Как найти окно в небе

Согласно сообщению под номером 118502, которое пополнило досье международной уфологической сети MUFON (Mutual UFO Network), 8 октября 2021 года в небе над американским штатом Вирджиния в районе Virginia Beach прорезалось окно. Именно так, по словам очевидца, выглядел выглянувший из облаков светящийся полупрозрачный объект, несколько снимков которого он сделал. Очевидец назвал окно порталом и оценил его размеры примерно в полтора на полтора километра.

Скотт Уаринг (Scott C. Waring) – известный уфолог и виртуальный археолог, обративший внимание на «донесение», считает, что в облаках высветился контур НЛО. То есть, из-за туч появился некий материальный объект инопланетного происхождения.

Квадратное окно в небе США

Эксперты, которые попытались разобраться в феномене, так в нем и не разобрались, сославшись на недостаток информации. Хотя из здравого разумения можно предположить, что так причудливо преломился солнечный свет, проникнув сквозь прорехи в облаках.

кубы в небе

Через несколько дней – 12 октября 2021 года – уже сам Скотт заметил нечто странное. Наблюдая за кадрами прямой трансляции (NASA Live ISS cam) с Международной космической станции (МКС), он увидел квадраты над океаном – один большой и два маленьких, которые к нему примыкали. По цвету и консистенции, если так можно выразиться, объекты отличались от окружавших их облаков. Уфолог, конечно, же решил, что и эти квадраты – НЛО, возможно, всплывшие из океана.

ЧУТЬ РАНЬШЕ

Куб в облаках
куб в небе
Летом 2015 года в небе над городом Эль-Пасо в американском штате Техас материализовался темный куб. Наиболее впечатлительные уфологи решили, что к нам телепортировался корабль инопланетян такой вот кубической формы. Сами струхнули, других шокировали, пугая, что они – инопланетяне – начали вторжение. Но ничего такого агрессивного не случилось. Разве что пилоты истребителей американских ВМС стали то и дело встречать в воздухе удивительно маневренные аппараты неизвестного происхождения.

Источник

В РОССИИ:

В декабре 2021 года над Симферополем открылся, можно сказать, самый настоящий небесный портал. Очень необычная тень от освещения на облаках (Крым, 18.12.2021)

куб в небекуб в небе2

Черный треугольник над небом Пекина 24 июня 2021 года

Как найти объект на небе?


Автор: Lkgios


15.02.2011 15:41

“Куда встать лицом и насколько задрать голову?”

AP_Photo_Anchorage_Daily_News_Marc_LesterКак пользоваться звездной картой мы уже знаем, а сейчас научимся находить предлагаемый для наблюдений объект, будь то Луну, звезду, планету, пролет спутника, МКС или вспышку Иридиума.

Конечно, на звезды может смотреть каждый, кто вышел из дома прогуляться ясной ночью. Но как узнать, куда смотреть, чтобы увидеть нужный вам объект. И как можно сориентироваться в приводимых цифрах?  Хорошо, если вы без труда находите созвездия и вам достаточно будет знать в каком из них произойдет явление. А если вы только начинающий наблюдатель неба? Тогда вам помогут приводимые цифры к местоположению объекта или намечающегося события.

Итак, положение объекта на небосклоне в данный момент времени в конкретной местности можно описать с помощью высоты и азимута. Высотой объекта называется его угловое расстояние над горизонтом. Высота объекта отсчитывается от 0° (объект находиться на горизонте) до 90° (объект над головой – зенит). Положение светила относительно сторон горизонта указывает его вторая координата – азимут и меняется в пределах от 0° до 360° (отсчет ведеться от севера по ходу часовой стрелки).

azel

Тут надо сделать отступление: существует два понятия азимута – геодезический и астрономический, разница между ними только в точке начала отсчета (в геодезиии – от севера, в астрономии – от юга). Но астрономический азимут неудобен для наблюдений неба, да и компасы все имеют градуировку геодезическую, поэтому все чаще прибегают к использованию геодезического азимута для обозначений положений объектов на небосводе.

