Как найти одз дроби с корнем

        В предыдущем уроке мы с вами освоили основной принцип решения любых дробных уравнений. Это — ликвидация дробей. Кто читал, тот понял, что ничего сложного в этом нет.

        Однако, даже в самых простых (казалось бы!) дробных уравнениях нас может поджидать сюрприз не из приятных. С ним, с сюрпризом, надо разобраться! Разберёмся?)

Основная проблема в решении дробных уравнений.

        Сейчас мы с вами научимся обходить одну из самых коварных ловушек на ЕГЭ и контрольных! Попадаются в неё все — и троечники и отличники. Я специально поставил её в самое примитивное уравнение, чтобы с ней (с ловушкой) хорошенько разобраться. Но для начала посмотрим, попадёте вы в неё или нет.)

        Допустим, надо решить вот такое нехитрое уравнение:

        

        Дело уже привычное и знакомое. Умножаем всё уравнение на знаменатель (х+1) и получаем:   

        Напоминаю, что со скобками (х+1) работаем целиком, как будто бы это одно число! Производим умножение:

        

        Сокращаем знаменатель и избавляемся от дроби:

        

        3x2 + 2x — 1 =  5(x+1)

        Раскрываем оставшиеся скобки, переносим всё влево, приводим подобные:

        3x2 + 2x — 1 =  5x + 5

        3x2 – 3x — 6 = 0

        Делим всё уравнение на 3 и получаем:

        х2 — х — 2 = 0

        Отлично. Самое обычное квадратное уравнение. Решаем и получаем два корня:

        х1 = -1

        х2 = 2

        Предположим, в задании на ЕГЭ сказано записать в ответ меньший из корней, если корней более одного. Что писать будем?)

        Если вы решили, что ответ -1, то вы попали в ловушку. И задание вам не засчитают, да. Зря старались. Правильный ответ был 2… Два, а не минус один.

        Так в чём же дело? А вы попробуйте проверку сделать. Подставьте каждый из найденных иксов в исходное уравнение. И, если при х=2 у вас всё славненько срастётся, получится тождество 5=5, то при х=-1 получится деление на ноль! Чего делать нельзя категорически. Нет такой операции ни в природе, ни в математике…

        Что это значит? Это значит, что х=-1 — так называемый посторонний корень. Или лишний корень. Он не является корнем нашего дробного уравнения и в ответе никак не учитывается. Ибо его подстановка даёт бессмыслицу. Его мы просто отбрасываем. Окончательный корень один.

        А именно: х=2.

        Так, стоп, что-то тут не так! Нам же говорили, что всё уравнение можно умножать на одно и то же выражение! Это же тождественное преобразование!

        Да, тождественное. Я не спорю. Но при одном маленьком ограничении, которое многие попросту игнорируют. А именно — выражение, на которое умножаем (делим), отлично от нуля! А скобочка (х+1) при х=-1 обращается в ноль! Так что всё честно.

        И что нам теперь делать? Совсем не умножать? Тогда мы вообще ничего не решим! Каждый раз проверку делать? Это с ума сойдёшь. Особенно, если уравнение навороченное.

        Нет, мы с вами пойдём красивым и элегантным путём. Обратимся за помощью к трём волшебным буквам! Догадались? Да! Это ОДЗ! Область Допустимых Значений.

Что же такое ОДЗ?

        Это такие значения икса, которые могут быть в принципе. Или которые разрешены для данного примера.

        Например, в уравнении

        

        мы ещё пока не знаем, чему равен икс, верно? Мы уравнение пока не решили. Но зато мы железно знаем, что икс не может равняться нулю ни в коем случае! На ноль делить нельзя. На любое другое число — целое, дробное, отрицательное, иррациональное — ради бога. А вот на ноль — никак. Стало быть, в этом примере ОДЗ:

        х — любое число, кроме нуля.

        Зато все остальные иксы — абсолютно безопасны. Хоть 41, хоть -17, хоть -1,3 — весь бесконечный набор чисел.

        Идея ясна?

        Как записывать ОДЗ? Как работать с ОДЗ?

        Тоже легко. На первом этапе всегда внимательно осматриваем исходный пример и ищем опасные места. Что значит опасные места?

        Это места, где возможны запретные действия. Действия, которые при каких-то иксах могут оказаться недопустимыми с точки зрения математики. В нашей теме такое действие всего одно — деление. Нельзя делить на ноль. Есть ещё запреты в корнях чётной степени, в логарифмах и в тригонометрии. Их мы тоже рассмотрим в соответствующих уроках.

        Как только опасные места найдены, рядышком с примером выписываем условия, которые не приводят к бессмыслице. После этого, глядя на эти условия, вычисляем запретные иксы. И исключаем их из ОДЗ. Вот и всё.

        Я специально акцентирую внимание на словах “исходный пример”. Любое преобразование (сокращение, приведение подобных и т.п.) может изменить ОДЗ, и мы можем получить неверный ответ.

        Важно! Для поиска ОДЗ мы не решаем пример! Мы решаем всего лишь маленькие кусочки примера для нахождения запретных иксов.

        “Многа букаффф”, да. Но на практике вся процедура выглядит до ужаса элементарно.

        Итак, берём наше уравнение:

        

        Ничего пока что не трогаем, а внимательно осматриваем исходное уравнение. Осмотрев, мы сразу замечаем операцию деления на х+1.

        Это потенциально опасная операция: при каких-то значениях икса выражение х+1 может оказаться равным нулю. На который делить нельзя. Поэтому обезопасим себя вот такой записью:

        х+1 ≠ 0

        х ≠ -1

        Во-о-т. Минус один категорически не подходит нам в качестве ответа. Это и будет ОДЗ для нашего уравнения. Все иксы, кроме минус единички.

        На практике запись и нахождение ОДЗ обычно оформляют так:

        

        Иногда ОДЗ записывают и в другой форме, через промежутки. Вот так:

        x (-∞; -1) U (-1; +∞)

        Читается эта запись так: “Икс принадлежит интервалу от минус бесконечности до минус единицы (не включая), и от минус единицы (не включая) до плюс бесконечности.”

        Перевод с математического на человеческий: “Икс — любое число, кроме минус единицы.”

