Как найти одно частное решение системы

Как
и в общем случае исследования системы
неоднородных
линейных уравнений, использование
теоремы
Кронекера–Капелли в частном случае
исследования системы линейных однородных
уравнений также плодотворно. Общая
схема решения:

A1*:
Вычисляем
:
ранг матрицы
.
Так
как для однородной системы уравнений

=,
то всегда выполняется
.
Однородная система уравнений всегда
совместна. Пусть
=.
Это значит, что определён базовый
минор
:
M
матрицы
.

A2*:
В системе уравнений оставляем только
те

уравнения-строки, которые попали
в базовый минор
:
остальные являются следствием выделенных.

A3*:
В левой части каждого из оставшихся для
дальнейшего решения уравнений оставляем
те

столбцов с неизвестными, которые попали
в базовый минор
:
остальные неизвестные объявляем
свободными
и соответствующие столбцы с ними
переносим в правую часть.

A4*:
Находим решения преобразованной системы
уравнений, применяя формулы Крамера:
определитель
преобразованной системы не
равен нулю
!

A5*:
Полученное решение системы называют
общим:
вычисленные по формулам Крамера
неизвестные выражаются
через свободные

неизвестные. Присваивая свободным
неизвестным произвольные значения,
получаем частные
решения.

Замечание:
отметим ещё раз, что свободных неизвестных

:
их можно воспринимать как число степеней
свободы процесса; вычисляемых неизвестных

.

☺☺

Пример
8
04:
Исследовать систему уравнений:

Найти общее решение и одно частное.

Решение:

1). Составим матрицу:

=и найдём её ранг. Выделим для окаймления
минор (не равен нулю), расположенный в
правом верхнем углу матрицы:

3

4

1

2

6

8

2

5

1

9

12

3

10

2

1

3). Окаймляющие
миноры будем обозначать:
,
где
указывает номер отмеченной для окаймления
строки,
указывает номер отмеченного для
окаймления столбца. Тогда можем записать:

==4·–8·+12·=m1·(5)h1·(4)+g1·(1)=4·(5)–8·(4)+12·(1)
=0;

Замечание:
параметры: m1,
h1,
g1
изменяются при переходе к минорам
,,
числа:(5),
(4),
(1)
не
изменяются. Это позволяет применить
единый шаблон вычислений!

==
m2·(5)h2·(4)+g2·(1)=
3·(5)–6·(4)+9·(1)
=0;

4).
Так как все миноры 3-го порядка
оказались равными нулю, то
=2.

5). Учитывая
расположение не равного нулю минора,
3-е уравнение отбрасываем и свободными
неизвестными объявляем
и:

далее применяем
правило Крамера:

=1; =
=;
==0.

6). Общее решение
системы:
==;
==0;
частное решение получим при значениях:=1,=–1,
=1,=0.

Ответ:
общее решение:==;
==0;
частное решение: (1,–1,1,0).

Пример
8
05:
Исследовать
систему уравнений:


Найти
общее и частное решение.

Решение:

1). Применим пошаговый
процесс метода Гаусса:

4

-3

2

-1

1

1

-1

2

3

-2

1

-3

1

1

1

2

2

-1

0

-5

=(1)

1

-1

1

2

=(2)

5

-3

1

-8

1

0

-1

-7

1

1

-1

2

1

0

0

-7

0

0

-2

0

0

0

1

0

0

0

-2

0

=(3)

0

0

0

0

=(4)

0

1

0

9

0

1

0

9

Выполнены
операции:
(1):
[R4]–[R1];
[R1]–[R2];
[R2]–[R3];
[R3]–[R4].
(2):
[R2]–[R1];
[R3]–[R1];
[R4]–[R1].
(3):
[R3]–[R1];
[R2]
делим на (–2); [R1]–[R2];
[R1]–[R4].
(4):

раскрываем
полученный результат.

2).
Видим:
=3.
Свободной неизвестной объявляем=.

