❓ Что такое теория вероятностей?
Теория вероятностей использует случайные величины и распределения вероятностей для математической оценки неопределенных ситуаций. Понятие вероятности используется для присвоения числового описания вероятности наступления события. Вероятность можно определить как число благоприятных исходов, деленное на общее число возможных исходов события.
Определение теории вероятностей
Теория вероятностей – это область математики и статистики, которая занимается определением вероятностей, связанных со случайными событиями. Существует два основных подхода к изучению теории вероятностей: теоретический и экспериментальный. Теоретическая вероятность определяется на основе логических рассуждений без проведения экспериментов. В отличие от нее, экспериментальная вероятность определяется на основе исторических данных путем проведения повторных экспериментов.
Пример теории вероятностей
Предположим, нам необходимо определить вероятность выпадения числа 4 при бросании игральной кости. Число благоприятных исходов равно 1. Возможные исходы игральной кости – {1, 2, 3, 4, 5, 6}. Из этого следует, что всего существует 6 исходов. Таким образом, вероятность выпадения 4 при бросании игральной кости, используя теорию вероятности, можно вычислить как 1 / 6 ≈ 0,167.
🎲 Основы теории вероятностей
Мы можем понять эту область математики с помощью нескольких основных терминов, напрямую связанных с теорией вероятностей.
Случайный эксперимент
Случайный эксперимент в теории вероятностей – это испытание, которое повторяется несколько раз для получения четко определенного набора возможных результатов. Подбрасывание монеты является примером случайного эксперимента.
Пространство выборки
Пространство выборки можно определить как множество всех возможных исходов, полученных в результате проведения случайного эксперимента. Например, пространство выборки при подбрасывании симметричной монеты (fair coin), стороны которой – это орел и решка.
Событие
Теория вероятностей определяет событие как набор исходов эксперимента, который образует подмножество пространства выборки.
Примеры событий:
- Независимые – те, на которые не влияют другие события, являются независимыми.
- Зависимые – те, на которые влияют другие события.
- Взаимоисключающие – события, которые не могут произойти в одно и то же время.
- Равновероятные – два или более события, которые имеют одинаковые шансы произойти.
- Исчерпывающие – это события, которые равны выборочному пространству эксперимента.
Случайная величина
В теории вероятностей случайную переменную можно определить как величину, которая принимает значение при всех возможных исходах эксперимента.
Существует два типа случайных величин:
- Дискретная случайная величина – принимает точные значения, такие как 0, 1, 2…. Описывается кумулятивной функцией распределения и функцией массы вероятности.
- Непрерывная случайная величина – переменная, которая может принимать бесконечное число значений. Для определения характеристик этой переменной используются кумулятивная функция распределения и функция плотности вероятности.
Вероятность
Вероятность мы можем определить как численную вероятность наступления события. Вероятность того, что событие произойдет, всегда лежит между 0 и 1. Это связано с тем, что число желаемых исходов никогда не может превысить общее число исходов события. Теоретическая вероятность и эмпирическая вероятность используются в теории вероятностей для измерения шанса наступления события.
Условная вероятность
Ситуация, когда необходимо определить вероятность наступления события, притом что другое событие уже произошло.
Обозначается как P(A | B).
Если хочешь подтянуть свои знания по математике, загляни на наш курс «Математика для Data Science», на котором ты:
- Усвоишь специальную терминологию и сможешь читать статьи по Data Science без постоянных обращений к поисковику.
- Подготовишься к успешной сдачи вступительных экзаменов в Школу анализа данных Яндекс.
- Овладеешь математическим аппаратом, который необходим, чтобы стать специалистом в Data Science.
Ожидание
Ожидание случайной величины X можно определить как среднее значение результатов эксперимента, проводимого многократно. Ожидание обозначается как E[X]. Также известно как среднее значение случайной величины.
Дисперсия
Дисперсия – это мера, которая показывает, как распределение случайной величины изменяется относительно среднего значения. Дисперсия определяется как среднее квадратичное отклонение от среднего значения случайной величины. Обозначается как Var[X].
Функция распределения теории вероятностей
Распределение вероятностей или кумулятивная функция распределения – это функция, которая моделирует все возможные значения эксперимента, используя случайную переменную. Распределение Бернулли и биномиальное распределение – это примеры дискретных распределений вероятностей. Например, нормальное распределение представляет собой пример непрерывного распределения.
Массовая функция вероятности
Массовая функция вероятности определяется как вероятность того, что дискретная случайная величина будет в точности равна определенному значению.
Функция плотности вероятности
Функция плотности вероятности – это вероятность того, что непрерывная случайная величина принимает множество возможных значений.
Формулы теории вероятностей
В теории вероятностей существует множество формул, которые помогают рассчитать различные вероятности, связанные с событиями.
Наиболее важные формулы:
- Теоретическая вероятность: Число благоприятных исходов / Число возможных исходов.
- Эмпирическая вероятность: Число случаев, когда событие происходит / Общее число испытаний.
- Правило сложения: P(A ∪ B) = P(A) + P(B) – P(A∩B), где A и B – события.
- Правило комплементарности: P(A’) = 1 – P(A). P(A’) означает вероятность того, что событие не произойдет.
- Независимые события: P(A∩B) = P(A) ⋅ P(B).
- Условная вероятность: P(A | B) = P(A∩B) / P(B).
- Теорема Байеса: P(A | B) = P(B | A) ⋅ P(A) / P(B).
- Массовая функция вероятности: f(x) = P(X = x).
- Функция плотности вероятности: p(x) = p(x) = dF(x) / dx, где F(x) – кумулятивная функция распределения.
- Ожидание непрерывной случайной величины: ∫xf(x)dx, где f(x) является МФВ (Массовой функцией вероятности).
- Ожидание дискретной случайной величины: ∑xp(x), где p(x) – это ФПВ (Функцией плотности вероятности).
