Как найти общую работу в физике

Сила, перемещающая тело, совершает работу. Работа – это разность энергии тела в начале процесса и в его конце. А мощность – это работа за одну секунду. Коэффициент полезного действия (КПД) – это дробное число. Максимальный КПД равен единице, однако, часто, КПД меньше единицы.

Работы силы, формула

Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).

Сила совершает работу по перемещению тела

Рис. 1. Сила перемещает тело и совершает работу

Работа силы — это скалярное произведение вектора силы на вектор перемещения.

Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:

Векторный вид записи

[ large boxed{ A = left( vec{F} , vec{S} right) }]

Для решения задач правую часть этой формулы удобно записывать в скалярном виде:

[ large boxed{ A = left| vec{F} right| cdot left| vec{S} right| cdot cos(alpha) }]

( F left( H right) ) – сила, перемещающая тело;

( S left( text{м} right) ) – перемещение тела под действием силы;

( alpha ) – угол между вектором силы и вектором перемещения тела;

Работу обозначают символом (A) и измеряют в Джоулях. Работа – это скалярная величина.

В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.

Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.

Рассмотрим несколько случаев, следующих из формулы:

  1. Когда угол между силой и перемещением острый, работа силы положительная;
  2. А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
  3. Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!

Работа — разность кинетической энергии

Работу можно рассчитать еще одним способом — измеряя кинетическую энергию тела в начале и в конце процесса движения. Рассмотрим такой пример. Пусть автомобиль, движется по горизонтальной прямой и, при этом увеличивает свою скорость (рис. 2). Масса автомобиля 1000 кг. В начале его скорость равнялась 1 м/с. После разгона скорость автомобиля равна 10 метрам в секунду. Найдем работу, которую пришлось проделать, чтобы ускорить этот автомобиль.

Машина увеличивает скорость, двигаясь по прямой горизонтально

Рис. 2. Автомобиль движется прямолинейно и увеличивает свою скорость

Для этого посчитаем энергию движения автомобиля в начале и в конце разгона.

( E_{k1} left(text{Дж} right) )  – начальная кинетическая энергия машины;

( E_{k2} left(text{Дж} right) )  – конечная кинетическая энергия машины;

( m left( text{кг}right) ) – масса автомобиля;

( displaystyle v left( frac{text{м}}{c}right) ) – скорость, с которой машина движется.

Кинетическую энергию будем вычислять, используя формулу:

[ large E_{k} = m cdot frac{v^{2}}{2} ]

[ large E_{k1} = 1000 cdot frac{1^{2}}{2} = 500 left(text{Дж} right) ]

[ large E_{k2} = 1000 cdot frac{10^{2}}{2} = 50000 left(text{Дж} right) ]

Теперь найдем разницу кинетической энергии в конце и вначале разгона.

[ large boxed{ A = Delta E_{k} }]

[ large Delta E_{k} = E_{k2} — E_{k1} ]

[ large Delta E_{k} = 50000 – 500 = 49500 left(text{Дж} right) ]

Значит, работа, которую потребовалось совершить, чтобы разогнать машину массой 1000 кг от скорости 1 м/с до скорости 10 м/с, равняется 49500 Джоулям.

Примечание: Работа – это разность энергии в конце процесса и в его начале. Можно находить разность кинетической энергии, а можно — разность энергии потенциальной.

[ large boxed{ A = Delta E }]

Работа силы тяжести — разность потенциальной энергии

Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.

Зная конечную высоту и начальную, на которой находилось тело, можно посчитать работу по вертикальному перемещению тела

Рис. 3. На рисунке указано начальное 1 положение тела (яблока) и его конечное 2 положение, отмечены высоты для подсчета работы по вертикальному перемещению тела

Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.

( E_{p1} left(text{Дж} right) )  – начальная потенциальная энергия яблока;

( E_{p2} left(text{Дж} right) )  – конечная потенциальная энергия яблока;

Примечание: Работу можно рассчитать через разность потенциальной энергии тела.

Потенциальную энергию будем вычислять, используя формулу:

[ large E_{p} = m cdot g cdot  h]

( m left( text{кг}right) ) – масса яблока;

Величина ( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) ) – ускорение свободного падения.

( h left( text{м}right) ) – высота, на которой находится яблоко относительно поверхности земли.

Начальная высота яблока над поверхностью земли равна 3 метрам

[ large E_{p2} = 0,2 cdot 10 cdot  3 = 6 left(text{Дж} right) ]

Потенциальная энергия яблока на столе

[ large E_{p1} = 0,2 cdot 10 cdot  1 = 2 left(text{Дж} right) ]

Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.

[ large Delta E_{p} = E_{p2} — E_{p1} ]

[ large Delta E_{p} = 2 – 6 = — 4 left(text{Дж} right) ]

Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!

Чтобы работа получилась положительной, в правой части формулы перед ( Delta  E_{p}) дополнительно допишем знак «минус».

[ large boxed{ A = — Delta E_{p} }]

Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.

Примечания:

  1. Если тело падает на землю, работа силы тяжести положительна;
  2. Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
  3. Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
  4. Работа силы тяжести не зависит от траектории, по которой двигалось тело;
  5. Работа для силы (displaystyle F_{text{тяж}}) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.

Рисунок 4 иллюстрирует факт, что для силы (displaystyle F_{text{тяж}}) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.

Работа силы тяжести зависит только от разности высот между начальным и конечным положением тела, поэтому, для всех траекторий на рисунке работа по перемещению будет одинаковой

Рис. 4. Разность высот между начальным и конечным положением тела во всех случаях на рисунке одинакова, поэтому, работа силы тяжести для представленных случаев будет одинаковой

Мощность

В механике мощность часто обозначают символами N или P и измеряют в Ваттах в честь шотландского изобретателя Джеймса Уатта.

Примечание: Символ (vec{N}) используется для обозначения силы реакции опоры — она измеряется в Ньютонах и является векторной величиной. Чтобы не возникло путаницы, мощность вместо N будем обозначать символом P. Символ P – первая буква в английском слове power – мощность.

Мощность – это работа, совершенная за одну секунду (энергия, затраченная за 1 сек).

Расчет работы осуществляем, используя любую из формул:

[ large A = Delta E_{k} ]

[ large A = Delta E_{p} ]

[ large A = F cdot S cdot cos(alpha) ]

Разделив эту работу на время, в течение которого она совершалась, получим мощность.

[ large boxed{ P = frac{A}{Delta t} }]

Если работа совершалась равными частями за одинаковые интервалы времени – мощность будет постоянной величиной.

Мощность переменная, когда в некоторые интервалы времени совершалось больше работы.

Еще одна формула для расчета мощности

Есть еще один способ расчета мощности, когда сила перемещает тело и при этом скорость тела не меняется:

[ large P = left( vec{F} , vec{v} right) ]

Формулу можно записать в скалярном виде:

[ large P = left| vec{F} right| cdot left| vec{v} right| cdot cos(alpha) ]

( F left( H right) ) – сила, перемещающая тело;

( displaystyle v left( frac{text{м}}{c} right) ) – скорость тела;

( alpha ) – угол между вектором силы и вектором скорости тела;

Когда векторы (vec{F}) и (vec{v}) параллельны, запись формулы упрощается:

[ large boxed{ P = F cdot v }]

Примечание: Такую формулу для расчета мощности можно получить из выражения для работы силы, разделив обе части этого выражения на время, в течение которого работа совершалась (а если точнее, найдя производную обеих частей уравнения).

КПД

КПД – коэффициент полезного действия. Обычно обозначают греческим символом (eta) «эта». Единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах.

Примечания:

  1. Процент – это дробь, у которой в знаменателе число 100.
  2. КПД — это либо правильная дробь, или дробь, равная единице.

Вычисляют коэффициент (eta) для какого-либо устройства, механизма или процесса.

[ large boxed{ eta = frac{ A_{text{полезная}}}{ A_{text{вся}}} }]

(eta) – КПД;

( large A_{text{полезная}} left(text{Дж} right)) – полезная работа;

(large A_{text{вся}} left(text{Дж} right)) – вся затраченная для выполнения работы энергия;

Примечание: КПД часто меньше единицы, так как всегда есть потери энергии. Коэффициент полезного действия не может быть больше единицы, так как это противоречит закону сохранения энергии.