Так что прежде, чем пользоваться предлагаемым азимутом, нужно обязательно уточнить, какой азимут имеется в виду. Поэтому обычно рядом с цифрами приводятся стороны горизонта, чтобы не запутаться и направить свой взгляд в нужную сторону. Мы будем пользоваться в дальнейшем именно геодезическим и точки горизонта у нас будут соответствовать следующим значениям азимута:

N (0°),     NNE (22.5°),     NE (45°),     ENE (67.5°),
E (90°),     ESE (112.5°),     SE (135°),     SSE (157.5°),
S (180°),     SSW (202.5°),     SW (225°),     WSW (247.5°),
W (270°),     WNW (292.5°),     NW (315°),     NNW (337.5°)

Вот мы и выяснили, что главное для успешных наблюдений объекта знать:
а)время и место наблюдения (Local Time и Observer’s Location)
б)точку стороны горизонта (его азимут) (Azimuth)
в)высоту над горизонтом (Altitude)

Так, что если вы прочитаете, что Сатурн 19 марта 2011 года в 3 часа ночи будет находиться на юге (азимут 174°) на высоте 30° в созвездии Девы, то без труда сможете отыскать эту планету именно в тот день и час.

Для движущегося объекта, как например, искусственных спутников Земли (МКС, Иридиумов и пр.) еще указывают время восхода и захода, максимальную высоту подъема над горизонтом, магнитуду (блеск), а также в приводимых картах неба направление передвижения (например, с юго-запада на юго-восток).

А если вы увидели интересный, загадочный или необычный объект в небе, желательно запомнить вышеописанные параметры (точку стороны горизонта, высоту, время и место наблюдения). Поверьте, недостаточно для индентификации необычного явления описания типа: “Эту звезду я вижу каждый день из своего окна” или “НЛО летело над соседним кустом”.

И еще небольшие советы по измерению угловых расстояний. Расстояние между звездами Большой Медведицы 5°, а угловые размеры полной Луны на небе 0.5°.

5 angle-measurement

В качестве угломерного инструмента можно использовать вашу руку. Достаточно запомнить приводимые на картинке  выше градусы, которые можно измерить с помощью вашей вытянутой руки, и вперед… мерить небо!

Удачных наблюдений!

При подготовке использованы материалы с Heavens-above, Blog: Alter World,

фото Anchorage Daily News, Marc Lester.

Тема данной статьи — “Окно в Небо”. Что мы понимаем под этим термином? Что такое Небо? Атмосфера нашей планеты со всеми её явлениями? Космическое пространство за атмосферой? Или нечто иное? Например, прежде всего Акаши и составляющая её часть Астрал, более известный как Астральные Планы: миры “тонкого плана” — места обитания богов, Духов и иных божественных сущностей и прочие иные “тонкие” миры? Как вы думаете — о каком именно Небе может идти речь на вебинаре, посвящённом одной из актуальных эзотерических тем? Разумеется, мы будем говорить о “тонких мирах” и о способах контакта нас с этими мирами-пространствами. То есть о том, как нам открыть для себя то самое Окно в это Небо, и возможно ли это вообще.