3). Из уравнения-строки
[R4] запишем:=9;
из строки [R2]:=0;
[R4] запишем:=7.
Произвольная величинаопределяет бесчисленное множество
решений заданного уравнения.

Ответ: общее
решение: (7;9;0;)=(7,9,
0;1).

Замечание:
видим,
что и применение фундаментальных
результатов теоремы Кронекера-Капелли
не продвинуло нас в понимании системы
решений

системы ЛОУ!

Соседние файлы в папке ЛА и АГ пособие

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Уважаемые студенты!
Заказать решение задач можно у нас всего за 10 минут.

Метод Гаусса

  1. Метод Гаусса
    1. Пример 1
    2. Пример 2
  2. Несовместность системы (нет решений)
    1. Пример 3
  3. Общее и частное решение системы (бесконечное множество решений)
    1. Пример 4

Пусть задана система линейных алгебраических уравнений: $$begin{cases} a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = b_1 \ a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2 \ a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = b_3 end{cases}. $$

  1. Запишем систему уравнений в виде расширенной матрицы, состоящей из коэффициентов и столбца свободных членов. Вертикальная черта используется для удобства оформления. $$ begin{pmatrix} a_{11} & a_{12} & a_{13} & | & b_1 \ a_{21} & a_{22} & a_{23} & | & b_2 \ a_{31} & a_{32} & a_{33} & | & b_3 end{pmatrix} $$
  2. С помощью элементарных преобразований матрицы (вычитание одной строки из другой, умноженной на коэффициент, удаление одинаковых и нулевых строк, деление строки на число отличное от нуля) получаем нули под главной диагональю $$ begin{pmatrix} a_{11} & a_{12} & a_{13} & | & b_1 \ 0 & a_{22} & a_{23} & | & b_2 \ 0 & 0 & a_{33} & | & b_3 end{pmatrix} $$
  3. Используя элементарные преобразования, изложенные в пункте 2, приводим матрицу к виду содержащему нули везде, кроме главной диагонали $$ begin{pmatrix} a_{11} & 0 & 0 & | & b_1 \ 0 & a_{22} & 0 & | & b_2 \ 0 & 0 & a_{33} & | & b_3 end{pmatrix} $$
Пример 1
Решить систему уравнений методом Гаусса $$begin{cases} x_1 + 2 x_2 + x_3 = 5 \ -x_1 + 3 x_2 -2 x_3 = 3 \ – x_1 -7 x_2 + 4 x_3 = -5 end{cases}. $$
Решение

Запишем расширенную матрицу, состоящую из коэффициентов при неизвестных $x_1, x_2, x_3$ и отдельно столбец свободных членов $b_1, b_2, b_3$. $$begin{pmatrix} 1 & 2 & 1 & | & 5 \ -1 & 3 & -2 & | & 3 \ -1 & -7 & 4 & | & -5 end{pmatrix} $$

Приведем матрицу к нижнетреугольному виду (под главной диагональю должны быть нули) с помощью элементарных преобразований.

Прибавим ко второй строке первую. $$begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 5 & -1 & | & 8 \ -1 & -7 & 4 & | & -5 end{pmatrix} $$

Далее прибавляем к третьей строке первую. $$ begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 5 & -1 & | & 8 \ 0 & -5 & 5 & | & 0 end{pmatrix}$$

Теперь осталось к третьей строке прибавить вторую строку, чтобы под главной диагональю были только нули. $$ begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 5 & -1 & | & 8 \ 0 & 0 & 4 & | & 8 end{pmatrix}$$

Замечаем, что в третьей строке стоят числа, которые можно сократить на четыре. Для этого выполняем деление всей третьей строки на 4. $$ begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 5 & -1 & | & 8 \ 0 & 0 & 1 & | & 2 end{pmatrix}$$

