Как найти односторонний треугольник

Свойства равностороннего треугольника: теория и пример задачи

В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.

Определение равностороннего треугольника

Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.

Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.

Свойства равностороннего треугольника

Свойство 1

В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.

Свойство 2

В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.

CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.

Свойство 3

В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.

Свойство 4

Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.

Свойство 5

Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.

  • R – радиус описанной окружности;
  • r – радиус вписанной окружности;
  • R = 2r.

Свойство 6

В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:

1. Высоту/медиану/биссектрису:

2. Радиус вписанной окружности:

3. Радиус описанной окружности:

4. Периметр:

5. Площадь:

Пример задачи

Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.

Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:

Треугольник. Формулы и свойства треугольников.

Типы треугольников

По величине углов

По числу равных сторон

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c = 2R
sin α sin β sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 – 2 bc · cos α

b 2 = a 2 + c 2 – 2 ac · cos β

c 2 = a 2 + b 2 – 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Медианы треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 – a 2

mb = 1 2 √ 2 a 2 +2 c 2 – b 2

mc = 1 2 √ 2 a 2 +2 b 2 – c 2

Биссектрисы треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p – a ) b + c

lb = 2√ acp ( p – b ) a + c

lc = 2√ abp ( p – c ) a + b

где p = a + b + c 2 – полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Высоты треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Окружность вписанная в треугольник

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b – c )( b + c – a )( c + a – b ) 4( a + b + c )

Окружность описанная вокруг треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Периметр треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

Формула Герона

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k – коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Свойства равностороннего треугольника

Основные свойства равностороннего треугольника непосредственно следуют из свойств равнобедренного треугольника, частным случаем которого он является.

Свойства равностороннего треугольника

2) Высота, медиана и биссектриса, проведённые к каждой из сторон равностороннего треугольника, совпадают:

AK — высота, медиана и биссектриса, проведённые к стороне BC;

BF — высота, медиана и биссектриса, проведённые к стороне AC;

CD — высота, медиана и биссектриса, проведённые к стороне AB.

Длины всех трёх высот (медиан, биссектрис) равны между собой:

Если a — сторона треугольника, то

3) Точка пересечения высот, биссектрис и медиан называется центром правильного треугольника и является центром вписанной и описанной окружностей (то есть в равностороннем треугольнике центры вписанной и описанной окружностей совпадают).

4) Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, считая от вершин:

5) Расстояние от точки пересечения высот, биссектрис и медиан

до любой вершины треугольника равно радиусу описанной окружности:

6) Расстояние от точки пересечения высот, биссектрис и медиан до любой стороны треугольника равно радиусу вписанной окружности:

7) Сумма радиусов вписанной и описанной окружностей правильного треугольника равна его высоте, медиане и биссектрисе: R+r=BF.

8) Радиус вписанной в правильный треугольник окружности в два раза меньше радиуса описанной окружности:

[spoiler title=”источники:”]

http://ru.onlinemschool.com/math/formula/triangle/

Свойства равностороннего треугольника

[/spoiler]

Равносторонний треугольник, свойства, признаки и формулы.

Равносторонний треугольник – это треугольник, у которого все стороны равны между собой по длине, все углы также равны и составляют 60°.

Равносторонний треугольник (понятие, определение)

Свойства равностороннего треугольника

Признаки равностороннего треугольника

Формулы равностороннего треугольника

Остроугольный треугольник, прямоугольный треугольник, равнобедренный треугольник, равносторонний треугольник, тупоугольный треугольник

Равносторонний треугольник (понятие, определение):

Равносторонний треугольник – это треугольник, у которого все стороны равны между собой по длине, все углы также равны и составляют 60°.

Равносторонний треугольник называется также правильным или равноугольным треугольником.

По определению, каждый правильный (равносторонний) треугольник также является равнобедренным, но не каждый равнобедренный треугольник – правильным (равносторонним). Иными словами, правильный (равносторонний) треугольник является частным случаем равнобедренного треугольника.

Равносторонний треугольник, свойства, признаки и формулы_21

Рис. 1. Равносторонний треугольник

АВ = ВС = АС – стороны треугольника, ∠ АВС = ∠ BАC = ∠ BСA = 60° – углы треугольника

Свойства равностороннего треугольника:

1. В равностороннем треугольнике все стороны равны между собой.

2. В равностороннем треугольнике углы равны и составляют 60°.

3. В равностороннем треугольнике каждая медиана, проведенная к каждой стороне, является биссектрисой и высотой, и они равны между собой.

В равностороннем треугольнике биссектриса, проведенная к каждой стороне, является медианой и высотой, и они равны между собой.

В равностороннем треугольнике высота, проведенная к каждой стороне, является биссектрисой и медианой, и они равны между собой.

Равносторонний треугольник, свойства, признаки и формулы_22

Рис. 2. Равносторонний треугольник

АK = BF = CD

4. В равностороннем треугольнике высоты, биссектрисы, медианы и серединные перпендикуляры пересекаются в одной точке, которая называется центром равностороннего треугольника. Она же является центром вписанной и описанной окружностей.

Равносторонний треугольник, свойства, признаки и формулы_23

Рис. 3. Равносторонний треугольник

R – радиус описанной окружности, r – радиус вписанной окружности

5. В равностороннем треугольнике радиус описанной окружности в два раза больше радиуса вписанной.

6. Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, если считать от вершин.