- Дисперсия: Var(X) = E[X2] – (E[X])2.
Применение теории вероятностей
Теория вероятностей используется во многих областях и помогает оценить риски, которые связаны с теми или иными решениями. Некоторые из направлений, где применяют теорию вероятностей:
- В финансовой отрасли теория вероятностей используется для создания математических моделей фондового рынка с целью прогнозирования будущих тенденций. Это помогает инвесторам вкладывать средства в наименее рискованные активы, которые дают наилучший доход.
- В потребительской индустрии теория вероятностей используется для снижения вероятности неудачи при разработке продукта.
- Казино использует теорию вероятностей для разработки азартных игр с максимизацией своей прибыли.
🏋️ Практические задания
Задача 1: При бросании двух игральных костей, какова вероятность того, что выпадет комбинация, сумма которой будет равна 8?
При бросании двух игральных костей существует 36 возможных исходов. Для получения суммы, равной 8, существует 5 благоприятных исходов: [(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)]. Используя формулы теории вероятностей: Вероятность = Число благоприятных исходов / общее число возможных исходов = 5 / 36. Ответ: Вероятность получения суммы 8 при бросании двух игральных костей равна 5 / 36.
Задача 2: Какова вероятность вытащить карту королеву из колоды?
Колода карт имеет 4 масти. Каждая масть состоит из 13 карт. Таким образом, общее число возможных исходов = (4) * (13) = 52. Может быть, 4 королевы, по одной из каждой масти. Следовательно, количество благоприятных исходов = 4. Карточная вероятность = 4 / 52 = 1 / 13. Ответ: Вероятность получить королеву из колоды карт равна 1 / 13
Задача 3: Из 10 человек 3 купили карандаши, 5 купили тетради, а 2 купили и карандаши, и тетради. Если покупатель купил тетрадь, какова вероятность того, что он также купил карандаш?
Используя понятие условной вероятности, P(A | B) = P(A∩B) / P(B). Пусть A – событие, когда люди покупают карандаши, а B – событие, когда люди покупают тетради. P(A) = 3 / 10 = 0,3P(B) = 5 / 10 = 0,5P(A∩B) = 2 / 10 = 0,2. Подставим полученные значения в приведенную формулу, P(A | B) = 0,2 / 0,5 = 0,4. Ответ: Вероятность того, что покупатель купил карандаш, при условии, что он купил блокнот, равна 0,4.
В заключение
Подведем итоги:
- Теория вероятностей – это раздел математики, в котором рассматриваются вероятности случайных событий.
- Понятие вероятности объясняет возможность наступления того или иного события.
- Значение вероятности всегда лежит между 0 и 1.
- В теории вероятностей все возможные исходы случайного эксперимента составляют пространство выборки.
- Теория вероятностей использует такие важные понятия, как случайные величины и кумулятивные функции распределения для моделирования случайного события. Сюда же относится определение различных вероятностей, связанных с этим.
Если хочешь подтянуть свои знания по математике, загляни на наш курс «Математика для Data Science», который включает в себя:
- 47 видеолекций и 150 практических заданий.
- Консультации с преподавателями курса.
Существуют
события, вероятности которых можно
определить из условий самого опыта, не
производя его. Для этого необходимо,
чтобы элементарные события, составляющие
полную группу, были попарно несовместными
и равновозможными. Для таких событий
возможен непосредственный подсчёт
вероятностей, основанный на оценке доли
“благоприятных” случаев.
Вероятность
события вычисляют по формуле, называемой
“формулой
непосредственного подсчёта вероятностей“
. |
где
N —
общее число случаев, М —
число случаев, благоприятствующих
появлению события А.
Формулу
называют также классическим
определением вероятности.
Так,
найдём вероятность события появления
герба при одном бросании монеты:
.
Задача 1.1.
В ящике находится 10 бракованных и
15 стандартных изделий. Найти вероятность
того, что извлечённая наугад деталь
будет стандартной.
Решение.
Общее число случаев —
;
число случаев, благоприятствующих
появлению стандартной детали —.
Искомая вероятность равна
.
3 Относительная частота. Теорема бернулли
Существуют
события, как например, “попадание в
цель при выстреле” или “выход из
строя радиолампы в течение одного часа
работы”, вероятности которых не могут
быть вычислены по формуле . Для таких
событий используют другие способы
определения вероятностей, например,
способы, связанные с проведением опыта
(эксперимента).
Относительной
частотой
события
называют отношение
числа появлений этого события к числу
всех произведенных опытов:
. |
При
неограниченном увеличении числа опытов
с вероятностью сколь угодно близкой к
единице можно ожидать, что относительная
частота события Q
приближается к вероятности Р
его появления
в отдельном испытании.
Математическую
формулировку этой закономерности
(“устойчивости
частоты”)
впервые дал Я. Бернулли в теореме,
которая представляет собой простейшую
форму Закона
больших чисел
и может быть записана в виде
. |
Относительную
частоту часто называют статистической
вероятностью события.
Задача 1.2.
По цели произведено 20 выстрелов,
причём отмечено 18 попаданий. Найти
относительную частоту попадания в цель.
Решение:
.
4 Сумма событий. Теорема сложения вероятностей для несовместных событий
На
практике обычно требуется определить
вероятности событий, непосредственное
воспроизведение которых невозможно. В
этом случае применяют методы, позволяющие
по известным вероятностям одних событий
определять вероятности других, более
сложных событий, с ними связанных. При
решении таких задач используют основные
теоремы теории вероятностей.
Суммой
двух или
нескольких событий
называют сложное
событие, состоящее в появлении хотя бы
одного из этих событий.
Для несовместных событий Аi
условно пишут:
,
а также
.
Теорема.
Вероятность
суммы двух или нескольких несовместных
событий равна сумме вероятностей этих
событий, т.е.
