Как найти одз в дробных рациональных уравнений

        В предыдущем уроке мы с вами освоили основной принцип решения любых дробных уравнений. Это — ликвидация дробей. Кто читал, тот понял, что ничего сложного в этом нет.

        Однако, даже в самых простых (казалось бы!) дробных уравнениях нас может поджидать сюрприз не из приятных. С ним, с сюрпризом, надо разобраться! Разберёмся?)

Основная проблема в решении дробных уравнений.

        Сейчас мы с вами научимся обходить одну из самых коварных ловушек на ЕГЭ и контрольных! Попадаются в неё все — и троечники и отличники. Я специально поставил её в самое примитивное уравнение, чтобы с ней (с ловушкой) хорошенько разобраться. Но для начала посмотрим, попадёте вы в неё или нет.)

        Допустим, надо решить вот такое нехитрое уравнение:

        

        Дело уже привычное и знакомое. Умножаем всё уравнение на знаменатель (х+1) и получаем:   

        Напоминаю, что со скобками (х+1) работаем целиком, как будто бы это одно число! Производим умножение:

        

        Сокращаем знаменатель и избавляемся от дроби:

        

        3x2 + 2x — 1 =  5(x+1)

        Раскрываем оставшиеся скобки, переносим всё влево, приводим подобные:

        3x2 + 2x — 1 =  5x + 5

        3x2 – 3x — 6 = 0

        Делим всё уравнение на 3 и получаем:

        х2 — х — 2 = 0

        Отлично. Самое обычное квадратное уравнение. Решаем и получаем два корня:

        х1 = -1

        х2 = 2

        Предположим, в задании на ЕГЭ сказано записать в ответ меньший из корней, если корней более одного. Что писать будем?)

        Если вы решили, что ответ -1, то вы попали в ловушку. И задание вам не засчитают, да. Зря старались. Правильный ответ был 2… Два, а не минус один.

        Так в чём же дело? А вы попробуйте проверку сделать. Подставьте каждый из найденных иксов в исходное уравнение. И, если при х=2 у вас всё славненько срастётся, получится тождество 5=5, то при х=-1 получится деление на ноль! Чего делать нельзя категорически. Нет такой операции ни в природе, ни в математике…

        Что это значит? Это значит, что х=-1 — так называемый посторонний корень. Или лишний корень. Он не является корнем нашего дробного уравнения и в ответе никак не учитывается. Ибо его подстановка даёт бессмыслицу. Его мы просто отбрасываем. Окончательный корень один.

        А именно: х=2.

        Так, стоп, что-то тут не так! Нам же говорили, что всё уравнение можно умножать на одно и то же выражение! Это же тождественное преобразование!

        Да, тождественное. Я не спорю. Но при одном маленьком ограничении, которое многие попросту игнорируют. А именно — выражение, на которое умножаем (делим), отлично от нуля! А скобочка (х+1) при х=-1 обращается в ноль! Так что всё честно.

        И что нам теперь делать? Совсем не умножать? Тогда мы вообще ничего не решим! Каждый раз проверку делать? Это с ума сойдёшь. Особенно, если уравнение навороченное.

        Нет, мы с вами пойдём красивым и элегантным путём. Обратимся за помощью к трём волшебным буквам! Догадались? Да! Это ОДЗ! Область Допустимых Значений.

Что же такое ОДЗ?

        Это такие значения икса, которые могут быть в принципе. Или которые разрешены для данного примера.

        Например, в уравнении

        

        мы ещё пока не знаем, чему равен икс, верно? Мы уравнение пока не решили. Но зато мы железно знаем, что икс не может равняться нулю ни в коем случае! На ноль делить нельзя. На любое другое число — целое, дробное, отрицательное, иррациональное — ради бога. А вот на ноль — никак. Стало быть, в этом примере ОДЗ:

        х — любое число, кроме нуля.

        Зато все остальные иксы — абсолютно безопасны. Хоть 41, хоть -17, хоть -1,3 — весь бесконечный набор чисел.

        Идея ясна?

        Как записывать ОДЗ? Как работать с ОДЗ?

        Тоже легко. На первом этапе всегда внимательно осматриваем исходный пример и ищем опасные места. Что значит опасные места?

        Это места, где возможны запретные действия. Действия, которые при каких-то иксах могут оказаться недопустимыми с точки зрения математики. В нашей теме такое действие всего одно — деление. Нельзя делить на ноль. Есть ещё запреты в корнях чётной степени, в логарифмах и в тригонометрии. Их мы тоже рассмотрим в соответствующих уроках.

        Как только опасные места найдены, рядышком с примером выписываем условия, которые не приводят к бессмыслице. После этого, глядя на эти условия, вычисляем запретные иксы. И исключаем их из ОДЗ. Вот и всё.

        Я специально акцентирую внимание на словах “исходный пример”. Любое преобразование (сокращение, приведение подобных и т.п.) может изменить ОДЗ, и мы можем получить неверный ответ.

        Важно! Для поиска ОДЗ мы не решаем пример! Мы решаем всего лишь маленькие кусочки примера для нахождения запретных иксов.

        “Многа букаффф”, да. Но на практике вся процедура выглядит до ужаса элементарно.

        Итак, берём наше уравнение:

        

        Ничего пока что не трогаем, а внимательно осматриваем исходное уравнение. Осмотрев, мы сразу замечаем операцию деления на х+1.

        Это потенциально опасная операция: при каких-то значениях икса выражение х+1 может оказаться равным нулю. На который делить нельзя. Поэтому обезопасим себя вот такой записью:

        х+1 ≠ 0

        х ≠ -1

        Во-о-т. Минус один категорически не подходит нам в качестве ответа. Это и будет ОДЗ для нашего уравнения. Все иксы, кроме минус единички.

        На практике запись и нахождение ОДЗ обычно оформляют так:

        

        Иногда ОДЗ записывают и в другой форме, через промежутки. Вот так:

        x (-∞; -1) U (-1; +∞)

        Читается эта запись так: “Икс принадлежит интервалу от минус бесконечности до минус единицы (не включая), и от минус единицы (не включая) до плюс бесконечности.”

        Перевод с математического на человеческий: “Икс — любое число, кроме минус единицы.”

        Вот и всё. Как только мы себя обезопасили такой записью, дальше мы имеем полное право делать с уравнением всё что хотим — переносить члены, домножать, сокращать… Вот и домножаем всё уравнение на (х+1). Дробь-то убирать всё равно надо! Это по-прежнему будет не совсем тождественным преобразованием, но все вредные последствия от нарушения тождественности мы исключим по ОДЗ.

        Умножаем:

        3x2 + 2x — 1 =  5(x+1)

        Как вы думаете, в какой же момент мы с вами попали в ловушку элементарного примера? Как раз в момент домножения всего уравнения на знаменатель дроби! Знаменатель исчез, и вместе с ним исчезли и соответствующие ограничения на иксы. Бесследно. И для нового уравнения, без дроби, на икс уже не накладывается никаких запретов! Любым может быть икс…

        В математике это явление называется расширение ОДЗ.

        Но теперь мы уже с вами народ бдительный. Исходные ограничения (х≠-1) мы записали и сохранили.

        Поэтому дальше спокойно решаем уравнение безо всяких дробей и получаем два корня:

        х1 = -1

        х2 = 2

        А вот теперь стыкуем наши результаты и условия ОДЗ. И видим в наших кандидатах на ответ один из иксов в качестве запретного! Минус один. Это означает, что в окончательный ответ его включать нельзя. Это посторонний корень, появившийся в процессе решения без нашего желания.

        Да, это законный корень нашего вспомогательного квадратного уравнения, но никак не корень исходного дробного уравнения!

        Стало быть, минус единицу мы безжалостно вычёркиваем и в ответ не включаем. Вот и всё.)

        А в других уравнениях прошлого урока? Там что, нет ОДЗ? Есть, разумеется. Есть деление на икс — есть и ОДЗ.

        В первом уравнении:

        

        Во втором уравнении:

        

        И так далее.

        Я специально в тех примерах ничего не сказал про ОДЗ. Чтобы вас не перегрузить раньше времени.) В всех уравнениях прошлого урока (и домашнего задания к нему) ОДЗ никак не сказывалась на ответе. Так бывает. Но в заданиях ОГЭ и ЕГЭ ОДЗ в 99% случаев влияет на ответ! Так что мы с ОДЗ дружить будем. И во всех темах, где это необходимо, мы будем про ОДЗ вспоминать. Чтобы не упасть лицом в грязь.)

        Итак, про ОДЗ поговорили. Убедились, что работать с ней тоже совсем не сложно. Теперь можно перейти и к общему алгоритму решения любого дробного уравнения.

Решаем дробные уравнения по алгоритму!

        Для успешного решения любого дробного уравнения необходимо выполнить (правильно) пять пунктов:

        1. Разложить знаменатели всех дробей на множители (если требуется). До упора. Переписать уравнение с учётом этого факта.

        2. Найти ОДЗ, записать рядышком с уравнением и временно (до конца решения) забыть про неё.

