которых имеет сопротивление r и мощность р. Для последовательного подключения значения сопротивления складываются, в итоге вычислений имеем:
R = 2*r либо R = 3*r либо R = x*r P = p / 2 либо P = p / 3
Например: 2 последовательно подключенных нагревательных элемента мощностью 1000 Вт 230 В, работающих от 230 В, генерируют 500 Вт при 230 В с R = 105,87 Ом (мощность, создаваемая нагревательными элементами, в 4 раза меньше) 3 последовательно подключенных нагревательных элемента мощностью 1000 Вт 230 В, работающих с 230 В генерируют 333 Вт при 230 В с сопротивлением R = 158,7 Ом (мощность, создаваемая нагревательными элементами, в 9 раз меньше) и т. д.
Резисторы
Соединяем последовательно
[Сопротивление последовательно соединенных резисторов, кОм
] = [
Сопротивление первого резистора, кОм
] + [
Сопротивление второго резистора, кОм
]
[Мощность, рассеиваемая первым резистором, Вт
] = [
Сопротивление первого резистора, кОм
] * [
Сила тока, мА
] ^ 2 / 1000
[Мощность, рассеиваемая вторым резистором, Вт
] = [
Сопротивление второго резистора, кОм
] * [
Сила тока, мА
] ^ 2 / 1000
Получается, что из двух резисторов по 500 Ом на 2 Вт можно сделать один на 1 кОм, 4 Вт.
Включаем параллельно
[Сопротивление параллельно соединенных резисторов, кОм
] = 1 / (1 / [
Сопротивление первого резистора, кОм
] + 1 / [
Сопротивление второго резистора, кОм
])
Эта формула интуитивно понятна, да и формально может быть выведена из следующего соображения. При заданном напряжении на резисторах через каждый из них независимо идет ток, равный напряжению, деленному на сопротивление. Итоговое сопротивление равно напряжению, деленному на суммарный ток. В формулах значение напряжения счастливым образом сокращается, и получается приведенная формула.
[Мощность, рассеиваемая первым резистором, Вт
] = [
Напряжение на резисторах, В
] ^ 2 / [
Сопротивление первого резистора, кОм
] / 1000
[Мощность, рассеиваемая вторым резистором, Вт
] = [
Напряжение на резисторах, В
] ^ 2 / [
Сопротивление первого резистора, кОм
] / 1000
Получается, что из двух резисторов по 500 Ом на 2 Вт можно сделать один на 250 Ом, 4 Вт.
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Практика проектирования электронных схем. Самоучитель электроники. Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы.
Применение тиристоров (динисторов, тринисторов, симисторов). Схемы. Ис. Тиристоры в электронных схемах. Тонкости и особенности использования. Виды тирис.
Биполярный транзистор. Принцип работы. Применение. Типы, виды, категор. Все о биполярном транзисторе. Принцип работы. Применение в схемах. Свойства. Кла.
Плавная регулировка яркости свечения люминесцентных ламп дневного свет. Схема драйвера для плавной регулировки яркости свечения ламп дневного света. Дра.
Проверка электронных элементов, радиодеталей. Проверить исправность, р. Как проверить исправность детали. Методика испытаний. Какие детали можно использ.
RC — цепь. Резисторно — конденсаторная схема. Резистор, конденсатор. И. Расчет RC — цепи, изменения напряжения на конденсаторе в зависимости от времени.
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы “Специалисту по модернизации систем энергогенерации”
Последовательное и параллельное соединение светодиодов Такое схемотехническое решение позволяет выровнять токи в каждой отдельной ветви, не позволяя им превышать рабочее значение. Спрашивайте, я на связи!
Параллельное и последовательное соединение проводников: теория, формулы, подключение и расчет силы тока
- Мощность равна произведению силы тока на напряжение, то есть 1 Вт = 1 А х 1 В. Формула: Р = I х V. …
- Например, если сила тока равна 3 А, а напряжение равно 110 В, то мощность равна: 3 х 110 = 330 Вт. …
- Вот почему внесистемной единицей измерения мощности является вольт-ампер.
ПРИМЕРЫ ЗАДАНИЙ
1. На рисунке изображёна схема участка электрической цепи АВ. В эту цепь параллельно включены два резистора сопротивлением ( R_1 ) и ( R_2 ) . Напряжения на резисторах соответственно ( U_1 ) и ( U_2 ) .
По какой из формул можно определить напряжение U на участке АВ?
2. На рисунке изображёна схема электрической цепи, содержащая два параллельно включённых резистора сопротивлением ( R_1 ) и ( R_2 ) . Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?
3. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением R> и R2. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?
4. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением ( R_1 ) и ( R_2 ) . Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?
5. На рисунке изображена схема электрической цепи. В эту цепь параллельно включены два одинаковых резистора сопротивлением ( R_1 ) . По какой из формул можно определить общее сопротивление цепи ( R ) ?