Сперва давайте всё же разберёмся со значением и по возможности с сутью самих основных терминов, которые мы будем использовать в наших беседах — это Акаша, Астрал/Астральные планы, “тонкий мир”. Итак, Акаши — сам термин относится к временам философов древней Индии и обозначает первооснову всего сущего, включая материальные и нематериальные вселенные, Первооснову, которая и порождает все видимые и невидимые миры. А также является той единственной структурой-матрицей, сохраняющей, несущей и создающей всю информацию всех проявленных Вселенных и их миров. Как ДНК в организме человека и других живых существ. Эта структура, Акаша, известна в среде эзотериков под термином Хроники Акаши. Что не совсем верно. Ибо Хроники Акаши — это только часть всей структуры Акаши. В научном же мире наиболее близким к сути Хроник Акаши является понятие Единой Ноосферы, разработанное и введённое в понятийную сферу научно-философского мышления профессором Вернадским. В даосизме и потом его правопреемнике Чань-Буддизме термину Акаша соответствует известный термин Дао, описывающий по сути то же самое проявление Изначальной Первоосновы — прародителя всего сущего. Как Дао, так и Акаша являются силами и структурами, относящимися к Непознаваемому и неописуемому умом и словами ни на каком из языков народов Земли, иных разумных существ в нашей Вселенной (одной из многих Вселенных) или иных физических миров-вселенных. И только первородные сущности, населяющие “тонкие миры”, могут воспринять и познавать Дао/Акашу, так как они, эти сущности, есть суть и плоть от сути и плоти Акаши/Дао. В том же буддизме считается, как одна из Основ, что переход в состояние Самадхи, какой совершил в своё время принц Гаутама Будда, этот переход в Самадхи может перевести тонкое и физическое тела существа, живущего в нашей физической реальности, в состояние первоначальности и соединения с Дао при сохранении его высшей индивидуальности — Высшего Я. Так в буддизме, кстати, появляются и боддхисатвы — существа, через Самадхи перешедшие в реальность “тонких планов” Дао, но регулярно проявляющих себя в нашей физической реальности “для спасения от мира страданий и сует других достойных существ Земли”. В индуистских Тантрах различных видов йог — карма-йога, раджа-йога, брахма-йога, бхакти-йога — целью и итогом является тоже самое действо — переход в тонкую субстанцию сливающуюся на своём тонком, а в идеальном случае и физическом уровнях с Акаши, но также осознающую и сохраняющую тоже самое своё высшее самоосознание — “Высшее Я”.

К сожалению, в XVII–XIX веках европейскими мистиками, оккультистами и теософами понятие об Акаше было сведено исключительно к уровню Хроник Акаши. Стали ставить знак равенства между Акаши и понятиями “вселенской библиотеки”, как местохранилища всякой информации, вроде “мудрости веков”, “кладовой знаний” и тому подобного. Что впоследствии было априори перенято почти всем сообществом европейских эзотериков и так и сохранилось вплоть по наши дни в массовом эзотерическом сознании, как единственно существующее.

А ведь если взять Акаши, как изначальное понятие сотворяющего и организующего Мироздание Начала, то можно найти почти прямую аналогию с Акаши в научных открытиях современной астрофизики. Я имею ввиду понятие той невидимой в оптическом диапазоне и пока почти не воспринимаемой большинством приборных методов структуре нашей Вселенной, известной как Тёмная материя. Сейчас достоверно установлено, что наша Вселенная, со всеми её мириадами мегаскоплений и просто скоплений Галактик, включая и нашу галактику Млечный Путь, имеет сложную ячеистую (галактическая сеть) многоуровневую пространственную структуру, состоящую из мегаскоплений и скоплений галактик, связанных нитями материи среди пустот-войдов, без материи и практически без межзвёздного газа. Где мегаскопления образуют своего рода узелки на пересечении нитей этой сети, а скопления галактик и отдельные галактики формируют также и сами нити. Посмотрите на два предлагаемых изображения: первое — это визуально зафиксированный фрагмент этой великой сети в направлении созвездия Волосы Вероники, второе — это изображение ячеистого распределения этой сети в более обширном, но ближайшем (понятие “ближайшем” весьма относительно, так как до ближайшего мегаскопления, формирующего узел ячейки этой мегасети, миллиарды парсек) к нашей солнечной системе пространстве нашей вселенной.

Установлено, путём астрофизических наблюдений, что скорее всего ответственной за эту структуру, за создание и формирование этой объёмной сети отвечает та самая Тёмная Материя. И именно благодаря ей происходит не только рождение звёзд и звёздно-планетарных систем, но и рождение самих галактик, включая и так называемые “белые и чёрные дыры”, самые крупные из которых находятся в центрах всех галактик. По последним научным представлениям похоже, что эти дыры являются всего навсего точками соприкосновения/стыковки нашей Вселенной с другими также материальными Вселенными — Внешними Мирами, которые как могут быть похожими по своим физическим константам на нашу Вселенную, так и могут иметь совершенно иные физические константы, но все вместе эти вселенные, включая и нашу, образуют совершенно непредставимую и пока непознаваемую структуру Мегавселенной. Но дальше ещё страннее и интереснее — по тем же анализам астрофизических наблюдений и новейшим открытиям в сфере физики пространства, получается, что вся Супермегавселенная, как и входящие в её состав вселенные, представляет из себя невероятную энерго-информационную голографическую структуру — это огромнейшая информационно-энергетическая голограмма-Матрица, частично, в виде скоплений вселенных, проявленная в том числе и в нашей физической реальности. Всё это описанное формируется Тёмной Материей, которая в свою очередь порождается ещё более таинственной структурой, но уже также имеющей косвенные экспериментально выявленные подтверждения — Тёмной Энергией, своего рода ПервоМатрицей.