        Вот и всё. Как только мы себя обезопасили такой записью, дальше мы имеем полное право делать с уравнением всё что хотим — переносить члены, домножать, сокращать… Вот и домножаем всё уравнение на (х+1). Дробь-то убирать всё равно надо! Это по-прежнему будет не совсем тождественным преобразованием, но все вредные последствия от нарушения тождественности мы исключим по ОДЗ.

        Умножаем:

        3x2 + 2x — 1 =  5(x+1)

        Как вы думаете, в какой же момент мы с вами попали в ловушку элементарного примера? Как раз в момент домножения всего уравнения на знаменатель дроби! Знаменатель исчез, и вместе с ним исчезли и соответствующие ограничения на иксы. Бесследно. И для нового уравнения, без дроби, на икс уже не накладывается никаких запретов! Любым может быть икс…

        В математике это явление называется расширение ОДЗ.

        Но теперь мы уже с вами народ бдительный. Исходные ограничения (х≠-1) мы записали и сохранили.

        Поэтому дальше спокойно решаем уравнение безо всяких дробей и получаем два корня:

        х1 = -1

        х2 = 2

        А вот теперь стыкуем наши результаты и условия ОДЗ. И видим в наших кандидатах на ответ один из иксов в качестве запретного! Минус один. Это означает, что в окончательный ответ его включать нельзя. Это посторонний корень, появившийся в процессе решения без нашего желания.

        Да, это законный корень нашего вспомогательного квадратного уравнения, но никак не корень исходного дробного уравнения!

        Стало быть, минус единицу мы безжалостно вычёркиваем и в ответ не включаем. Вот и всё.)

        А в других уравнениях прошлого урока? Там что, нет ОДЗ? Есть, разумеется. Есть деление на икс — есть и ОДЗ.

        В первом уравнении:

        

        Во втором уравнении:

        

        И так далее.

        Я специально в тех примерах ничего не сказал про ОДЗ. Чтобы вас не перегрузить раньше времени.) В всех уравнениях прошлого урока (и домашнего задания к нему) ОДЗ никак не сказывалась на ответе. Так бывает. Но в заданиях ОГЭ и ЕГЭ ОДЗ в 99% случаев влияет на ответ! Так что мы с ОДЗ дружить будем. И во всех темах, где это необходимо, мы будем про ОДЗ вспоминать. Чтобы не упасть лицом в грязь.)

        Итак, про ОДЗ поговорили. Убедились, что работать с ней тоже совсем не сложно. Теперь можно перейти и к общему алгоритму решения любого дробного уравнения.

Решаем дробные уравнения по алгоритму!

        Для успешного решения любого дробного уравнения необходимо выполнить (правильно) пять пунктов:

        1. Разложить знаменатели всех дробей на множители (если требуется). До упора. Переписать уравнение с учётом этого факта.

        2. Найти ОДЗ, записать рядышком с уравнением и временно (до конца решения) забыть про неё.

        3. Сообразить, на что надо умножить обе части уравнения, чтобы все дроби исчезли полностью.

        4. Выполнить это самое умножение и решить новое уравнение, уже безо всяких дробей. Найти решения (кандидаты в ответ).

        5. Вспомнить про ОДЗ и состыковать найденные решения с условиями ОДЗ. Те решения, которые не входят в ОДЗ, безжалостно выбросить. Записать окончательный ответ.

        А теперь, вооружившись таким мощным супероружием, как ОДЗ, и общим алгоритмом, разберём очередной пример. Супердетально разберём!

        Решить уравнение:

        

        Решаем строго по пунктам. Выполняем пункт первый:

        1. Разложить все знаменатели на множители (если требуется). До упора. Переписать пример с учётом этого факта.

        Знаменатели наших дробей НЕ разложены на множители. Вот и приступаем. Вынесение общего множителя за скобки и формула разности квадратов — мощные штуки.)

        2x — x2 = x(2-x)

        2x + x2 = x(2+x)

        4 — x2 = 22 — x2 = (2-x)(2+x)

        Вот так. А теперь переписываем уравнение с учётом наших разложений:

        

        Готово. Все знаменатели разложены до упора.) Можно приступать ко второму пункту.

        2. Найти ОДЗ, записать рядышком с примером и временно (до конца решения) забыть про неё.

        Итак, начинаем осматривать исходный пример на наличие опасных операций.

        Внимание! Ничего не трогаем и не решаем! Не складываем дроби, не приводим подобные, не сокращаем!!!

        Подобные преобразования запросто могут изменить ОДЗ, что может привести к неверному ответу! Оно нам надо?! Ещё раз напоминаю: ДО поиска ОДЗ с исходным примером мы не делаем НИЧЕГО! Кроме разложения на множители. Оно — безопасно и даже полезно.)

        Берём и именно осматриваем исходный пример. И замечаем три опасных места: каждая из дробей таит в себе возможное деление на ноль.

        Вот и пишем:

        Знак системы (фигурная скобка) здесь не зря поставлен. Она означает, что все три условия должны выполняться одновременно! Мы ведь ОДЗ записываем не для каждой дроби по отдельности, а для всего примера целиком.)

        Ну и как? Нашли ОДЗ? Не-а…)

        Мы записали кусочек примера, записали три требования, которые должны выполняться железно. Но этого мало. Нужно ещё найти иксы, которые обеспечивают эти железные требования. ОДЗ ведь к иксам относится, а не к кусочкам примера…

        Как же найти значения иксов, которые не превращают знаменатели дробей в ноль? Их же очень много? Очень просто! Мы поступим элегантно. Найдём иксы, которые наоборот, превращают знаменатели дробей в ноль. Это и будут запретные иксы.

        Вот и решаем эти неравенства методом “от противного”. То есть, делаем из неравенств уравнения:

        x(2-x) = 0

        x(2+x) = 0

        (2-x)(2+x) = 0

        Именно из этих трёх уравнений мы и будем искать запретные иксы. Уравнения очень простые: произведение равно нулю, когда хотя бы один из множителей равен нулю. Вот и приравниваем (в уме или на черновике) каждый множитель к нулю.

        Для первого уравнения получаем: x1 = 0;  x2 = 2.

        Вспомнив, что это запретные иксы, получим:

        х ≠ 0;  x ≠ 2.

        Точно так же решаем и два оставшихся уравнения.

        Для второго уравнения получаем:

        x ≠ 0;  x ≠ -2.