        3. Сообразить, на что надо умножить обе части уравнения, чтобы все дроби исчезли полностью.

        4. Выполнить это самое умножение и решить новое уравнение, уже безо всяких дробей. Найти решения (кандидаты в ответ).

        5. Вспомнить про ОДЗ и состыковать найденные решения с условиями ОДЗ. Те решения, которые не входят в ОДЗ, безжалостно выбросить. Записать окончательный ответ.

        А теперь, вооружившись таким мощным супероружием, как ОДЗ, и общим алгоритмом, разберём очередной пример. Супердетально разберём!

        Решить уравнение:

        

        Решаем строго по пунктам. Выполняем пункт первый:

        1. Разложить все знаменатели на множители (если требуется). До упора. Переписать пример с учётом этого факта.

        Знаменатели наших дробей НЕ разложены на множители. Вот и приступаем. Вынесение общего множителя за скобки и формула разности квадратов — мощные штуки.)

        2x — x2 = x(2-x)

        2x + x2 = x(2+x)

        4 — x2 = 22 — x2 = (2-x)(2+x)

        Вот так. А теперь переписываем уравнение с учётом наших разложений:

        

        Готово. Все знаменатели разложены до упора.) Можно приступать ко второму пункту.

        2. Найти ОДЗ, записать рядышком с примером и временно (до конца решения) забыть про неё.

        Итак, начинаем осматривать исходный пример на наличие опасных операций.

        Внимание! Ничего не трогаем и не решаем! Не складываем дроби, не приводим подобные, не сокращаем!!!

        Подобные преобразования запросто могут изменить ОДЗ, что может привести к неверному ответу! Оно нам надо?! Ещё раз напоминаю: ДО поиска ОДЗ с исходным примером мы не делаем НИЧЕГО! Кроме разложения на множители. Оно — безопасно и даже полезно.)

        Берём и именно осматриваем исходный пример. И замечаем три опасных места: каждая из дробей таит в себе возможное деление на ноль.

        Вот и пишем:

        Знак системы (фигурная скобка) здесь не зря поставлен. Она означает, что все три условия должны выполняться одновременно! Мы ведь ОДЗ записываем не для каждой дроби по отдельности, а для всего примера целиком.)

        Ну и как? Нашли ОДЗ? Не-а…)

        Мы записали кусочек примера, записали три требования, которые должны выполняться железно. Но этого мало. Нужно ещё найти иксы, которые обеспечивают эти железные требования. ОДЗ ведь к иксам относится, а не к кусочкам примера…

        Как же найти значения иксов, которые не превращают знаменатели дробей в ноль? Их же очень много? Очень просто! Мы поступим элегантно. Найдём иксы, которые наоборот, превращают знаменатели дробей в ноль. Это и будут запретные иксы.

        Вот и решаем эти неравенства методом “от противного”. То есть, делаем из неравенств уравнения:

        x(2-x) = 0

        x(2+x) = 0

        (2-x)(2+x) = 0

        Именно из этих трёх уравнений мы и будем искать запретные иксы. Уравнения очень простые: произведение равно нулю, когда хотя бы один из множителей равен нулю. Вот и приравниваем (в уме или на черновике) каждый множитель к нулю.

        Для первого уравнения получаем: x1 = 0;  x2 = 2.

        Вспомнив, что это запретные иксы, получим:

        х ≠ 0;  x ≠ 2.

        Точно так же решаем и два оставшихся уравнения.

        Для второго уравнения получаем:

        x ≠ 0;  x ≠ -2.

        И, наконец, для третьего уравнения получаем:

        x ≠ 2;  x ≠ -2.

        Видно, что некоторые запретные значения иксов повторяются. Разумеется, для окончательной записи ОДЗ мы их не будем дублировать. Итого ОДЗ для нашего уравнения будет выглядеть вот так:

        ОДЗ:

        

        Видите, насколько полезно предварительно раскладывать знаменатели на множители! В уме ОДЗ ищется! Поэтому эта процедура и стоит первым пунктом в алгоритме.)

        Можно приступать к третьему пункту.

        3. Сообразить, на что надо умножить обе части уравнения, чтобы все дроби исчезли полностью.

        И тут разложение на множители тоже здорово играет на руку!

        Понятно, что для ликвидации первой дроби, надо её домножать на x(2-x), вторую — на x(2+x) и третью – на (2-x)(2+x).

        Но чтобы сразу сократить все дроби, надо скомбинировать такое выражение, которое одинаково хорошо делится и на х(2-х), и на х(2+х), и на (2-х)(2+х).

        Вот оно, это выражение:

        х(2-x)(2+x)

        Как же я до него додумался? Очень просто: составил произведение всех неповторяющихся множителей всех знаменателей. Чтобы ничего не забыть и лишнего не взять.) Приступаем к четвёртому пункту:

        4. Выполнить это самое умножение и решить новое уравнение, уже безо всяких дробей. Получить решения (кандидаты в ответ).

        Итак, умножаем:

        

        И снова, чтобы не заплутать в трёх соснах, используем скобки:

        

        Производим умножение. Большие скобки раскрываем, малые — не трогаем!

        

        Сокращаем все дроби:

        

        2 + x + (x-4)(2-x) = 2x

        Всё. От дробей избавились. Как обычно, раскрываем оставшиеся скобки, приводим подобные и собираем все члены слева:

        2 + x + 2x — x2 — 8 + 4x — 2x = 0

        –х2 + 5x — 6 = 0

        Помним, что минус впереди крайне неудобен, посему умножаем всё на (-1):

        x2 — 5x + 6 = 0

        Решаем простенькое квадратное уравнение и получаем корни:

        x1 = 2

        x2 = 3

        Нашли кандидатов в ответ. Самое время вспомнить про ОДЗ. Про самый последний пункт:

        5. Вспомнить про ОДЗ и состыковать найденные решения с условиями ОДЗ. Те решения, которые не входят в ОДЗ, безжалостно выбросить. Записать окончательный ответ.

Итак, наши решения:

        x1 = 2

        x2 = 3

        Условия ОДЗ:

        

        Сопоставляем и… Оп-па! А ведь двойка — запретное значение! Нас не проведёшь! ОДЗ — штука жёсткая. В отвал двойку!

        Окончательный ответ: х = 3.

        Именно так и решаются все дробные уравнения. В пять шагов. Зачем же я распинался, рассказывая целый урок про избавление от дробей, затем ещё пол-урока про ОДЗ? Мог бы сразу дать общий алгоритм и соответствующий пример!

        На этот вопрос отвечу так. Если бы вы знали, сколько народу спотыкается на применении тупо заученного алгоритма! А уж при малейшем отклонении от шаблона простой пример становится вообще нерешаемым… Если понимать смысл, то шанс решить есть всегда. Понимание всегда побеждает механическую память.)

        Вот, собственно, и всё, что я хотел сказать. И напоследок очередная порция примеров для самостоятельного решения.

        Решить уравнения:

        

        Ответы (по традиции, в беспорядке):

        x = 3

        x = -1

        x = 4

        x1 = -1;  x2 = -9

        x = -2

        Всё совпало! Поздравляю! У вас иксов побольше будет? Хм… Про ОДЗ не забыли, случаем? Кое-какие корни выбрасывать надо! ОДЗ учли, а всё равно не выходит? Да-а-а… Проблемка. Такие уравнения надо уметь решать: слишком уж они популярны во многих темах математики. Особенно — в текстовых задачках! Но не отчаивайтесь!

        Перечитайте этот и предыдущий уроки ещё раз и прогуляйтесь по смежным темам: разложение на множители, квадратные уравнения, линейные уравнения и (особенно!) тождественные преобразования уравнений. И всё получится. Я в вас верю!)

Целые рациональные уравнения

Если в уравнении нет переменной (x) в знаменателе, то такое уравнение называется целым. Или, другими словами, нигде в уравнении нет деления на переменную.
Метод решения целых рациональных уравнений сильно зависит от того, какой степени перед вами уравнения.

Степень уравнения – это максимальная степень у переменной (x).

Например, уравнение (x^2+5x-1=0) будет второй степени, так как есть (x^2).
Пример уравнения первой степени: (5x-1=17);
Уравнение третьей степени: (5x^3-3x^2=0);
Уравнение четвертой степени: (7x^4-5x^2+x-5=0);
И т.д.

Основной алгоритм решения целых уравнений:

  • Если есть скобки, раскрываем их;
  • Перекидываем все слагаемые в левую часть так, чтобы в правой части остался только (0). Не забываем при этом менять знак этих слагаемых;
  • Приводим подобные слагаемые;
  • Если получилось уравнение первой степени (в уравнении есть только (x)), то решаем его так (линейные уравнения);
  • Если получилось уравнение второй степени (в уравнении есть (x^2)), то оно решается вот так (квадратные уравнения).
  • А вот если в преобразованном уравнении получились члены (x^3) или большей степени, то придется применять нестандартные методы решения. Например, замена переменной, группировка, схема Горнера и т.д.

Чаще всего уравнения после преобразований будут сводиться к уравнениям первой (линейные уравнения) и второй (квадратные уравнения) степени.