Статьи автора

Соответственно, прямое физическое соприкосновение нашего мира овеществлённого с иными мирами в пределах нашей Семисферы вполне возможно при неких определённых условиях. Но это соприкосновение и частичное взаимопроникновение миров происходит, разумеется, не исключительно на уровне прямого физического… Читать дальше

А теперь давайте зададимся одним напрашивающимся вопросом: откуда же могло пойти такое представление о человеке, как о многомерной структуре из семи собранных в единое целое тел? Скорее всего, на основе изучения и принятия, как определённой аксиомы тех древних понятий представлений о строении Мироздания… Читать дальше

А теперь вспомним, что выше было сказано о сути Акаши/Дао. Замечаете, какая прямая аналогия наблюдается между древнейшими объяснениями сути понятий Акаша и Дао и современными научными понятиями мегавселенной и формирующей оную информационо-энергетической Матрицей-голграммой — Тёмной (невоспринимаемой… Читать дальше

Из века в век гадания, предсказания и ясновидение помогали людям в их жизни, делах, любви и семейных отношениях. Старая пословица говорит: “Знал бы, где упал — соломку бы подстелил”, с помощью гадания становится возможным не только, просмотрев ситуацию, избежать конфликтов и разочарований, но и шаг… Читать дальше

Читайте также

Многие люди просят рассказать про чтение хроник Акаша. Я читаю их на сеансах погружения онлайн по вашим запросам много лет. Выхожу на поле Акаши согласно своему пути общения через канал. Я чтец и проводник Акаша с рождения. Мой и дар, и предназначение — работа с полем Акаша на земле для проведения… Читать дальше

Причина повторяющихся личных неудач в жизни, депрессивных состояний и всевозможных фобий прячется в глубине нашего собственного подсознания, но зачастую скрыта от нас. Травма, боль, опыт прошлых жизней — именно в этом находится первопричина, которая повлекла за собой происходящее с нами сейчас. Это… Читать дальше

Нити судьбы, кармы прошлой жизни, они тянутся от человека к человеку и создают новые нити судьбы, притягивая нас друг к другу, соединяют или отталкивают, дают положительные эмоции или слёзы и раны души. Кто меня знает, я хорошо читаю хроники Акаши как ясновидящая.

“В прошлой жизни вы были родственниками… Читать дальше

Сегодняшняя сессия была посвящена силе и слабости, в частности силе женщины и слабости мужчины.

На приёме героиня М., 48 лет.

Запрос — чувство тревоги, одиночества, внутренне пустоты, неудовлетворённости в жизни. Почему это состояние возникло, М. не понимает, некоторые проблемы на работе, предстоящая… Читать дальше

Содержание

  1. Как находить небесные объекты по звездными картам Stellarium при помощи телескопа
  2. Программа Stellarium
  3. Технические особенности
  4. Возможности программы
  5. Интерфейс программы Stellarium
  6. Панель слева
  7. Панель снизу
  8. Симуляция телескопа
  9. Подведем итоги
  10. Похожие статьи

Как находить небесные объекты по звездными картам Stellarium при помощи телескопа

Всем привет! Возможно читателям ресурса Хабр окажется интересным. Данная статья призвана дать некоторые пояснения к пользованию звездными картами, генерируемыми приложением для смартфонов и планшетов Stellarium. Так же в статье изложен реальный опыт поиска слабосветящихся объектов Deep-Sky, при помощи телескопа.