Теперь выполняем обратный ход Гаусса снизу вверх. Прибавляем ко второй строке третью строку. $$begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 5 & 0 & | & 10 \ 0 & 0 & 1 & | & 2 end{pmatrix}$$

Сразу замечаем, что вторую строку можно сократить на 5. $$begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 1 & 0 & | & 2 \ 0 & 0 & 1 & | & 2 end{pmatrix}$$

Продолжаем обратный ход, вычитаем третью строку из первой. $$begin{pmatrix} 1 & 2 & 0 & | & 3 \ 0 & 1 & 0 & | & 2 \ 0 & 0 & 1 & | & 2 end{pmatrix}$$

Осталось из первой строки вычесть вторую строку, умноженную на 2, для того, чтобы в первой строке появился ноль. $$begin{pmatrix} 1 & 0 & 0 & | & -1 \ 0 & 1 & 0 & | & 2 \ 0 & 0 & 1 & | & 2 end{pmatrix}$$

Теперь перепишем получившуюся матрицу в виде системы уравнений, чтобы в дальнейшем получить чему равны неизвестные $x_1, x_2, x_3$. $$begin{cases} x_1 = -1 \ x_2 = 2 \ x_3 = 2 end{cases}$$

Ответ
$$x_1 = -1, x_2 = 2, x_3 = 2$$
 

Пример 2
Решить систему линейных алгебраических уравнений методом Гаусса $$begin{cases} 2x_1 + 5 x_2 + 4x_3 + x_4 = 20 \ x_1 + 3 x_2 + 2x_3 +x_4 = 11 \ 2x_1 +10 x_2 + 9 x_3 + 7x_4 = 40 \ 3x_1 + 8x_2 + 9x_3 + 2x_4 = 37 end{cases}. $$
Решение

Записываем расширенную матрицу $$ begin{pmatrix} 2&5&4&1&|&20 \ 1&3&2&1&|&11 \ 2&10&9&7&|&40 \ 3&8&9&2&|&37 end{pmatrix}.$$

Умножаем вторую строку на 2 и вычитаем из неё первую строчку. Из третьей строки просто вычитаем первую. Умножаем четвертую строку на 2 и вычитаем из неё первую строку, умноженную на 3. Получаем матрицу $$begin{pmatrix} 2&5&4&1&|&20 \ 0&1&0&1&|&2 \ 0&5&5&6&|&20 \ 0&1&6&1&|&14 end{pmatrix}.$$

Берем вторую строку, умноженную на 5 и вычитаем из третьей. Затем вторую строку вычитаем из четвертой. $$begin{pmatrix} 2&5&4&1&|&20 \ 0&1&0&1&|&2 \ 0&0&5&1&|&10 \ 0&0&6&0&|&12 end{pmatrix}$$

Теперь умножаем третью строку на 6 и вычитаем её из четвертой строки, умноженной на 5. $$begin{pmatrix} 2&5&4&1&|&20 \ 0&1&0&1&|&2 \ 0&0&5&1&|&10 \ 0&0&0&-6&|&0 end{pmatrix}$$

Получили нижнетреугольную матрицу, то есть ниже главной диагонали расположены нули. Теперь проделываем элементарные преобразования снизу вверх, так называемый обратный ход Гаусса. Но прежде замечаем, что появилась строка, в которой можно выполнить сокращение. А именно в четвертой строке можно разделить все числа на (-6). И получаем $$begin{pmatrix} 2&5&4&1&|&20 \ 0&1&0&1&|&2 \ 0&0&5&1&|&10 \ 0&0&0&1&|&0 end{pmatrix}$$

Вот теперь вычитаем четвертую строчку из третьей, второй и первой. $$begin{pmatrix} 2&5&4&0&|&20 \ 0&1&0&0&|&2 \ 0&0&5&0&|&10 \ 0&0&0&1&|&0 end{pmatrix}$$

Из второй строки мы не будем вычить третью, потому что там итак стоит ноль, ради которого мы проводим элементарные преобразования, поэтому пропускаем этот шаг. 

