Как найти одз квадратного уравнения

Область  допустимых  значений  (ОДЗ)  – это  все  значения  переменной, при которых не нарушаются правила математики.

Например:

– если в выражении (frac{x}{x-1}) значение переменной будет равно 1, нарушается правило: на ноль делить нельзя. Поэтому здесь (x) не может быть единицей и ОДЗ записывается так: (xneq1);

– если в выражении (sqrt{x-2}) значение переменной равно (0), нарушается правило: подкоренное выражение не должно быть отрицательно. Значит, здесь (x) не может быть (0), а также (1, -3, -52,7) и т.д. То есть, икс должен быть больше или равен 2 и ОДЗ будет: (xgeq2);

– а вот в выражение (4x+1) мы можем подставить любое число вместо икса, и никакие правила нарушены не будут. Поэтому область допустимых значений здесь – вся числовая ось. В таких случаях ОДЗ не записывают, потому что оно не несет в себе полезной информации.

Как найти ОДЗ?

Если переменная (икс) в уравнении или неравенстве стоит в знаменателе, логарифме, под корнем, в тангенсе или котангенсе ОДЗ записать нужно.

таблица с примерами использования ОДЗ

В квадратных и линейных  уравнениях
(неравенствах) ОДЗ писать не нужно. В иррациональных, дробно-рациональных, логарифмических, а также тригонометрических
с тангенсом
и котангенсом
– ОДЗ обязательно. В уравнениях с синусом и косинусом – если нет знаменателей или других «отягощающих» функций – ОДЗ не записывают.

Чтобы осознать важность ОДЗ, давайте сравним два решения уравнения: с ОДЗ и без ОДЗ.

Пример:      Решить уравнение  (frac{x^2-x}{x+3}=frac{12}{x+3})
Решение:

Без ОДЗ:                          С ОДЗ:
(frac{x^2-x}{x+3}=frac{12}{x+3})   (frac{x^2-x}{x+3}=frac{12}{x+3})
 
 ОДЗ:  (x+3≠0) (⇔) (x≠-3)
(x^2-x=12) (x^2-x=12)
(x^2-x-12=0) (x^2-x-12=0) 
(D=(-1)^2-4·1·(-12)=49) (D=(-1)^2-4·1·(-12)=49)
(x_1=)(frac{-(-1) + sqrt{49}}{2·1})(=4) (x_2=)(frac{-(-1) + sqrt{49}}{2·1}) (=4)
(x_1=)(frac{-(-1) – sqrt{49}}{2·1})(=-3) (x_2=)(frac{-(-1) – sqrt{49}}{2·1})(=-3) – не подходит под ОДЗ
Ответ: (4; -3)   Ответ: (4)

Видите разницу? В первом решении у нас в ответе появился неверный, лишний корень! Почему неверный? А давайте попробуем подставить его в исходное уравнение.

(frac{(-3)^2-(-3)}{(-3)+3})(=)(frac{12}{(-3)+3})
(frac{12}{0})(=)(frac{12}{0})

Видите, у нас получились и слева, и справа невычислимые, бессмысленные выражения (ведь на ноль делить нельзя). И то, что они одинаковы уже не играет роли, поскольку эти значения – не существуют. Таким образом, “(-3)” – неподходящий, посторонний корень, а область допустимых значений оберегает нас от таких серьезных ошибок.

Именно поэтому за первое решение вы получите двойку, а за второе – пятерку. И это не занудные придирки учителя, ведь неучет одз – не мелочь, а вполне конкретная ошибка, такая же как потерянный знак или применение не той формулы. В конце концов, итоговый ответ-то неверен!

Нахождение области допустимых значений часто приводит к необходимости решать системы неравенств или уравнений, поэтому вы должны уметь это делать хорошо.

Пример: Найдите область определения выражения (sqrt{5-2x}+)(frac{1}{sqrt{14+5x-x^{2}}})

Решение: В выражении два корня, один из которых в знаменателе. Кто не помнит ограничения, накладывающиеся в этом случае, тот смотрит таблицу. Кто помнит, записывает, что выражение под первым корнем больше или равно нулю, а под вторым – больше нуля. Понимаете, почему ограничения именно такие?

(begin{cases}5-2xgeq0\14+5x-x^{2} > 0end{cases})

Дело за малым, нужно решить систему неравенств.
В первом неравенстве перенесем (5) вправо, второе умножим на (-1)

(begin{cases}-2xgeq-5\x^{2}-5x-14 < 0end{cases})

Поделим первое неравенство на (-2).
Второе разложим на множители.

(begin{cases}xleq2,5\(x-7)(x+2) < 0end{cases})

Отметим все корни первого неравенства на числовой оси.
Чтобы решить второе – воспользуемся методом интервалов

решение системы неравенств.png

Запишем общий ответ для системы – это и есть допустимые значения для икса.

Ответ: ((-2;2,5])

Скачать статью

Область допустимых значений (ОДЗ): теория, примеры, решения

Любое выражение с переменной имеет свою область допустимых значений, где оно существует. ОДЗ необходимо всегда учитывать при решении. При его отсутствии можно получить неверный результат.