. |
Следствие 1.
Если события образуют полную группу событий, то сумма
их вероятностей равна единице:
. |
Следствие 2.
Сумма
вероятностей противоположных событий
равна единице:
. |
Задача 1.3.
В лотерее
1000 билетов, из них падает выигрышей:
на один билет — 500 руб., на 10 билетов —
по 100 руб., на 50 билетов — по
20 руб., на 100 билетов — по 5 руб.
Остальные билеты — невыигрышные.
При взятии случайным образом одного
билета найти вероятности следующих
событий:1) выиграть не менее 20 руб. и 2)
выиграть любую сумму.
Решение.
Обозначим события:
В1 —
выигрыш не менее 20 руб.; В2 —
выигрыш любой суммы;
А1 —
выигрыш 20 руб.; А2 —
выигрыш 100 руб.; А3 —
выигрыш 500 руб.;
А4 —
выигрыш 5 руб. Согласно условию —
;.
СобытияАi
несовместны, поэтому применима теорема :
;
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Полезная страница? Сохрани или расскажи друзьям
Событие А называется частным случаем события В, если при наступлении А наступает и В. То, что А является частным случаем В, записывается как $A subset B$.
События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записывается очевидно: А = В.
Суммой событий А и В называется событие А + В, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.
Теорема о сложении вероятностей. Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.
$$P(A+B)=P(A)+P(B).$$
Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:
$$Pleft(sum_{i=1}^{n}A_i right)=sum_{i=1}^{n} P(A_i).$$
Если случайные события $A_1, A_2, …, A_n$ образуют полную группу несовместных событий, то имеет место равенство
$P(A_1)+P(A_2)+…+P(A_n)=1.$ Такие события (гипотезы) используются при решении задач на полную вероятность.
Произведением событий А и В называется событие АВ, которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.
Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле
$$P(A+B)=P(A)+P(B)-P(Acdot B).$$
События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.
Теорема об умножении вероятностей. Вероятность произведения независимых событий А и В вычисляется по формуле:
$$P(Acdot B)=P(A)cdot P(B).$$
Вероятность произведения зависимых событий вычисляется по формуле условной вероятности.
Примеры решений задач с событиями
Пример. В первом ящике 1 белый и 5 черных шаров, во втором 8 белых и 4 черных шара. Из каждого ящика вынули по шару. Найти вероятность того, что один из вынутых шаров белый, а другой – черный.
Решение. Обозначим события: А – вынули белый шар из первого ящика,
;
– вынули черный шар из первого ящика,
;
В – белый шар из второго ящика,
;
– черный шар из второго ящика,
.
Нам нужно, чтобы произошло одно из событий или . По теореме об умножении вероятностей
, .
Тогда искомая вероятность по теореме сложения будет
.
Пример. Вероятность попадания в цель у первого стрелка 0,8, у второго – 0,9. Стрелки делают по выстрелу. Найти вероятность: а) двойного попадания; б) двойного промаха, в) хотя бы одного попадания; г) одного попадания.
Решение.
Пусть А – попадание первого стрелка, ;
В – попадание второго стрелка, .
Тогда – промах первого, ;
– промах второго, .
Найдем нужные вероятности.
а) АВ – двойное попадание,
б) – двойной промах, .
в) А+В – хотя бы одно попадание,
.
г) – одно попадание,
.
См. обучающую статью “решение задач о стрелках”
Пример. Решить задачу, применяя теоремы сложения и умножения. Мастер обслуживает 3 станка, работающих независимо друг от друга. Вероятность того, что первый станок потребует внимания рабочего в течение смены, равна 0,4, второй – 0,6, третий – 0,3. Найти вероятность того, что в течение смены: а) ни один станок не потребует внимания мастера, б) ровно 1 станок потребует внимания мастера.
Решение.
Вводим базовые независимые события $A_i$ = (Станок $i$ потребовал внимания рабочего в течение смены), $i=1, 2, 3$. По условию выписываем вероятности: $p_1=0,4$, $p_2=0,6$, $p_3=0,3$. Тогда $q_1=0,6$, $q_2=0,4$, $q_3=0,7$.
Найдем вероятность события $X$=(Ни один станок не потребует внимания в течение смены):
$$
P(X)=Pleft(overline{A_1} cdot overline{A_2} cdot overline{A_3}right)= q_1 cdot q_2 cdot q_3 =
0,6cdot 0,4 cdot 0,7 = 0,168.
$$
Найдем вероятность события $Z$= (Ровно один станок потребует внимания в течение смены):
$$
P(Z)= \ = P(A_1) cdot Pleft(overline{A_2} right) cdot Pleft(overline{A_3} right) + Pleft(overline{A_1}right) cdot P(A_2) cdot Pleft(overline{A_3} right) + Pleft(overline{A_1} right) cdot Pleft(overline{A_2} right) cdot P(A_3)=\
= p_1 cdot q_2 cdot q_3 + q_1 cdot p_2 cdot q_3 + q_1 cdot q_2 cdot p_3 =\ =
0,4cdot 0,4 cdot 0,7+0,6cdot 0,6 cdot 0,7+0,6cdot 0,4 cdot 0,3 = 0,436.
$$
См. обучающую статью “решение задач о станках”
Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8. Найти вероятности того, что формула содержится 1) только в одном справочнике; 2) только в двух справочниках; 3) во всех трех справочниках.
Решение.
А – формула содержится в первом справочнике;
В – формула содержится во втором справочнике;
С – формула содержится в третьем справочнике.
Воспользуемся теоремами сложения и умножения вероятностей.
1.
2. .
3.
Вероятность наступления хотя бы одного события
Пусть в результате испытания могут появиться n событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий?
Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.