Умножаем на 4 третью строку и вычитаем её из первой, умноженной на 5. $$begin{pmatrix} 10&25&0&0&|&60 \ 0&1&0&0&|&2 \ 0&0&5&0&|&10 \ 0&0&0&1&|&0 end{pmatrix}$$

Замечаем, что в первой строке можно все числа сократить на 5. $$begin{pmatrix} 2&5&0&0&|&12 \ 0&1&0&0&|&2 \ 0&0&5&0&|&10 \ 0&0&0&1&|&0 end{pmatrix}$$

Теперь остался последний шаг это умножить вторую строку на 5 и вычесть из первой. $$begin{pmatrix} 2&0&0&0&|&2 \ 0&1&0&0&|&2 \ 0&0&5&0&|&10 \ 0&0&0&1&|&0 end{pmatrix}$$

Замечаем, что первую строку можно сократить на 2, а третью строку на 5. $$begin{pmatrix} 1&0&0&0&|&1 \ 0&1&0&0&|&2 \ 0&0&1&0&|&2 \ 0&0&0&1&|&0 end{pmatrix}$$

Переписываем матрицу в виде привычной системы уравнений и получаем ответ $$begin{pmatrix} 1&0&0&0&|&1 \ 0&1&0&0&|&2 \ 0&0&1&0&|&2 \ 0&0&0&1&|&0 end{pmatrix} sim begin{cases} x_1 = 1 \ x_2 = 2 \ x_3 = 2 \ x_4 = 0 end{cases}.$$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$x_1 = 1, x_2 = 2, x_3 = 2, x_4 = 0$$

Несовместность системы (нет решений)

Если в результате элементарных преобразований появилась нулевая строка вида $$begin{pmatrix} 0&0&0&|&b end{pmatrix} text{ где } b neq 0,$$то система уравнений не имеет решений. На этом алгоритм Гаусса заканчивает свою работу и можно записывать ответ, что система несовместна, то есть нет решений. 

Пример 3
Найти решение системы линейных уравнений методом Гаусса $$begin{cases} 7x_1 – 2x_2 – x_3 = 2 \ 6x_1 – 4x_2 – 5x_3 = 3 \ x_1 + 2x_2 + 4x_3 = 5 end{cases}.$$
Решение

Как обычно пишем расширенную матрицу по коэффициентам при неизвестных переменных и столбцу свободных членов $$begin{pmatrix} 7&-2&-1&|&2 \ 6&-4&-5&|&3 \ 1&2&4&|&5 end{pmatrix}.$$

Запускаем алгоритм Гаусса. Идём сверху вниз. Умножаем вторую строку на 7 и вычитаем из неё первую строчку умноженную на 6. Затем первую строку вичитаем из третьей, умноженной на 7. $$begin{pmatrix} 7&-2&-1&|&2 \ 0&-16&-29&|&9 \ 0&16&29&|&33 end{pmatrix}$$

Далее по алгоритму прибавляем вторую строку к третьей. $$begin{pmatrix} 7&-2&-1&|&2 \ 0&-16&-29&|&9 \ 0&0&0&|&42 end{pmatrix}$$

Видим, что в результате элементарных преобразований появилась строка в которой все нули, кроме свободного члена. Это означает, что система несовместа, то есть у системы уравнений нет решения.

Ответ
Нет решений, так как система несовместна.

Общее и частное решение системы (бесконечное множество решений) 

Часто после элементарных преобразований в расширенной матрице появляются нулевые строки вида $$begin{pmatrix} 0&0&0&|&0 end{pmatrix}.$$ Такую строку нужно вычеркивать из матрицы и система уравнений будет иметь бесконечное множество решений. Разберем это на практике.