Равносторонний треугольник, свойства, признаки и формулы_22

Рис. 4. Равносторонний треугольник

AO : OK = BO : OА = CO : OD = 2 : 1

Признаки равностороннего треугольника:

– если в треугольнике три угла равны, то он равносторонний;

– если в треугольнике три стороны равны, то он равносторонний.

Формулы равностороннего треугольника:

Пусть a – длина стороны равностороннего треугольника, h – высота (l – биссектриса, m – медиана) равностороннего треугольника, проведенная к каждой стороне, α – угол равностороннего треугольника, α = 60°, R – радиус описанной окружности, r – радиус вписанной окружности (см. Рис. 6).

Рис. 6. Равносторонний треугольник

Формула радиуса вписанной окружности (r):

 .

Формула радиуса описанной окружности (R): 

,

.

Формулы периметра (Р) равностороннего треугольника: 

.

Формулы площади (S) равностороннего треугольника: 

 .

Формулы высоты (h), медианы (m) и биссектрисы (l) треугольника:

.

Прямоугольный треугольник

Равнобедренный треугольник

Равносторонний треугольник

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Коэффициент востребованности
21 188

Как найти площадь треугольника – все способы от самых простых до самых сложных

Зависит от того, какой треугольник.

32 614

Как найти площадь треугольника – все способы

Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.

Если треугольник прямоугольный

То есть один из его углов равен 90 градусам.

Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.

формула площади прямоугольного треугольника

Если он равнобедренный

То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.

Формула площади равнобедренного треугольника

Если он равносторонний

То есть все три стороны равны. Ваши действия такие:

  1. Найдите квадрат стороны – умножьте эту сторону на нее же. Если у вас сторона равна 4, умножьте 4 на 4, будет 16.
  2. Умножьте полученное значение на корень из 3. Это примерно 1,732050807568877293527.
  3. Поделите все на 4.

Формула площади равностороннего треугольника

Если известна сторона и высота

Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.

Формула площади треугольника по стороне и высоте

Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.

Если известны две стороны и градус угла между ними

Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:

Формула площади треугольника по сторонам и синусу угла

Если известны длины трех сторон

Делайте так:

  1. Найдите периметр. Для этого сложите все три стороны.
  2. Найдите полупериметр – разделите периметр на два. Запомните значение.
  3. Отнимите от полупериметра длину первой стороны. Запомните.
  4. Отнимите от полупериметра длину второй стороны. Тоже запомните.
  5. Отнимите от полупериметра длину третьей стороны. И ее запомните.
  6. Умножьте полупериметр на каждое из этих чисел (разницу с первой, второй и третьей стороной).
  7. Найдите квадратный корень.

Площадь треугольника по трем сторонам

Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.

Если известны три стороны и радиус описанной окружности

Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.

По сторонам и радиусу описанной окружности

Если известны три стороны и радиус вписанной окружности

Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.

Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.

По сторонам и вписанной окружности

Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.

( 32 оценки, среднее 4.44 из 5 )

Оцените статью

ЕЖЕНЕДЕЛЬНАЯ РАССЫЛКА

Получайте самые интересные статьи по почте и подписывайтесь на наши социальные сети

ПОДПИСАТЬСЯ

Голосование за лучший ответ

Лира

Мудрец

(12803)


10 лет назад

Односторонний треугольник.. . Наука не знает такого феномена!

Зачем Вам

Просветленный

(33781)


10 лет назад

вы, это.. . сначала нарисуйте такой. односторонний.
если сможете – шлите картинку.
а площадь как-нибудь ему определим

как-то неловко браться искать то, чего не может быть

Morbid

Профи

(999)


10 лет назад

может равносторонний?

Natalinka

Просветленный

(23121)


10 лет назад

Видимо – равностороннего, как на рисунке. Тогда 10*10* кор из3 :4= 5*кор из3

Еще один вид углов, образованных при пересечении двух прямых секущей — внутренние односторонние углы.

Две прямые разбивают плоскость на части. Та часть, которая лежит между прямыми — внутренняя. Углы, которые расположены в этой части, так и называются — внутренние. Внутренние односторонние углы — это углы, которые лежат внутри между прямыми по одну сторону от секущей (поэтому они так и называются).

При пересечении двух прямых секущей образуется две пары внутренних односторонних углов.

vnutrennie odnostoronnie uglyi ∠1 и∠2

∠3 и∠4

— внутренние односторонние углы при прямых a и b и секущей c.

Наибольший интерес вызывают внутренние накрест лежащие углы, образованные параллельными прямыми.

Свойство параллельных прямых

Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180º.

summa vnutrennih odnostoronnih uglov Если a ∥ b, то

∠1 +∠2 =180º

(как внутренние односторонние при  a ∥ b и секущей c).

Признак параллельных прямых

Если сумма внутренних односторонних углов равна 180º, то прямые параллельны.

summa vnutrennih odnostoronnih uglov ravna 180 ∠3+∠4 =180º

А так как эти углы — внутренние односторонние при a и b и секущей c,

то a ∥ b (по признаку параллельных прямых).

Могут ли быть внутренние односторонние углы равны?

Да. Внутренние односторонние углы равны, если прямые параллельны, а секущая им перпендикулярна.

vnutrennie odnostoronnie uglyi ravnyi ∠1  и ∠2 — внутренние односторонние углы при прямых a и b и секущей c

∠1 =∠2

тогда и только тогда, когда a ∥ b, а секущая c перпендикулярна и прямой a, и прямой b.

Добавить комментарий