[ large boxed{ eta leq 1 }]

Величина (eta) является дробной величиной. Если числитель и знаменатель дроби разделить на одно и то же число, полученная дробь будет равна исходной. Используя этот факт, можно вычислять КПД, используя мощности:

[ large boxed{ eta = frac{ P_{text{полезная}}}{ P_{text{вся затраченная}}} }]

Выводы

  1. Сила, приложенная к телу и перемещающая его, совершает работу;
  2. Когда угол между силой и перемещением острый, работа силы положительная, а если угол тупой — работа отрицательная; Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!
  3. Работу можно вычислить, измеряя кинетическую энергию тела в начале и в конце его движения;
  4. Вычислить работу можно через разность потенциальной энергии тела в начальной и в конечной высотах над землей;
  5. Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!
  6. Мы совершаем работу против силы тяжести, когда поднимаем тело над землей. При этом наша работа положительная, а работа силы тяжести — отрицательная;
  7. Сила тяжести — это консервативная сила. Поэтому, работа силы (displaystyle F_{text{тяж}}) не зависит от траектории, по которой двигалось тело, а зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени;
  8. Мощность – это работа, совершенная за одну секунду, или затраченная за 1 сек. энергия;
  9. Коэффициент полезного действия обозначают греческим символом (eta) «эта», единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах;
  10. КПД — это либо правильная дробь, или дробь, равная единице.
  11. Можно вычислять КПД, подставляя в формулу работу, или мощности

У этого термина существуют и другие значения, см. Работа.

Работа
{displaystyle A,W}
Размерность L2MT−2
Единицы измерения
СИ Дж
СГС эрг
Примечания
скалярная величина
Механическая работа
Ключевые статьи

Работа в физике

Механическая работа Закон сохранения энергии Термодинамическая работа Первое начало термодинамики

Размерность

Джоуль Эрг

См. также: Портал:Физика

Механи́ческая рабо́та — физическая величина — скалярная количественная мера действия силы (равнодействующей сил) на тело или сил на систему тел. Зависит от численной величины и направления силы (сил) и от перемещения тела (системы тел)[1].

При постоянной силе и прямолинейном движении материальной точки, работа рассчитывается как произведение величины силы на перемещение и на косинус угла между векторами перемещения и силы: {displaystyle A=Fscos(F,s)}. В более сложных случаях (непостоянная сила, криволинейное движение) это соотношение применимо к малому промежутку времени, а для вычисления полной работы необходимо суммирование по всем таким промежуткам.

В механике совершение работы над телом является единственной причиной изменения его энергии; в других областях физики энергия изменяется и за счёт иных факторов (например, в термодинамике — теплообмена).

Определение работы[править | править код]

По определению, «элементарная» (совершаемая за бесконечно малое время) работа — скалярное произведение действующей на материальную точку силы vec{F} на перемещение {displaystyle d{vec {s}}}, то есть

{displaystyle delta A={vec {F}}cdot d{vec {s}}}.

Использование символа δ (а не d) обусловлено тем, что дифференциал работы не обязательно полный.
Работа за конечный промежуток времени — интеграл элементарной работы:

{displaystyle A=int delta A}.

Если имеется система материальных точек, выполняется суммирование по всем точкам. При наличии нескольких сил их работа определяется как работа равнодействующей (векторной суммы) этих сил.

Обозначения, размерность[править | править код]

Работа обычно обозначается заглавной буквой A (от нем. Arbeit — работа, труд) или заглавной буквой W (от англ. work — работа, труд).

Единицей измерения (размерностью) работы в Международной системе единиц (СИ) является джоуль, в СГС — эрг. При этом

1 Дж = 1 кг·м²/с² = 1 Н·м;
1 эрг = 1 г·см²/с² = 1 дин·см;
1 эрг = 10−7 Дж.

Вычисление работы[править | править код]

Случай одной материальной точки[править | править код]

Mehaaniline töö.png

При прямолинейном движении материальной точки и постоянном значении приложенной к ней силы, работа (этой силы) равна произведению проекции вектора силы на направление движения и длины вектора перемещения, совершённого точкой:

A=F_{s}s=Fs {mathrm  {cos}}(F,s)={vec  F}cdot {vec  s}

Здесь «{displaystyle ,cdot ,}» обозначает скалярное произведение, {vec  s} — вектор перемещения.

Если направление приложенной силы ортогонально перемещению тела или перемещение равно нулю, то работа этой силы равна нулю.

В общем случае, когда сила не постоянна, а движение не прямолинейно, работа вычисляется как криволинейный интеграл второго рода по траектории точки[2]:

{displaystyle A=int {vec {F}}cdot d{vec {s}}}

(подразумевается суммирование по кривой, которая является пределом ломаной, составленной из перемещений {displaystyle d{vec {s}}}, если вначале считать их конечными, а потом устремить длину каждого к нулю).

Если существует зависимость силы от координат[3], интеграл определяется[4] следующим образом:

{displaystyle A=int limits _{{vec {r}}_{0}}^{{vec {r}}_{1}}{vec {F}}left({vec {r}}right)cdot d{vec {r}}},

где {vec  r}_{0} и {vec  r}_{1} — радиус-векторы начального и конечного положения тела. Например, если движение происходит в плоскости xy, а {displaystyle {vec {F}}=F_{x}{vec {e}}_{x}+F_{y}{vec {e}}_{y}} и {displaystyle d{vec {r}}=dx{vec {e}}_{x}+dy{vec {e}}_{y}} (vec{e}_x, vec{e}_y — орты), то последний интеграл обретёт вид {displaystyle A=int (F_{x}+F_{y}|dy/dx|)dx}, где производная {displaystyle dy/dx} берётся для кривой y(x), по которой движется точка.

Если сила vec{F} является консервативной (потенциальной), результат вычисления работы будет зависеть только от начального и финального положения точки, но не от траектории, по которой она перемещалась.

Случай системы точек или тела[править | править код]

Работа сил по перемещению системы из N материальных точек определяется как сумма работ этих сил по перемещению каждой точки (работы, совершённые над каждой точкой системы, суммируются в работу этих сил над системой):

{displaystyle A=sum A_{n},quad n=1,2,..,N}.

Если тело не является системой дискретных точек, его можно разбить (мысленно) на множество бесконечно малых элементов (кусочков), каждый из которых можно считать материальной точкой, и вычислить работу в соответствии с определением выше. В этом случае дискретная сумма заменяется на интеграл:

{displaystyle A=int delta A({vec {r}}')=iint {frac {d{vec {F}}({vec {r}}')}{dV'}}cdot d{vec {r}}({vec {r}}')dV'},

где {displaystyle dA({vec {r}}')} — работа по перемещению бесконечно малого фрагмента объёма тела {displaystyle dV'}, локализованного около координаты {displaystyle {vec {r}}'} (в системе отсчёта тела), от начального до финального положения, {displaystyle d{vec {F}}/dV'} (Н/м3) — плотность действующей силы, а интегрирование проводится по всему объёму тела.

Эти формулы могут быть использованы как для вычисления работы конкретной силы или класса сил, так и для вычисления полной работы, совершаемой всеми силами, действующими на систему.

Работа и кинетическая энергия[править | править код]

Кинетическая энергия вводится в механике в прямой связи с понятием работы.

С использованием второго закона Ньютона, позволяющего выразить силу через ускорение как {displaystyle {vec {F}}=m{vec {a}}} (где m — масса материальной точки), а также соотношений {displaystyle d{vec {s}}=d{vec {r}}={vec {v}}dt} и {displaystyle d(v^{2})/dt=d({vec {v}}cdot {vec {v}})/dt=2{vec {a}}cdot {vec {v}}}, элементарная работа может быть переписана как

{displaystyle delta A=m{vec {a}}cdot {vec {v}}dt={frac {d}{dt}}left({frac {mv^{2}}{2}}right)dt}.

При интегрировании от начального до финального момента получится

{displaystyle A=Delta left({frac {mv^{2}}{2}}right)=Delta E_{k}},

где E_k — кинетическая энергия. Для материальной точки она определяется как половина произведения массы этой точки на квадрат её скорости и выражается[5] как {displaystyle E_{k}=mv^{2}/2}. Для сложных объектов, состоящих из множества частиц, кинетическая энергия тела равна сумме кинетических энергий частиц.

Работа и потенциальная энергия[править | править код]

Сила называется потенциальной, если существует скалярная функция координат, известная как потенциальная энергия и обозначаемая E_{p}, такая, что

{displaystyle {vec {F}}=-nabla E_{p}}.

Здесь nabla — оператор набла. Если все силы, действующие на частицу, консервативны, и E_{p} является полной потенциальной энергией, полученной суммированием потенциальных энергий, соответствующих каждой силе, то

{displaystyle {vec {F}}cdot d{vec {s}}=-nabla E_{p}cdot d{vec {s}}=-dE_{p}Rightarrow -dE_{p}=dE_{k}Rightarrow d(E_{k}+E_{p})=0}.

Данный результат известен как закон сохранения механической энергии и утверждает, что полная механическая энергия

{displaystyle E=E_{k}+E_{p}}

в замкнутой системе, в которой действуют консервативные силы, является постоянной во времени. Этот закон широко используется при решении задач классической механики.