Пример 4
Найти общее и два частных решения системы линейных алгебраических уравнений методом Гаусса $$begin{cases} x_1+x_2-x_3=4 \ 3x_1+2x_2-5x_3=7 \ 3x_1+x_2-7x_3=2 end{cases}.$$
Решение

Составляем расширенную матрицу $$begin{pmatrix} 1&1&-1&|&4 \ 3&2&-5&|&7 \ 3&1&-7&|&2 end{pmatrix}.$$

Из второй и третьей строки вычетаем первую, умноженную на 3. $$begin{pmatrix} 1&1&-1&|&4 \ 0&-1&-2&|&-5 \ 0&-2&-4&|&-10 end{pmatrix}$$

Из третьей строки вычитаем вторую, домноженную на 2. $$begin{pmatrix} 1&1&-1&|&4 \ 0&-1&-2&|&-5 \ 0&0&0&|&0 end{pmatrix}$$

Теперь согласно обратному ходу Гаусса вторую строку прибавляем к первой. $$begin{pmatrix} 1&0&-3&|&-1 \ 0&-1&-2&|&-5 \ 0&0&0&|&0 end{pmatrix}$$

По окочанию элементарных преобразований получилась строка, в которой все элементы равны нулю. Значит, система имеет бесконечное множество решений. Для его записи понадобится отличать базисные и свободные переменные. Обычно за базисные берут переменные, которые стоят на главной диагонали, а остальные свободные. В нашем случае базисными будут $x_1, x_2$, а свободной $x_3$.

Переписываем матрицу в виде системы $$begin{pmatrix} 1&0&-3&|&-1 \ 0&-1&-2&|&-5 \ 0&0&0&|&0 end{pmatrix} sim begin{cases} x_1-3x_3 = -1 \ -x_2-2x_3 = -5 end{cases}.$$

Так как $x_1, x_2$ являются базисными переменными, то их переносим в левую часть равенства, а всё остальное в правую часть. Получившееся называют общим решением решением системы уравнений $$begin{cases} x_1-3x_3 = -1 \ -x_2-2x_3 = -5 end{cases} sim begin{cases} x_1 = 3x_3-1 \ x_2 = 5-2x_3 end{cases}.$$

Чтобы получить частное решение системы уравнений нужно вместо свободного $x_3$ подставить любое число, например $x_3 = 0$. Тогда получаем, что $$begin{cases} x_1 = -1 \ x_2 = 5 end{cases}.$$ Возьмем ещё например $x_3 = 1$ и получаем $$begin{cases} x_1 = 2 \ x_2 = 3 end{cases}.$$

Можно брать различные числа вместо $x_3$ и получать бесконечное множество решений.

Ответ

Общее решение системы уравнений $$begin{cases} x_1 = 3x_3-1 \ x_2 = 5-2x_3 end{cases}.$$

Частные решения системы уравнений $$begin{cases} x_1 = -1 \ x_2 = 5 end{cases}, begin{cases} x_1 = 2 \ x_2 = 3 end{cases}.$$


Калькулятор онлайн.
Решение систем линейных алгебраических уравнений (СЛАУ)
Метод Гаусса, матричный метод, метод Крамера, исследование на совместность (теорема Кронекера-Капелли),
определение количества решений, нахождение нормальной фундаментальной системы решений.

С помощью данной математической программы вы можете решить и исследовать систему линейных алгебраических уравнений (СЛАУ).

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.

Правила ввода чисел

Числа можно вводить целые и дробные.

Дробные числа можно вводить в 3-х различных видах:

  • в виде десятичных дробей,
  • в виде обыкновенных дробей,
  • в виде периодических десятичных дробей.

Ввод дробного числа в виде десятичной дроби.
При вводе десятичной дроби, целую часть от дробной части можно отделять точкой или запятой :
Ввод: -2.34
Результат: ( -2{,}34 )

Ввод: -1,15
Результат: ( -1{,}15 )

Ввод дробного числа в виде обыкновенной дроби.