Разберем примеры целых рациональных уравнений:

Пример 1
$$-4(-7+6x)=-9x-5;$$
Первым делом раскрываем скобки:
$$28-24x=-9x-5;$$
Перекидываем все слагаемые из правой части в левую:
$$28-24x+9x+5=0;$$
Поменяем слагаемые местами, чтобы удобнее было приводить подобные слагаемые:
$$-24x+9x+5+28=0;$$
$$-15x+33=0;$$
Получили линейное уравнение. Чтобы его решить, перекидываем свободный член (тот, что без (x)) в правую часть:
$$-15x=-33;$$
И поделим уравнение слева и справа на (-15):
$$x=frac{-33}{-15};$$
$$x=frac{11}{5}=2,2;$$
Ответ: (x=2,2.)

Важно отметить, то, что уравнение линейное, стало видно сразу после раскрытия скобок: у нас же не было степени у (x)-ов. Поэтому разумно было сразу решать его как линейное: перенести все слагаемые с (x) в левую часть, а все числа в правую. Так бы получилось немного короче.

Пример 2
$$4*(x+1)^2-2(x+3)=(2x-5)^2;$$
Тут сразу и не скажешь, какой степени уравнение. На первый взгляд кажется, что квадратное, но давайте раскроем скобки, воспользовавшись формулами сокращенного умножения:
$$4*(x^2+2x+1)-2x-6=4x^2-20x+25;$$
$$4*x^2+8x+4-2x-6=4x^2-20x+25;$$
Перекинем все в левую часть, не забывая поменять знак:
$$4*x^2+8x+4-2x-6-4x^2+20x-25=0;$$
Поменяем местами слагаемые, чтобы было проще приводить подобные:
$$4x^2-4x^2+8x-2x+20x+4-6-25=0;$$
$$26x-27=0;$$
Как видите, все квадраты сократились, и уравнение превратилось в линейное:
$$26x=27;$$
$$x=frac{27}{26};$$
Ответ: (x=frac{27}{26}.)

Пример 3
$$frac{x}{6}+frac{x}{12}+x=-frac{35}{4};$$
Домножим уравнение слева и справа на (12). Почему именно на (12)? Потому что в уравнении есть дроби с знаменателями (6), (12) и (4), на все эти числа (12) можно разделить:
$$12*(frac{x}{6}+frac{x}{12}+x)=12*(-frac{35}{4});$$
$$12*frac{x}{6}+12*frac{x}{12}+12*x=12*(-frac{35}{4});$$
$$2x+x+12x=-3*35;$$
$$15x=-105;$$
$$x=frac{-105}{15}=-7;$$
Ответ: (x=-7.)

Подробнее про линейные уравнения можно почитать в отдельной статье.

Пример 4
$$(x-1)^2=2x^2-6x-31;$$
Раскроем скобки:
$$x^2-2x+1=2x^2-6x-31;$$
$$x^2-2x+1-2x^2+6x+31=0;$$
$$x^2-2x^2-2x+6x+1+31=0;$$
$$-x^2+4x+32=0;$$
После приведения подобных слагаемых в уравнении остался (x^2), а значит перед нами квадратное уравнение, которое можно решить через дискриминант:
$$a=-1; quad b=4; quad c=32;$$
$$D=b^2-4ac=4^2-4*(-1)*32=16+128=144=12^2;$$
$$x_1=frac{-b+sqrt{D}}{2a}=frac{-4+12}{2*(-1)}=frac{8}{-2}=-4;$$
$$x_1=frac{-b-sqrt{D}}{2a}=frac{-4-12}{2*(-1)}=frac{-16}{-2}=8;$$
Ответ: (x=-4; qquad x=8.)

Подробнее про квадратные уравнения можно почитать здесь.

Методы решения уравнений третьей степени и старше

Не существует универсального удобного метода решения уравнений третьей степени или выше, как, например, квадратные уравнения, которые легко решаются через дискриминант, даже думать не надо.

Есть несколько методов, которые полезно знать: замена переменной, метод группировки, деление многочлена на многочлен, схема Горнера и т.д. Метод замены переменной заслуживает отдельного урока, поэтому про него мы подробно поговорим здесь. Сейчас мы обсудим метод группировки.

Метод группировки

Метод группировки слагаемых можно использовать и для решения квадратных уравнений, и, вообще говоря, для уравнений любой степени. Но проблема этого метода в том, что далеко не всегда удается его применить, и приходится использовать другие методы. Однако, если на экзамене вам не повезло, и попалось уравнение, которое сводится к уравнению 3й степени или старше, то в большинстве случаев оно будет решаться именно группировкой. Поэтому знать этот метод нужно обязательно.

Разберем метод группировки на примере кубического уравнения:

Пример 5
$$2x^3+4x^2-8x-16=0;$$
Посмотрите внимательно на уравнение, в нем 4 слагаемых, сгруппируем их попарно: первое слагаемое со вторым, а третье с четвертым:
$$(2x^3+4x^2)+(-8x-16)=0;$$

И вынесем общий множитель (2x^2) из первой пары, и (-8) из второй:

$$2x^2(x+2)-8(x+2)=0;$$
Теперь вместо 4-х слагаемых у нас всего два, но и у них есть общий множитель ((x+2)), который можно вынести за скобки:
$$(x+2)(2x^2-8)=0;$$
Произведение двух множителей (в нашем случае двух скобок) равно нулю, когда хотя бы один из множителей равен (0):
$$x+2-0 qquad Rightarrow qquad x_1=-2;$$
$$2x^2-8=0 qquad Rightarrow qquad 2x^2=8 qquad Rightarrow qquad x^2=frac{8}{2} qquadRightarrow $$
$$Rightarrow qquad x^2=4 qquad Rightarrow qquad x_{2,3}=pm 2;$$
Получилось три значения (x), но корень (x=-2) дублируется, поэтому исходное кубическое уравнение будет иметь 2 решения:
Ответ: (x=-2, quad x=2.)

Общий алгоритм разложения на множители:

  1. Объединяем слагаемые в группы, как правило, в пары, но иногда это могут быть и тройки;
  2. В каждой группе (паре) выносим общий множитель за скобки;
  3. Если в скобках в каждой паре получилось одинаковое выражение, то опять выносим общий множитель в виде одинакового выражения внутри этих скобок за «большие» скобки.
  4. Если в результате шагов (1) и (2) в каждой паре получились разные выражения в скобках, то нужно вернуться на шаг (1), поменять местами слагаемые и сгруппировать их в группы другим способом.

Попробуем решить уравнение четвертой степени:

Пример 6
$$4x^4+12x^3+6x^2+18x=0;$$
Опять сгруппируем слагаемые по парам: первое со вторым, а третье с четвертым:
$$(4x^4+12x^3)+(6x^2+18x)=0;$$
Вынесем общий множитель в каждой паре:
$$4x^3(x+3)+6x(x+3)=0;$$
Ура, в скобках получились одинаковые выражения ((x+3)), вынесем их за скобки:
$$(x+3)(4x^3+6x)=0;$$
Произведение равно нулю, когда хотя бы один из множителей равен нулю:
$$x+3=0 qquad qquad 4x^3+6x=0;$$
Первое уравнение имеет корень (x_1=-3), а второе выпишем отдельно и решим:
$$4x^3+6x=0;$$
Здесь тоже есть общий множитель (x), но это уже не группировка, а обычное вынесение общего множителя за скобки:
$$x(4x^2+6)=0;$$
$$x_2=0 qquad 4x^2+6=0;$$
Из уравнения (4x^2+6=0) выразим (x^2:)
$$4x^2=-6;$$
$$x^2=frac{-6}{4}=frac{-3}{2};$$
Но (x^2) никогда не может равняться отрицательному числу! Что бы вы не возвели в квадрат, всегда получите неотрицательное число. Поэтому последнее уравнение не будет иметь корней.
Осталось опять всего лишь два корня:
Ответ: (x_1=-3; qquad x_2=0.)

Дробно-рациональные уравнения

Если в уравнении есть деление на выражение, зависящее от переменной (x), то такое уравнение будет называться дробно-рациональным. Например, уравнения:
$$frac{1}{x}+3=x;$$
$$x+frac{20}{x+6}=6;$$
$$frac{x^2-3x-2}{x^2-3x+2}+frac{x^2-3x+16}{x^2-3x}=0;$$
все будут дробно-рациональными.

А уравнение
$$frac{x^2-3x}{5}+frac{x-7}{2}=1;$$
уже не будет дробно-рациональным, несмотря на то, что есть деление, но в знаменателе стоят обыкновенные числа, там нет переменной (x).

С тем, что такое дробно-рациональные уравнения, надеюсь, разобрались, теперь поговорим про алгоритм решения таких уравнений.

В общем виде дробно-рациональное уравнение выглядит так:
$$frac{P(x)}{Q(x)}=0;$$
где (P(x)) и (Q(x)) – целые рациональные выражения;

Схему решения можно записать в виде:
$$ begin{cases}
P(x)=0, \
Q(x) neq 0.
end{cases}$$

Простыми словами, решение дробно-рационального уравнения сводится к нахождению корней целого рационального уравнения (P(x)=0). И проверке того, чтобы найденные корни удовлетворяли неравенству (Q(x)neq0).