6. Общее сопротивление участка цепи, изображённого на рисунке, равно 9 Ом. Сопротивления резисторов ( R_1 ) и ( R_2 ) равны. Чему равно сопротивление каждого резистора?
7. Чему равно сопротивление участка цепи, содержащего три последовательно соединенных резистора сопротивлением по 9 Ом каждый?
8. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если ( R_1 ) = 1 Ом, ( R_2 ) = 10 Ом, ( R_3 ) = 10 Ом, ( R_4 ) = 5 Ом?
9. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если ( R_1 ) = 1 Ом, ( R_2 ) = 3 Ом, ( R_3 ) = 10 Ом, ( R_4 ) = 10 Ом?
Последовательное и параллельное соединения проводников – FIZI4KA
11. На рисунке изображена электрическая цепь, состоящая из источника тока, резистора и реостата. Как изменяются при передвижении ползунка реостата вправо его сопротивление, сила тока в цепи и напряжение на резисторе 1?
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы “Специалисту по модернизации систем энергогенерации”
Последовательное и параллельное соединение проводников | Блог Uzumeti Зная сопротивление каждого потребителя, можно рассчитать силу тока в каждом из них и соответствие суммарной силы тока предельно допустимой силе тока. Спрашивайте, я на связи!
Как определяется мощность цепи при последовательном соединении? Электрика от А до Я
Схемы с несколькими проводниками
Все рассмотренные выше случаи являются простыми – один источник, одна нагрузка. Но на практике нагрузок может быть несколько, и соединены они бывают тоже по-разному. Существует три типа соединения нагрузки:
Параллельное соединение проводников
В люстре 3 лампы, каждая по 60 Вт. Сколько потребляет люстра? Верно, 180 Вт. Быстренько подсчитываем сначала ток через люстру:
Перед этим мы вычисляли сопротивление одной лампы (815 Ом) и ток через нее (270 мА). Сопротивление же люстры оказалось втрое ниже, а ток — втрое выше. А теперь пора взглянуть на схему трехрожкового светильника.
Для удобства использования формулу можно легко преобразовать:
Здесь Rобщ. – общее сопротивление цепи при параллельном включении нагрузки. R1 … Rn – сопротивления каждой нагрузки.
Почему увеличился ток, когда вы включили параллельно три лампы вместо одной, понять несложно – ведь он зависит от напряжения (оно осталось неизменным), деленного на сопротивление (оно уменьшилось). Очевидно, что и мощность при параллельном соединении увеличится пропорционально увеличению тока.
Последовательное соединение
Расчет сопротивления при последовательном соединении проводников исключительно прост:
- Измеряете сопротивление каждой из ламп.
- Рассчитываете общее сопротивление цепи.
- По общим напряжению и сопротивлению рассчитываете ток в цепи.
- По общему току и сопротивлению ламп вычисляете падение напряжения на каждой из них.
Хотите закрепить полученные знания? Решите простую задачу, не заглядывая в ответ в конце:
В вашем распоряжении есть 15 однотипных миниатюрных лампочек, рассчитанных на напряжение 13,5 В. Можно ли из них сделать елочную гирлянду, подключаемую к обычной розетке, и если можно, то как?
Смешанное соединение
С параллельным и последовательным соединением проводников вы, конечно, без труда разобрались. Но как быть, если перед вами оказалась примерно такая схема?
Задача решена, все очень просто. А теперь вопрос несколько сложнее.
Как быть тут? Точно так же, просто нужно проявить некоторую фантазию. Резисторы R2, R4, R5 соединены последовательно. Рассчитываем их общее сопротивление:
Ну а дальше все очевидно, поскольку остались R1, R6 и найденное нами Rобщ.2345, соединенные последовательно:
Ответ на задачу о елочной гирлянде
Лампы имеют рабочее напряжение всего 13.5 В, а в розетке 220 В, поэтому их нужно включать последовательно.
Поскольку лампы однотипные, напряжение сети разделится между ними поровну и на каждой лампочке окажется 220 / 15 = 14,6 В. Лампы рассчитаны на напряжение 13,5 В, поэтому такая гирлянда хоть и заработает, но очень быстро перегорит. Чтобы реализовать задумку, вам понадобится минимум 220 / 13,5 = 17, а лучше 18-19 лампочек.
Последовательное и параллельное соединение проводников ℹ️ формулы
Параллельное соединение – это соединение, при котором резисторы соединяются между собой обоими контактами. В результате к одной точке (электрическому узлу) может быть присоединено несколько резисторов.
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы “Специалисту по модернизации систем энергогенерации”
Последовательное и параллельное соединение резисторов При конструировании различных электронных устройств часто возникает необходимость в последовательном, параллельном или комбинированном включении элементов. Спрашивайте, я на связи!