        И, наконец, для третьего уравнения получаем:

        x ≠ 2;  x ≠ -2.

        Видно, что некоторые запретные значения иксов повторяются. Разумеется, для окончательной записи ОДЗ мы их не будем дублировать. Итого ОДЗ для нашего уравнения будет выглядеть вот так:

        ОДЗ:

        

        Видите, насколько полезно предварительно раскладывать знаменатели на множители! В уме ОДЗ ищется! Поэтому эта процедура и стоит первым пунктом в алгоритме.)

        Можно приступать к третьему пункту.

        3. Сообразить, на что надо умножить обе части уравнения, чтобы все дроби исчезли полностью.

        И тут разложение на множители тоже здорово играет на руку!

        Понятно, что для ликвидации первой дроби, надо её домножать на x(2-x), вторую — на x(2+x) и третью – на (2-x)(2+x).

        Но чтобы сразу сократить все дроби, надо скомбинировать такое выражение, которое одинаково хорошо делится и на х(2-х), и на х(2+х), и на (2-х)(2+х).

        Вот оно, это выражение:

        х(2-x)(2+x)

        Как же я до него додумался? Очень просто: составил произведение всех неповторяющихся множителей всех знаменателей. Чтобы ничего не забыть и лишнего не взять.) Приступаем к четвёртому пункту:

        4. Выполнить это самое умножение и решить новое уравнение, уже безо всяких дробей. Получить решения (кандидаты в ответ).

        Итак, умножаем:

        

        И снова, чтобы не заплутать в трёх соснах, используем скобки:

        

        Производим умножение. Большие скобки раскрываем, малые — не трогаем!

        

        Сокращаем все дроби:

        

        2 + x + (x-4)(2-x) = 2x

        Всё. От дробей избавились. Как обычно, раскрываем оставшиеся скобки, приводим подобные и собираем все члены слева:

        2 + x + 2x — x2 — 8 + 4x — 2x = 0

        –х2 + 5x — 6 = 0

        Помним, что минус впереди крайне неудобен, посему умножаем всё на (-1):

        x2 — 5x + 6 = 0

        Решаем простенькое квадратное уравнение и получаем корни:

        x1 = 2

        x2 = 3

        Нашли кандидатов в ответ. Самое время вспомнить про ОДЗ. Про самый последний пункт:

        5. Вспомнить про ОДЗ и состыковать найденные решения с условиями ОДЗ. Те решения, которые не входят в ОДЗ, безжалостно выбросить. Записать окончательный ответ.

Итак, наши решения:

        x1 = 2

        x2 = 3

        Условия ОДЗ:

        

        Сопоставляем и… Оп-па! А ведь двойка — запретное значение! Нас не проведёшь! ОДЗ — штука жёсткая. В отвал двойку!

        Окончательный ответ: х = 3.

        Именно так и решаются все дробные уравнения. В пять шагов. Зачем же я распинался, рассказывая целый урок про избавление от дробей, затем ещё пол-урока про ОДЗ? Мог бы сразу дать общий алгоритм и соответствующий пример!

        На этот вопрос отвечу так. Если бы вы знали, сколько народу спотыкается на применении тупо заученного алгоритма! А уж при малейшем отклонении от шаблона простой пример становится вообще нерешаемым… Если понимать смысл, то шанс решить есть всегда. Понимание всегда побеждает механическую память.)

        Вот, собственно, и всё, что я хотел сказать. И напоследок очередная порция примеров для самостоятельного решения.

        Решить уравнения:

        

        Ответы (по традиции, в беспорядке):

        x = 3

        x = -1

        x = 4

        x1 = -1;  x2 = -9

        x = -2

        Всё совпало! Поздравляю! У вас иксов побольше будет? Хм… Про ОДЗ не забыли, случаем? Кое-какие корни выбрасывать надо! ОДЗ учли, а всё равно не выходит? Да-а-а… Проблемка. Такие уравнения надо уметь решать: слишком уж они популярны во многих темах математики. Особенно — в текстовых задачках! Но не отчаивайтесь!

        Перечитайте этот и предыдущий уроки ещё раз и прогуляйтесь по смежным темам: разложение на множители, квадратные уравнения, линейные уравнения и (особенно!) тождественные преобразования уравнений. И всё получится. Я в вас верю!)

Любое выражение с переменной в алгебре (математике) имеет свою область допустимых значений (или ОДЗ), где оно существует. ОДЗ – это то, что необходимо всегда учитывать при решении. При его отсутствии можно получить неверный результат.

В данной статье будет показано, как найти ОДЗ (ОДЗ логарифма, ОДЗ корня), использовать на примерах
(без необходимости искать готовые решения онлайн). Также будет рассмотрена важность указания ОДЗ при решении домашних заданий, гдз и прочих случаях.

Допустимые и недопустимые значения переменных

Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.

Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.

Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1:а, если а=0, тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут подробно ответ. Иначе говоря, имеют смысл с имеющимися переменными.

Определение 1

Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.

Определение 2

Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.

То есть отсюда можно уже определять более полно

Определение 3

Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.

Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.

Пример 1

Для примера рассмотрим выражение вида 1x-y+z, где имеются три переменные. Иначе можно записать, как x=0, y=1, z=2, другая же запись имеет вид (0,1,2). Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 10-1+2=11=1. Отсюда видим, что (1,1,2) недопустимы. Подстановка дает  в результате деление на ноль, то есть 11-2+1=10. 

Что такое ОДЗ?

Область допустимых значений – важный элемент при вычислении алгебраических выражений. Поэтому стоит обратить на это внимание при расчетах.

Определение 4

Область ОДЗ – это множество значений, допустимых для данного выражения.

Рассмотрим на примере выражения. 

Пример 2

Если имеем выражение вида 5z-3, тогда ОДЗ имеет вид (−∞, 3)∪(3, +∞). Эта область допустимых значений, удовлетворяющая переменной z для заданного выражения.

Если имеется выражения вида zx-y, тогда видно, что x≠y, z принимает любое значение. Это и называют ОДЗ выражения. Его необходимо учитывать, чтобы не получить  при подстановке деление на ноль.

Область допустимых значений и область определения имеет один и тот же смысл. Только второй из них используется для выражений, а первый – для уравнений или неравенств. При помощи ОДЗ выражение или неравенство имеет смысл. Область определения функции совпадает  с областью допустимых значений переменной х к выражению f(x).