Поиск объектов дальнего космоса при помощи 300мм телескопа Добсона (на фото К. Радченко)

Наверное многие читатели пользуются приложением для Android или программой для ПК: Stellarium. Данный ресурс отражает собою выделенную непосредственным соседством созвездий, и характерным временем года область неба: группа зимних созвездий, осенние созвездия и тому подобное. Фукционал программы позволяет на каждой карте отметить линией очертания созвездий, дать обозначения всех опорных звезд и звезд, облегчающих поиск опорных, греческими или латинскими буквами или арабскими числами. Местоположения объектов обведены либо кружком диаметр которого 1—1,5°, либо ромбиком, либо квадратиком и т.п. указателями, в зависимости от класса объекта. Рядом с каждым кружком стоит обозначение определяемого им объекта. Обозначения объектов даны по наиболее распространенным каталогам. Обозначения объектов из дополненного каталога Мессье обычные: буква М с порядковым номером объекта. Обозначения объектов из Нового общего каталога (NGC) Дрейера даются только числом, большим 110. В обозначениях объектов из Дополнительного каталога (IС) буквы сохраняются: IС 2149.


Общая карта звездного неба, построенная программой Stellarium

Чтобы не загромождать карту лишними надписями, лучше не отображать названия созвездий: эти названия легко устанавливаются по привычным звездным очертаниям, границам созвездий и по входящим в них объектам. В координатной сетке необходимость отпадает по той же причине. Имеющиеся местные искажения некоторых угловых размеров и расстояний вполне терпимы.

Если ночь предполагается хорошей и есть возможность наблюдать, то для начала можно определить с помощью подвижной карты вид звездного неба к моменту наблюдений. Определив, какие созвездия будут видны в момент наблюдений, а также можно узнать, какие объекты принадлежат некоторым из этих созвездий.

Дальнейший выбор объектов для наблюдения, зависит только от желания наблюдателя и от условий видимости. Все предложенные объекты интересны без исключения, каждый по своему.

Предположим, что выбран какой-то объект. Отыскав участок неба в программе Stellarium, содержащий выбранный объект, читатель подробнее увидит нужную ему для обзора невооруженным глазом область неба со звездами до 5,5 зв. величины, отыщет опорную звезду, которая обязательно указана в описании данного объекта, запомнит, как найти ее на небе (в противном случае придется все время сверяться с картой), и может составить себе представление о расположении самого объекта среди звезд, видимых простым глазом.

После этого следует «открыть поисковую карту» для нашего объекта, проще говоря «приблизить» наблюдаемую область неба в программе. Наведя с помощью искателя или иначе телескоп на опорную звезду, следует «вести» телескоп от опорной звезды (яркая звезда, которая легко находится при малом увеличении, от которой начинают поиск слабых объектов) к объекту по «звездной тропинке», глядя в искатель или в сам телескоп при увеличении 20х—40x и ориентируясь по звездам до 10 зв. величины. Конечно, вам поможет в этом поисковая карта, но прежде следует в ней разобраться.


Поисковая карта звездного неба, построенная программой Stellarium

Когда вы наведете телескоп на опорную звезду, то в искатель (которого часто не бывает), а лучше в сам телескоп с указанным увеличением, вы увидите ее в центре поля зрения, окруженную другими звездами.

Тщательно отфокусируйте телескоп, чтобы звезды были видны как мелкие, бриллиантовые уколы на черном бархате неба, а глаз смотрел на них спокойно, без всякого напряжения. Для большинства слабых протяженных объектов достаточно малейшего нарушения резкости, чтобы уже совершенно их не видеть даже в том случае, когда они присутствуют в поле зрения вашего инструмента и принципиально доступны ему.

Звезды, окружающие опорную, необходимо отождествить со звездами окрестности опорной на поисковой карте. Для этого надо знать, какое поле зрения видно в телескоп, каков его угловой диаметр.

Угловой размер видимого поля зрения при данном увеличении (20х—40х) можно вычислить разными методами. Проще всего вспомнить и прикинуть, сколько раз в диаметре поля зрения уложится диаметр полной Луны. Обычно при 20х—40х диаметр поля зрения равен 1,5—2°.