Пример 7
$$frac{x^2-5x+6}{x-3}=0;$$
Согласно приведенной выше схеме (P(x)=x^2-5x+6=0), а (Q(x)=x-3neq 0).
Или можно запомнить, что дробь равна нулю только тогда, когда числитель равен нулю. А делить на ноль в математике запрещено, поэтому еще и знаменатель не должен равняться нулю.
Приравниваем числитель к нулю:
$$x^2-5x+6=0;$$
$$D=(-5)^2-4*1*6=25-24=1;$$
$$x_1=frac{-(-5)+sqrt{1}}{2}=frac{5+1}{2}=3;$$
$$x_2=frac{-(-5)-sqrt{1}}{2}=frac{5-1}{2}=2;$$
И не забываем проверить, чтобы при найденных корнях знаменатель не был равен нулю:
$$x-3 neq 0;$$
При (x_1=3) знаменатель обращается в нуль, поэтому этот корень нам не подходит.
Ответ: (x_1=2.)

Рассмотрим более сложное уравнение:

Пример 8
$$frac{10}{x+6}=-frac{5}{3};$$
Чтобы решить такое уравнение, необходимо привести его к стандартному виду:
$$frac{P(x)}{Q(x)}=0;$$
Для этого переносим (-frac{5}{3}) в левую часть уравнения, не забываем, что (-frac{5}{3}) превращается в (+frac{5}{3}):
$$frac{10}{x+6}+frac{5}{3}=0;$$

Приводим дроби к общему знаменателю. Общим знаменателем здесь будет: (3*(x+6)). Поэтому домножаем числитель и знаменатель первой дроби на (3), а вторую дробь на ((x+6)):
$$frac{3*10}{3*(x+6)}+frac{5*(x+6)}{3*(x+6)}=0;$$
$$frac{30}{3*(x+6)}+frac{5*x+30}{3*(x+6)}=0;$$
Так как теперь знаменатели у дробей одинаковые, то можно сложить их числители и представить в виде одной большой дроби:
$$frac{30+5x+30}{3(x+6)}=0;$$
$$frac{60+5x}{3(x+6)}=0;$$
Получили стандартный вид дробно-рационального уравнения.

Дробь может быть равна нулю только в одном случае: если ее числитель равен нулю!

Иногда нулю еще пытаются приравнять знаменатель, но знаменатель не может быть равен нулю. Знак дроби – это то же самое, что и знак деления, а делить на ноль в математике категорически запрещено. Именно поэтому знаменатель дроби никак не может быть равен нулю.

Возвращаемся к нашему уравнению и приравниваем числитель к нулю:
$$60+5x=0;$$
$$5x=-60;$$
$$x=-12;$$
В качестве проверки подставим найденный корень в исходное уравнение:
$$frac{10}{x+6}=-frac{5}{3} quad Rightarrow quad frac{10}{-12+6}=-frac{5}{3} quad Rightarrow $$
$$Rightarrow quad frac{10}{-6}=-frac{5}{3} quad Rightarrow quad -frac{5}{3}=-frac{5}{3};$$
Получилось верное равенство, значит (x=-12) действительно будет корнем нашего уравнения.
Ответ: (x=-12.)

Алгоритм решения

  • Переносим все слагаемые в левую часть, чтобы в правой части уравнения был 0, не забывая при этом менять знак;
  • Приводим к общему знаменателю;
  • Упрощаем получившееся выражение в числителе дроби: раскрываем скобки, приводим подобные слагаемые;
  • Дробь равна нулю, когда числитель равен нулю. Поэтому избавляемся от знаменателя и приравниваем числитель к нулю;
  • В результате вышеперечисленных действий дробно-рациональное уравнение сводится к целому рациональному уравнению;
  • Решаем целое рациональное уравнение и проверяем найденные корни, чтобы при подстановке их в знаменатель, не получался ноль.

Посмотрим, как работает алгоритм на примерах:

Пример 9
$$frac{9}{x-11}+frac{11}{x-9}=2;$$
Перекидываем двойку в левую часть уравнения и приводим дроби к общему знаменателю ((x-11)(x-9)). Для этого в первой дроби домножаем числитель и знаменатель на ((x-9)), вторую дробь на ((x-11)), а (2-ку) мы всегда можем представить в виде дроби: (frac{2}{1}), и тоже приводим к знаменателю ((x-11)(x-9)):
$$frac{9*(x-9)}{(x-11)(x-9)}+frac{11*(x-11)}{(x-9)(x-11)}-frac{2(x-11)(x-9)}{(x-11)(x-9)}=0;$$
Получилось немного страшновато, но ничего: складываем дроби, раскрываем в числителе все скобки и приводим подобные слагаемые. Знаменатель при этом не трогаем.
$$frac{9(x-9)+11(x-11)-2(x-11)(x-9)}{(x-9)(x-11)}=0;$$
$$frac{9x-81+11x-121-2(x^2-9x-11x+99)}{(x-9)(x-11)}=0;$$
$$frac{9x-81+11x-121-2x^2+18x+22x-198}{(x-9)(x-11)}=0;$$
$$frac{-2x^2+60x-400}{(x-9)(x-11)}=0;$$
Дробь равна нулю, когда числитель равен нулю:
$$-2x^2+60x-400=0;$$
$$D=60^2-4*(-2)*(-400)=3600-3200=400;$$
$$x_1=frac{-60+sqrt{400}}{2*(-2)}=frac{-60+20}{-4}=10;$$
$$x_2=frac{-60-sqrt{400}}{2*(-2)}=frac{-60-20}{-4}=20;$$
Подставив оба корня в исходное уравнение, аналогично тому, как мы это делали в примере №7, можно убедиться в правильности найденных корней.
Ответ: (x_1=10 quad x_2=20.)

Пример 10
$$frac{x}{3x+2}+frac{5}{3x-2}=frac{3x^2+6x}{4-9x^2};$$
Когда вы видите в знаменателе формулы сокращенного умножения, общий множитель или группировку, то нужно обязательно ими воспользоваться, чтобы разложить многочлен в знаменателе на множители перед тем, как приводить к общему знаменателю.

Замечаем у дроби справа в знаменателе формулу разности квадратов (a^2-b^2=(a-b)(a+b):)
$$frac{x}{3x+2}+frac{5}{3x-2}=frac{3x^2+6x}{(2-3x)(2+3x)};$$
Перекидываем в левую часть уравнения:
$$frac{x}{3x+2}+frac{5}{3x-2}-frac{3x^2+6x}{(2-3x)(2+3x)}=0;$$
Приведем все дроби к общему знаменателю ((2-3x)(2+3x)):

  • У первой дроби в знаменателе поменяем слагаемые местами (от перемены мест слагаемых сумма не меняется ((3x+2=2+3x)) и домножим ее числитель и знаменатель на ((2-3x)).
  • У второй дроби в знаменателе стоит ((3x-2)), а нам надо ((2-3x)). Поэтому домножим числитель и знаменатель на (-1) и на ((2+3x)).
  • С третьей дробью делать ничего не нужно. У нее и так нужный нам знаменатель.

$$frac{x(2-3x)}{(2+3x)(2-3x)}+frac{5*(-1)*(2+3x)}{(3x-2)*(-1)*(2+3x)}-frac{3x^2+6x}{(2-3x)(2+3x)}=0;$$
$$frac{x(2-3x)}{(2-3x)(2+3x)}+frac{-5*(2+3x)}{(2-3x)(2+3x)}-frac{3x^2+6x}{(2-3x)(2+3x)}=0;$$
Складываем дроби и раскрываем скобки:
$$frac{x(2-3x)-5*(2+3x)-(3x^2+6x)}{(2-3x)(2+3x)}=0;$$
Обратите внимание, что я всегда беру числитель в скобки, когда складываю дроби. Тем самым я показываю, что минус перед дробью действует на каждое слагаемое в числителе.

Это одна из самых распространенных ошибок. Будьте внимательны.
$$frac{2x-3x^2—10-15x—3x^2-6x}{(2-3x)(2+3x)}=0;$$
$$frac{-6x^2—19x-10}{(2-3x)(2+3x)}=0;$$
Дробь равна нулю, когда числитель равен нулю:
$$-6x^2-19x-10=0;$$
Для удобства умножим все уравнение на (-1):
$$6x^2+19x+10=0;$$
$$D=19^2-4*6*10=361-240=121;$$
$$x_1=frac{-19+sqrt{121}}{2*6}=frac{-19+11}{12}=frac{-8}{12}=-frac{2}{3};$$
$$x_2=frac{-19-sqrt{121}}{2*6}=frac{-19-11}{12}=frac{-30}{12}=-frac{5}{2};$$

Подставим корень (x_1=-frac{2}{3}) в исходное уравнение:
$$frac{x}{3x+2}+frac{5}{3x-2}=frac{3x^2+6x}{4-9x^2};$$
$$frac{-frac{2}{3}}{3*left(-frac{2}{3}right)+2}+frac{5}{3*left(-frac{2}{3}right)-2}=frac{3left(-frac{2}{3}right)^2+6left(-frac{2}{3}right)}{4-9left(-frac{2}{3}right)^2};$$

Оказывается, что мы не cможем это посчитать, так как в знаменателе получается ноль, а делить на ноль нельзя. В таком случае говорят, что найденный корень не подходит, и в ответ мы его не записываем. А если подставить (-frac{5}{2}), то все будет нормально.