В данной статье будет показано, как правильно находить ОДЗ, использовать на примерах. Также будет рассмотрена важность указания ОДЗ при решении.

Допустимые и недопустимые значения переменных

Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.

Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.

Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1 : а , если а = 0 , тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут ответ. Иначе говоря, имеют смысл с имеющимися переменными.

Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.

Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.

То есть отсюда следует полное определение

Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.

Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.

Для примера рассмотрим выражение вида 1 x – y + z , где имеются три переменные. Иначе можно записать, как x = 0 , y = 1 , z = 2 , другая же запись имеет вид ( 0 , 1 , 2 ) . Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 1 0 – 1 + 2 = 1 1 = 1 . Отсюда видим, что ( 1 , 1 , 2 ) недопустимы. Подстановка дает в результате деление на ноль, то есть 1 1 – 2 + 1 = 1 0 .

Что такое ОДЗ?

Область допустимых значений – важный элемент при вычислении алгебраических выражений. Поэтому стоит обратить на это внимание при расчетах.

Область ОДЗ – это множество значений, допустимых для данного выражения.

Рассмотрим на примере выражения.

Если имеем выражение вида 5 z – 3 , тогда ОДЗ имеет вид ( − ∞ , 3 ) ∪ ( 3 , + ∞ ) . Эта область допустимых значений, удовлетворяющая переменной z для заданного выражения.

Если имеется выражения вида z x – y , тогда видно, что x ≠ y , z принимает любое значение. Это и называют ОДЗ выражения. Его необходимо учитывать, чтобы не получить при подстановке деление на ноль.

Область допустимых значений и область определения имеет один и тот же смысл. Только второй из них используется для выражений, а первый – для уравнений или неравенств. При помощи ОДЗ выражение или неравенство имеет смысл. Область определения функции совпадает с областью допустимых значений переменной х к выражению f ( x ) .

Как найти ОДЗ? Примеры, решения

Найти ОДЗ означает найти все допустимые значения, подходящие для заданной функции или неравенства. При невыполнении этих условий можно получить неверный результат. Для нахождения ОДЗ зачастую необходимо пройти через преобразования в заданном выражении.

Существуют выражения, где их вычисление невозможно:

  • если имеется деление на ноль;
  • извлечение корня из отрицательного числа;
  • наличие отрицательного целого показателя – только для положительных чисел;
  • вычисление логарифма отрицательного числа;
  • область определения тангенса π 2 + π · k , k ∈ Z и котангенса π · k , k ∈ Z ;
  • нахождение значения арксинуса и арккосинуса числа при значении, не принадлежащем [ – 1 ; 1 ] .

Все это говорит о том, как важно наличие ОДЗ.

Найти ОДЗ выражения x 3 + 2 · x · y − 4 .

Решение

В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.

Ответ: x и y – любые значения.

Найти ОДЗ выражения 1 3 – x + 1 0 .

Решение

Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.

Ответ: ∅ .

Найти ОДЗ заданного выражения x + 2 · y + 3 – 5 · x .

Решение

Наличие квадратного корня говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x + 2 · y + 3 ≥ 0 . То есть это и есть искомая область допустимых значений.

Ответ: множество x и y , где x + 2 · y + 3 ≥ 0 .

Определить ОДЗ выражения вида 1 x + 1 – 1 + log x + 8 ( x 2 + 3 ) .

Решение

По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x + 1 – 1 ≠ 0 . Подкоренное выражение всегда имеет смысл, когда больше или равно нулю, то есть x + 1 ≥ 0 . Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x 2 + 3 > 0 . Основание логарифма также должно иметь положительное значение и отличное от 1 , тогда добавляем еще условия x + 8 > 0 и x + 8 ≠ 1 . Отсюда следует, что искомое ОДЗ примет вид:

x + 1 – 1 ≠ 0 , x + 1 ≥ 0 , x 2 + 3 > 0 , x + 8 > 0 , x + 8 ≠ 1

Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [ − 1 , 0 ) ∪ ( 0 , + ∞ ) .

Ответ: [ − 1 , 0 ) ∪ ( 0 , + ∞ )

Почему важно учитывать ОДЗ при проведении преобразований?

При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.

  • могут не влиять на ОДЗ;
  • могут привести в расширению или дополнению ОДЗ;
  • могут сузить ОДЗ.

Рассмотрим на примере.

Если имеем выражение вида x 2 + x + 3 · x , тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.

Если взять пример выражения x + 3 x − 3 x , то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) . Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.

Рассмотрим пример с наличием подкоренного выражения.

Если имеется x – 1 · x – 3 , тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства ( x − 1 ) · ( x − 3 ) ≥ 0 . Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) . После преобразования x – 1 · x – 3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x – 1 ≥ 0 , x – 3 ≥ 0 . При ее решении получаем, что [ 3 , + ∞ ) . Значит, ОДЗ полностью записывается так: ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) .

Нужно избегать преобразований, которые сужают ОДЗ.

Рассмотрим пример выражения x – 1 · x – 3 , когда х = – 1 . При подстановке получим, что – 1 – 1 · – 1 – 3 = 8 = 2 2 . Если это выражение преобразовать и привести к виду x – 1 · x – 3 , тогда при вычислении получим, что 2 – 1 · 2 – 3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.

Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.

Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.

Рассмотрим на примере дроби вида x x 3 + x . Если сократить на x , тогда получаем, что 1 x 2 + 1 . Тогда ОДЗ расширяется и становится ( − ∞ 0 ) ∪ ( 0 , + ∞ ) . Причем при вычислении уже работаем со второй упрощенной дробью.

При наличии логарифмов дело обстоит немного иначе.

Если имеется выражение вида ln x + ln ( x + 3 ) , его заменяют на ln ( x · ( x + 3 ) ) , опираясь на свойство логарифма. Отсюда видно, что ОДЗ с ( 0 , + ∞ ) до ( − ∞ , − 3 ) ∪ ( 0 , + ∞ ) . Поэтому для определения ОДЗ ln ( x · ( x + 3 ) ) необходимо производить вычисления на ОДЗ, то есть ( 0 , + ∞ ) множества.

При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.

Квадратичная функция. Построение параболы

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию означает определить правило в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ: наглядно.
  • Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.

Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно на курсах по математике в онлайн-школе Skysmart.

Построение квадратичной функции

Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0. В уравнении существует следующее распределение:

  • a — старший коэффициент, который отвечает за ширину параболы. Большое значение a — парабола узкая, небольшое — парабола широкая.
  • b — второй коэффициент, который отвечает за смещение параболы от центра координат.
  • с — свободный член, который соответствует координате пересечения параболы с осью ординат.

График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 :

Точки, обозначенные зелеными кружками называют базовыми точками. Чтобы найти их координаты для функции y = x 2 , нужно составить таблицу:

x

y

Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов.

График функции y = –x 2 выглядит, как перевернутая парабола:

Зафиксируем координаты базовых точек в таблице:

x

y

Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:

  • Если старший коэффициент больше нуля a > 0, то ветви параболы напрaвлены вверх.
  • Если старший коэффициент меньше нуля a 2 + bx + c, для построения которой нужно решить квадратное уравнение ax 2 + bx + c = 0. В процессе найдем дискриминант D = b 2 – 4ac, который даст нам информацию о количестве корней квадратного уравнения.

Рассмотрим три случая:

  1. Если D 0,то график выглядит так:

  1. Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:
  2. Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:

Если a > 0, то график выглядит как-то так:

0″ height=”671″ src=”https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=”602″>

На основе вышеизложенного ясно, что зная направление ветвей параболы и знак дискриминанта, у нас есть понимание, как будет выглядеть график конкретной функции.

Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:

Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.

Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).

На изображении отмечены основные параметры графика квадратичной функции:

Алгоритм построения параболы

Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.

Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.

Разберем общий алгоритм на примере y = 2x 2 + 3x – 5.

Как строим:

  1. Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
  2. Найдем дискриминант квадратного трехчлена 2x 2 + 3x – 5.

D = b 2 – 4ac = 9 – 4 * 2 * (-5) = 49 > 0

В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:

2x 2 + 3x – 5 = 0 2 + 3x – 5 = 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAPoAAAAyCAYAAAB1V8bkAAAJyElEQVR4Ae2c16sUwRLGfdRX/wXFB30QFFQUQUyIKCIGBEEQzCCoKIgB01ExZwVz4JpzztljwJxzzjlnrcuvL33unD2zOzO7OzvuThU0u5N6uuvrr7u6unrKiYpqQDVQ8BooV/A11AqqBlQDokTXRqAaiIEGlOgxAFmrqBpQomsbUA3EQANK9BiArFVUDSjRtQ2oBmKgASV6DEDWKqoGlOjaBlQDMdBAQRH9z58/8vv3b5P+/v2bMXy/fv0S8kxMGWesGRgNpIMXz7jhkg28CxmWgiH69+/f5dSpU7JixQpZtmyZXLx4UX7+/JkUOxoGjSaVTJw4UVatWiUbNmwoSYcPH071iF7zqYGgeNlsT58+LZMnTy7BA2y2bNkib9++tbfor4sGCobogD19+nR5/fq1nDx5Upo0aSLHjh2TZD39x48f5ebNmy4q+d8pRo327dtLo0aNTF6NGzeWevXqCeRXyVwDQfHijXTMmzZtMjiAL6lu3brSuXNnuXfvXuaFKuAcCobojOQDBgwwgD948EAg5ubNm42Z54bfjRs3ZMqUKW6XzDk6jP379wsjD/LmzRtZt26dvHr1KukzesG/BoLiRc5gceXKFZM4/vbtmxw6dEguXbokP3788P/yGN5ZMET/8uWLvHv3Tt6/f2/Muh49esj169eTQupF9MQHIfm1a9cST+txmhoIipfba86fPy9Hjx4VrDOV1BooGKJTTYh++fJlGTt2rCxevNgcJ6t+EKIz3587d26yrPR8mhoIglfiK549e2Y6dHBU8dZA3hH9+PHjYhNmnFO+fv1qTOwDBw5Ily5dhF+nQ47ndu/ebdLChQule/fuJcecp9E477d5d+zYUW7fvm0P9TeABixW/AbBCz+LffbChQtl3rh69WpZsmSJjuZlNON+Iu+IDkGZW+N427Ztm6nVp0+f5MiRI6Zh2Dl1hw4dZOjQoaVGdebc1oM+a9Ys48Sxx/y6zfUePnwoVapUcdeenvXUQLp4LV261OA8bdo0g5nzRR8+fJBhw4YJeav400DeEf3Ro0dmZGD+/fLlS1NLzLjhw4fLmDFjhEaA4DHv16+fGeHdVOHXdKczqVy5slsWes6HBtLF6/HjxwZn/CLPnz8v9aZbt25Jt27dlOiltJL6IO+I7lYdTPY1a9bIjBkz5M6dO7Jjxw5hRN++fXtSb6xfos+ZM0cqVark9trQzrEmXFxc7LnOH1oBQs44HbycRTpz5oy0a9funyA6DkGW/NavX19mauIsc+J/OkCmJliRL168ME7FVM7jxOeDHhcE0ak05KD3P3v2rFkWO3HihHz+/DmpPlh3XbRoUdLr9gL5LF++3B6G+nv//n3ZuHGjDBw4UDp16pS0kwq1EDnKPChezmI9efJEtm7dmnJVxXl/WP8PHjxopoxXr141RG3Tpo0JsPLzPqaaLVq0kDp16kjDhg2lb9++JgbEz7Pp3FMwRKfyBLkwX2fpxivqjbm8Nf1TKY77WK/NhVBuGvGoUaNMHID1N+Ti3VG8IwhezvIR5gwm/EYlrBgMGTJE9u3bZxy4YDV69Gjf/py9e/fKypUrjSVKLEDYqwcFRfSoQM/2e2fOnGmivgqd6NnWWy7zI3CqefPmUlRUVOIXgrzly5cXfEZewr2Y/XTuyaI3vfIIcj1tolM4lpyIBZ83b56MGzdO9uzZY0YjwkSfPn0apBx6r0MDYRBd8XIoOAt/sRiZU0N4az2OHz9eKlSo4MvSgOgs6RKIBYdIYUraRMfsYpkL84m5cc+ePY1DYv78+dKnTx/B2eAlmKldu3b1TISy5luII8s/XnWbNGmSMC9PlDCIrniJcXB6YcJ15s9+JHEkrlq1qixYsMDPowLRcRqzSgSHiOkI0xeUNtHpxXBUIQQ3tGrVKnLniC8N58FNYRBd8QoOPES2Php8Agw2dvR25gZRcaaNHDnSeTrlf/JxdhTsuMQacJ5LmUHAi2kT3b6HyrNBoXXr1uYUBXVThr3f+YuCcGp4JZRsFYAV8K8lt1hremqveuE4RAeJEgbR7Tvigpfb1JG6e2HCde5DCJbCM16rVi2T2D9BiLVT6Agwv3GsgSXPumHqfAZ+sLqCNWfbNQ455ve8MwxJm+gsXeF0YFcXPRlRaAiebD/OCO5l/XDQoEGeCTPHhqZWq1ZN/rVElF2iTJ061bNemHkEhiRKGESPG141atRIVKtZevXT3tjz7kcYgIioZDRmtyM6Zk09sf0zbYIndkBgabFt27ZmeZeYAgQzvmLFimWe9VMOP/ekTXTWMXv37m16uF69esmECRNMZdgDzgcgVIJrwLm8Vr9+fSECjM4wG6J4ZUOL/8+DgQdSwwGccIRkk4jITBRGaZZM8V/ZlRRGdIJlwJzBsX///gKPwpK0iY7HkArSgKgwu8XYMnju3LmkgSr0ZNZUCatCfvLFtKIHtj2sn2dycY8NmCGcF6cQIwXx+dmQfMMLfEj/qjA1Yx29ZcuWpRLmfaLcvXtXBg8eLCNGjChxUoM1mBAdt3btWmP9ZatTT3w/x2kTHcKytAB5EeYmyYiDecpWz9mzZyf9EIRb4cI6Rw/KikGcLI98w4vlWkKYC0Uw5xkEMeGt4A/Akc28P+wBMG2i28L6+WV7IruRmjVrVmK6+HkujHuYL+3atcuUhbm/SlkNRI0Xn/iqWbOmaTNlS5d/ZzDzITOhslFJTohO5Rg98WDaOUoUFabXpBExV2JThBI9OQpR4YX1x3SQb/UxOBSCYO2yA48RPCqJFdGZmxN8w/q/Ej11k4uK6ERXMqflw4+FQvTUms7N1VgRnYgndq2RlOipG1gURCf2myhLpldNmzZVoqeGKNDV2BAdj+bOnTuNcpTo3m0k10THrCVohCAiRInujVGQO2JDdJYA8bQTpIJHt3bt2mZtk1FEpawGck10PrRB4BEf4QQjgqIIK2UbqErmGsgJ0fE2AmL16tWFj/oRwpprYcRgVCcR+URsPkELBCyolNZAFHgRVcZyrcWoQYMGwtd97KfBSpdQj4JqICdEZ3kBkwwQIZZXLHDQSvi9H687G/wJgyREkl+7McdvHnG4L0q8WG9mUOCDnASf4DxVyVwDOSF65sXMXg6QnYbMMh+/fjfgZK8EmlMqDYAPzji7WyyqQSFVGfPxWuyIno8gaZlVA5lqQImeqQb1edVAHmhAiZ4HIGkRVQOZakCJnqkGI3m+WIrKlZOi45G8XF+ahxpQouchaKbIx4uU6PmKXQTlVqJHoPTMX/lM/tOuSIozz0hziIkGlOgxAVqrGW8NKNHjjb/WPiYaUKLHBGitZrw1oESPN/5a+5hoQIkeE6C1mvHWwH8BSUfSiO3XWNEAAAAASUVORK5CYII=”>