Теорема. Вероятность появления хотя бы одного из событий $A_1, A_2, …, A_n$, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий
$$
P(A)=1-Pleft(overline{A_1}right)cdot Pleft(overline{A_2}right)cdot … cdot Pleft(overline{A_n}right)= 1-q_1 cdot q_2 cdot … cdot q_n.
$$
Если события $A_1, A_2, …, A_n$ имеют одинаковую вероятность $p$, то формула принимает простой вид:
$$
P(A)=1-(1-p)^n=1-q^n.
$$
Примеры решений на эту тему
Пример. Вероятности попадания в цель при стрельбе из трех орудий таковы: p1 = 0,8; p2 = 0,7; p3 = 0,9. Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.
Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия), (попадание второго орудия) и (попадание третьего орудия) независимы в совокупности.
Вероятности событий, противоположных событиям , и (т. е. вероятности промахов), соответственно равны:
, ,
Искомая вероятность .
Пример. В типографии имеется 4 плоскопечатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А).
Решение. События “машина работает” и “машина не работает” (в данный момент) — противоположные, поэтому сумма их вероятностей равна единице:
Отсюда вероятность того, что машина в данный момент не работает, равна
Искомая вероятность
Так как полученная вероятность весьма близка к единице, то на основании следствия из принципа практической невозможности маловероятных событий мы вправе заключить, что в данный момент работает хотя бы одна из машин.
Пример. Вероятность того, что при одном выстреле стрелок попадает в цель, равна 0,4. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее 0,9 он попал в цель хотя бы один раз?
Решение. Обозначим через А событие “при n выстрелах стрелок попадает в цель хотя бы один раз”. События, состоящие в попадании в цель при первом, втором выстрелах и т. д., независимы в совокупности, поэтому применима формула .
Приняв во внимание, что, по условию, (следовательно, ), получим
Прологарифмируем это неравенство по основанию 10:
Итак, , т.е. стрелок должен произвести не менее 5 выстрелов.
См. обучающую статью “решение задач с хотя бы один…”
Загрузить PDF
Загрузить PDF
Вероятность показывает возможность того или иного события при определенном количестве повторений.[1]
Это число возможных результатов с одним или несколькими исходами, поделенное на общее количество возможных событий. Вероятность нескольких событий вычисляется путем разделения задачи на отдельные вероятности с последующим перемножением этих вероятностей.
-
1
Выберите событие со взаимоисключающими результатами. Вероятность можно рассчитать лишь в том случае, если рассматриваемое событие либо происходит, либо не происходит. Нельзя одновременно получить какое-либо событие и противоположный ему результат. Примером таких событий служат выпадение 5 на игровом кубике или победа определенной лошади на скачках. Пять либо выпадет, либо нет; определенная лошадь либо придет первой, либо нет.[2]
Например:” невозможно вычислить вероятность такого события: при одном броске кубика выпадут 5 и 6 одновременно.
-
2
Определите все возможные события и результаты, которые могут произойти. Предположим, необходимо определить вероятность того, что при броске игрового кубика с 6 цифрами выпадет тройка. «Выпадение тройки» является событием, и поскольку мы знаем, что может выпасть любая из 6 цифр, число возможных исходов равно шести. Таким образом, мы знаем, что в данном случае есть 6 возможных результатов и одно событие, вероятность которого мы хотим определить. Ниже приведено еще два примера.[3]
- Пример 1. Какова вероятность того, что вы случайно выберете день, который выпадает на выходные? В данном случае событием является «выбор дня, который приходится на выходные», а число возможных исходов равно количеству дней недели, то есть семи.
- Пример 2. В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если достать из коробки случайный шар, какова вероятность того, что он окажется красным? Событием является «вынуть красный шар», а число возможных исходов равно общему количеству шаров, то есть двадцати.
-
3
Поделите число событий на количество возможных исходов. Таким образом вы определите вероятность одиночного события. Если мы рассматриваем случай выпадения 3 при бросании кубика, число событий равно 1 (тройка находится лишь на одной грани кубика), а общее количество исходов равно 6. В результате получаем соотношение 1/6, 0,166, или 16,6 %. Вероятность события для двух приведенных выше примеров находится следующим образом:[4]
- Пример 1. Какова вероятность того, что вы случайно выберете день, который выпадает на выходные? Число событий равно 2, так как в одной неделе два выходных дня, а общее количество исходов составляет 7. Таким образом, вероятность равна 2/7. Полученный результат можно записать также как 0,285 или 28,5 %.
- Пример 2. В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если достать из коробки случайный шар, какова вероятность того, что он окажется красным? Число событий равно 5, поскольку в коробке 5 красных шаров, а общее количество исходов составляет 20. Находим вероятность: 5/20 = 1/4. Полученный результат можно записать также как 0,25 или 25 %.
-
4
Сложите вероятности всех возможных событий и проверьте, получится ли в сумме 1. Суммарная вероятность всех возможных событий должна составлять 1, или 100 %. Если у вас не получится 100 %, скорее всего, вы допустили ошибку и пропустили одно или несколько возможных событий. Проверьте свои вычисления и убедитесь, что вы учли все возможные исходы.[5]
- Например, вероятность выпадения 3 при бросании игрового кубика составляет 1/6. При этом вероятность выпадения любой другой цифры из пяти оставшихся также равна 1/6. В результате получаем 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 6/6, то есть 100 %.
- Если вы, например, забудете о цифре 4 на кубике, сложение вероятностей даст вам лишь 5/6, или 83 %, что не равно единице и указывает на ошибку.
-
5
Представьте вероятность невозможного исхода в виде 0. Это означает, что данное событие не может произойти, и его вероятность равна 0. Таким образом вы сможете учесть невозможные события.[6]
- Например, если бы вы вычисляли вероятность того, что в 2020 году Пасха придется на понедельник, то получили бы 0, поскольку Пасха всегда празднуется в воскресенье.