Ответ:(x=-frac{5}{2}.)

Область допустимых значений. ОДЗ

Примеры выше показали нам, что не всегда найденные значения (x) будут корнями исходного уравнения.

Почему так происходит?

Когда мы решаем уравнение, мы преобразовываем его: переносим слагаемые из одной части уравнения в другую, приводим к общему знаменателю, считаем подобные слагаемые, избавляемся от знаменателя и т.д. Эти преобразования меняют вид нашего уравнения. В новом измененном уравнении «исчезает» информация, например, о том, что в нем раньше был знаменатель.

Поэтому мы подставляли найденные (x) в ИСХОДНОЕ уравнение, чтобы проверить, действительно ли они являются корнями, и не нарушаются ли правила математики, такие, как деление на ноль.

Но решений в уравнении может быть много, да и само уравнение может быть большим и сложным. Подставлять туда каждый найденный корень и проверять, действительно ли он является корнем исходного уравнения, может быть проблематично.

Чтобы не заниматься трудоемкой подстановкой, лучше всего находить область значений (x) (еще ее называют область определения), при которых не нарушаются правила математики для исходного уравнения. И уже на этой области (x) искать корни: если найденный корень лежит в разрешенной области, значит он может быть корнем, а если нет, то выкидываем его.

Разрешенная область значений (x) называется «областью допустимых значений», сокращенно ОДЗ. Чтобы найти ОДЗ в дробно-рациональных уравнениях, нужно приравнять к нулю все знаменатели исходного уравнения и решить получившееся уравнения. Другими словами, ищем такие (x), при которых возникает запрещенное деление на ноль в исходном уравнении. Все (x), не являющиеся корнями этих уравнений, и будут нашей областью допустимых значений.

Найдем ОДЗ уравнения из примера №9:
$$frac{x}{3x+2}+frac{5}{3x-2}=frac{3x^2+6x}{4-9x^2};$$
Выписываем все знаменатели и находим (x), при которых они не равны нулю:
$$ begin{cases}
3x+2 neq 0, \
3x-2 neq 0, \
(2-3x)(2+3x) neq 0.
end{cases}$$

Третье неравенство в системе сводится к первым двум, поэтому его можно исключить из рассмотрения.
$$ begin{cases}
x neq -frac{2}{3}, \
x neq frac{2}{3}.
end{cases}$$

Решив неравенства, мы получили, что (x) может принимать любые значения, кроме (frac{2}{3}) и (-frac{2}{3}). Это и есть ОДЗ.

Напомню, что в примере №9 у нас получились корни (x_1=-frac{2}{3}) и (x_2=-frac{5}{2}). Соотносим их с найденным ОДЗ и видим, что корень (x_1=-frac{2}{3}) не подходит. Для этого нам не понадобилось подставлять его в исходное уравнение, как мы делали при решении.

Алгоритм решения дробно-рациональных уравнений с использованием ОДЗ

  • Находим ОДЗ. Для этого выписываем все знаменатели и приравниваем их к нулю;
  • Решаем дробно-рациональное уравнение: перекидываем все в левую часть, приводим к общему знаменателю, приводим подобные слагаемые, избавляемся от знаменателя и решаем получившееся целое рациональное уравнение;
  • Проверяем, чтобы найденные корни удовлетворяли ОДЗ. Если не удовлетворяют, то отбрасываем их.

Пример 11
$$frac{2x^2+7x+3}{x^2-9}=1;$$
Начинаем решение с ОДЗ:
$$x^2-9 neq 0;$$
Разность квадратов:
$$(x-3)(x+3) neq 0;$$
Произведение равно нулю, когда хотя бы один из множителей равен нулю:
$$x-3 neq 0 Rightarrow x neq 3;$$
$$x+3 neq 0 Rightarrow x neq -3;$$
ОДЗ нашли, приступаем к решению самого уравнения:
$$frac{2x^2+7x+3}{x^2-9}-1=0;$$
Приводим к общему знаменателю (x^2-9), для этого единицу представим в виде дроби ((1=frac{1}{1})) и домножим ее на (x^2-9):
$$frac{2x^2+7x+3}{x^2-9}-frac{1*(x^2-9)}{1*(x^2-9)}=0;$$
$$frac{2x^2+7x+3-(x^2-9)}{x^2-9}=0;$$
$$frac{2x^2+7x+3-x^2+9}{x^2-9}=0;$$
$$frac{x^2+7x+12}{x^2-9}=0;$$
$$x^2+7x+12=0;$$
$$D=7^2-4*1*12=49-48=1;$$
$$x_1=frac{-7+1}{2}=frac{-6}{2}=-3;$$
$$x_2=frac{-7-1}{2}=frac{-8}{2}=-4;$$

Сверяем найденные корни с ОДЗ ((x neq pm 3)) и видим, что корень (x_1=-3) не удовлетворяет ОДЗ.
Ответ: (x=-4.)

Пример 12
$$frac{x^2-6x+8}{x-1}-frac{x-4}{x^2-3x+2}=0;$$
Всегда начинаем решать с ОДЗ:
$$ begin{cases}
x-1 neq 0, \
x^2-3x+2 neq 0.
end{cases}$$

$$ begin{cases}
x neq 1, \
x neq 2.
end{cases}$$

Чтобы привести к общему знаменателю, разложим квадратный многочлен в знаменателе второй дроби на множители:
$$frac{x^2-6x+8}{x-1}-frac{x-4}{(x-1)(x-2)}=0;$$
Теперь видно, что общий знаменатель: ((x-1)(x-2)). Домножим первую дробь на ((x-2)):
$$frac{(x^2-6x+8)*(x-2)}{(x-1)*(x-2)}-frac{x-4}{(x-1)(x-2)}=0;$$
Если перемножить скобки в числителе, то получится многочлен третьей степени. Решать уравнение третьей степени не хочется, поэтому попробуем упростить нашу задачу: разложим на множители многочлен (x^2-6x+8=(x-2)(x-4)):
$$frac{(x-2)(x-4)*(x-2)}{(x-1)*(x-2)}-frac{x-4}{(x-1)(x-2)}=0;$$
$$frac{(x-2)^2(x-4)-(x-4)}{(x-1)(x-2)}=0;$$
Дробь равна нулю, когда числитель равен нулю:
$$(x-2)^2(x-4)-(x-4)=0;$$
Вынесем общий множитель: скобку ((x-4)):
$$(x-4)((x-2)^2-1)=0;$$
$$(x-4)(x^2-4x+4-1)=0;$$
$$(x-4)(x^2-4x+3)=0;$$
Произведение равно нулю, когда хотя бы один из множителей равен нулю:
$$x-4=0 Rightarrow x_1=4;$$
$$x^2-4x+3=0;$$
$$D=(-4)^2-4*1*3=16-12=4;$$
$$x_2=frac{-(-4)+sqrt{4}}{2}=frac{4+2}{2}=3;$$
$$x_3=frac{-(-4)-sqrt{4}}{2} =frac{4-2}{2}=1;$$
Проверяем, чтобы найденные корни удовлетворяли ОДЗ ((x neq 1; quad x neq 2)) и видим, что корень (x_3=1) не подходит.
Ответ: (x_1=4, qquad x_2=3.)

Чтобы научиться решать большинство уравнений из школьной программы необходимо также знать метод замены переменной. Это очень важный метод, который используется для решения некоторых рациональных и дробно-рациональных уравнений, и не только, поэтому он заслуживает того, чтобы поговорить о нем в отдельной статье, очень рекомендую.

Дробно-рациональные уравнения

Что такое дробно-рациональные уравнения

Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

9 x 2 – 1 3 x = 0

1 2 x + x x + 1 = 1 2

6 x + 1 = x 2 – 5 x x + 1

Уравнения, которые не являются дробно-рациональными:

СЛОЖНА-А-А 🙀 Ты же знаешь, что если не разобраться в теме сейчас, то потом придется исправлять оценки. Беги на бесплатное онлайн-занятие с репетитором (подробности тут + 🎁).

Как решаются дробно-рациональные уравнения

В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

Алгоритм действий при стандартном способе решения:

  1. Выписать и определить ОДЗ.
  2. Найти общий знаменатель для дробей.
  3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
  4. Записать уравнение со скобками.
  5. Раскрыть скобки для приведения подобных слагаемых.
  6. Найти корни полученного уравнения.
  7. Выполним проверку корней в соответствии с ОДЗ.
  8. Записать ответ.