  1. Координаты вершины параболы:
  1. Точка пересечения с осью OY находится: (0; -5) и ей симметричная.
  2. Нанести эти точки на координатную плоскость и построить график параболы:
    2 + 3x – 5 = 0″ height=”671″ src=”https://lh6.googleusercontent.com/TYyA5dFfh0ZKINaPSps3Y_X1mCv8Mhv_8bNG3_dPbZud1AEsvo7UBFmVQNm1GcR1CQFo6HE1lNjYaAgepQUTQiK_ay_Fnuv7LEsB53woHkFO66W0R1PP8QfGsFcYzaR_h4AJdLxC” width=”602″>

Уравнение квадратичной функции имеет вид y = a * (x – x₀) 2 + y₀

Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x 2 + 3x – 5 при а = 1, то второй коэффициент является четным числом.

Рассмотрим пример: y = 2 * (x – 1) 2 + 4.

Как строим:

  1. Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
  • построить y = x 2 ,
  • умножить ординаты всех точек графика на 2,
  • сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • сдвинуть его вдоль оси OY на 4 единицы вверх.
  1. Построить график параболы для каждого случая. 2 + y₀” height=”431″ src=”https://lh5.googleusercontent.com/_zgF-CXWf4Yy0p2OnBYSJkUm0zO-mNetq5feU6LIPEbIgSrO9kdr2ti_tr7Gg3yTMOlJVnuZgG0HleAFfAzG7yr7ELHT6KSMqMrRHkHqt-VcgIiSZx80cVj0zlPMBzEM0wAWQ-L6″ width=”602″>

Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)

Рассмотрим следующий пример: y = (x − 2) × (x + 1).

Как строим:

Данный вид уравнения позволяет быстро найти нули функции:

(x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.

Определим координаты вершины параболы:

Найти точку пересечения с осью OY:

с = ab = (−2) × (1) = −2 и ей симметричная.

Отметим эти точки на координатной плоскости и соединим плавной прямой.

Практика. Функции. Часть 1. Область определения и область значений функции

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На предыдущих уроках мы познакомились с базовыми функциями, их свойствами и графиками. Кроме того, узнали о различных преобразованиях графиков функций. На этом уроке мы разберем практические задания с функциями и их графиками, а также изучим еще один вид преобразования графиков функций.

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/kvadratichnaya-funkciya-parabola

http://interneturok.ru/lesson/algebra/8-klass/effektivnye-kursy/praktika-funktsii-chast-1-oblast-opredeleniya-i-oblast-znacheniy-funktsii

[/spoiler]

Любое выражение с переменной в алгебре (математике) имеет свою область допустимых значений (или ОДЗ), где оно существует. ОДЗ – это то, что необходимо всегда учитывать при решении. При его отсутствии можно получить неверный результат.

В данной статье будет показано, как найти ОДЗ (ОДЗ логарифма, ОДЗ корня), использовать на примерах
(без необходимости искать готовые решения онлайн). Также будет рассмотрена важность указания ОДЗ при решении домашних заданий, гдз и прочих случаях.

Допустимые и недопустимые значения переменных

Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.

Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.

Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1:а, если а=0, тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут подробно ответ. Иначе говоря, имеют смысл с имеющимися переменными.

Определение 1

Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.

Определение 2

Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.

То есть отсюда можно уже определять более полно

Определение 3

Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.

Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.

Пример 1

Для примера рассмотрим выражение вида 1x-y+z, где имеются три переменные. Иначе можно записать, как x=0, y=1, z=2, другая же запись имеет вид (0,1,2). Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 10-1+2=11=1. Отсюда видим, что (1,1,2) недопустимы. Подстановка дает  в результате деление на ноль, то есть 11-2+1=10. 

Что такое ОДЗ?

Область допустимых значений – важный элемент при вычислении алгебраических выражений. Поэтому стоит обратить на это внимание при расчетах.

Определение 4

Область ОДЗ – это множество значений, допустимых для данного выражения.

Рассмотрим на примере выражения. 

Пример 2

Если имеем выражение вида 5z-3, тогда ОДЗ имеет вид (−∞, 3)∪(3, +∞). Эта область допустимых значений, удовлетворяющая переменной z для заданного выражения.