Работа силы в теоретической механике[править | править код]

Пусть материальная точка M движется по непрерывно дифференцируемой кривой G={r=r(s)}, где s — переменная длина дуги, 0leq sleq S, и на неё действует сила F(s), направленная по касательной к траектории в направлении движения (если сила не направлена по касательной, то будем понимать под F(s) проекцию силы на положительную касательную кривой, таким образом сведя и этот случай к рассматриваемому далее).

Величина F(xi _{i})triangle s_{i},triangle s_{i}=s_{i}-s_{{i-1}},i=1,2,...,i_{{tau }}, называется элементарной работой силы F на участке G_{i} и принимается за приближённое значение работы, которую производит сила F, воздействующая на материальную точку, когда последняя проходит кривую G_{i}. Сумма всех элементарных работ sum _{{i=1}}^{{i_{{tau }}}}F(xi _{i})triangle s_{i} является интегральной суммой Римана функции F(s).

В соответствии с определением интеграла Римана, можем дать определение работе:

Предел, к которому стремится сумма sum _{{i=1}}^{{i_{{tau }}}}F(xi _{i})triangle s_{i} всех элементарных работ, когда мелкость |tau | разбиения tau стремится к нулю, называется работой силы F вдоль кривой G.

Таким образом, если обозначить эту работу буквой A, то, в силу данного определения,

{displaystyle A=lim _{|tau |rightarrow 0}sum _{i=1}^{i_{tau }}F(xi _{i})triangle s_{i}=int limits _{0}^{s}F(s)ds}.

Если положение точки на траектории её движения описывается с помощью какого-либо другого параметра t (например, времени) и если величина пройденного пути s=s(t), aleq tleq b является непрерывно дифференцируемой функцией, то из последней формулы получится

{displaystyle A=int limits _{a}^{b}F[s(t)]s'(t)dt}.

Работа в термодинамике[править | править код]

В термодинамике работа, совершённая газом при расширении[6], рассчитывается как интеграл давления по объёму:

{displaystyle A_{1rightarrow 2}=int limits _{V_{1}}^{V_{2}}PdV}.

Работа, совершённая над газом, совпадает с этим выражением по абсолютной величине, но противоположна по знаку.

  • Естественное обобщение этой формулы применимо не только к процессам, где давление есть однозначная функция объёма, но и к любому процессу (изображаемому любой кривой в плоскости PV), в частности, к циклическим процессам.
  • В принципе, формула применима не только к газу, но и к чему угодно, способному оказывать давление (надо только чтобы давление в сосуде было всюду одинаковым, что неявно подразумевается в формуле).

Эта формула непосредственно связана с механической работой, хотя, казалось бы, относится к другому разделу физики. Сила давления газа направлена ортогонально к каждой элементарной площадке и равна произведению давления P на площадь dS площадки.
При расширении сосуда, работа, совершаемая газом для смещения h одной такой элементарной площадки, составит

{displaystyle dA=PdSh}.

Это и есть произведение давления на приращение объёма вблизи элементарной площадки. После суммирования по всем dS, получится результат, где будет уже полное приращение объёма, как и в главной формуле раздела.

См. также[править | править код]

  • Закон сохранения энергии
  • Теорема о кинетической энергии системы
  • Механические приложения криволинейных интегралов

Примечания[править | править код]

  1. Тарг С. М. Работа силы // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1994. — Т. 4. — С. 193-194. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  2. Это делается исходя из того, что можно разбить суммарное конечное перемещение на маленькие последовательные перемещения {displaystyle d{vec {s}}}, на каждом из которых сила будет почти постоянной, а значит можно будет воспользоваться определением для постоянной силы, введённым выше. Затем работы на всех этих перемещениях {displaystyle d{vec {s}}} суммируется, что и даёт в результате интеграл.
  3. Как это очень часто бывает. Например, в случае кулоновского поля, растягивающейся пружины, силы тяготения планеты итд.
  4. По сути через предыдущий, поскольку здесь {vec  F}(t)={vec  F}({vec  r}(t)); вектор же малого перемещения {displaystyle d{vec {s}}} совпадает с d{vec  {r}}.
  5. Тарг С. М. Кинетическая энергия // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 360. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
  6. Работа, совершаемая газом при его сжатии, очевидно отрицательна, но вычисляется по той же формуле. Работа, совершаемая газом (или над газом) без его расширения или сжатия (например, в процессе перемешивания мешалкой), в принципе может быть выражена подобной формулой, но всё же не прямо этой, так как она требует обобщения: дело в том, что в формуле int PdV давление подразумевается одинаковым по всему объёму (что часто выполняется в термодинамике, поскольку речь там часто идёт о процессах, близких к равновесным), что и приводит к наиболее простой формуле (в случае же вращающейся мешалки, например, давление будет разным на передней и задней стороне лопасти, что приведёт к необходимому усложнению формулы, если мы захотим применить её к такому случаю; эти соображения относятся и ко всем другим неравновесным случаям, когда давление неодинаково в разных частях системы).

Литература[править | править код]

  • История механики с древнейших времён до конца XVIII в. В 2 т. М.: Наука, 1972.
  • Кирпичёв В. Л. Беседы о механике. М.-Л.: Гостехиздат, 1950.
  • Льоцци М. История физики. М.: Мир, 1970.
  • Мах Э. Принцип сохранения работы: История и корень его. СПб., 1909.
  • Мах Э. Механика. Историко-критический очерк её развития. Ижевск: РХД, 2000.
  • Тюлина И. А. История и методология механики. М.: Изд-во МГУ, 1979.

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы. Другими словами, работа – мера воздействия силы.

Определение механической работы

Определение 1

Работа А, совершаемая постоянной силой F→, – это физическая скалярная величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы F→ и перемещением s→.

Данное определение рассматривается на рисунке 1.

Формула работы записывается как,

A=Fs cos α.

Работа – это скалярная величина. Единица измерения работы по системе СИ – Джоуль (Дж).

Джоуль равняется работе, совершаемой силой в 1 Н на перемещение 1 м по направлению действия силы.

Определение механической работы

Рисунок 1. Работа силы F→: A=Fs cos α=Fss

При проекции Fs→ силы F→ на направление перемещения s→ сила не остается постоянной, а вычисление работы для малых перемещений Δsi суммируется и производится по формуле:

A=∑∆Ai=∑Fsi∆si.

Данная сумма работы вычисляется из предела (Δsi→0), после чего переходит в интеграл.

Графическое изображение работы определяют из площади криволинейной фигуры, располагаемой под графиком Fs(x)рисунка 2.

Определение механической работы

Рисунок 2. Графическое определение работы ΔAi=FsiΔsi.

Примером силы, зависящей от координаты, считается сила упругости пружины, которая подчиняется закону Гука. Чтобы произвести растяжение пружины, необходимо приложить силу F→, модуль которой пропорционален удлинению пружины. Это видно на рисунке 3.

Определение механической работы

Рисунок 3. Растянутая пружина. Направление внешней силы F→ совпадает с направлением перемещения s→. Fs=kx, где k обозначает жесткость пружины.

F→упр=-F→

Зависимость модуля внешней силы от координат x можно изобразить на графике с помощью прямой линии.

Определение механической работы

Рисунок 4. Зависимость модуля внешней силы от координаты при растяжении пружины.

Из выше указанного рисунка возможно нахождение работы над внешней силой правого свободного конца пружины, задействовав площадь треугольника. Формула примет вид

A=kx22.

Данная формула применима для выражения работы, совершаемой внешней силой при сжатии пружины. Оба случая показывают, что сила упругости F→упр равняется работе внешней силы F→, но с противоположным знаком.

Определение 2

Если на тело действует несколько сил, то их общая работа равняется сумме всех работ, совершаемых над телом. Когда тело движется поступательно, точки приложения сил перемещаются одинаково, то есть общая работа всех сил будет равна работе равнодействующей приложенных сил.

Мощность

Определение 3

Мощностью называют работу силы, совершаемую в единицу времени.

Запись физической величины мощности, обозначаемой N, принимает вид отношения работы А к промежутку времени t совершаемой работы, то есть:

N=At.

Определение 4

Система СИ использует в качестве единицы мощности ватт (Вт). 1 Ватт – это мощность, которую совершает работу в 1 Дж за время 1 с.

Помимо Ватта, существуют и внесистемные единицы измерения мощности. Например, 1 лошадиная сила примерна равна 745 Ваттам.  