Как найти ОДЗ? Примеры, решения

Поиск определенного ОДЗ означает поиск всех допустимых значений, подходящих для заданной функции или неравенства. При невыполнении этих условий можно получить неверный результат. Как находить ОДЗ? Для нахождения ОДЗ зачастую необходимо пройти через преобразования в заданном выражении.

Как решать ОДЗ? Существуют выражения, где их вычисление невозможно:

  • если имеется деление на ноль;
  • извлечение корня из отрицательного числа;
  • наличие отрицательного целого показателя – только для положительных чисел;
  • вычисление логарифма отрицательного числа;
  • область определения тангенса π2+π·k, k∈Z и котангенса π·k, k∈Z;
  • нахождение значения арксинуса и арккосинуса числа при значении, не принадлежащем [-1; 1].

Все это говорит о том, как важно наличие ОДЗ.

Пример 3

Найти ОДЗ выражения x3+2·x·y−4.

Решение

В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.

Ответ: x и y – любые значения.

Пример 4

Найти ОДЗ выражения 13-x+10.

Решение

Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что  при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.

Ответ: ∅.

Пример 5

Найти ОДЗ заданного выражения x+2·y+3-5·x.

Решение

Наличие квадратного корня (квадрат корня) говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x+2·y+3≥0. То есть это и есть искомая область допустимых значений.

Ответ: множество x и y, где x+2·y+3≥0.

Пример 6

Определить ОДЗ выражения вида 1x+1-1+logx+8(x2+3).

Решение

По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x+1-1≠0 . Выражение под корнем всегда имеет смысл, когда больше или равно нулю, то есть x+1≥0. Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x2+3>0. Основание логарифма также должно иметь положительное значение и отличное от 1, тогда добавляем еще условия x+8>0 и x+8≠1.  Отсюда следует, что искомое ОДЗ примет вид:

x+1-1≠0,x+1≥0,x2+3>0,x+8>0,x+8≠1

Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [−1, 0)∪(0, +∞).

Ответ: [−1, 0)∪(0, +∞)

Почему важно учитывать ОДЗ при проведении преобразований?

При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.

Тождественные преобразования:

  • могут не влиять на ОДЗ;
  • могут привести к расширению или дополнению ОДЗ;
  • могут сузить ОДЗ.

Рассмотрим на примере.

Пример 7

Если имеем выражение вида x2+x+3·x, тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.

Пример 8

Если взять пример выражения x+3x−3x, то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид (−∞, 0)∪(0, +∞). Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.

Рассмотрим пример с наличием подкоренного выражения. 

Пример 9

Если имеется x-1·x-3, тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства (x−1)·(x−3)≥0.  Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид (−∞, 1]∪[3, +∞). После преобразования x-1·x-3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x-1≥0,x-3≥0. При ее решении получаем, что [3, +∞). Значит, ОДЗ полностью записывается так: (−∞, 1]∪[3, +∞).

Нужно избегать преобразований, которые сужают ОДЗ.

Пример 10

Рассмотрим пример выражения x-1·x-3, когда х=-1. При подстановке получим, что -1-1·-1-3=8=22. Если это выражение преобразовать и привести к виду x-1·x-3, тогда при вычислении получим, что 2-1·2-3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.

Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.

Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.

Пример 11

Рассмотрим на примере дроби вида xx3+x. Если сократить на x, тогда получаем, что 1×2+1. Тогда ОДЗ расширяется и становится (−∞ 0)∪(0, +∞). Причем при вычислении уже работаем со второй упрощенной дробью.

В случае нахождения ОДЗ для логарифмов дело обстоит немного иначе. Вот пример нахождения ОДЗ для логарифма.

Пример 12

Если имеется выражение вида ln x+ln(x+3), его заменяют  на ln(x·(x+3)), опираясь на свойство логарифма. Отсюда видно, что ОДЗ с (0, +∞) до (−∞, −3)∪(0, +∞). Поэтому для определения ОДЗ ln(x·(x+3)) необходимо производить вычисления на ОДЗ, то есть (0, +∞) множества.

При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Вспомним кратко основные определения функции в математике.

Функция — это зависимость переменной « y » от
независимой переменной « x ».

Функцию можно задать через формулу (аналитически). Например:

у = 2x

  • « x » называют независимым аргументом функции;
  • « y » зависимой переменной или значением функции.

Вместо « x » (аргумента функции) в формулу «у = 2x» подставляем произвольные числовые значения
и по заданной формуле вычисляем
значение « y ».

Подставим несколько числовых значений вместо « x » в формулу «у = 2x» и запишем результаты в таблицу.

x y = 2x
x = −2 у = 2 · (−2) = −4
x = 0 y = 2 · 0 = 0
x =

1
2
y = 2 ·

1
2

=

2 · 1
2

= 1

x = 3 y = 2 · 3 = 6

Запомните!
!

Область определения функции — это множество числовых значений, которые можно подставить вместо « x » (аргумента функции).

Обозначают область определения функции как:

D(y)

Вернемся к нашей функции «у = 2x» и найдем её область определения.

Посмотрим ещё раз на таблицу функции «y = 2x», где
мы подставляли произвольные числа вместо « x », чтобы найти « y ».

x y = 2x
−2 −4
0 0
1
2
1
3 6

Так как у нас не было никаких ограничений на числа, которые можно подставить вместо « x », можно утверждать,
что вместо « x » мы могли подставлять любое действительное число.

Другими словами, вместо « x » можно подставить любые числа, например:

  • −2
  • 0
  • 10
  • 30,5
  • 1 000 000
  • и так далее…

Запомните!
!

Областью определения функции называют множество чисел,
которые можно подставить вместо « x ».

В нашей функции «у = 2x» вместо « x »
можно подставить любое число, поэтому область определения функции «у = 2x» — это любые действительные числа.

Запишем область определения функции «у = 2x» через математические обозначения.

у = 2x
D(y): x
— любое действительное число

Ответ выше написан словами без использования специального математического языка. Заменим лишние слова на
математические символы.
Для этого вспомним понятие числовой оси.