Пример 1

Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

x x – 2 – 7 x + 2 = 8 x 2 – 4

Начать следует с области допустимых значений:

x 2 – 4 ≠ 0 ⇔ x ≠ ± 2

Воспользуемся правилом сокращенного умножения:

x 2 – 4 = ( x – 2 ) ( x + 2 )

В результате общим знаменателем дробей является:

Выполним умножение каждого из членов выражения на общий знаменатель:

x x – 2 – 7 x + 2 = 8 x 2 – 4

x ( x – 2 ) ( x + 2 ) x – 2 – 7 ( x – 2 ) ( x + 2 ) x + 2 = 8 ( x – 2 ) ( x + 2 ) ( x – 2 ) ( x + 2 )

После сокращения избавимся от скобок и приведем подобные слагаемые:

x ( x + 2 ) – 7 ( x – 2 ) = 8

x 2 + 2 x – 7 x + 14 = 8

Осталось решить квадратное уравнение:

Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

Примеры задач с ответами для 9 класса

Требуется решить дробно-рациональное уравнение:

x x + 2 + x + 1 x + 5 – 7 – x x 2 + 7 x + 10 = 0

x x + 2 + x + 1 x + 5 – 7 – x x 2 + 7 x + 10 = 0

Определим область допустимых значений:

О Д З : x + 2 ≠ 0 ⇔ x ≠ – 2

x 2 + 7 x + 10 ≠ 0

D = 49 – 4 · 10 = 9

x 1 ≠ – 7 + 3 2 = – 2

x 2 ≠ – 7 – 3 2 = – 5

Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

a x 2 + b x + c = a ( x – x 1 ) ( x – x 2 )

x x + 2 + x + 1 x + 5 – 7 – x ( x + 2 ) ( x + 5 ) = 0

Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

x x + 2 + x + 1 x + 5 – 7 – x ( x + 2 ) ( x + 5 ) = 0

Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 –

– ( 7 – x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

x ( x + 5 ) + ( x + 1 ) ( x + 2 ) – 7 + x = 0

x 2 + 5 x + x 2 + 3 x + 2 – 7 + x = 0

2 x 2 + 9 x – 5 = 0

Потребуется решить квадратное уравнение:

2 x 2 + 9 x – 5 = 0

Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

Дано дробно-рациональное уравнение, корни которого требуется найти:

4 x – 2 – 3 x + 4 = 1

В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

4 ( x + 4 ) x – 2 – 3 ( x – 2 ) x + 4 – 1 ( x – 2 ) ( x + 4 ) = 0

4 ( x + 4 ) – 3 ( x – 2 ) – ( x – 2 ) ( x + 4 ) ( x – 2 ) ( x + 4 ) = 0

4 x + 16 – 3 x + 6 – ( x 2 + 4 x – 2 x – 8 ) ( x – 2 ) ( x + 4 ) = 0

x + 22 – x 2 – 4 x + 2 x + 8 ( x – 2 ) ( x + 4 ) = 0

Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

– x 2 – x + 30 ( x – 2 ) ( x + 4 ) = 0 ⇔ – x 2 – x + 30 = 0 ( x – 2 ) ( x + 4 ) ≠ 0

Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

( x – 2 ) ( x + 4 ) ≠ 0

Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

– x 2 – x + 30 = 0 _ _ _ · ( – 1 )

Получилось квадратное уравнение, которое можно решить:

Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

Нужно решить дробно-рациональное уравнение:

x + 2 x 2 – 2 x – x x – 2 = 3 x

На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

x + 2 1 x ( x – 2 ) – x x x – 2 – 3 ( x – 2 ) x = 0

x + 2 – x 2 – 3 ( x – 2 ) x ( x – 2 ) = 0

x + 2 – x 2 – 3 x + 6 x ( x – 2 ) = 0

– x 2 – 2 x + 8 x ( x – 2 ) = 0 ⇔ – x 2 – 2 x + 8 = 0 x ( x – 2 ) ≠ 0

Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

– x 2 – 2 x + 8 = 0 _ _ _ · ( – 1 )

Корни квадратного уравнения:

x 1 = – 4 ; x 2 = 2

Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

Найти корни уравнения:

x 2 – x – 6 x – 3 = x + 2

Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

x 2 – x – 6 1 x – 3 – x ( x – 3 ) – 2 ( x – 3 ) = 0

x 2 – x – 6 – x ( x – 3 ) – 2 ( x – 3 ) x – 3 = 0

x 2 – x – 6 – x 2 + 3 x – 2 x + 6 x – 3 = 0

0 x x – 3 = 0 ⇔ 0 x = 0 x – 3 ≠ 0

Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

Ответ: х — любое число, за исключением 3.

Требуется вычислить корни дробно-рационального уравнения:

5 x – 2 – 3 x + 2 = 20 x 2 – 4

На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

5 ( x + 2 ) x – 2 – 3 ( x – 2 ) x + 2 – 20 1 ( x – 2 ) ( x + 2 ) = 0

5 ( x + 2 ) – 3 ( x – 2 ) – 20 ( x – 2 ) ( x + 2 ) = 0

5 x + 10 – 3 x + 6 – 20 ( x – 2 ) ( x + 2 ) = 0

2 x – 4 ( x – 2 ) ( x + 2 ) = 0 ⇔ 2 x – 4 = 0 ( x – 2 ) ( x + 2 ) ≠ 0

( x – 2 ) ( x + 2 ) ≠ 0

Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

Ответ: корни отсутствуют

Нужно найти корни уравнения:

x – 3 x – 5 + 1 x = x + 5 x ( x – 5 )

Начнем с определения ОДЗ:

– 5 ≠ 0 x ≠ 0 x ( x – 5 ) ≠ 0 x ≠ 5 x ≠ 0

При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

x – 3 x – 5 + 1 x = x + 5 x ( x – 5 ) · x ( x – 5 )

( x – 3 ) x ( x – 5 ) x – 5 + x ( x – 5 ) x = ( x + 5 ) x ( x – 5 ) x ( x – 5 )

( x – 3 ) x + x = x + 5

Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

x 2 – 3 x + x – 5 = x + 5 → x 2 – 2 x – 5 – x – 5 = 0 → x 2 – 3 x – 10 = 0

Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

x 1 · x 2 = – 10 x 1 + x 2 = 3

В этом случае подходящими являются числа: -2 и 5.

Второе значение не соответствует области допустимых значений.

Молодец! Раз ты дочитал это до конца, вероятно, ты все отлично усвоил. Но если вдруг что-то еще непонятно – попробуй онлайн-занятие с репетитором (подробности тут + 🎁).

Область допустимых значений (ОДЗ): теория, примеры, решения

Любое выражение с переменной имеет свою область допустимых значений, где оно существует. ОДЗ необходимо всегда учитывать при решении. При его отсутствии можно получить неверный результат.

В данной статье будет показано, как правильно находить ОДЗ, использовать на примерах. Также будет рассмотрена важность указания ОДЗ при решении.

Допустимые и недопустимые значения переменных

Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.

Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.

Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1 : а , если а = 0 , тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут ответ. Иначе говоря, имеют смысл с имеющимися переменными.

Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.

Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.

То есть отсюда следует полное определение

Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.

Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.

Для примера рассмотрим выражение вида 1 x – y + z , где имеются три переменные. Иначе можно записать, как x = 0 , y = 1 , z = 2 , другая же запись имеет вид ( 0 , 1 , 2 ) . Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 1 0 – 1 + 2 = 1 1 = 1 . Отсюда видим, что ( 1 , 1 , 2 ) недопустимы. Подстановка дает в результате деление на ноль, то есть 1 1 – 2 + 1 = 1 0 .

Что такое ОДЗ?

Область допустимых значений – важный элемент при вычислении алгебраических выражений. Поэтому стоит обратить на это внимание при расчетах.

Область ОДЗ – это множество значений, допустимых для данного выражения.

Рассмотрим на примере выражения.

Если имеем выражение вида 5 z – 3 , тогда ОДЗ имеет вид ( − ∞ , 3 ) ∪ ( 3 , + ∞ ) . Эта область допустимых значений, удовлетворяющая переменной z для заданного выражения.

Если имеется выражения вида z x – y , тогда видно, что x ≠ y , z принимает любое значение. Это и называют ОДЗ выражения. Его необходимо учитывать, чтобы не получить при подстановке деление на ноль.

Область допустимых значений и область определения имеет один и тот же смысл. Только второй из них используется для выражений, а первый – для уравнений или неравенств. При помощи ОДЗ выражение или неравенство имеет смысл. Область определения функции совпадает с областью допустимых значений переменной х к выражению f ( x ) .

Как найти ОДЗ? Примеры, решения

Найти ОДЗ означает найти все допустимые значения, подходящие для заданной функции или неравенства. При невыполнении этих условий можно получить неверный результат. Для нахождения ОДЗ зачастую необходимо пройти через преобразования в заданном выражении.