Как пользоваться знаниями про особенности параллельного и последовательного подключений
Параллельное соединение
Но как говорят: «Правило без исключений не бывает». В китайских игрушках и зажигалках с подсветкой можно увидеть, что светодиоды запитаны прямо от батареек без каких-либо промежуточных элементов. Почему они не перегорают? Дело в том, что ток в цепи ограничен внутренним сопротивлением круглых батареек типа AG1. Их мощности недостаточно, чтобы нанести вред светодиоду.
Как и в первом варианте, китайцы не стесняются конструировать светильники на базе «полурабочих» схем. Схему с одним резистором часто можно встретить в дешёвых фонариках и маломощных светильниках на пальчиковых батарейках. А чтобы светодиоды проработали хотя бы год, сопротивление резистора умышленно завышают, как бы, исключая возможные перегрузки.
Ниже приведен единственно верный вариант параллельного включения светодиодов. Здесь последовательно с каждым светодиодом подключен ограничительный резистор. Такое схемотехническое решение позволяет выровнять токи в каждой отдельной ветви, не позволяя им превышать рабочее значение.
Подключать светодиоды через резистор рекомендуется только от стабилизированного источника постоянного напряжения.
Пример расчета
Для закрепления теоретических знаний параллельное соединение светодиодов рассмотрим на конкретном примере. В схеме включены два светодиода: слаботочный красный и мощный одноваттный белый, которые для удобства можно запитать от разных выключателей.
Требуется рассчитать параметры и выбрать резисторы R1 и R2.
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы “Специалисту по модернизации систем энергогенерации”
ПРИМЕРЫ ЗАДАНИЙ ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ A сила тока в резисторе R_1 и R_2 Б напряжение на резисторе R_2 B общее напряжение на резисторах R_1 и R_2. Спрашивайте, я на связи!
Как определить суммарную мощность?
Закон Ома для участка цепи. | ||
Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна сопротивлению этого участка.
Выполняется для металлов и электролитов. |
|
|
Закон Джоуля – Ленца. Дж. Джоуль (1841—1843) Э. X. Ленц (1842—1843) независимо друг от друга экспериментально установили |
|
|
В электрической цепи происходит преобразование энергии упорядоченного движения заряженных частиц в тепловую. Согласно з-ну сохранения энергии работа тока равна количеству выделившегося тепла. |
||
Количество теплоты, выделившееся при прохождении электрического тока по проводнику, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого шел ток: |
|
|
Работа и мощность электрического тока. |
||
Работа электрического тока: |
|
|
Мощность электрического тока (работа в единицу времени): |
|
|
В электричестве иногда применяется внесистемная единица работы – кВт.ч (киловатт-час). |
1 кВт.ч = 3,6.106 Дж. |
|
Виды соединения проводников. |
||
Последовательное соединение. 1. Сила тока во всех последовательно соединенных участках цепи одинакова: I1=I2=I3=…=In=… 2. Напряжение в цепи, состоящей из нескольких последовательно соединенных участков, равно сумме напряжений на каждом участке: U=U1+U2+…+Un+… 3. Сопротивление цепи, состоящей из нескольких последовательно соединенных участков, равно сумме сопротивлений каждого участка: R=R1+R2+…+Rn+… Если все сопротивления в цепи одинаковы, то: R=R1. N При последовательном соединении общее сопротивление увеличивается (больше большего). |
Параллельное соединение. 1. Сила тока в неразветвленном участке цепи равна сумме сил токов во всех параллельно соединенных участках. I=I1+I2+…+In+… |
|
2. Напряжение на всех параллельно соединенных участках цепи одинаково: U1=U2=U3=…=Un=… 3. При параллельном соединении проводников проводимости складываются (складываются величины, обратные сопротивлению):
Если все сопротивления в цепи одинаковы, то: При параллельном соединении общее сопротивление уменьшается (меньше меньшего). |
||
4. Работа электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме работ на отдельных участках: A=A1+A2+…+An+… т.к. A=I2Rt=I2(R1+R2+…+Rn+…)t. 5. Мощность электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме мощностей на отдельных участках: P=P1+P2+…+Pn+… 6. Т.к. силы тока во всех участках одинаковы, то: U1:U2:…:Un:… = R1:R2:…:Rn:… Для двух резисторов: – чем больше сопротивление, тем больше напряжение. |
4. Работа электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме работ на отдельных участках: A=A1+A2+…+An+… т.к. . 5. Мощность электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме мощностей на отдельных участках: P=P1+P2+…+Pn+… 6. Т.к. напряжения на всех участках одинаковы, то: I1R1= I2R2=…= I3R3=… Для двух резисторов: – чем больше сопротивление, тем меньше сила тока. |