числовая ось для x

Заштрихуем область на числовой оси, откуда можно брать значения для « x » в функции «у = 2x».
Так как в функции
«у = 2x» нет ограничений для « x »,
заштрихуем всю числовую ось от минус бесконечности «−∞» до плюс бесконечности
«+∞».

числовая ось для x

Запишем результат по правилам записи неравенств.

числовая ось для x

D(y): x ∈ (−∞ ; +∞)

Запись выше читается как: « x » принадлежит промежутку от минус бесконечности
до плюс бесконечности.

Запишем окончательный ответ для области определения функции.

Ответ:

D(y): x ∈ (−∞ ; +∞)

По-другому промежуток
« x ∈ (−∞ ; +∞) » можно записать
как
«x ∈ R».

Читается «x ∈ R» как: « x » принадлежит всем действительным числам».

Записи « x ∈ (−∞ ; +∞) » и
«x ∈ R» одинаковы по своей сути.

Область определения функции с дробью

Разберем пример сложнее, когда в задании на поиск области определения функции есть дробь с « x » в знаменателе.

Разбор примера

Найдите область определения функции:

Задание «Найдите область определения функции» означает, что нам нужно определить все числовые значения, которые может принимать « x »
в функции

« f(x) = ».

По законам математики из школьного курса мы помним, что на ноль делить нельзя.
Иначе говоря,
знаменатель (нижняя часть дроби) не может быть равен нулю.

Переменная « x » находится в знаменателе функции «f(x) = ».
Так как на ноль делить нельзя, запишем, что знаменатель не равен нулю.

x + 5 ≠ 0

Решим полученное линейное уравнение.

Получается, что « x » может принимать любые числовые значения кроме «−5».
На числовой оси заштрихуем все доступные значения для « x ».

Число «−5» отмечено
«пустой»
точкой на числовой оси, так как не входит в область допустимых значений.

числовая ось для x

Запишем заштрихованную область на числовой оси через знаки неравенства.

числовая ось для x

Запишем промежутки через математические символы. Так как число «−5» не входит
в область определения функции, при записи ответа рядом с ним будет стоять
круглая скобка.

Вспомнить запись ответа через математические символы можно в уроке
«Как записать ответ неравенства».

числовая ось для x

x ∈ (−∞ ; −5) ∪ (−5 ; +∞)

Запишем окончательный ответ для области определения функции
«f(x) = ».

Ответ:

D(y): x ∈ (−∞ ; −5) ∪ (−5 ; +∞)

Область определения функции с корнем

Рассмотрим другой пример. Требуется определить область определения функции, в которой содержится квадратный корень.

Разбор примера

Найти область определения функции:

y = 6 − x

Из урока «Квадратный корень» мы помним,
что подкоренное выражение корня чётной степени должно быть больше или равно нулю.

Найдём, какие значения может принимать « x » в функции
«у = 6 − x».
Подкоренное выражение
«6 − x» должно быть больше или равно нулю.

6 − x ≥ 0

Решим линейное неравенство по правилам урока «Решение линейных неравенств».

6 − x ≥ 0

−x ≥ −6 | ·(−1)

x 6

Запишем полученный ответ, используя числовую ось и математические символы. Число «6» отмечено
«заполненной»
точкой на числовой оси, так как входит в область допустимых значений.

числовая ось для x

x ∈ (−∞ ; 6]

Запишем окончательный ответ для области определения функции
«y = 6 − x» .
Так как число «6» входит
в область определения функции, при записи ответа рядом с ним будет стоять
квадратная скобка.

Ответ:

D(y): x ∈ (−∞ ; 6]

Правило для определения области определения функции

Запомните!
!

Чтобы найти область определения функции нужно проверить формулу функции по двум законам школьного курса математики:

  1. на ноль делить нельзя (другими словами, знаменатели дробей с « x » не должны быть равны нулю);
  2. подкоренные выражения корней чётной степени должны быть больше или равны нулю.

При нахождении области определения функции необходимо всегда задавать себе два вопроса:

  1. есть ли в функции дроби со знаменателем, в котором есть « x »?
  2. есть ли корни четной
    степени с « x »?

Если на оба вопроса вы получаете отрицательный ответ, то область определения функции — это все действительные числа.

Рассмотрим пример поиска области определения функции с корнем и дробью.

Разбор примера

Найдите область определения функции:

Идем по алгоритму. Задаём себе первый вопрос, есть ли в функции дробь с « x » в знаменателе. Ответ: да, есть.

В функции «
f(x) = x + 3 +

»

есть дробь «

»,
где « x » расположен в знаменателе. Запишем условие, что знаменатель
« x 2 − 9 »
не может быть равен нулю.

Решаем квадратное уравнение через
формулу квадратного уравнения.

x1;2 =

x2 − 9 ≠ 0

x1;2 =

−0 ±
02 − 4 · 1 · (−9)
2 · 1

x1;2

x1;2

x1;2

x1;2 ≠ ±3

Запомним полученный результат. Задаем себе
второй
вопрос.
Проверяем, есть ли в формуле функции

«
f(x) = x + 3 +

»

корень четной степени.

В формуле есть квадратный корень «
x + 3
».

Подкоренное выражение «x + 3»
должно быть больше или равно нулю.

x + 3 ≥ 0

Решим линейное неравенство.

x + 3 ≥ 0
x ≥ −3

числовая ось для x

Объединим полученные ответы по обоим вопросам:

  • знаменатель дроби
    «
    » не равен нулю ;
  • подкоренное выражение «
    x + 3
    » должно быть больше или равно нулю.

Объединим все полученные результаты на числовых осях.
Сравнивая полученные множества, выберем только те промежутки, которые удовлетворяют обоим условиям.

сравнение ограничений для поиска области определения

Выделим красным заштрихованные промежутки, которые совпадают на обеих числовых осях.
Обратим внимание, что числа «−3» и «3» отмечены «пустыми» точками и не входят в итоговое решение.

поиск общих промежутков

Получаем два числовых
промежутка «−3 < x < 3» и «x > 3», которые являются областью определения функции
«f(x) = x + 3 + ».
Запишем окончательный ответ.

Ответ:

D(y): x ∈ (−3 ; 3) ∪ (3 ; +∞)

Примеры определения области определения функции

Разбор примера

Найти область определения функции:

y = 6x +
51 + x

Для поиска области определения функций задаем себе
первый вопрос.