Существуют выражения, где их вычисление невозможно:

  • если имеется деление на ноль;
  • извлечение корня из отрицательного числа;
  • наличие отрицательного целого показателя – только для положительных чисел;
  • вычисление логарифма отрицательного числа;
  • область определения тангенса π 2 + π · k , k ∈ Z и котангенса π · k , k ∈ Z ;
  • нахождение значения арксинуса и арккосинуса числа при значении, не принадлежащем [ – 1 ; 1 ] .

Все это говорит о том, как важно наличие ОДЗ.

Найти ОДЗ выражения x 3 + 2 · x · y − 4 .

Решение

В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.

Ответ: x и y – любые значения.

Найти ОДЗ выражения 1 3 – x + 1 0 .

Решение

Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.

Ответ: ∅ .

Найти ОДЗ заданного выражения x + 2 · y + 3 – 5 · x .

Решение

Наличие квадратного корня говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x + 2 · y + 3 ≥ 0 . То есть это и есть искомая область допустимых значений.

Ответ: множество x и y , где x + 2 · y + 3 ≥ 0 .

Определить ОДЗ выражения вида 1 x + 1 – 1 + log x + 8 ( x 2 + 3 ) .

Решение

По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x + 1 – 1 ≠ 0 . Подкоренное выражение всегда имеет смысл, когда больше или равно нулю, то есть x + 1 ≥ 0 . Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x 2 + 3 > 0 . Основание логарифма также должно иметь положительное значение и отличное от 1 , тогда добавляем еще условия x + 8 > 0 и x + 8 ≠ 1 . Отсюда следует, что искомое ОДЗ примет вид:

x + 1 – 1 ≠ 0 , x + 1 ≥ 0 , x 2 + 3 > 0 , x + 8 > 0 , x + 8 ≠ 1

Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [ − 1 , 0 ) ∪ ( 0 , + ∞ ) .

Ответ: [ − 1 , 0 ) ∪ ( 0 , + ∞ )

Почему важно учитывать ОДЗ при проведении преобразований?

При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.

  • могут не влиять на ОДЗ;
  • могут привести в расширению или дополнению ОДЗ;
  • могут сузить ОДЗ.

Рассмотрим на примере.

Если имеем выражение вида x 2 + x + 3 · x , тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.

Если взять пример выражения x + 3 x − 3 x , то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) . Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.

Рассмотрим пример с наличием подкоренного выражения.

Если имеется x – 1 · x – 3 , тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства ( x − 1 ) · ( x − 3 ) ≥ 0 . Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) . После преобразования x – 1 · x – 3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x – 1 ≥ 0 , x – 3 ≥ 0 . При ее решении получаем, что [ 3 , + ∞ ) . Значит, ОДЗ полностью записывается так: ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) .

Нужно избегать преобразований, которые сужают ОДЗ.

Рассмотрим пример выражения x – 1 · x – 3 , когда х = – 1 . При подстановке получим, что – 1 – 1 · – 1 – 3 = 8 = 2 2 . Если это выражение преобразовать и привести к виду x – 1 · x – 3 , тогда при вычислении получим, что 2 – 1 · 2 – 3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.

Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.

Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.

Рассмотрим на примере дроби вида x x 3 + x . Если сократить на x , тогда получаем, что 1 x 2 + 1 . Тогда ОДЗ расширяется и становится ( − ∞ 0 ) ∪ ( 0 , + ∞ ) . Причем при вычислении уже работаем со второй упрощенной дробью.

При наличии логарифмов дело обстоит немного иначе.

Если имеется выражение вида ln x + ln ( x + 3 ) , его заменяют на ln ( x · ( x + 3 ) ) , опираясь на свойство логарифма. Отсюда видно, что ОДЗ с ( 0 , + ∞ ) до ( − ∞ , − 3 ) ∪ ( 0 , + ∞ ) . Поэтому для определения ОДЗ ln ( x · ( x + 3 ) ) необходимо производить вычисления на ОДЗ, то есть ( 0 , + ∞ ) множества.

При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.

ОДЗ – Область допустимых значений

Область допустимых значений (ОДЗ) – это все значения переменной, при которых не нарушаются правила математики.

– если в выражении (frac) значение переменной будет равно 1, нарушается правило: на ноль делить нельзя. Поэтому здесь (x) не может быть единицей и ОДЗ записывается так: (xneq1);

– если в выражении (sqrt) значение переменной равно (0), нарушается правило: подкоренное выражение не должно быть отрицательно. Значит, здесь (x) не может быть (0), а также (1, -3, -52,7) и т.д. То есть, икс должен быть больше или равен 2 и ОДЗ будет: (xgeq2);

– а вот в выражение (4x+1) мы можем подставить любое число вместо икса, и никакие правила нарушены не будут. Поэтому область допустимых значений здесь – вся числовая ось. В таких случаях ОДЗ не записывают, потому что оно не несет в себе полезной информации.

Как найти ОДЗ?

Если переменная (икс) в уравнении или неравенстве стоит в знаменателе, логарифме, под корнем, в тангенсе или котангенсе ОДЗ записать нужно.

Чтобы осознать важность ОДЗ, давайте сравним два решения уравнения: с ОДЗ и без ОДЗ.

Без ОДЗ: С ОДЗ:
(frac=frac<12>) (frac=frac<12>)
ОДЗ: (x+3≠0) (⇔) (x≠-3)
(x^2-x=12) (x^2-x=12)
(x^2-x-12=0) (x^2-x-12=0)
(D=(-1)^2-4·1·(-12)=49) (D=(-1)^2-4·1·(-12)=49)
(x_1=) (frac<-(-1) + sqrt<49>><2·1>) (=4) (x_2=) (frac<-(-1) + sqrt<49>><2·1>) (=4)
(x_1=) (frac<-(-1) – sqrt<49>><2·1>) (=-3) (x_2=) (frac<-(-1) – sqrt<49>><2·1>) (=-3) – не подходит под ОДЗ
Ответ: (4; -3) Ответ: (4)

Видите разницу? В первом решении у нас в ответе появился неверный, лишний корень ! Почему неверный? А давайте попробуем подставить его в исходное уравнение.

Видите, у нас получились и слева, и справа невычислимые, бессмысленные выражения (ведь на ноль делить нельзя). И то, что они одинаковы уже не играет роли, поскольку эти значения – не существуют. Таким образом, “(-3)” – неподходящий, посторонний корень, а область допустимых значений оберегает нас от таких серьезных ошибок.

Именно поэтому за первое решение вы получите двойку, а за второе – пятерку. И это не занудные придирки учителя, ведь неучет одз – не мелочь, а вполне конкретная ошибка, такая же как потерянный знак или применение не той формулы. В конце концов, итоговый ответ-то неверен!

Нахождение области допустимых значений часто приводит к необходимости решать системы неравенств или уравнений, поэтому вы должны уметь это делать хорошо.

Решение: В выражении два корня, один из которых в знаменателе. Кто не помнит ограничения, накладывающиеся в этом случае, тот смотрит таблицу . Кто помнит, записывает, что выражение под первым корнем больше или равно нулю, а под вторым – больше нуля. Понимаете, почему ограничения именно такие?

Дело за малым, нужно решить систему неравенств.
В первом неравенстве перенесем (5) вправо, второе умножим на (-1)

Запишем общий ответ для системы – это и есть допустимые значения для икса.

[spoiler title=”источники:”]

http://zaochnik.com/spravochnik/matematika/vyrazhenija/oblast-dopustimyh-znachenij-odz/

http://cos-cos.ru/math/82/

[/spoiler]

(begin5-2xgeq0\14+5x-x^ <2>> 0end)

Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x .

Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 .

Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.

ОДЗ – область допустимых значений переменной.

В выражении вида f ( x ) g ( x ) = 0

ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).

Алгоритм решения дробно рационального уравнения:

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .
  2. Выписать ОДЗ: g ( x ) ≠ 0.
  3. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни.
  4. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Пример решения дробного рационального уравнения:

Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.

Решение:

Будем действовать в соответствии с алгоритмом.

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .

Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:

x 2 − 4 2 − x − 1 2 − x = 0

x 2 − 4 2 − x − 2 − x 2 − x = 0

x 2 − 4 − ( 2 − x ) 2 − x = 0

x 2 − 4 − 2 + x 2 − x = 0

x 2 + x − 6 2 − x = 0

Первый шаг алгоритма выполнен успешно.

  1. Выписать ОДЗ:

g ( x ) ≠ 0

2 − x ≠ 0

− x ≠ − 2

x ≠ 2

Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2

  1. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни:

x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.

a = 1, b = 1, c = − 6

D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25

D > 0 – будет два различных корня.

x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3

[ x 1 = 2 x 2 = − 3

  1. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Корни, полученные на предыдущем шаге:

[ x 1 = 2 x 2 = − 3

ОДЗ: x ≠ 2

Значит, в ответ идет только один корень, x = − 3.

Ответ: x = − 3.

Задания для самостоятельного решения

№1. Решите уравнение: 3 x − 19 = 19 x − 3 .

Если корней несколько, запишите их через точку с запятой в порядке возрастания.

№2. Решите уравнение x − 4 x − 6 = 2.

Целые рациональные уравнения

Важно знать, что рациональные уравнения в свою очередь тоже разные бывают.