В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: $$ -frac{2}{3} $$

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 5&8/3
Результат: $$ 5frac{8}{3} $$
Помните, что на ноль делить нельзя!

Ввод дробного числа в виде периодической десятичной дроби.
В периодических десятичных дробях период заключается в скобки.
Ввод: 0,(72)
Результат: $$ frac{8}{11} $$

Ввод: -2,3(4)
Результат: $$ -2frac{31}{90} $$

Наши игры, головоломки, эмуляторы:

Немного теории.

Системы линейных алгебраических уравнений

Основные определения

Система (m) линейных алгебраических уравнений с (n) неизвестными (сокращенно СЛАУ) представляет собой систему вида

( left{ begin{array}{l}
a_{11}x_1 + a_{12}x_2 + cdots + a_{1n}x_n = b_1 \
a_{21}x_1 + a_{22}x_2 + cdots + a_{2n}x_n = b_2 \
cdots \
a_{m1}x_1 + a_{m2}x_2 + cdots + a_{mn}x_n = b_m
end{array} right. tag{1} )

Уравнения системы называют алгебраическими потому, что левая часть каждого из них есть многочлен от (n) переменных
( x_1 , ldots x_n )
, а линейными потому, что эти многочлены имеют первую степень.

Числа (a_{ij} in mathbb{R} ) называют коэффициентами СЛАУ. Их нумеруют двумя индексами: номером уравнения (i) и номером
неизвестного (j). Действительные числа ( b_1 , ldots b_m ) называют свободными членами уравнений.

СЛАУ называют однородной, если ( b_1 = b_2 = ldots = b_m = 0 ). Иначе её называют неоднородной.

Решением СЛАУ, да и вообще всякой системы уравнений, называют такой набор значений неизвестных ( x_1^circ, ldots , x_n^circ ),
при подстановке которых каждое уравнение системы превращается в тождество. Любое конкретное решение СЛАУ также называют её частным решением.

Решить СЛАУ — значит решить две задачи:
— выяснить, имеет ли СЛАУ решения;
— найти все решения, если они существуют.

СЛАУ называют совместной, если она имеет какие-либо решения. В противном случае её называют несовместной. Однородная СЛАУ
всегда совместна, поскольку нулевой набор значений её неизвестных всегда является решением.

Если СЛАУ (1) имеет решение, и притом единственное, то её называют определенной, а если решение неединственное — то неопределенной.
При (m=n), т.е. когда количество уравнений совпадает с количеством неизвестных, СЛАУ называют квадратной.

Формы записи СЛАУ

Кроме координатной формы (1) записи СЛАУ часто используют и другие её представления.

Рассматривая коэффициенты (a_{ij}) СЛАУ при одном неизвестном (x_j) как элементы столбца, а (x_j) как коэффициент, на который умножается
столбец, из (1) получаем новую форму записи СЛАУ:
( begin{pmatrix}
a_{11} \
a_{21} \
vdots \
a_{m1}
end{pmatrix} x_1 + begin{pmatrix}
a_{12} \
a_{22} \
vdots \
a_{m2}
end{pmatrix} x_2 + ldots + begin{pmatrix}
a_{1n} \
a_{2n} \
vdots \
a_{mn}
end{pmatrix} x_n = begin{pmatrix}
b_1 \
b_2 \
vdots \
b_m
end{pmatrix} )

или, обозначая столбцы соответственно ( a_1 , ldots , a_n , b ),
( x_1 a_1 + x_2 a_2 + ldots + x_n a_n = b tag{2} )

Таким образом, решение СЛАУ (1) можно трактовать как представление столбца (b) в виде линейной комбинации столбцов ( a_1, ldots, a_n ).
Соотношение (2) называют векторной записью СЛАУ.