Реклама
-
1
При рассмотрении независимых событий вычисляйте каждую вероятность отдельно. После того как вы определите, каковы вероятности событий, их можно будет рассчитать отдельно. Предположим, необходимо узнать вероятность того, что при бросании кубика два раза подряд выпадет 5. Мы знаем, что вероятность выпадения одной пятерки составляет 1/6, и вероятность выпадения второй пятерки также равна 1/6. Первый исход не связан со вторым.[7]
- Несколько выпадений пятерок называются независимыми событиями, поскольку то, что выпадет первый раз, не влияет на второе событие.
-
2
Учитывайте влияние предыдущих исходов при расчете вероятности для зависимых событий. Если первое событие влияет на вероятность второго исхода, говорят о расчете вероятности зависимых событий. Например, если вы выбираете две карты из колоды, состоящей из 52 карт, после взятия первой карты состав колоды изменяется, что влияет на выбор второй карты. Чтобы рассчитать вероятность второго из двух зависимых событий, необходимо вычесть 1 из количества возможных результатов при расчете вероятности второго события.[8]
-
Пример 1. Рассмотрим следующее событие: Из колоды случайным образом одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность того, что первая карта будет иметь трефовую масть, составляет 13/52, или 1/4, поскольку всего в колоде 13 карт одной масти.
- После этого вероятность того, что вторая карта окажется трефовой масти, составляет 12/51, поскольку одной трефовой карты уже нет. Это объясняется тем, что первое событие влияет на второе. Если вы вытянули тройку треф и не положили ее обратно, в колоде будет на одну карту меньше (51 вместо 52).
-
Пример 2. В коробке 4 синих, 5 красных и 11 белых шаров. Если наугад вынуть три шара, какова вероятность того, что первый окажется красным, второй синим, а третий белым?
- Вероятность того, что первый шар окажется красным, составляет 5/20, или 1/4. Вероятность того, что второй шар будет синим, равна 4/19, поскольку в коробке осталось на один шар меньше, но по прежнему 4 синих шара. Наконец, вероятность того, что третий шар окажется белым, составляет 11/18, так как мы уже вынули два шара.
-
Пример 1. Рассмотрим следующее событие: Из колоды случайным образом одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность того, что первая карта будет иметь трефовую масть, составляет 13/52, или 1/4, поскольку всего в колоде 13 карт одной масти.
-
3
Перемножьте вероятности каждого отдельного события. Независимо от того, имеете ли вы дело с независимыми или зависимыми событиями, а также количества исходов (их может быть 2, 3 и даже 10), можно рассчитать общую вероятность, умножив вероятности всех рассматриваемых событий друг на друга. В результате вы получите вероятность нескольких событий, следующих одно за другим. Например, стоит задача Найти вероятность того, что при бросании кубика два раза подряд выпадет 5. Это два независимых события, вероятность каждого из которых равна 1/6. Таким образом, вероятность обоих событий составляет 1/6 x 1/6 = 1/36, то есть 0,027, или 2,7 %.[9]
- Пример 1. Из колоды наугад одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность первого события составляет 13/52. Вероятность второго события равна 12/51. Находим общую вероятность: 13/52 x 12/51 = 12/204 = 1/17, то есть 0,058, или 5,8 %.
- Пример 2. В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если наугад вытянуть из коробки три шара один за другим, какова вероятность того, что первый окажется красным, второй синим, а третий белым? Вероятность первого события составляет 5/20. Вероятность второго события равна 4/19. Вероятность третьего события составляет 11/18. Таким образом, общая вероятность равна 5/20 x 4/19 x 11/18 = 44/1368 = 0,032, или 3,2 %.
Реклама
-
1
Рассматривайте возможность как дробь с положительным результатом в числителе. Вернемся к нашему примеру с разноцветными шарами. Предположим, необходимо узнать вероятность того, что вы достанете белый шар (всего их 11) из всего набора шаров (20). Шанс того, что данное событие произойдет, равен отношению вероятности того, что оно случится, к вероятности того, что оно не произойдет. Поскольку в коробке имеется 11 белых шаров и 9 шаров другого цвета, возможность вытянуть белый шар равна отношению 11:9.[10]
- Число 11 представляет вероятность достать белый шар, а число 9 — вероятность вытянуть шар другого цвета.
- Таким образом, более вероятно, что вы достанете белый шар.
-
2
Сложите полученные величины, чтобы перевести возможность в вероятность. Преобразовать возможность довольно просто. Сначала ее следует разбить на два отдельных события: шанс вытянуть белый шар (11) и шанс вытянуть шар другого цвета (9). Сложите полученные числа, чтобы найти общее число возможных событий. Запишите все как вероятность с общим количеством возможных результатов в знаменателе.[11]
- Вы можете вынуть белый шар 11 способами, а шар другого цвета — 9 способами. Таким образом, общее число событий составляет 11 + 9, то есть 20.
-
3
Найдите возможность так, как если бы вы рассчитывали вероятность одного события. Как мы уже определили, всего существует 20 возможностей, причем в 11 случаях можно достать белый шар. Таким образом, рассчитать вероятность вытянуть белый шар можно так же, как и вероятность любого другого одиночного события. Поделите 11 (количество положительных исходов) на 20 (число всех возможных событий), и вы определите вероятность.[12]
- В нашем примере вероятность достать белый шар составляет 11/20. В результате получаем 11/20 = 0,55, или 55 %.
Реклама
Советы
- Для описания вероятности того, что то или иное событие произойдет, математики обычно используют термин «относительная вероятность». Определение «относительная» означает, что результат не гарантирован на 100 %. Например, если подбросить монету 100 раз, то, вероятно, не выпадет ровно 50 раз орел и 50 решка. Относительная вероятность учитывает это.[13]
- Вероятность какого-либо события не может быть отрицательной величиной. Если у вас получилось отрицательное значение, проверьте свои вычисления.[14]
- Чаще всего вероятности записывают в виде дробей, десятичных дробей, процентов или по шкале от 1 до 10.