Если имеется выражения вида zx-y, тогда видно, что x≠y, z принимает любое значение. Это и называют ОДЗ выражения. Его необходимо учитывать, чтобы не получить  при подстановке деление на ноль.

Область допустимых значений и область определения имеет один и тот же смысл. Только второй из них используется для выражений, а первый – для уравнений или неравенств. При помощи ОДЗ выражение или неравенство имеет смысл. Область определения функции совпадает  с областью допустимых значений переменной х к выражению f(x).

Как найти ОДЗ? Примеры, решения

Поиск определенного ОДЗ означает поиск всех допустимых значений, подходящих для заданной функции или неравенства. При невыполнении этих условий можно получить неверный результат. Как находить ОДЗ? Для нахождения ОДЗ зачастую необходимо пройти через преобразования в заданном выражении.

Как решать ОДЗ? Существуют выражения, где их вычисление невозможно:

  • если имеется деление на ноль;
  • извлечение корня из отрицательного числа;
  • наличие отрицательного целого показателя – только для положительных чисел;
  • вычисление логарифма отрицательного числа;
  • область определения тангенса π2+π·k, k∈Z и котангенса π·k, k∈Z;
  • нахождение значения арксинуса и арккосинуса числа при значении, не принадлежащем [-1; 1].

Все это говорит о том, как важно наличие ОДЗ.

Пример 3

Найти ОДЗ выражения x3+2·x·y−4.

Решение

В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.

Ответ: x и y – любые значения.

Пример 4

Найти ОДЗ выражения 13-x+10.

Решение

Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что  при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.

Ответ: ∅.

Пример 5

Найти ОДЗ заданного выражения x+2·y+3-5·x.

Решение

Наличие квадратного корня (квадрат корня) говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x+2·y+3≥0. То есть это и есть искомая область допустимых значений.

Ответ: множество x и y, где x+2·y+3≥0.

Пример 6

Определить ОДЗ выражения вида 1x+1-1+logx+8(x2+3).

Решение

По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x+1-1≠0 . Выражение под корнем всегда имеет смысл, когда больше или равно нулю, то есть x+1≥0. Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x2+3>0. Основание логарифма также должно иметь положительное значение и отличное от 1, тогда добавляем еще условия x+8>0 и x+8≠1.  Отсюда следует, что искомое ОДЗ примет вид:

x+1-1≠0,x+1≥0,x2+3>0,x+8>0,x+8≠1

Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [−1, 0)∪(0, +∞).

Ответ: [−1, 0)∪(0, +∞)

Почему важно учитывать ОДЗ при проведении преобразований?

При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.

Тождественные преобразования:

  • могут не влиять на ОДЗ;
  • могут привести к расширению или дополнению ОДЗ;
  • могут сузить ОДЗ.

Рассмотрим на примере.

Пример 7

Если имеем выражение вида x2+x+3·x, тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.

Пример 8

Если взять пример выражения x+3x−3x, то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид (−∞, 0)∪(0, +∞). Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.

Рассмотрим пример с наличием подкоренного выражения. 

Пример 9

Если имеется x-1·x-3, тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства (x−1)·(x−3)≥0.  Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид (−∞, 1]∪[3, +∞). После преобразования x-1·x-3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x-1≥0,x-3≥0. При ее решении получаем, что [3, +∞). Значит, ОДЗ полностью записывается так: (−∞, 1]∪[3, +∞).

Нужно избегать преобразований, которые сужают ОДЗ.

Пример 10

Рассмотрим пример выражения x-1·x-3, когда х=-1. При подстановке получим, что -1-1·-1-3=8=22. Если это выражение преобразовать и привести к виду x-1·x-3, тогда при вычислении получим, что 2-1·2-3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.

Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.

Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.

Пример 11

Рассмотрим на примере дроби вида xx3+x. Если сократить на x, тогда получаем, что 1×2+1. Тогда ОДЗ расширяется и становится (−∞ 0)∪(0, +∞). Причем при вычислении уже работаем со второй упрощенной дробью.

В случае нахождения ОДЗ для логарифмов дело обстоит немного иначе. Вот пример нахождения ОДЗ для логарифма.

Пример 12

Если имеется выражение вида ln x+ln(x+3), его заменяют  на ln(x·(x+3)), опираясь на свойство логарифма. Отсюда видно, что ОДЗ с (0, +∞) до (−∞, −3)∪(0, +∞). Поэтому для определения ОДЗ ln(x·(x+3)) необходимо производить вычисления на ОДЗ, то есть (0, +∞) множества.

При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

ОДЗ (Область допустимых значений) — подробнее

Давай разберем пример, наглядно показывающий, что такое ОДЗ:

Решим уравнение ( displaystyle sqrt{2x+3}=x).

Все очень просто, если ты уже освоил тему «Иррациональные уравнения».

Возводим левую и правую части уравнения в квадрат:

( displaystyle 2x+3={{x}^{2}}text{ }Leftrightarrow text{ }{{x}^{2}}-2{x}-3=0).

Теперь решаем квадратное уравнение. Я воспользуюсь теоремой Виета (если забыл, что это такое, – посмотри тему «Квадратные уравнения»).