Обратим внимание на то, что слева в каждом уравнении системы (1) стоит сумма попарных произведений — так же, как и в произведении двух матриц.
Если взять за основу произведение матриц, то СЛАУ (1) можно записать так :
( begin{pmatrix}
a_{11} & a_{12} & cdots & a_{1n} \
a_{21} & a_{22} & cdots & a_{2n} \
vdots & vdots & ddots & vdots \
a_{m1} & a_{m2} & cdots & a_{mn}
end{pmatrix} begin{pmatrix}
x_1 \
x_2 \
vdots \
x_n
end{pmatrix} = begin{pmatrix}
b_1 \
b_2 \
vdots \
b_m
end{pmatrix} )

или (Ax=b), где (A) — матрица размера (m times n); (x) — столбец неизвестных; (b) — столбец свободных членов:
( A = begin{pmatrix}
a_{11} & a_{12} & cdots & a_{1n} \
a_{21} & a_{22} & cdots & a_{2n} \
vdots & vdots & ddots & vdots \
a_{m1} & a_{m2} & cdots & a_{mn}
end{pmatrix} ,; )

( X = begin{pmatrix}
x_1 \
x_2 \
vdots\
x_n
end{pmatrix} ,; )

( B = begin{pmatrix}
b_1 \
b_2 \
vdots \
b_m
end{pmatrix} )

Поскольку (A ;,; X) и (B) являются матрицами, то запись СЛАУ (1) в виде (AX=B) называют матричной. Если (B=0), то СЛАУ
является однородной и в матричной записи имеет вид (AX=0).

Приведенные рассуждения показывают, что задачи :
а) решения СЛАУ (1)
б) представления столбца в виде линейной комбинации данных столбцов
в) решения матричных уравнений вида (AX=B)
являются просто различной формой записи одной и той же задачи.

Критерий совместности СЛАУ

“Триединство” форм записи СЛАУ позволяет легко получить критерий совместности СЛАУ. Напомним, что содержательный смысл это понятие имеет
для неоднородных СЛАУ (однородные СЛАУ всегда совместны).

Матрицу
( A = begin{pmatrix}
a_{11} & a_{12} & cdots & a_{1n} \
a_{21} & a_{22} & cdots & a_{2n} \
vdots & vdots & ddots & vdots \
a_{m1} & a_{m2} & cdots & a_{mn}
end{pmatrix} )

называют матрицей (коэффициентов) СЛАУ (1), а матрицу
( (A|B) = left( begin{array}{cccc|c}
a_{11} & a_{12} & cdots & a_{1n} & b_1 \
a_{21} & a_{22} & cdots & a_{2n} & b_2 \
vdots & vdots & ddots & vdots & vdots \
a_{m1} & a_{m2} & cdots & a_{mn} & b_m
end{array} right) )

расширенной матрицей СЛАУ (1). Расширенная матрица полностью характеризует СЛАУ. Это означает, что по этой матрице однозначно
(если сохранить обозначения для неизвестных) восстанавливается сама СЛАУ.

Теорема Кронекера-Капелли. Для совместности СЛАУ (AX=B) необходимо и достаточно, чтобы ранг её матрицы (A) был равен рангу
её расширенной матрицы ( (A|B) ).

Формулы Крамера

Теорема. СЛАУ с квадратной невырожденной матрицей имеет решение, и притом единственное, которое определяется по
формулам Крамера :

$$ x_i = frac{Delta_i}{|A|} ;,quad i=overline{1,n} tag{3} $$

где (Delta_i) — определитель матрицы, получающейся из матрицы (A) заменой (i)-го столбца на столбец свободных членов.

Следствие. Однородная СЛАУ с квадратной невырожденной матрицей имеет единственное решение — нулевое.

Если матрица СЛАУ не является квадратной невырожденной, то формулы Крамера не работают и приходится использовать другие методы
нахождения решений.

Однородные системы

Следующая теорема описывает важнейшее свойство множества решений однородной системы (m) линейных алгебраических уравнений с (n) неизвестными.

Теорема. Если столбцы ( X^{(1)}, X^{(2)}, ldots , X^{(s)} ) — решения однородной СЛАУ (AX=0), то любая их линейная комбинация
также является решением этой системы.