В этой главе…

  • Приглядываемся к работе силы
  • Изучаем отрицательную работу
  • Оцениваем кинетическую энергию
  • Приобретаем потенциальную энергию
  • Постигаем консервативные и неконсервативные силы
  • Вычисляем механическую энергию и мощность

С работой в обыденном смысле мы сталкиваемся всякий раз, например, когда приходится решать задачи по физике. Нужно брать книги, калькулятор, бумагу с ручкой, а потом потеть и корпеть над задачей. После получения решения мы выполнили вполне определенную работу, но… совсем не в том смысле, в котором термин “работа” определяется в физике.

В физике работой называется произведение прилагаемой силы и перемещения, выполняемого этой силой. Помимо понятия “работа” в этой главе рассматриваются связанные с ней понятия потенциальной и кинетической энергии, консервативной и неконсервативной силы, а также механической энергии и мощности. Пора приступать к… работе!

Содержание

  • Работа: не совсем то, о чем вы подумали
  • Работаем в разных системах единиц измерения
  • Толкаем груз
  • Тянем груз под углом
  • Выполняем отрицательную работу
  • Получаем компенсацию в виде кинетической энергии
    • Запоминаем формулу кинетической энергии
    • Используем соотношение для кинетической энергии
    • Вычисляем кинетическую энергию объекта по результирующей силе
  • Сохраняем энергию: потенциальная энергия
    • Работа против силы тяжести
    • Преобразуем потенциальную энергию в кинетическую
  • Выбираем путь: консервативные и неконсервативные силы
  • Как ни крути, а энергия сохраняется
    • Определяем конечную скорость с помощью закона сохранения энергии
    • Определяем максимальную высоту подъема с помощью закона сохранения энергии
  • Мощность: ускоряем темп работы
    • Единицы измерения мощности
    • Вычисляем мощность другими способами

Работа: не совсем то, о чем вы подумали

Итак, работа( W )​ — это произведение прилагаемой силы ​( mathbf{F} )​ и перемещения ( mathbf{s} ), выполняемого этой силой. Точнее говоря речь идет о проекции прилагаемой силы на направление перемещения, т.е. ​( W=Fscostheta )​, где ​( theta )​ — угол между векторами силы ( mathbf{F} ) и перемещения ( mathbf{s} ). С точки зрения физика, работа равна произведению компоненты силы в направлении перемещения и величины перемещения.

Прежде чем переходить к подробному рассмотрению особенностей работы, познакомимся с единицами измерения работы в разных системах единиц измерения.

Работаем в разных системах единиц измерения

Работа является скалярной, а не векторной величиной, т.е. она имеет величину, но не имеет направления (подробнее скаляры и векторы рассматриваются в главе 4). Согласно формуле ( W=Fscostheta ), работа измеряется в единицах “Н·м” в системе СИ или в единицах “г·см22” — в системе СГС. Но с такими единицами не очень удобно работать, и физики для измерения работы используют специальную единицу измерения — джоуль (или сокращенно Дж) в системе СИ. Иначе говоря, в системе СИ 1 Дж = 1 Н · 1 м.

В системе СГС работа измеряется в единицах “г·см22”. Вместо нее для удобства физики также используют специальную единицу измерения — эрг (неплохое название для единицы работы, поскольку очень похоже на энергичное междометие, произнесенное во время подъема тяжелого груза). Иначе говоря, 1 эрг = 1 дин · 1 см. В системе фут-фунт-секунда работа измеряется в единицах “фунт-фут”. (Эти системы единиц подробно описываются в главе 2 .)

Толкаем груз

Не такая уж и легкая работа — держать тяжелый груз, например большие гантели, на вытянутых вверх руках. Однако с точки зрения физики, несмотря на приложенную силу, здесь нет никакого перемещения, а значит, нет и работы. Хотя с точки зрения биологии здесь выполняется огромная работа, но с точки зрения физики работы нет, если нет перемещения. Даже с точки зрения химии наше тело поставляет огромное количество энергии нашим мышцам для удержания груза. Но, несмотря на очевидную физическую усталость, работа с точки зрения физики не выполняется.

Для работы необходимо движение. Представьте, что вы нашли огромный слиток золота и толкаете его домой, как показано на рис. 8.1. Какую работу придется при этом выполнить? Во-первых, нужно определить силу, которую нужно приложить к слитку.

Пусть коэффициент трения скольжения, ​( mu_c )​ (подробнее об этом см. главу 6), между поверхностями слитка и дороги равен 0,25, а слиток имеет массу 1000 кг. Итак, какую силу нужно приложить к слитку, чтобы поддерживать его движение вопреки силе трения скольжения ​( F_{трение} )​? Начнем поиск ответа на этот вопрос со следующей формулы, известной нам из главы 6:

где ​( F_н )​ — это нормальная сила.

Предполагая, что поверхность дороги абсолютно плоская, получим, что нормальная сила ( F_н ) равна произведению массы слитка ​( m )​ на ускорение свободного падения ​( g )​ под действием силы гравитационного притяжения (силы тяжести) между слитком и Землей:

Подставляя численные значения, получим:

Итак, для преодоления силы кинетического трения нужно приложить силу 2450 Н. Допустим, что длина пути до вашего дома равна 3 км. Какую работу придется проделать, чтобы дотолкать этот слиток золота домой? Поскольку угол ​( theta )​ между направлением прилагаемой силы ​( mathbf{F} )​ и перемещением ( mathbf{s} ), выполняемым под действием этой силы, равен нулю, то формула работы ​( W=Fscostheta )​ упрощается, поскольку ​( costheta )​ = 1. Подставляя численные значения, получим:

Итак, потребуется выполнить работу, равную 7,35·106 Дж, чтобы дотолкать этот слиток золота домой. Насколько это много? Чтобы поднять груз массой 1 кг на высоту 1 м, требуется выполнить работу около 9,8 Дж. Теперь понятно: чтобы дотолкать слиток золота домой, потребуется выполнить приблизительно в 750 тыс. раз большую работу.

Работу измеряют также в калориях (или сокращенно кал), причем 1 кал = 4,186 Дж. Эту единицу измерения используют также для измерения энергии, и ее часто можно встретить на упаковках продуктов питания. Так вот, чтобы дотолкать слиток золота домой, вам потребуется потратить 1,755·106 калорий, или 1755 Ккал (т.е. килокалорий, где 1 килокалория = 1 Ккал). Забегая вперед, скажем, что в электротехнике для измерения работы и энергии используется единица “киловатт·час” (кВт·ч), которая равна 3,6·106 Дж. Итак, для выполнения этой работы потребуется около 2 кВт·ч. (Более подробно эти и другие единицы измерения описываются в конце этой главы и в главе 13.)

Тянем груз под углом

А может, попробовать не толкать, а тянуть слиток золота с помощью веревки, как показано на рис. 8.2?

Поскольку веревка направлена под углом ​( theta )​ к направлению перемещения, то нам для вычисления работы придется использовать формулу:

где ​( F_{натяжение} )​ — это сила натяжения веревки.

Допустим, что нить привязана к центру слитка. Поскольку вертикальная компонента силы натяжения веревки ​( F_{натяжение}sintheta )​ направлена вверх, то она частично компенсирует нормальную силу. В конечном итоге вертикальная компонента силы натяжения веревки ( F_{натяжение}sintheta ) уменьшает силу трения:

Для перемещения слитка в данном случае горизонтальная компонента силы натяжения ( F_{натяжение}costheta ) должна компенсировать силу трения:

Из двух последних соотношений получаем, что:

и необходимая сила натяжения веревки равна:

В предыдущем примере (где прилагаемая сила не имела наклона) прилагаемая сила компенсировала силу трения ​( F_{натяжение(прежнее)}=mu_cmg )​ и была равна 2450 Н.

Следовательно, теперь необходимая сила натяжения веревки равна:

(Обратите внимание на следующие интересные особенности использования веревки, которую тянут под углом к горизонтали. Во-первых, при наклоне 10° потребуется приложить меньшую силу, чем при толкании слитка без наклона. Во-вторых, минимальное значение силы натяжения веревки достигается при максимальном значении знаменателя ​( mu_csintheta+costheta )​, когда ​( mu_c=tg,theta )​, т.е. для ​( mu_c )​ = 0,25 при угле ​( theta )​ ≈ 14°, а сама минимальная сила натяжения веревки равна 2376 Н. — Примеч. ред.)

Выполняем отрицательную работу

Представьте себе, что вы купили огромный телевизор массой 100 кг, вам нужно поднять его с пола и занести его наверх по ступенькам, поднимая приблизительно на высоту около 0,5 м. Какую работу нужно выполнить, если предполагается, что ее придется выполнять для преодоления силы тяжести ​( F=mg )​, где ​( m )​ — это масса телевизора, a ​( g )​ — ускорение свободного падения?