Получаем корни:

( displaystyle left[ begin{array}{l}x=3\x=-1end{array} right.)

Вроде все? А давай-ка теперь сделаем проверку – подставим полученные значения в начальное уравнение:

( displaystyle x=3:text{ }sqrt{2cdot 3+3}=3text{ }Leftrightarrow text{ }sqrt{9}=3) – все верно.

( displaystyle x=-1:text{ }sqrt{2cdot left( -1 right)+3}=-1text{ }Leftrightarrow text{ }sqrt{1}=-1) – неверно! А все почему?

Да потому, что мы не учли ОДЗ! 

По определению квадратный корень из любого числа не может быть отрицательным. 

Значит, глядя на уравнение ( displaystyle sqrt{2x+3}=x) мы должны сразу же написать:

( displaystyle left{ begin{array}{l}xge 0;\2x+3ge 0.end{array} right.)

Если помнишь тему «Иррациональные уравнения», ты сразу скажешь, что второе условие в этой системе писать необязательно. И правда, мы ведь потом возведем все в квадрат, и получится, что ( displaystyle 2x+3={{x}^{2}}), а значит – автоматически неотрицательно.

Итак, с помощью этих рассуждений приходим к такой области допустимых значений:

( displaystyle xge 0).

Тогда сразу становится ясно, что корень ( displaystyle x=-1) не подходит. И остается единственный ответ ( displaystyle x=3).

Всего мы изучаем несколько разных функций, для которых важна ОДЗ. Вот они со своими ОДЗ в удобной табличке.

Значение области допустимых значений в математике: способы нахождения

Содержание:

  • Допустимые и недопустимые значения переменных
  • Что такое ОДЗ
  • Как найти ОДЗ: примеры, решения

    • Общие принципы нахождения области допустимых значений
    • Примеры нахождения ОДЗ
  • Почему важно учитывать ОДЗ при проведении преобразований
  • Функции, для которых важна ОДЗ

    • ОДЗ обратной зависимости
    • ОДЗ степенной функции
    • ОДЗ показательной функции
    • ОДЗ логарифмической функции
    • ОДЗ тригонометрических функций

Допустимые и недопустимые значения переменных

Перед тем, как вводить понятие области допустимых значений функции, необходимо определиться с самим термином «допустимое значение».

Допустимое значение переменной — такое значение переменной, при котором зависимая от нее функция имеет смысл. Это значит, что, подставив данное значение переменной в выражение функции, можно получить конкретный результат. Сама функция в алгебре — это уравнение, в котором каждому значению x соответствует одно значение y.

Например, для функции обратной пропорциональности (y=frac1x) допустимыми значениями для переменной x будут: 1; 2,7; -5, (sqrt{126}), — в общем, все действительные числа. При подстановке их на место x, функция принимает конкретное значение. Исключениями из этого перечня будут 0, (-infty )и (+infty), так как когда x принимает такие значения, функция не имеет смысла.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Что такое ОДЗ

Область допустимых значений (область определения) функции — совокупность всех значений переменных, при которых функция имеет смысл, то есть решается. Для примера из предыдущего пункта, (y=frac1x), область допустимых значений будет иметь следующий вид: ((-infty;;0)cup(0;;+infty)). Это значит, что в область определения функции ( y=frac1x) входят все числа в промежутках от минус бесконечности до нуля и от нуля до плюс бесконечности.

У записи области определения есть некоторые особенности, которые важно иметь в виду. Круглые скобки — () — применяются, когда область допустимых значений заканчивается на данном числе, причем оно не входит в ОДЗ. Квадратные скобки — [] — применяются в ситуациях, когда в область определения входит число, на котором она заканчивается. Знак объединения — (cup) — по сути означает союз «и». Он используется, когда ОДЗ является системой из нескольких числовых промежутков.

Как найти ОДЗ: примеры, решения

Чтобы найти область допустимых значений для какой-либо функции, не имеет смысла перебирать все числа, при подстановке которых ее можно решить. Рациональнее найти те значения, при которых функция не имеет смысла и исключить их из всего множества чисел.

Общие принципы нахождения области допустимых значений

  • деление на 0. Практически во всех стандартных математических выражениях такая операция не имеет смысла. У этого действия есть конкретный результат только при нахождении предела последовательности или функции. Пример бессмысленных выражений: (y=frac50;)
  • извлечение корня из отрицательного числа. При работе с действительными числами, найти корень любой степени отрицательного числа невозможно. Эта операция приобретает смысл только при переходе к комплексным числам. Пример: (y=sqrt{-11};)
  • возведение в степень. У данного действия есть свои ограничения: нельзя возводить 0 в отрицательную и нулевую степень, отрицательные числа в положительную дробную степень и неположительные (отрицательные и 0) в дробную степень со знаком минус. Примеры: (y=0^{-3};;y=0^0;;y=({-7}^{textstylefrac32});;y=({-6}^{-{textstylefrac17}});)
  • нахождение логарифма. Так как логарифм равняется степени, в которую необходимо возвести основание, чтобы получить логарифмируемое число, некоторые операции не имеют смысла. К ним относятся логарифмирование неположительного числа, положительного числа по отрицательному основанию или единице. Примеры:( y=log_3left(-9right);;y=log_2left(0right);;y=log_{-4}left(64right);;y=log_1left(5right);)
  • тригонометрические функции. Для синуса, косинуса, арктангенса и арккотангенса никаких ограничений нет. Но для тангенса, котангенса, арксинуса и арккосинуса они появляются, исходя из их формул. Так как тангенс является частным при делении синуса на косинус, последний не может равняться нулю. То же самое справедливо и для котангенса, но там уже синус не должен принимать значение 0.