Если в дроби нет деления на переменную (то есть на ( displaystyle x), ( displaystyle y) и т.д.), тогда рациональное уравнение будет называться целым (или линейным) уравнением, вот примеры:

( displaystyle begin{array}{l}frac{2x}{3}=13-frac{3x}{2};\4(2y-3)=y-9.end{array})

Умеешь такие решать? – конечно, умеешь, упрощаешь и находишь неизвестное, тема-то 5-ого или 6-ого класса.

Ну, рассмотрим первый из примеров на всякий случай и по порядочку. Все неизвестные переносим влево, все известные вправо:

( displaystyle frac{2x}{3}+frac{3x}{2}=13);

Какой наименьший общий знаменатель будет?

Правильно ( displaystyle 6)!

Чтоб к нему привести домножаем и числитель и знаменатель первого слагаемое на ( displaystyle 2), а второго на ( displaystyle 3), этого делать не запрещено, если и числитель и знаменатель дроби умножить на одно и то же значение, то дробь от этого не изменится, т.к. ее можно будет сократить на то же число.

А ( displaystyle 13) не трогаем, оно нам не мешает, имеем:

( displaystyle frac{4x}{6}+frac{9x}{6}=13) 

( displaystyle frac{13x}{6}=13),

А теперь делим обе части на ( displaystyle 13):

( displaystyle begin{array}{l}frac{x}{6}=1\x=6end{array})

Тут все просто?

Поскольку уравнение целое, что мы уже определили, то и ограничений никаких нет, ( displaystyle 6), так ( displaystyle 6), ну можно для верности подставить этот ответ в исходное уравнение, получим ( displaystyle 0=0), значит все верно и ответ подходит (ты можешь пересчитать, а вообще должно сойтись).

Дробно-рациональные уравнения

А вот еще одно уравнение ( displaystyle frac{5}{x+1}+frac{4{x}-6}{(x+1)cdot (x+3)}=3).

Это уравнение целое? НЕТ!!! Тут есть деление на переменную ( displaystyle x), а это говорит о том, что уравнение не целое. Тогда какое же оно? Это дробно рациональное уравнение.

Дробно-рациональное уравнение – рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.

На первый взгляд особой разницы не видно, ну давай попробуем решать его как мы решали целое (линейное) уравнение.

Для начала найдем наименьший общий знаменатель, это будет ( displaystyle (x+1)cdot (x+3)).

Важный момент!

В предыдущем примере, где было целое уравнение мы не стали свободный член ( displaystyle 13) приводить к знаменателю, т.к. умножали все на числа без переменных, но тут-то наименьший общий знаменатель ( displaystyle (x+1)cdot (x+3)).

А это тебе не шутки, переменная в знаменателе!

Решая дробно-рациональное уравнение, обе его части умножаем на наименьший общий знаменатель!

Это надеюсь, ты запомнишь, но давай посмотрим что вышло:

( displaystyle frac{5(x+1)cdot (x+3)}{x+1}+frac{(4{x}-6)cdot (x+1)cdot (x+3)}{(x+1)cdot (x+3)}=3cdot (x+1)cdot (x+3)).

Что-то оно огромное получилось, надо все посокращать:

( displaystyle 5(x+3)+(4{x}-6)=3cdot (x+1)cdot (x+3)).

Раскроем скобки и приведем подобные члены:

( displaystyle begin{array}{l}9x+9=3{{x}^{2}}+12x+9\3{{x}^{2}}+3x=0.end{array})

Ну как, это уже попроще выглядит, чем в начале было?

Выносим за скобку общий множитель: ( displaystyle 3xcdot (x+1)=0)

У этого уравнения два решения, его левая сторона принимает нулевое значение при ( displaystyle x=0) и ( displaystyle x=-1). 

Вроде бы все, ну ладно давайте напоследок подставим корни ( displaystyle x=0) и ( displaystyle x=-1) в исходное уравнение, чтобы проверить, нет ли ошибок. Сначала подставим ( displaystyle 0), получается ( displaystyle 3=3) –нет претензий?

С ним все нормально. А теперь ( displaystyle -1), и тут же видим в знаменателе первого члена ( displaystyle -1+1)!

Но ведь это же будет ноль!

На ноль делить нельзя, это все знают, в чем же дело???

Дело в ОДЗ — Области Допустимых Значений!

(если забыл что это, повтори тему «ОДЗ — область допустимых значений»!)

Всякий раз когда ты видишь уравнение, где есть переменные (( displaystyle x,y) и т.д.) в знаменателе, прежде всего, нужно найти ОДЗ, найти какие значения может принимать икс.

Хотя удобнее в ОДЗ написать, чему икс НЕ может быть равен, ведь таких значений не так много, как правило.

Просто запомни, что на ноль делить нельзя! И перед тем как решать наше уравнение нам следовало сделать так:

ОДЗ: ( displaystyle x+1ne 0) и ( displaystyle x+3ne 0) ( displaystyle Rightarrow xne -1) и ( displaystyle xne -3).

Если бы мы сразу так написали, то заранее бы знали, что эти ответы стоит исключить и так, из полученных нами ( displaystyle x=0) и ( displaystyle x=-1) мы смело исключаем ( displaystyle x=-1), т.к. он противоречит ОДЗ.

Значит, какой ответ будет у решенного уравнения?

В ответ стоит написать только один корень, ( displaystyle x=0).

Стоит заметить, что ОДЗ не всегда сказывается на ответе, возможны случаи, когда корни, которые мы получили, не попадают под ограничения ОДЗ.

Но писать ОДЗ в дробно рациональных уравнениях стоит всегда – так просто спокойнее, что ты ничего не упустил и да,

ВСЕГДА по окончании решения сверяй свои корни и область допустимых значений!

Рациональные выражения, уравнения и дробно-рациональные уравнения

Повторим еще раз то, что прошил в предыдущих разделах, больше используя язык математики.

Рациональное выражение – это алгебраическое выражение, составленное из чисел и переменной ( displaystyle x) с помощью операций сложения, вычитания, умножения, деления и возведения в степень с натуральным показателем.

Ну а рациональное уравнение – это равенство двух рациональных выражений.

Дробно-рациональные уравнения – рациональные (без знака корня) уравнения, в которых левая или правая части являются дробными выражениями.

Например:

( displaystyle frac{{{x}^{2}}-2{x}-3}{{x}-1}-frac{x+1}{{x}-3}={{x}^{2}}-1) (чаще всего мы встречаем именно дробно рациональные уравнения).

В общем случае при решении рациональных уравнений мы стремимся преобразовать его к виду: Произведение = «( displaystyle 0)» или Дробь = «( displaystyle 0)«, например:

( displaystyle frac{left( {x}-2 right)left( x+3 right)left( {{x}^{2}}+1 right)}{xcdot left( {x}-3 right)}=0).

Тогда мы сможем сказать, что любой из множителей числителя может быть равен нулю, но знаменатель при этом нулю не равен.

Для этого нам нужно сначала всё перенести в левую часть уравнения (не забываем при этом поменять знаки между слагаемыми: «( displaystyle +)» на «( displaystyle —)» и наоборот).

Затем мы обычно приводим все к общему знаменателю, и пишем систему:

( displaystyle left{ begin{array}{l}Числитель=0,\Знаменательne 0.end{array} right.)

Например:

( displaystyle begin{array}{l}frac{{x}-2}{{{x}^{2}}+2{x}-3}-frac{x+1}{{{x}^{2}}+5x+6}=frac{3}{x+3}Leftrightarrow \Leftrightarrow frac{{x}-2}{left( {x}-1 right)left( x+3 right)}-frac{x+1}{left( x+2 right)left( x+3 right)}-frac{3}{x+3}=0Leftrightarrow end{array})

( displaystyle Leftrightarrow frac{{{x}^{2}}-4-left( {{x}^{2}}-1 right)-3left( {{x}^{2}}+{x}-2 right)}{left( {x}-1 right)left( x+2 right)left( x+3 right)}=0Leftrightarrow frac{-3{{x}^{2}}-3x+3}{left( {x}-1 right)left( x+2 right)left( x+3 right)}=0Leftrightarrow )

( displaystyle Leftrightarrow left{ begin{array}{l}{{x}^{2}}+{x}-1=0\left( {x}-1 right)left( x+2 right)left( x+3 right)ne 0end{array} right.Leftrightarrow left{ begin{array}{l}left[ begin{array}{l}x=frac{-1+sqrt{5}}{2}\x=frac{-1-sqrt{5}}{2}end{array} right.\xne 1\xne -2\xne -3end{array} right.Leftrightarrow left[ begin{array}{l}x=frac{-1+sqrt{5}}{2}\x=frac{-1-sqrt{5}}{2}.end{array} right.)

Если знаменателя нет, или он является числом, – тем лучше, не придется решать неравенство.

Как бы то ни было, в ЕГЭ все рациональные выражения степени больше ( displaystyle 2) легко преобразуются в произведение более простых выражений при помощи либо перегруппировки, либо замены переменных (см. раздел «Разложение многочлена на множители»).

Добавить комментарий