В таком случае работа равна:

Допустим, что груз оказался слишком тяжелым (не удивительно, ведь телевизор весит 100 кг!) и его пришлось опустить снова на пол. Какую работу нужно выполнить, чтобы опустить телевизор? Верите или нет, но эта работа будет отрицательной! Действительно, теперь вектор силы направлен противоположно вектору перемещения, т.е. угол между этими векторами ​( theta )​ = 180°, a ​( cos )​180° = -1.

Поэтому в этом случае работа равна:

Общая работа ​( W=W_1+W_2=0 )​. Нулевая работа? Да, с точки зрения физики общая работа в этом случае равна нулю.

Если компонента вектора силы направлена в том же направлении, что и компонента вектора перемещения, то работа будет положительной. А если они направлены в противоположные стороны, то работа будет отрицательной.

Получаем компенсацию в виде кинетической энергии

Если сила, приложенная к объекту, больше силы сопротивления, например силы трения или силы тяжести, то результирующая сила приводит объект в движение. Соответствующая работа этой силы приводит к увеличению скорости объекта, т.е. увеличению его энергии движения или, иначе говоря — кинетической энергии. Здесь кинетической энергией называется способность объекта совершать некую работу за счет энергии его движения.

Представьте себе мячик для игры в гольф, который движется по окружности, как показано на рис. 8.3. Причем в самой нижней точке траектории скорость мячика максимальна, а в самой верхней точке — минимальна, например равна нулю. С точки зрения физики в самой нижней точке траектории мячик имеет бОльшую кинетическую энергию, чем в самой верхней точке, где она равна нулю. Куда пропадает и откуда снова берется кинетическая энергия при периодическом вращательном движении по этой траектории?

На самом деле энергия никуда не пропадает и ниоткуда не берется. Она просто переходит из одной формы в другую. В самой высокой точке энергия переходит из кинетической формы в потенциальную, а в самой нижней — наоборот, из потенциальной формы в кинетическую. Потенциальной энергией называется способность объекта совершить работу при изменении его координат под действием силы, т.е. в данном случае при перемещении вниз под действием силы тяжести. (Более подробно потенциальная энергия описывается далее в этой главе.)

Допустим, что в самой нижней точке траектории мячик имеет кинетическую энергию 20 Дж. В самой верхней точке кинетическая энергия равна 0 Дж. В таких случаях говорят, что 20 Дж кинетической энергии преобразуется в 20 Дж потенциальной энергии. А в самой нижней точке наоборот: 20 Дж потенциальной энергии преобразуется в 20 Дж кинетической энергии. Такое взаимное превращение энергии из одной формы в другую без потерь называется законом сохранения энергии. (Более подробно он описывается далее.)

А что происходит с кинетической энергией при наличии силы трения, как в предыдущем примере со слитком на горизонтальной плоскости? Если на движущийся слиток не действует никакая движущая сила, то его скорость постепенно уменьшается. Дело в том, что его кинетическая энергия рассеивается на нагрев соприкасающихся поверхностей объекта и плоскости.

Итак, после предварительного знакомства с превращениями энергии попробуем подсчитать ее величину.

Запоминаем формулу кинетической энергии

Работа по ускорению объекта тратится на увеличение его скорости или, как говорят физики, на увеличение кинетической энергии:

Кинетическую энергию ​( K )​ можно легко вычислить, зная массу ​( m )​ и скорость ​( v )​ объекта.

Как получить связь между кинетической энергией и работой? Как известно, связь между силой и ускорением имеет вид:

Работа силы при перемещении объекта равна:

Предположим, что сила прилагается в том же направлении, в котором происходит перемещение объекта (​( costheta )​ = 1), то есть:

Из главы 3 нам известно следующее соотношение между начальной ​( v_1 )​ и конечной ​( v_2 )​ скоростями объекта, перемещающегося с ускорением ​( a )​ на расстояние ​( s )​:

Иначе говоря, получаем:

Подставляя это соотношение для ускорения в формулу для работы, получим:

Используем соотношение для кинетической энергии

Попробуем определить кинетическую энергию пули с массой 10 г, которая вылетает из ствола пистолета со скоростью 600 м/с. Зная формулу кинетической энергии, подставим в нее численные значения (не забудьте преобразовать 10 грамм в 0,01 килограмма) и получим:

Маленькая пуля массой всего 10 г обладает очень большой энергией 1800 Дж.

Выражение для кинетической энергии можно применять для вычисления скорости, приобретенной объектом после выполнения некоторой работы по его ускорению. Предположим, что вы находитесь в космическом корабле на околоземной орбите и должны запустить искусственный спутник. Нужно открыть створки грузового отсека вашего космического корабля, выгрузить спутник массой 1000 кг и выполнить работу, прилагая силу 2000 Н на расстоянии 1 м. Какую скорость приобретет спутник в результате этой работы?

Как известно, работа определяется следующей формулой:

Поскольку сила прилагается в том же направлении, в котором происходит перемещение спутника (​( costheta )​ = 1), то:

Подставляя численные значения, получим:

Эта работа приводит к разгону спутника, т.е. работа преобразуется в кинетическую энергию спутника:

Отсюда легко можно определить искомую скорость спутника:

Такой будет скорость спутника относительно космического корабля.

Учтите, что работа может иметь и отрицательный знак, если, например, нужно затормозить движущийся спутник. Действительно, для этого придется приложить силу, направленную против перемещения. В этом случае приращение кинетической энергии спутника также будет иметь отрицательную величину.

В этом примере мы учли только одну силу, а в реальном мире на любой объект действует сразу несколько сил.

Вычисляем кинетическую энергию объекта по результирующей силе

Допустим, что вам нужно найти общую работу всех сил, приложенных к объекту, и определить полученную кинетическую энергию объекта. В примере из главы 6 со слитком на наклонной плоскости на слиток в направлении, перпендикулярном к наклонной плоскости, действуют нормальная сила и компонента силы тяжести. Обе эти силы компенсируют друг друга в этом направлении. Слиток не перемещается в направлении, перпендикулярном к наклонной плоскости. Это значит, что эти две силы не выполняют работу и не придают слитку кинетическую энергию.

На рис. 8.4 показан уже знакомый нам пример с холодильником на наклонной плоскости. Допустим, что холодильник нужно спустить по наклонной плоскости, удерживая его с помощью каната с силой натяжения ​( F_н )​. Попробуем с помощью формул работы результирующей силы и кинетической энергии определить скорость холодильника в самом конце наклонной плоскости.

Какова результирующая сила, которая действует на холодильник? Из главы 6 мы уже знаем, что компонента силы тяжести вдоль наклонной плоскости равна:

где ​( m )​ — это масса холодильника, a ​( g )​ — ускорение свободного падения. Нормальная сила (см. главу 6) равна:

А сила трения скольжения (см. главу 6) равна:

где ​( mu_c )​ — коэффициент трения скольжения. Результирующая сила ​( F_{рез} )​ направлена вдоль наклонной поверхности и равна:

Большая часть пути пройдена! Если угол наклона плоскости ​( theta )​ = 30°, а коэффициент трения скольжения ​( mu_c )​ = 0,15, то, подставляя численные значения, получим:

Итак, результирующая сила, которая действует на холодильник, равна 363 Н. Она действует на всем протяжении наклонной плоскости, т.е. 3 м, и совершаемая ею работу равна:

Если вся эта работа тратится на ускорение холодильника, то она преобразуется в кинетическую энергию, то есть:

Отсюда легко найти финальную скорость холодильника:

Итак, в конце наклонной плоскости холодильник будет иметь скорость 4,67 м/с.

Сохраняем энергию: потенциальная энергия

Объекты могут обладать не только энергией движения, т.е. кинетической энергией, но и энергией положения, т.е. потенциальной энергией. Эта энергия имеет такое название потому, что может быть преобразована (т.е. имеет потенциал преобразования) в кинетическую или другую энергию.

Представьте себе, что вы катаете с горки маленького ребенка. Для подъема на горку вам придется совершить определенную работу. Чем выше стартовая позиция малыша, тем большую скорость он приобретает в конце горки. Выше, еще выше, еще выше… Обычно на каком-то из этих этапов эксперименты решительно прекращается взволнованной мамой малыша.

Что же происходило на горке (до появления мамы)? Откуда возникла кинетическая скорость малыша? Она произошла от работы против силы тяжести, которую вы совершили по подъему малыша на горку. Действительно, малыш, сидя в стартовой позиции в верхней части горки, обладает нулевой скоростью и нулевой кинетической энергией. Выполнив работу против силы тяжести по подъему малыша наверх, вы тем самым увеличили его (и свою) потенциальную энергию. И только после спуска вниз под действием силы тяжести малыш приобретает кинетическую энергию в результате преобразования этой потенциальной энергии.