- Вам может пригодиться знание того, что в спортивных и букмекерских ставках шансы выражаются как «шансы против» — это означает, что возможность заявленного события оценивается первой, а шансы того события, которое не ожидается, стоят на втором месте. Хотя это и может сбить с толку, важно помнить об этом, если вы собираетесь делать ставки на какое-либо спортивное событие.
Реклама
Об этой статье
Эту страницу просматривали 704 977 раз.
Была ли эта статья полезной?
На чтение 16 мин Просмотров 125к. Опубликовано 25 мая, 2018
Вероятность — очень лёгкая тема, если концентрироваться на смысле задач, а не на формулах. Найти вероятность того что — не просто. И как решать задачи на вероятность?. Во-первых, что такое вероятность? Это шанс, что какое-то событие произойдёт. Если мы говорим, что вероятность некоторого события 50%, что это значит? Что оно либо произойдет, либо не произойдет — одно из двух. Таким образом подсчитать значение вероятности очень просто — нужно взять количество подходящих нам вариантов и разделить на количество всех возможных вариантов. Например, шанс получить решку при подбрасывании монеты это ½. Как мы получаем ½? Всего у нас два возможных варианта (орёл и решка), из них нам подходит один (решка), так мы и получаем вероятность ½.
Как мы уже с вами увидели, вероятность может быть выражена как в процентах, так и в обычных числах. Важно: на ЕГЭ вам нужно будет записать ответ в числах, не в процентах. Принято, что вероятность изменяется от 0 (никогда не произойдет) до 1 (абсолютно точно произойдет). Также можно сказать, что всегда
Вероятность подходящих событий + вероятность неподходящих событий = 1
Теперь мы точно понимаем, как считать вероятность отдельного события, и даже такие задачи есть в банке ФИПИ, но понятно, что на этом всё не заканчивается. Чтобы жизнь была веселее, в задачах на вероятность обычно происходят как минимум два события, и надо посчитать вероятность с учетом каждого из них.
Содержание
- Вероятность нескольких событий
- Задачи и решения задач на вероятность
- Вероятность нескольких событий
- Дополняющая вероятность
Вероятность нескольких событий
Подсчитываем вероятность каждого события в отдельности, затем между дробями ставим знаки:
1. Если нужно первое И второе событие, то умножаем.
2. Если нужно первое ИЛИ второе событие, то складываем.
Задачи и решения задач на вероятность
Задача 1. Среди натуральных чисел от 23 до 37 случайно выбирают одно число. Найдите вероятность того, что оно не делится на 5.
Решение:
Вероятность, это отношение благоприятных вариантов к общему их количеству.
Всего в этом промежутке 15 чисел. Из них на 5 делится всего 3, значит не делится 12.
Вероятность тогда:
Ответ: 0,8.
Задача 2. Для дежурства в столовой случайно выбирают двух учащихся класса. Какова вероятность того, что дежурить будут два мальчика, если в классе обучается 7 мальчиков и 8 девочек?
Решение: Вероятность, это отношение благоприятных вариантов к общему их количеству. В классе 7 мальчиков, это благоприятные варианты. А всего 15 учеников.
Вероятность что первый дежурный мальчик:
Вероятность что второй дежурный мальчик:
Раз оба должны быть мальчики, вероятности перемножим:
Ответ: 0,2.
Задача 3. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.
Решение: Пассажиру В. удобны 30 мест (12 + 18 = 30), а всего в самолете 300 мест. Поэтому вероятность того, что пассажиру В. достанется удобное место равна 30/300, т. е. 0,1.
Задача 4. В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам.
Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам.
Решение: Из 25 билетов 15 не содержат вопроса по неравенствам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам, равна 15/25, т. е. 0,6.
Задача 5. В сборнике билетов по химии всего 35 билетов, в 7 из них встречается вопрос по кислотам.
Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам.
Решение: Из 35 билетов 28 не содержат вопроса по кислотам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам, равна 28/35, т. е. 0,8.
Задача 6. В среднем из 500 садовых насосов, поступивших в продажу, 2 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.
Решение: Если из 500 насосов 2 подтекают, то 498 не подтекают. Следовательно, вероятность выбора хорошего насоса — 498/500, т. е. 0,996.
Задача 7. Вероятность того, что новый пылесос в течение года поступит в гарантийный ремонт, равна 0,065. В некотором городе из 1000 проданных пылесосов в течение года в гарантийную мастерскую поступило 70 штук.
На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?
Решение: Частота события «гарантийный ремонт» равна 70/1000, т. е. 0,07. Она отличается от предсказанной вероятности на 0,005 (0,07 – 0,065 = 0,005).
Задача 8. В чемпионате по гимнастике участвуют 50 спортсменок: 18 из России, 14 из Украины, остальные — из Белоруссии. Порядок, в котором выступают гимнастки, определяется жребием.
Найдите вероятность того, что спортсменка, выступающая первой, окажется из Белоруссии.
Решение: Всего участниц на чемпионате 50, а спортсменок из Белоруссии — 18 (50 – 18 – 14 = 18).
Вероятность того, что первой будет выступать спортсменка из Белоруссии — 18 из 50, т. е. 18/50, или 0,36.
Задача 9. Научная конференция проводится в 5 дней. Всего запланировано 80 докладов — первые три дня по 12 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой.
Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?
Решение: За первые три дня будут прочитаны 36 докладов (12 ∙ 3 = 36), на последние два дня планируется 44 доклада. Поэтому на последний день запланировано 22 докладов (44 : 2 = 22). Значит, вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 22/80, т. е. 0,275.
Задача 10.
Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шахматистов, среди которых 14 участников из России, в том числе Егор Косов.
Найдите вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России?