    Арксинус и арккосинус могут быть определены только в промежутке от -1 до 1 включительно — (lbrack-1;;1rbrack.)

Примеры нахождения ОДЗ

Пример №1. Найти область определения функции (y=sqrt{1-x^2})

Из обозначенных выше принципов следует, что подкоренное выражение не может быть отрицательным, значит 1-x^2geq0. Приведем данное неравенство к общему виду: (1-x^2geq0Rightarrow1geq x^2Rightarrow x^2leq1)

Вычислим квадратный корень для обеих частей неравенства:

(x^2leq1Rightarrowsqrt{x^2}leqsqrt1Rightarrowleft|xright|leq1)

Раскроем модуль согласно правилу:

(left|xright|leq1Rightarrow-1leq xleq1)

Из этого следует, что область допустимых значений функции (y=sqrt{1-x^2}) лежит в пределах между -1 и 1, включая эти числа. Таким образом, ОДЗ данной функции: (xinlbrack-1;;1rbrack)

Пример №2. Найти ОДЗ функции (y=lgleft(xright))

(lgleft(xright)) является краткой формой записи десятичного логарифма (log_{10}left(xright)). Так как 10 — положительное число, не равное единице, единственным условием остается x>0. Таким образом, область определения функции (y=lgleft(xright)) будет включать в себя все числа в промежутке от нуля до (+infty). Так как неравенство x>0 — строгое, ОДЗ будет иметь следующий вид: (xin(0;;+infty)).

Почему важно учитывать ОДЗ при проведении преобразований

Тождественные преобразования могут приводить к расширению или сужению области допустимых значений. В этом случае значение, подходящее к изначальной функции, после преобразования может оказаться вне области определения. Поэтому стоит избегать сужающих ОДЗ преобразований или находить область допустимых значений уже после них.

Функции, для которых важна ОДЗ

Сама по себе область допустимых значений — важная характеристика для всех функций. Чтобы правильно решать математические задачи, следует всегда находить ее. При этом, для многих, если не большинства, функций она включает в себя все множество действительных чисел. Например, линейная (y=kcdot x+b) или квадратичная (y=acdot x^2+bcdot x+c) функции. Рассмотрим некоторые функции, для которых это не так.

ОДЗ обратной зависимости

Функция обратной пропорциональности (y=frac kx) уже упоминалась выше. Ее область определения содержит все действительные числа, за исключением нуля: (xin(-infty;;0)cup(0;;+infty).)

ОДЗ степенной функции

Для степенной функции y=x^n следует учитывать обозначенные выше принципы нахождения ОДЗ, справедливые для возведения в степень и извлечения корня. Рассмотрим области определения переменной x в зависимости от значения n:

  • при n>0 и (ninmathbb{Z}), то есть n — целое положительное число: ( xin(-infty;;+infty);)
  • для n>0, причем n — дробное число: ( xinlbrack0;;+infty);)
  • для n=0:( xin(-infty;0)cup(0;;+infty);)
  • при n<0 и (ninmathbb{Z}: xin(-infty;;0)cup(0;;+infty);)
  • для n<0, причем n — дробное число: (xin(0;;+infty).)

ОДЗ показательной функции

Показательная функция y=a^x очень похожа на степенную, но, в отличие от нее, здесь переменная не в основании, а в степени. Область допустимых значений для нее определяется по тем же правилам, что и для степенной функции:

  • для a>0: (xin(-infty;;+infty);)
  • для a=0: (xin(0;;+infty);)
  • для a<0: (xin(-infty;;+infty)), причем x должен быть целым числом.

ОДЗ логарифмической функции

Логарифмическая функция (y=log_aleft(xright)) является обратной для показательной. Согласно свойствам логарифмирования, область определения такой функции будет включать все положительные числа: (xin(0;;+infty).)

ОДЗ тригонометрических функций

Как уже упоминалось выше, для синуса, косинуса, арктангенса и арккотангенса область допустимых значений включает в себя все действительные числа: (xin(-infty;;+infty)). Рассмотрим ОДЗ еще четырех тригонометрических функций:

  • тангенс: (xin(-infty;;frac{mathrmpi}2+mathrmpicdotmathrm n)cup(frac{mathrmpi}2+mathrmpicdotmathrm n;;+infty), где ninmathbb{Z};)
  • котангенс: (xin(-infty;;mathrmpicdotmathrm n)cup(mathrmpicdotmathrm n;;+infty), где ninmathbb{Z};)
  • арксинус и арккосинус: (xinlbrack-1;;1rbrack.)

Добавить комментарий