Работа против силы тяжести

Какую работу нужно выполнить против силы тяжести? Допустим, что вам нужно переместить тяжелое ядро с пола на верхнюю полку на высоту ​( h )​. Необходимая для этого работа ​( W )​ силы ​( mathbf{F} )​ при перемещении на расстояние ( mathbf{s} ) при угле между их векторами ​( theta )​ выражается формулой:

В данном случае сила тяжести ​( mathbf{F = mg} )​, а угол ( theta ) между векторами ( mathbf{F} ) и ( mathbf{s} ) можно выразить с помощью разности высот ​( h=scostheta )​ между полом и верхней полкой.

Таким образом, работа против силы тяжести по перемещению тяжелого ядра с пола на верхнюю полку на высоту ​( h )​ равна:

Если ядро упадет с верхней полки на пол, то какую скорость оно разовьет, т.е. какую кинетическую энергию приобретет ядро? Запомните: оно приобретет кинетическую энергию, равную разнице потенциальных энергий, т.е. ​( mgh )​. Это значит, что затраченная работа на подъем ядра преобразуется в кинетическую энергию в точке соприкосновения ядра с полом.

Вообще говоря, объект с массой ​( m )​ вблизи поверхности Земли, где ускорение свободного падения ​( g )​ постоянно, при перемещении вверх на высоту ​( h )​ приобретает потенциальную энергию ​( U )​, равную ​( mgh )​. Если вы перемещаете объект вертикально против силы тяжести с высоты ​( h_0 )​ на высоту ​( h_1 )​ то изменение его потенциальной энергии равно:

Работа по преодолению силы тяжести тратится на увеличение потенциальной энергии объекта.

Преобразуем потенциальную энергию в кинетическую

Объект может характеризоваться разными видами потенциальной энергии в зависимости от типа сил, которые действуют на него. Действительно, работа может выполняться не только против силы тяжести, но, например, и против силы упругости пружины. Однако в задачах по физике источником потенциальной энергии чаще всего является сила тяжести. В этом случае на поверхности Земли потенциальную энергию принято считать равной нулю, а этот уровень потенциальной энергии называют нулевым. Тогда говорят, что на высоте ​( h )​ объект с массой ​( m )​ обладает потенциальной энергией ​( mgh )​.

Допустим, что ядро с массой 40 кг падает с высоты 3 м на пол. Какую скорость оно приобретет при касании с полом? В данном случае его потенциальная энергия ​( U )​, равная

преобразуется в кинетическую ​( K )​, т.е.:

Поэтому, используя сведения из предыдущего раздела, можно вычислить финальную скорость в момент касания пола:

Подставляя численные значения, получим:

Падающее на пол ядро с массой 40 кг и скоростью 7,67 м/с — это впечатляющее зрелище, но не совсем приятное, если на пути ядра находится ваша нога. Учтите это и постарайтесь не допустить нежелательной встречи.

Выбираем путь: консервативные и неконсервативные силы

Если работа силы при перемещении объекта определяется только начальной и конечной координатами объекта и не зависит от траектории перемещения, то такая сила называется консервативной. Примером консервативной силы является сила гравитационного притяжения. А сила трения не является такой, поскольку совершаемая ею работа зависит от траектории перемещения. Сила трения является неконсервативной.

Допустим, что две группы друзей решили покорить небольшую гору высотой ​( h_1 )​ стартуя с места на высоте ​( h_0 )​. Одна группа пошла коротким и крутым путем, а другая — длинным, но более пологим и живописным. Обе группы встретились наверху и решили сравнить увеличение потенциальной энергии ​( Delta{U} )​. “Наша потенциальная энергия увеличилась на ​( mg(h_1-h_0) )​”, — сказали одни. “Наша потенциальная энергия тоже увеличилась на ( mg(h_1-h_0) )”, — ответили другие.

Действительно, согласно рассуждениям в прежнем разделе, изменение потенциальной энергии выражается следующей формулой:

Это уравнение фактически означает, что независимо от выбранного пути на вершину горы, на увеличение потенциальной энергии путников влияет только разница между высотой исходной точки ​( h_0 )​ и высотой вершины ( h_1 ). Именно потому, что работа против силы гравитационного притяжения не зависит от выбранного пути, эта сила является консервативной силой.

А вот еще один пример проявления консервативности силы тяжести. Предположим, что вы отдыхаете в отеле в одной из горных деревушек в Альпах и решили прогуляться на машине по долине, а затем по близлежащим перевалам и горным вершинам. За день вы множество раз совершали спуск и подъем, а к вечеру вернулись к исходному месту — к своему отелю. Чему в итоге равно изменение вашей потенциальной энергии? Иначе говоря, каков результат всей дневной работы против силы тяжести? Ответ прост: поскольку сила тяжести является консервативной и вы вернулись в исходную точку, то изменение потенциальной энергии равно 0. Результирующая работа против силы тяжести равна 0.

Конечно, на всем пути со стороны дороги на автомобиль действовала нормальная сила, но она всегда направлена перпендикулярно дороге и перемещению, а потому не совершает работы.

С консервативными силами удобно работать, поскольку они не допускают “утечки” энергии вдоль замкнутого пути перемещения, когда конечная точка перемещения совпадает с исходной (работа консервативных сил по замкнутому пути равна нулю). Однако все гораздо сложнее с такими силами, как сила трения скольжения или сила сопротивления воздуха. Если тянуть тяжелый груз по шершавой поверхности, то работа против сил трения будет очень сильно зависеть от выбранного пути и не будет равной нулю для замкнутого пути. В этом случае мы имеем дело с неконсервативной силой, работа против которой зависит от выбранного пути.

Рассмотрим подробнее силу трения, как типичный пример неконсервативной силы. При совершении работы против силы трения происходит “утечка” механической энергии объекта, которая объединяет кинетическую и потенциальную энергии. При совершении работы при перемещении объекта с трением часть работы рассеивается в виде тепла. Забегая вперед, следует сказать, что закон сохранения полной энергии при этом не нарушается, если учесть преобразование части работы в тепловую энергию.

Как ни крути, а энергия сохраняется

Механической энергией называется сумма потенциальной и кинетической энергии объекта. Благодаря закону сохранения этой полной механической энергии, процедура решения задач по физике существенно упрощается. Рассмотрим поподробнее этот закон.

Пусть тележка на аттракционе “Американские горки” в разных точках 1 и 2 на разных высотах ( h_1 ) и ( h_2 ) имеет разные скорости ( v_1 ) и ( v_2 ). Полная механическая энергия тележки ​( E_1 )​ в точке 1 равна:

а полная механическая энергия тележки ​( E_2 )​ в точке 2 равна:

Чему равна разница между величинами ( E_1 ) и ( E_2 ). При наличии неконсервативных сил эта разница должна быть равна работе ​( W_{неконс} )​ этих сил

С другой стороны, если неконсервативные силы отсутствуют, т.е. ( W_{неконс} ) = 0, то:

или:

или:

Именно эти равенства представляют собой закон сохранения механической энергии. Если работа неконсервативных сил равна нулю, то полная механическая энергия сохраняется. (Закон сохранения механической энергии гласит, что при наличии консервативных сил полная энергия остается неизменной, а могут происходить только превращения потенциальной энергии в кинетическую и обратно. — Примеч. ред.)

Иногда удобно сократить массу ​( m )​ в следующей формулировке закона сохранения энергии:

и использовать более простую формулировку:

Определяем конечную скорость с помощью закона сохранения энергии

Совсем непросто проводить физические эксперименты на аттракционе “Американские горки”. Но ведь кто-то должен их делать! Представьте себе, что вы находитесь в тележке, которая практически без трения скользит по рельсам вниз с высоты ​( h_1 )​ = 400 м. Предположим, что где-то на полпути вниз выходит из строя спидометр и уже нельзя определить скорость тележки по приборам. Как вычислить скорость ​( v_2 )​ в самой нижней точке спуска ( h_2 )? Нет проблем. Все, что нам нужно, это закон сохранения энергии. Согласно этому закону, полная механическая энергия объекта должна сохраняться, если равна нулю работа всех неконсервативных сил. Из предыдущего раздела нам уже знакома следующая сокращенная формулировка закона сохранения энергии:

Для простоты предположим, что начальная скорость ​( v_1 )​ = 0, а высота самой нижней точки спуска ​( h_2 )​ = 0. Тогда предыдущее уравнение существенно упрощается:

Откуда очень легко получить формулу для конечной скорости:

Подставляя численные значения, получим:

Итак, скорость тележки в самой нижней точке спуска на аттракционе “Американские горки” будет равна 89 м/с или около 320 км/ч. Довольно быстро: дух перехватит даже у самых отчаянных смельчаков!