Решение: В первом туре Егор Косов может сыграть с 25 шахматистами (26 – 1 = 25), из которых 13 ― из России. Значит, вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России, равна 13/25, или 0,52.
Задача 11.
В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.
Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?
Решение: Вероятность того, что команда России окажется во второй группе, равна отношению количества карточек с номером 2, к общему числу карточек, т. е. 4/16, или 0,25.
Задача 12. В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин?
Решение: Выбирают двоих туристов из пяти. Следовательно, вероятность быть выбранным равна 2/5, т. е. 0,4.
Задача 13. В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта.
Решение: На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что турист полетит первым рейсом вертолёта, равна 6/30, или 0,2.
Задача 14. Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?
Решение: Натуральных чисел от 10 до 19 десять, из них на 3 делятся три числа: 12, 15 и 18. Следовательно, искомая вероятность равна 3/10, т. е. 0,3.
Вероятность нескольких событий
Задача 1. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Стартер» по очереди играет с командами «Ротор», «Мотор» и «Стратор». Найдите вероятность того, что «Стартер» будет начинать только вторую игру.
Решение:
Тип вопроса: совмещение событий.
Нас устроит следующий вариант: «Статор» не начинает первую игру, начинает вторую игру, не начинает третью игру. Вероятность такого развития событий равна произведению вероятностей каждого из этих событий. Вероятность каждого из них равна 0,5, следовательно: 0,5 · 0,5 · 0,5 = 0,125.
Задача 2. Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей ― 1 очко, если проигрывает ― 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.
Решение:
Тип вопроса: совмещение событий.
Задачу выполняют несколько вариантов:
Игра №1 | Игра №2 | Вероятность данного варианта |
3 | 1 | 0,4 · 0,2 = 0,08 |
1 | 3 | 0,2 · 0,4 = 0,08 |
3 | 3 | 0,4 · 0,4 = 0,16 |
Вероятность происхождения какого-либо их этих 3-х вариантов равна сумме вероятностей каждого из вариантов: 0,08 + 0,08 + 0,16 = 0,32.
Задача 3. В классе учится 21 человек. Среди них две подруги: Аня и Нина. Класс случайным образом делят на 7 групп, по 3 человека в каждой. Найти вероятность того что Аня и Нина окажутся в одной группе.
Решение:
Тип вопроса: уменьшение групп.
Вероятность попадания Ани в одну из групп равна 1. Вероятность попадания Нины в ту же группу равна 2 из 20 (2 оставшихся места в группе, а человек осталось 20). 2/20 = 1/10 = 0,1.
Задача 4. В кармане у Пети было 4 монеты по рублю и 2 монеты по два рубля. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что обе двухрублёвые монеты лежат в одном кармане.
Решение:
Способ №1
Тип задачи: уменьшение групп.
Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая однорублевая монета попадет в один из карманов (групп) = 1.
Вероятность, что две двухрублевые монеты попадут в этот же карман = количество оставшихся мест в этом кармане/на количество оставшихся мест в обоих карманах = 2/5 = 0,4.
Способ №2
Тип вопроса: совмещение событий.
Задачу выполняют в несколько вариантов:
Если Петя переложил в другой карман три из четырех рублевых монет (а двухрублевые не перекладывал), или если переложил в другой карман обе двухрублевые монеты и одну рублевую одним из трех способов: 1, 2, 2; 2, 1, 2; 2, 2, 1. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):
Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов:
Задача 5. В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.
Решение:
Тип задачи: уменьшение групп.
Способ №1
Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая двухрублевая монета попадет в один из карманов (групп) = 1. Вероятность, что вторая монета попадет в другой карман = количество оставшихся мест в другом/ на количество оставшихся мест в обоих карманах = 3/5 = 0,6.
Способ №2
Тип вопроса: совмещение событий.
Задачу выполняют несколько вариантов:
Чтобы пятирублевые монеты оказались в разных карманах, Петя должен взять из кармана одну пятирублевую и две десятирублевые монеты. Это можно сделать тремя способами: 5, 10, 10; 10, 5, 10 или 10, 10, 5. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):
Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов:
Задача 6. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно два раза.
Решение: Тип вопроса: нахождение желаемого и действительного совмещение событий Нас устраивают три варианта:
Орёл ― решка ― орёл;
Орёл ― орёл ― решка;
Решка ― орёл ― орёл;
Вероятность каждого случая ― 1/2, а каждого варианта ― 1/8 (1/2 ∙ 1/2 ∙ 1/2 = 1/8)
Нас устроит либо первый, либо второй, либо третий вариант. Следовательно, складываем их вероятности и получаем 3/8 (1/8 + 1/8 + 1/8 = 3/8), т. е. 0,375.
Задача 7. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,5. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,34. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
Решение:
Тип вопроса: совмещение событий.
В любом случае А. будет играть как белыми, так и черными, поэтому нас устроит вариант, когда гроссмейстер А. выиграет, играя белыми (вероятность ― 0,5), а также играя чёрными (вероятность ― 0,34). Поэтому надо перемножить вероятности этих двух событий: 0,5 ∙ 0,34 = 0,17.
Задача 8. Вероятность того, что батарейка бракованная, равна 0,02. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.
Решение:
Тип вопроса: совмещение событий.
Вероятность того, что батарейка исправна, равна 0,98. Покупателю надо, чтобы и первая, и вторая батарейка были исправны: 0,98 · 0,98 = 0,9604.
Задача 9. На рок-фестивале выступают группы ― по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из США будет выступать после группы из Канады и после группы из Китая? Результат округлите до сотых.
Решение:
Тип вопроса: совмещение событий.
Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (КИТ — Китай, КАН = Канада):
… США, КАН, КИТ …
… США, КИТ, КАН …
… КИТ, США, КАН …
… КАН, США, КИТ …
… КАН, КИТ, США …
… КИТ, КАН, США …
США находится после Китая и Канады в двух последних случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна:
≈ 0,33.