Есть ли знаменатель, в котором содержится « x »?

Ответ: в формуле функции

«y = 6x +
51 + x
»
нет дробей.

Задаем
второй вопрос.

Есть ли в функции корни четной степени?

Ответ: в функции есть корень шестой степени:
«6x».

Степень корня — число «6». Число «6» — чётное,
поэтому подкоренное выражение корня «6x»
должно быть больше или равно нулю.

x ≥ 0

В формуле функции «y = 6x +
51 + x
»
также есть корень пятой степени
«51 + x
».

Степень корня «5» — нечётное число, значит, никаких ограничений на подкоренное выражение
«1 + x»
не накладывается.

Получается, что единственное ограничение области определения функции

«y = 6x +
51 + x
»
— это ограничение подкоренного выражения
«6x».

x ≥ 0

Нарисуем область определения функции на числовой оси и запишем ответ.

поиск общих промежутков

Ответ:

D(y): x ∈ [0 ; +∞)


Разбор примера

Найдите область определения функции:

Есть ли в функции знаменатель, в котором содержится « x »? В заданной функции подобных знаменателей два.
Выделим знаменатели с « x » красным цветом.

Запишем условие, что каждый из знаменателей не должен быть равен нулю.

x + 2 ≠ 0
x2 − 7x + 6 ≠ 0

Обозначим их номерами «1» и
«2» и решим каждое уравнение отдельно.

x + 2 ≠ 0            (1)
x2 − 7x + 6 ≠ 0     (2)

Решаем первое уравнение.

x + 2 ≠ 0     (1)

Если значение квадратного корня
«x + 2 ≠ 0» не должно быть равно нулю,

значит, подкоренное выражение
«x + 2 ≠ 0»

также не должно быть равно нулю.

x + 2 ≠ 0     (1)

x + 2 ≠ 0
x ≠ −2

Теперь решим уравнение под номером «2», используя
формулу квадратного уравнения.

x1;2 =

x2 − 7x + 6 ≠ 0     (2)

x1;2 =

−(−7) ±
(−7)2 − 4 · 1 · 6
2 · 1

x1;2 =

x1;2 =

x1;2 =

Запишем все полученные ответы в порядке возрастания вместе под знаком системы, чтобы их не забыть.

Знаменатели с « x »
мы проверили. Настала очередь
проверить
формулу функции
на
наличие корней четной степени .

В формуле функции

«f(x) =

+
»

есть два корня
«x − 4» и
«x + 2». Их подкоренные
выражения должны быть больше или равны нулю.

Решим полученную
систему неравенств.

Нарисуем полученные решения на числовой оси. Выберем заштрихованный промежуток, который есть на обеих числовых осях.

решение системы неравенств

Выпишем результат решения системы неравенств.

x ≥ 4

Объединим в таблицу ниже полученные ответы по обеим
проверкам:

  1. проверка, что знаменатели
    дробей
    с « x »
    не равны нулю;
  2. проверка, что
    подкоренные выражения корней четной степени должно быть больше или равны нулю.
Условие проверки Результат

Результат проверки, что знаменатели дробей

с « x »

не равны нулю

Результат проверки, что подкоренные выражения должно быть больше или равны нулю

x ≥ 4

Нарисуем полученные результаты проверок на числовых осях, чтобы определить, какая заштрихованная область удовлетворяет
всем полученным условиям.

пример поиска области определения функции

Запишем окончательный ответ для области определения функции
«f(x) =

+
»

с использованием математических символов.

Ответ:

D(y): x ∈ [4 ; 6) ∪ (6; +∞)


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

17 декабря 2016 в 18:02

Татьяна Цыганова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Татьяна Цыганова
Профиль
Благодарили: 0

Сообщений: 1

Найти ОДЗ функции у=?(р1+р2х+x2
Я не могу понять за какое число воспринимать p1, p2

0
Спасибоthanks
Ответить

17 декабря 2016 в 19:10
Ответ для Татьяна Цыганова

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


x2 + p2x + p1 ? 0.

0
Спасибоthanks
Ответить

24 февраля 2016 в 20:29

Влад Алексеев
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Влад Алексеев
Профиль
Благодарили: 0

Сообщений: 1

Постройте график функции y=-

 . Укажите область определения функции

0
Спасибоthanks
Ответить

25 февраля 2016 в 8:10
Ответ для Влад Алексеев

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Область определения функции: знаменатель не равен 0.
x+1?0
x?-1
Графиком является гипербола, смещеная влево относительно оси Y.

0
Спасибоthanks
Ответить

5 февраля 2018 в 14:30
Ответ для Влад Алексеев

Кирилл Косован
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Кирилл Косован
Профиль
Благодарили: 0

Сообщений: 1

0
Спасибоthanks
Ответить

11 февраля 2018 в 15:44
Ответ для Влад Алексеев

Татьяна Мирная
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Татьяна Мирная
Профиль
Благодарили: 0

Сообщений: 1


у=- 

0
Спасибоthanks
Ответить

7 октября 2015 в 21:21

Катерина Яроцкая
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Катерина Яроцкая
Профиль
Благодарили: 0

Сообщений: 1

Помогите найти область определения функции

0
Спасибоthanks
Ответить

12 сентября 2016 в 15:59
Ответ для Катерина Яроцкая

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


К сожалению, картинка не отражается.

0
Спасибоthanks
Ответить


Область  допустимых  значений  (ОДЗ)  – это  все  значения  переменной, при которых не нарушаются правила математики.

Например:

– если в выражении (frac{x}{x-1}) значение переменной будет равно 1, нарушается правило: на ноль делить нельзя. Поэтому здесь (x) не может быть единицей и ОДЗ записывается так: (xneq1);

– если в выражении (sqrt{x-2}) значение переменной равно (0), нарушается правило: подкоренное выражение не должно быть отрицательно. Значит, здесь (x) не может быть (0), а также (1, -3, -52,7) и т.д. То есть, икс должен быть больше или равен 2 и ОДЗ будет: (xgeq2);

– а вот в выражение (4x+1) мы можем подставить любое число вместо икса, и никакие правила нарушены не будут. Поэтому область допустимых значений здесь – вся числовая ось. В таких случаях ОДЗ не записывают, потому что оно не несет в себе полезной информации.

Как найти ОДЗ?