Определяем максимальную высоту подъема с помощью закона сохранения энергии

Помимо определения конечной скорости, с помощью закона сохранения энергии можно также определить максимальную высоту подъема. Предположим, что Тарзан находится у кишащей крокодилами реки и хочет с помощью гибкой лианы перепрыгнуть с низкого берега на другой более высокий берег, высота которого на 9 м больше. Пусть максимальная скорость ​( v_1 )​, с которой он может разогнаться на низком берегу (т.е. в самой нижней точке траектории), равна 13 м/с. Достаточно ли этой скорости, чтобы запрыгнуть на противоположный высокий берег? Попробуем применить известную нам сокращенную формулировку закона сохранения энергии:

Предположим, что высота начального положения ​( h_1 )​ = 0. Чтобы определить максимально возможную высоту конечного положения на другом высоком берегу, следует предположить, что конечная скорость ​( v_2 )​ = 0. При таких условиях прежняя формула существенно упрощается:

Отсюда очень легко получить формулу для высоты конечного положения ​( h_2 )​ на другом берегу:

Подставляя численные значения, получим:

Итак, Тарзану не хватит 40 см, чтобы с максимальной скоростью разгона 13 м/с запрыгнуть на другой берег с помощью лианы.

Мощность: ускоряем темп работы

Иногда нужно знать не только объем работы, но и темп, с которым она выполняется. Скорость выполнения работы за единицу времени называется мощностью. Она выражается следующей простой формулой:

где ​( W )​ — это работа, выполненная за время ​( t )​.

В качестве примера рассмотрим два гоночных катера, способных развивать скорость до 200 км/ч. Какой из них обладает более мощным мотором? Конечно тот, который быстрее разгоняется до максимальной скорости, т.е. быстрее проделывает одинаковую работу по ускорению катера.

Если с течением времени скорость выполнения работы меняется, то в таких случаях часто используют понятие средней мощности, т.е. отношения всей выполненной работы ( W ) за все время ( t ):

Усредненные величины в физике принято обозначать знаком подчеркивания над соответствующей величиной. Прежде, чем приступать к применению понятии мощности, следует познакомиться с единицами измерения мощности.

Единицы измерения мощности

Поскольку мощность— это работа за единицу времени, то единицей измерения мощности является Дж/с, т.е. единица работы (джоуль), деленная на единицу времени (секунда), или ватт (Вт).

Обратите внимание, что поскольку работа и время являются скалярными величинами (подробнее о скалярах рассказывается в главе 4), то и мощность является скалярной величиной. Кроме ватта, для измерения мощности по историческим причинам часто используется единица “лошадиная сила” (л.с.), которая приблизительно равна 745,7 Вт. (Физики очень редко пользуются этой единицей из-за ее неоднозначного определения. Например, в метрической системе единиц измерения она равна 735,49875 Вт и получила название “метрической” лошадиной силы, а в английской системе единиц измерения — 745,6998 Вт и более известна под названием “механической” лошадиной силы. Кроме того, существуют “электрическая” (746 Вт) и даже “бойлерная” (9810 Вт) лошадиные силы. Однако, несмотря на эти различия, по историческим причинам единица “лошадиная сила” получила широкое распространение, особенно в автомобильной промышленности. — Примеч. ред.)

Предположим, что среднестатистическая лошадь массой ​( m_л )​ = 500 кг способна разогнать себя и санки массой ​( m_с )​ = 500 кг от скорости ​( v_1 )​ = 1 м/с до скорости ( v_2 ) = 2 м/с за время ( t ) = 2 с. Какой мощностью обладает эта лошадь? Берем формулу работы:

и, подставляя в нее эти значения, получим:

А теперь, зная работу, вычислим мощность лошади:

Совсем неплохо для среднестатистической лошади иметь мощность чуть больше 1 л.с.!

Вычисляем мощность другими способами

Поскольку работа равна произведению силы и времени, то формулу для мощности можно записать следующим образом:

Однако скорость ​( v = s/t )​, и потому:

Интересный результат, не так ли? Оказывается, что мощность равна произведению скорости и силы. Аналогичную формулу можно использовать и для вычисления средней мощности ​( overline{P} )​ , если прикладываемая сила ​( F )​ постоянна:

Глава 8. Выполняем работу

3.3 (66.43%) 28 votes

Второй закон Ньютона в импульсной форме позволяет определить, как меняется скорость тела по модулю и направлению, если в течение некоторого времени на него действует определенная сила:

Работа силы

В механике также важно уметь вычислять изменение скорости по модулю, если при перемещении тела на некоторый отрезок на него действует некоторая сила. Воздействия на тела сил, приводящих к изменению модуля их скорости, характеризуется величиной, зависящей как от сил, так и от перемещений. Эту величину в механике называют работой силы.

Работа силы обозначается буквой А. Это скалярная физическая величина. Единица измерения — Джоуль (Дж).

Работа силы равна произведению модуля силы, модуля перемещения и косинусу угла между ними:


Важно!

Механическая работа совершается, если:

  1. На тело действует сила.
  2. Под действием этой силы тело перемещается.
  3. Угол между вектором силы и вектором перемещения не равен 90 градусам (потому что косинус прямого угла равен нулю).

Внимание! Если к телу приложена сила, но под ее действием тело не начинает движение, механическая работа равна нулю.

Пример №1. Груз массой 1 кг под действием силы 30 Н, направленной вертикально вверх, поднимается на высоту 2 м. Определить работу, совершенной этой силой.

Так как перемещение и вектор силы имеют одно направление, косинус угла между ними равен единице. Отсюда:

Работа различных сил

Любая сила, под действием которой перемещается тело, совершает работу. Рассмотрим работу основных сил в таблице.

Работа силы тяжести

Модуль силы тяжести: Fтяж = mg

Работа силы тяжести: A = mgs cosα

Работа силы трения скольжения

Модуль силы трения скольжения: Fтр = μN = μmg

Работа силы трения скольжения: A = μmgs cosα

Работа силы упругости

Модуль силы упругости: Fупр = kx

Работа силы упругости:

Работа силы упругости

Работа силы упругости не может быть определена стандартной формулой, так как она может применяться только для постоянной по модулю силы. Сила же упругости меняется по мере сжатия или растяжения пружины. Поэтому берется среднее значение, равное половине суммы сил упругости в начале и в конце сжатия (растяжения):

Нужно также учесть, что перемещение тела под действием силы упругости равно разности удлинения пружины в начале и конце:

s = x1 – x2

Перемещение и направление силы упругости всегда сонаправлены, поэтому угол между ними нулевой. А косинус нулевого угла равен 1. Отсюда работа силы упругости равна:

Работы силы трения покоя

Работы силы трения покоя всегда равна 0, так как под действием этой силы тело не сдвигается с места. Исключение составляет случай, когда покоящееся тело лежит на подвижном предмете, на который действует некоторая сила. Относительно системы координат, связанной с подвижным предметом, работа силы трения покоя будет нулевой. Но относительно системы отсчета, связанной с Землей, эта сила будет совершать работу, так как тело будет двигаться, оставаясь на поверхности движущегося предмета.

Пример №2. Груз массой 100 кг волоком перетащили на 10 м по плоскости, поверхность которой имеет коэффициент трения 0,4. Найти работу, совершенной силой трения скольжения.

A = μmgs cosα = 0,4∙100∙10∙10∙(–1) = –4000 (Дж) = –4 (кДж)

Знак работы силы

Знак работы силы определяется только косинусом угла между вектором силы и вектором перемещения:

  1. Если α = 0о, то cosα = 1.
  2. Если 0о < α < 90o, то cosα > 0.
  3. Если α = 90о, то cosα = 0.
  4. Если 90о < α < 180o, то cosα < 0.
  5. Если α = 180о, то cosα = –1.

Работа силы трения скольжения всегда отрицательна, так как сила трения скольжения направлена противоположно перемещению тела (угол равен 180о). Но в геоцентрической системе отсчета работа силы трения покоя будет отличной от нуля и выше нуля, если оно будет покоиться на движущемся предмете (см. рис. выше). В таком случае сила трения покоя будет направлена с перемещением относительно Земли в одну сторону (угол равен 0о). Это объясняется тем, что тело по инерции будет пытаться сохранить покой относительно Земли. Это значит, что направление возможного движения противоположно движению предмета, на котором лежит это тело. А сила трения покоя направлена противоположно направлению возможного движения.

Геометрический смысл работы

Графическое определение

Механическая работа численно равна площади фигуры, ограниченной графиком с осями OF и OX.

A = Sфиг

Мощность

Определение

Мощность — физическая величина, показывающая, какую работу совершает тело в единицу времени. Мощность обозначается буквой N. Единица измерения: Ватт (Вт). Численно мощность равна отношению работы A, совершенной телом за время t:

Рассмотрим частные случаи определения мощности в таблице.