Дополняющая вероятность
Задача 1.
Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,97. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,05.
Найдите вероятность того, что случайно выбранная батарейка будет забракована.
Решение:
Существуют 2 варианта, которые нам подходят:
Вариант А: батарейка забракована, она неисправна;
Вариант Б: батарейка забракована, она исправна.
Вероятность варианта А: 0,02 ∙ 0,97 = 0,0194;
Вероятность варианта Б: 0,05 ∙ 0,98 = 0,049;
Нас устроит либо первый, либо второй вариант: 0,0194 + 0,049 = 0,0684.
Задача 2. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 60% этих стекол, вторая — 40%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 5%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Решение:
Вероятность того, что стекло куплено на первой фабрике и оно бракованное: 0,6 · 0,03 = 0,018.
Вероятность того, что стекло куплено на второй фабрике и оно бракованное: 0,4 · 0,05 = 0,02.
Вероятность того, что случайно купленное в магазине стекло окажется бракованным, равна 0,018 + 0,02 = 0,038.
Задача 3. На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Результат округлите до тысячных.
Решение:
Предположим, у нас х тарелок изначально (ведь мы постоянно имеем дело с процентами, поэтому нам ничего не мешает оперировать конкретными величинами).
Тогда 0,1х — дефектные тарелки, а 0,9х — нормальные, которые поступят в магазин сразу. Из дефектных убирается 80%, то есть 0,08х, и остаётся 0,02х, которые тоже пойдут в магазин. Таким образом, общее количество тарелок на полках в магазине окажется: 0,9х + 0,02х = 0,92х. Из них нормальными будет 0,9х. Соответственно, по формуле вероятность будет 0,9х/0,92х ≈ 0,978.
Задача 4. По отзывам покупателей Игорь Игоревич оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,91. Вероятность того, что этот товар доставят из магазина Б, равна 0,89. Игорь Игоревич заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.
Решение. Вероятность того, что первый магазин не доставит товар, равна 1 − 0,91 = 0,09. Вероятность того, что второй магазин не доставит товар, равна 1 − 0,89 = 0,11. Вероятность происхождения двух этих событий одновременно равна произведению вероятностей каждого из них: 0,09 · 0,11 = 0,0099.
Задача 5. При изготовлении подшипников диаметром 70 мм вероятность того, что диаметр будет отличаться от заданного меньше чем на 0,01 мм, равна 0,961. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 69,99 мм или больше чем 70,01 мм.
Решение: Нам дана вероятность события, при котором диаметр будет в пределах между 69,99 мм и 70,01 мм, и она равна 0,961. Вероятность всех остальных вариантов мы можем найти по принципу дополняющей вероятности: 1 − 0,961 = 0,039.
Задача 6. Вероятность того, что на тесте по истории учащийся верно решит больше 9 задач, равна 0,68. Вероятность того, что верно решит больше 8 задач, равна 0,78. Найдите вероятность того, что верно решит ровно 9 задач.
Решение: Вероятность того, что Т. верно решит более 8 задач, включает в себя вероятность решения ровно 9 задач. При этом, события, при которых О. решит больше 9 задач, нам не подходят. Следовательно, отняв от вероятности решения более 9 задач вероятность решения более 8 задач, мы и найдём вероятность решения только 9 задач: 0,78 – 0,68 = 0,1.
Задача 7. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 21 пассажира, равна 0,88. Вероятность того, что окажется меньше 12 пассажиров, равна 0,66. Найдите вероятность того, что число пассажиров будет от 12 до 20.
Решение. Вероятность того, что в автобусе окажется меньше 21 пассажира, включает в себя вероятность, что в нём окажутся от 12 до 20 пассажиров. При этом события, при которых пассажиров будет меньше 12, нам не подходят. Следовательно, отняв от первой вероятности (менее 21) вторую вероятность (менее 12), мы и найдём вероятность того, что пассажиров будет от 12 до 20 : 0,88 – 0,66 = 0,22.
Задача 8. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,9 погода завтра будет такой же, как и сегодня. 10 апреля погода в Волшебной стране хорошая. Найдите вероятность того, что 13 апреля в Волшебной стране будет отличная погода.
Решение:
Задачу выполняют несколько вариантов («Х» — хорошая погода, «О» — отличная погода):
11 апреля | 12 апреля | 13 апреля | Вероятность данного варианта |
X – 0,9 | X – 0,9 | O – 0,1 | 0,9 ·0,9 ·0,1 = 0,081 |
X – 0,9 | O – 0,1 | O – 0,9 | 0,9 ·0,1 ·0,9 = 0,081 |
O – 0,1 | O – 0,9 | O – 0,9 | 0,1 ·0,9 ·0,9 = 0,081 |
O – 0,1 | X – 0,1 | O – 0,1 | 0,1 ·0,1 ·0,1 = 0,001 |
Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: 0,081 + 0,081 + 0,081 + 0,001 = 0,244.
Задача 9. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.
Решение:
Задачу выполняют несколько вариантов («Х» ― хорошая погода, «О» ― отличная погода):
4 июля | 5 июля | 6 июля | Вероятность данного варианта |
X – 0,8 | X – 0,8 | O – 0,2 | 0,8 · 0,8 · 0,2 = 0,128 |
X – 0,8 | O – 0,2 | O – 0,8 | 0,8 · 0,2 · 0,8 = 0,128 |
O – 0,2 | O − 0,8 | O − 0,8 | 0,2 · 0,8 · 0,8 = 0,128 |
O – 0,2 | X – 0,2 | O – 0,2 | 0,2 · 0,2 · 0,2 = 0,008 |
Вероятность происхождения какого-либо их этих 4 ― х вариантов равна сумме вероятностей каждого из вариантов: 0,128 + 0,128 + 0,128 + 0,008 = 0,392.