Если переменная (икс) в уравнении или неравенстве стоит в знаменателе, логарифме, под корнем, в тангенсе или котангенсе ОДЗ записать нужно.

таблица с примерами использования ОДЗ

В квадратных и линейных  уравнениях
(неравенствах) ОДЗ писать не нужно. В иррациональных, дробно-рациональных, логарифмических, а также тригонометрических
с тангенсом
и котангенсом
– ОДЗ обязательно. В уравнениях с синусом и косинусом – если нет знаменателей или других «отягощающих» функций – ОДЗ не записывают.

Чтобы осознать важность ОДЗ, давайте сравним два решения уравнения: с ОДЗ и без ОДЗ.

Пример:      Решить уравнение  (frac{x^2-x}{x+3}=frac{12}{x+3})
Решение:

Без ОДЗ:                          С ОДЗ:
(frac{x^2-x}{x+3}=frac{12}{x+3})   (frac{x^2-x}{x+3}=frac{12}{x+3})
 
 ОДЗ:  (x+3≠0) (⇔) (x≠-3)
(x^2-x=12) (x^2-x=12)
(x^2-x-12=0) (x^2-x-12=0) 
(D=(-1)^2-4·1·(-12)=49) (D=(-1)^2-4·1·(-12)=49)
(x_1=)(frac{-(-1) + sqrt{49}}{2·1})(=4) (x_2=)(frac{-(-1) + sqrt{49}}{2·1}) (=4)
(x_1=)(frac{-(-1) – sqrt{49}}{2·1})(=-3) (x_2=)(frac{-(-1) – sqrt{49}}{2·1})(=-3) – не подходит под ОДЗ
Ответ: (4; -3)   Ответ: (4)

Видите разницу? В первом решении у нас в ответе появился неверный, лишний корень! Почему неверный? А давайте попробуем подставить его в исходное уравнение.

(frac{(-3)^2-(-3)}{(-3)+3})(=)(frac{12}{(-3)+3})
(frac{12}{0})(=)(frac{12}{0})

Видите, у нас получились и слева, и справа невычислимые, бессмысленные выражения (ведь на ноль делить нельзя). И то, что они одинаковы уже не играет роли, поскольку эти значения – не существуют. Таким образом, “(-3)” – неподходящий, посторонний корень, а область допустимых значений оберегает нас от таких серьезных ошибок.

Именно поэтому за первое решение вы получите двойку, а за второе – пятерку. И это не занудные придирки учителя, ведь неучет одз – не мелочь, а вполне конкретная ошибка, такая же как потерянный знак или применение не той формулы. В конце концов, итоговый ответ-то неверен!

Нахождение области допустимых значений часто приводит к необходимости решать системы неравенств или уравнений, поэтому вы должны уметь это делать хорошо.

Пример: Найдите область определения выражения (sqrt{5-2x}+)(frac{1}{sqrt{14+5x-x^{2}}})

Решение: В выражении два корня, один из которых в знаменателе. Кто не помнит ограничения, накладывающиеся в этом случае, тот смотрит таблицу. Кто помнит, записывает, что выражение под первым корнем больше или равно нулю, а под вторым – больше нуля. Понимаете, почему ограничения именно такие?

(begin{cases}5-2xgeq0\14+5x-x^{2} > 0end{cases})

Дело за малым, нужно решить систему неравенств.
В первом неравенстве перенесем (5) вправо, второе умножим на (-1)

(begin{cases}-2xgeq-5\x^{2}-5x-14 < 0end{cases})

Поделим первое неравенство на (-2).
Второе разложим на множители.

(begin{cases}xleq2,5\(x-7)(x+2) < 0end{cases})

Отметим все корни первого неравенства на числовой оси.
Чтобы решить второе – воспользуемся методом интервалов

решение системы неравенств.png

Запишем общий ответ для системы – это и есть допустимые значения для икса.

Ответ: ((-2;2,5])

Скачать статью

Значение области допустимых значений в математике: способы нахождения

Содержание:

  • Допустимые и недопустимые значения переменных
  • Что такое ОДЗ
  • Как найти ОДЗ: примеры, решения

    • Общие принципы нахождения области допустимых значений
    • Примеры нахождения ОДЗ
  • Почему важно учитывать ОДЗ при проведении преобразований
  • Функции, для которых важна ОДЗ

    • ОДЗ обратной зависимости
    • ОДЗ степенной функции
    • ОДЗ показательной функции
    • ОДЗ логарифмической функции
    • ОДЗ тригонометрических функций

Допустимые и недопустимые значения переменных

Перед тем, как вводить понятие области допустимых значений функции, необходимо определиться с самим термином «допустимое значение».

Допустимое значение переменной — такое значение переменной, при котором зависимая от нее функция имеет смысл. Это значит, что, подставив данное значение переменной в выражение функции, можно получить конкретный результат. Сама функция в алгебре — это уравнение, в котором каждому значению x соответствует одно значение y.

Например, для функции обратной пропорциональности (y=frac1x) допустимыми значениями для переменной x будут: 1; 2,7; -5, (sqrt{126}), — в общем, все действительные числа. При подстановке их на место x, функция принимает конкретное значение. Исключениями из этого перечня будут 0, (-infty )и (+infty), так как когда x принимает такие значения, функция не имеет смысла.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Что такое ОДЗ

Область допустимых значений (область определения) функции — совокупность всех значений переменных, при которых функция имеет смысл, то есть решается. Для примера из предыдущего пункта, (y=frac1x), область допустимых значений будет иметь следующий вид: ((-infty;;0)cup(0;;+infty)). Это значит, что в область определения функции ( y=frac1x) входят все числа в промежутках от минус бесконечности до нуля и от нуля до плюс бесконечности.

У записи области определения есть некоторые особенности, которые важно иметь в виду. Круглые скобки — () — применяются, когда область допустимых значений заканчивается на данном числе, причем оно не входит в ОДЗ. Квадратные скобки — [] — применяются в ситуациях, когда в область определения входит число, на котором она заканчивается. Знак объединения — (cup) — по сути означает союз «и». Он используется, когда ОДЗ является системой из нескольких числовых промежутков.

Как найти ОДЗ: примеры, решения

Чтобы найти область допустимых значений для какой-либо функции, не имеет смысла перебирать все числа, при подстановке которых ее можно решить. Рациональнее найти те значения, при которых функция не имеет смысла и исключить их из всего множества чисел.