Мощность при равномерном прямолинейном движении тела

Работа при равномерном прямолинейном движении определяется формулой:

A = Fтs

Fт — сила тяги, s — перемещение тела под действием этой силы. Отсюда мощность равна:

Мощность при равномерном подъеме груза

Когда груз поднимается, совершается работа, по модулю равная работе силе тяжести. За перемещение в этом случае можно взять высоту. Поэтому:

Мгновенная мощность при неравномерном движении

Выше мы уже получили, что мощность при постоянной скорости равна произведению этой скорости на силу тяги. Но если скорость постоянно меняется, можно вычислить мгновенную мощность. Она равна произведению силы тяги на мгновенную скорость:

Мощность силы трения при равномерном движении по горизонтали

Мощность силы трения отрицательна так же, как и работа. Это связано с тем, что угол между векторами силы трения и перемещения равен 180о (косинус равен –1). Учтем, что сила трения скольжения равна произведению силы нормальной реакции опоры на коэффициент трения:

Пример №3. Машина равномерно поднимает груз массой 10 кг на высоту 20 м за 40 с. Чему равна ее мощность?

Коэффициент полезного действия

Не вся работа, совершаемая телами, может быть полезной. В реальном мире на тела действует несколько сил, препятствующих совершению работы другой силой. К примеру, чтобы переместить груз на некоторое расстояние, нужно совершить работу гораздо большую, чем можно получить при расчете по формулам выше.

Определения:

  • Работа затраченная — полная работа силы, совершенной над телом (или телом).
  • Работа полезная — часть полной работы силы, которая вызывает непосредственно перемещение тела.
  • Коэффициент полезного действия (КПД) — процентное отношение полезной работы к работе затраченной. КПД обозначается буквой «эта» — η. Единицы измерения эта величина не имеет. Она показывает эффективность работы механизма или другой системы, совершающей работу, в процентах.

КПД определяется формулой:

Работа может определяться как произведение мощности на время, в течение которого совершалась работа:

A = Nt

Поэтому формулу для вычисления КПД можно записать в следующем виде:

Частые случаи определения КПД рассмотрим в таблице ниже:

Устройство

Работа полезная и полная

КПД

Неподвижный блок, рычаг

Aполезн = mgh

Асоверш.

Наклонная плоскость

Aполезн = mgh

Асоверш. = Fl

l — совершенный путь (длина наклонной плоскости).

Пример №4. Определите полезную мощность двигателя, если его КПД равен 40%, а его мощность по паспорту равна 100 кВт.

В данном случае необязательно переводить единицы измерения в СИ. Но в таком случае ответ мы тоже получим в кВт. Из этой формулы выразим полезную мощность:

Задание EF17557

Какую мощность развивает сила тяги трактора, перемещая прицеп со скоростью 18 км/ч, если она составляет 16,5 кН?

Ответ:

а) 916 Вт

б) 3300 Вт

в) 82500 Вт

г) 297000 Вт


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Записать формулу для расчета мощности.

3.Выполнить общее решение задачи.

4.Подставить известные данные и выполнить вычисления.

Решение

Запишем исходные данные:

 Сила тяги, перемещающая прицеп, равна: Fт = 16,5 кН.

 Скорость перемещения прицепа под действием силы тяги: v = 18 км/ч.

Переведем единицы измерения в СИ:

16,5 кН = 16,5∙103 Н

18 км/ч = 18000/3600 м/с = 5 м/с

Мощность равна отношению работы ко времени, в течение которого эта работа совершалась:

N=At

Но работа равна произведению силы, перемещения и косинуса угла между векторами силы и перемещения. В данном случае будем считать, что угол равен нулю, следовательно косинус — единице. Тогда работа равна:

A = Fs

Тогда мощность равна:

N=Fst=Fv=16,5·103·5=82500 (Вт)

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17574

С вершины наклонной плоскости из состояния покоя скользит с ускорением лёгкая коробочка, в которой находится груз массой m (см. рисунок). Как изменятся время движения, ускорение и модуль работы силы трения, если с той же наклонной плоскости будет скользить та же коробочка с грузом массой m/2? Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Время движения

Ускорение

Модуль работы силы трения


Алгоритм решения

1.Установить наличие и характер зависимости кинематических характеристик движения от массы тела.

2.Вывести формулу для модуля работы силы трения.

3.Установить, как изменится модуль работы силы трения при уменьшении массы тела вдвое.

Решение

При скольжении с наклонной плоскости происходит равноускоренное движение. Положение тела в любой момент времени при таком движении можно определить с помощью кинематических уравнений:

x=xo+v0xt+axt22

y=yo+v0yt+ayt22

Из этих уравнений видно, что ускорение и время никак не зависят от массы тела. Следовательно, при уменьшении массы тела в 2 раза его время движения и ускорение не изменятся.

Чтобы выразить модуль работы силы трения, выберем такую систему отсчета, чтобы вектор силы трения был расположен вдоль оси Ox.Тогда сила трения будет равна:

Fтр = μmg

Известно, что работа определяется формулой:

A = Fs cosα

Тогда работа силы трения равна:

A = μmgs cosα

Вектор силы трения всегда направлен противоположно вектору перемещения. Поэтому косинус угла между ними равен –1. Но нас интересует только модуль работы. Поэтому будем считать, что он равен:

A = μmgs

Модуль работы силы трения и масса тела зависят прямо пропорционально. Следовательно, если массу тела уменьшить вдвое, то и модуль работы силы трения уменьшится вдвое.

Поэтому правильная последовательность цифр в ответе: 332.

Ответ: 332

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18646

В первой серии опытов брусок перемещают при помощи нити равномерно и прямолинейно вверх по наклонной плоскости. Во второй серии опытов на бруске закрепили груз, не меняя прочих условий.

Как изменятся при переходе от первой серии опытов ко второй сила натяжения нити и коэффициент трения между бруском и плоскостью?

Для каждой величины определите соответствующий характер её изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Сила натяжения нити Коэффициент трения

Алгоритм решения

  1. Определить, какая величина изменилась во второй серии опытов.
  2. Определить, как зависит от этой величины сила натяжения нити.
  3. Определить, как зависит от этой величины коэффициент трения.

Решение

Когда к бруску подвесили груз, увеличилась масса. Когда тело на нити перемещается вверх прямолинейно и равномерно, сила натяжения нити определяется модулем силы тяжести:

T = mg

Эта формула показывает, что сила натяжения нити и масса тела зависят прямо пропорционально. Если, добавив к бруску груз, масса увеличится, то сила натяжения нити тоже увеличится.

Коэффициент трения — это величина, которая зависит только от материалов и типа поверхности. Поэтому увеличение массы тела на него никак не повлияют.

Верная последовательность цифр в ответе: 13.

Ответ: 13

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18271

Определите коэффициент полезного действия атомной электростанции, расходующей за неделю уран-235 23592U массой 1,4 кг, если её мощность равна 38 МВт. При делении одного ядра урана-235 выделяется энергия 200 МэВ.


Алгоритм решения

1.Записать исходные данные и перевести их в СИ.

2.Записать формулу для определения КПД атомной электростанции.

3.Решить задачу в общем виде.

4.Подставить известные данные и вычислить искомую величину.

5.Массовое число: A = 235.

6.Зарядовое число: Z = 92.

Решение

Запишем исходные данные:

 Энергия, выделяемая при делении одного ядра урана-235: Q0 = 200 МэВ.

 Масса урана-235: m = 1,4 кг.

 Время, в течение которого происходит деление: t = 1 неделя.

 Мощность атомной электростанции: N = 38 МВт.

Переведем все единицы измерения в СИ:

1 эВ = 1,6∙10–19 Дж

200 МэВ = 200∙106∙1,6∙10–19 Дж = 320∙10–13 Дж

1 неделя = 7∙24∙60∙60 с = 604,8∙103 с

38 МВт = 38∙106 Вт

КПД атомной электростанции есть отношение полезной работы к выделенной за это же время энергии:

η=AполезнQ100%

Полезную работу мы можем вычислить по формуле:

A=Nt

Выделенное количество теплоты мы можем рассчитать, вычислив количество атомов, содержащихся в 1,4 кг урана-235 и умножив их на энергию, выделяемую при делении одного такого атома.

Количество атомов равно произведению количество молей на постоянную Авогадро:

Nкол.атомов = νNA

Количество молей равно отношения массы вещества к его молярной массе, следовательно:

Молярная масса численно равна массовому числу в граммах на моль. Следовательно:

M = A (г/моль) = A∙10–3 (кг/моль)

Отсюда количество атомов равно:

Энергия, выделенная всеми атомами, равна:

Теперь можем вычислить КПД:

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 11.9k

Добавить комментарий