Следствие. Если однородная СЛАУ имеет ненулевое решение, то она имеет бесконечно много решений.

Естественно попытаться найти такие решения ( X^{(1)}, ldots , X^{(s)} ) системы (AX=0), чтобы любое другое решение этой системы
представлялось в виде их линейной комбинации и притом единственным образом. Оказывается, что это всегда возможно и приводит к следующему определению.

Определение. Любой набор из (k=n-r) линейно независимых столбцов, являющихся решениями однородной СЛАУ (AX=0), где
(n) — количество неизвестных в системе, а (r) — ранг её матрицы (A), называют фундаментальной системой решений этой однородной СЛАУ.

При исследовании и решении однородных систем линейных алгебраических уравнений будем использовать следующую терминологию. Если в матрице
(A) однородной СЛАУ (AX=0) фиксировать базисный минор, то ему соответствуют базисные столбцы и, следовательно, набор неизвестных, отвечающих
этим столбцам. Указанные неизвестные называют базисными, или зависимыми, а остальные неизвестные — свободными, или
независимыми.

Теорема. Пусть дана однородная СЛАУ (AX=0) с (n) неизвестными и ( text{rang}A = r ). Тогда существует набор из (k=n-r)
решений ( X^{(1)}, ldots , X^{(k)} ) этой СЛАУ, образующих фундаментальную систему решений.

Если в фундаментальной системе решений все значения независимых неизвестных равны нулю, кроме одного, которое равно единице, то такую систему решений
называют фундаментальной нормальной системой решений.

Следствие. С помощью нормальной фундаментальной системы решений однородной СЛАУ множество всех решений можно описать формулой :
$$ X = c_1X^{(1)} + ldots + c_kX^{(k)} $$
где постоянные ( c_i ;, quad i=overline{1,k} ), принимают произвольные значения.

Следствие. Для существования ненулевого решения у однородной квадратной СЛАУ необходимо и достаточно, чтобы её матрица была вырождена.

Неоднородные системы

Рассмотрим произвольную СЛАУ (AX=B). Заменив столбец (B) свободных членов нулевым, получим однородную СЛАУ (AX=0), соответствующую
неоднородной СЛАУ (AX=B). Справедливо следующее утверждение о структуре произвольного решения неоднородной СЛАУ.

Теорема. Пусть столбец (X^circ) — некоторое решение СЛАУ (AX=B). Произвольный столбец (X) является решением этой СЛАУ тогда и
только тогда, когда он имеет представление (X = X^circ + Y ), где (Y) — решение соответствующей однородной СЛАУ (AY=0).

Следствие. Пусть (X’) и (X”) — решения неоднородной системы (AX=B). Тогда их разность ( Y = X’ – X” ) является
решением соответствующей однородной системы (AY=0).

Эта теорема сводит проблему решения СЛАУ к случаю однородной системы: чтобы описать все решения неоднородной СЛАУ, достаточно энать одно
её решение (частное решение) и все решения соответствующей однородной СЛАУ.

Чтобы решить неоднородную систему, надо, во-первых, убедиться, что она совместна (например, по теореме Кронекера-Капелли), а во-вторых,
найти частное решение (X^circ) этой системы, чтобы свести её к однородной системе.

Теорема о структуре общего решения СЛАУ. Пусть (X^circ) — частное решение СЛАУ (AX=B) и известна фундаментальная система
решений ( X^{(1)}, ldots , X^{(k)} ) соответствующей однородной системы (AX=0). Тогда любое решение СЛАУ (AX=B) можно представить в виде
$$ X = X^circ + c_1 X^{(1)} + c_2 X^{(2)} + ldots + c_k X^{(k)} $$
где ( c_i in mathbb{R} ;, quad i=overline{1,k} ).

Эту формулу называют общим решением СЛАУ.

Добавить комментарий