Общие принципы нахождения области допустимых значений

  • деление на 0. Практически во всех стандартных математических выражениях такая операция не имеет смысла. У этого действия есть конкретный результат только при нахождении предела последовательности или функции. Пример бессмысленных выражений: (y=frac50;)
  • извлечение корня из отрицательного числа. При работе с действительными числами, найти корень любой степени отрицательного числа невозможно. Эта операция приобретает смысл только при переходе к комплексным числам. Пример: (y=sqrt{-11};)
  • возведение в степень. У данного действия есть свои ограничения: нельзя возводить 0 в отрицательную и нулевую степень, отрицательные числа в положительную дробную степень и неположительные (отрицательные и 0) в дробную степень со знаком минус. Примеры: (y=0^{-3};;y=0^0;;y=({-7}^{textstylefrac32});;y=({-6}^{-{textstylefrac17}});)
  • нахождение логарифма. Так как логарифм равняется степени, в которую необходимо возвести основание, чтобы получить логарифмируемое число, некоторые операции не имеют смысла. К ним относятся логарифмирование неположительного числа, положительного числа по отрицательному основанию или единице. Примеры:( y=log_3left(-9right);;y=log_2left(0right);;y=log_{-4}left(64right);;y=log_1left(5right);)
  • тригонометрические функции. Для синуса, косинуса, арктангенса и арккотангенса никаких ограничений нет. Но для тангенса, котангенса, арксинуса и арккосинуса они появляются, исходя из их формул. Так как тангенс является частным при делении синуса на косинус, последний не может равняться нулю. То же самое справедливо и для котангенса, но там уже синус не должен принимать значение 0.

    Арксинус и арккосинус могут быть определены только в промежутке от -1 до 1 включительно — (lbrack-1;;1rbrack.)

Примеры нахождения ОДЗ

Пример №1. Найти область определения функции (y=sqrt{1-x^2})

Из обозначенных выше принципов следует, что подкоренное выражение не может быть отрицательным, значит 1-x^2geq0. Приведем данное неравенство к общему виду: (1-x^2geq0Rightarrow1geq x^2Rightarrow x^2leq1)

Вычислим квадратный корень для обеих частей неравенства:

(x^2leq1Rightarrowsqrt{x^2}leqsqrt1Rightarrowleft|xright|leq1)

Раскроем модуль согласно правилу:

(left|xright|leq1Rightarrow-1leq xleq1)

Из этого следует, что область допустимых значений функции (y=sqrt{1-x^2}) лежит в пределах между -1 и 1, включая эти числа. Таким образом, ОДЗ данной функции: (xinlbrack-1;;1rbrack)

Пример №2. Найти ОДЗ функции (y=lgleft(xright))

(lgleft(xright)) является краткой формой записи десятичного логарифма (log_{10}left(xright)). Так как 10 — положительное число, не равное единице, единственным условием остается x>0. Таким образом, область определения функции (y=lgleft(xright)) будет включать в себя все числа в промежутке от нуля до (+infty). Так как неравенство x>0 — строгое, ОДЗ будет иметь следующий вид: (xin(0;;+infty)).

Почему важно учитывать ОДЗ при проведении преобразований

Тождественные преобразования могут приводить к расширению или сужению области допустимых значений. В этом случае значение, подходящее к изначальной функции, после преобразования может оказаться вне области определения. Поэтому стоит избегать сужающих ОДЗ преобразований или находить область допустимых значений уже после них.

Функции, для которых важна ОДЗ

Сама по себе область допустимых значений — важная характеристика для всех функций. Чтобы правильно решать математические задачи, следует всегда находить ее. При этом, для многих, если не большинства, функций она включает в себя все множество действительных чисел. Например, линейная (y=kcdot x+b) или квадратичная (y=acdot x^2+bcdot x+c) функции. Рассмотрим некоторые функции, для которых это не так.

ОДЗ обратной зависимости

Функция обратной пропорциональности (y=frac kx) уже упоминалась выше. Ее область определения содержит все действительные числа, за исключением нуля: (xin(-infty;;0)cup(0;;+infty).)

ОДЗ степенной функции

Для степенной функции y=x^n следует учитывать обозначенные выше принципы нахождения ОДЗ, справедливые для возведения в степень и извлечения корня. Рассмотрим области определения переменной x в зависимости от значения n:

  • при n>0 и (ninmathbb{Z}), то есть n — целое положительное число: ( xin(-infty;;+infty);)
  • для n>0, причем n — дробное число: ( xinlbrack0;;+infty);)
  • для n=0:( xin(-infty;0)cup(0;;+infty);)
  • при n<0 и (ninmathbb{Z}: xin(-infty;;0)cup(0;;+infty);)
  • для n<0, причем n — дробное число: (xin(0;;+infty).)

ОДЗ показательной функции

Показательная функция y=a^x очень похожа на степенную, но, в отличие от нее, здесь переменная не в основании, а в степени. Область допустимых значений для нее определяется по тем же правилам, что и для степенной функции:

  • для a>0: (xin(-infty;;+infty);)
  • для a=0: (xin(0;;+infty);)
  • для a<0: (xin(-infty;;+infty)), причем x должен быть целым числом.

ОДЗ логарифмической функции

Логарифмическая функция (y=log_aleft(xright)) является обратной для показательной. Согласно свойствам логарифмирования, область определения такой функции будет включать все положительные числа: (xin(0;;+infty).)

ОДЗ тригонометрических функций

Как уже упоминалось выше, для синуса, косинуса, арктангенса и арккотангенса область допустимых значений включает в себя все действительные числа: (xin(-infty;;+infty)). Рассмотрим ОДЗ еще четырех тригонометрических функций:

  • тангенс: (xin(-infty;;frac{mathrmpi}2+mathrmpicdotmathrm n)cup(frac{mathrmpi}2+mathrmpicdotmathrm n;;+infty), где ninmathbb{Z};)
  • котангенс: (xin(-infty;;mathrmpicdotmathrm n)cup(mathrmpicdotmathrm n;;+infty), где ninmathbb{Z};)
  • арксинус и арккосинус: (xinlbrack-1;;1rbrack.)

Добавить комментарий