Очертив мысленно кружок примерно такого размера вокруг опорной на карте, вы сможете легче отождествлять звезды. Следует учесть, что может возникнуть необходимость поворачивать поисковую карту перед собой, чтобы «совместить» звезды в телескопе и в окрестности опорной на карте. Ваш телескоп может «видеть» слишком слабые звезды, например до 12 зв. величины, в то время как на поисковой карте самые слабые имеют величину 9,75 зв. величины. Искатель, наоборот, может с трудом показывать звезды только до 9 зв. величины. Поэтому надо обращать внимание в первую очередь на самые яркие (и в телескопе, и на карте), а уж потом, оценивая звездную величину, принимать в расчет и слабые звезды, отсеивая сверхслабые. Вдобавок ко всему следует помнить, что глаз в телескопе видит звезды различной градации в блеске, в то время как на поисковой карте таких ступеней только четыре, объединяющие по нескольку разных звездных величин.

Стоит также предупредить читателя о том, что среди звезд весьма часто встречаются двойные и кратные; некоторые (не все) из них могут легко разрешаться при увеличении 20х—40х. Если не обращать внимания на звезды с лучиками на поисковых картах, считая их одиночными, то можно запутаться с отождествлением и не найти разрешенные телескопом кратные звезды. Из-за этого можно даже вообще не разобраться в звездном узоре в поле зрения телескопа. В то же время тщательное изучение кратных звезд даст впоследствии более уверенное отождествление, тем более, если телескоп их разрешает. Такие звезды станут своеобразной вехой, которая будет облегчать поиск. Иногда яркие кратные звезды помогают установить, какой участок неба показывает поисковая карта в увеличенном и подробном виде.

С накоплением опыта отождествление и выбор звезд будут осуществляться автоматически.

Когда наблюдатель полностью изучит окрестность опорной звезды, можно начинать «вести» телескоп. Для этого нужно заранее продумать и спланировать, по каким звездам осуществлять «ведение»,— выбрать на поисковой карте «звездную тропинку».

Во-первых, нам известна ширина этой «тропинки»: она равна диаметру окрестности опорной. Правда, телескоп может с «тропинки» сбиваться, но это не столь существенно. Во-вторых, надо установить взаимное расположение опорной и объекта на карте. Быть может, среди разбросанных меж ними звезд имеются группы, последовательности, образующие характерные фигуры, подобные фигурам созвездий; выделяющиеся блеском, особой конфигурацией («цепочки», «треугольнички», «кучки» и тому подобное). Тогда необязательно «прокладывать» прямую «тропинку», а идти по извилистому пути. Конечно, бывают очень богатые, усыпанные звездами области неба, и заметную «тропинку» выделить трудно. Бывают и очень бедные области, в которых звезд очень мало. Например, объект М55 находится на очень пустом поле, и опорная звезда очень слаба и не имеет звездной окрестности (!), т. е. фактически имеется только бедная окрестность самого М55. Тут ничего не поделаешь, хотя с помощью искателя телескоп может быть наведен на эту неудобную опорную, далекую от ярких звезд. Все же объект обнаружить можно, так как его блеск не слишком слаб, и его можно заметить, если он мелькнет в поле зрения.


Звездное скопление «Призрак» М55

Для объекта М62 «тропинка» проходит примерно по границе протяженной усыпанной звездами области с относительно «пустым» пространством


Скопление галактик «Триплет Льва» М65

Для очень богатых звездами поисковых карт «тропинку» следует выбирать очень тщательно, правда, ориентируясь на яркие звезды, иногда пропуская слабые.

Для бедных звездами поисковых карт может оказаться, что в окрестности опорной почти нет звезд и саму «тропинку» приходится делить на «островки» и вести телескоп очень осторожно: от «островка» к «островку», когда один уже пропадает из поля зрения, а следующий еще не появляется. В таком случае придется «порыскать» немного телескопом, пока не встретится следующий «островок».

Необходимо время, чтобы мысленно «перевернуть» их в привычное положение. Плохо еще изученную окрестность слабого объекта вообще надо стараться ориентировать в поле зрения в том положении, в котором вы ее изучали в первый раз. Обычно при наблюдениях используют поворотное зеркало у рефрактора, и, поворачивая его вместе с окуляром, легко повернуть поле зрения. С рефлектором такой поворот осуществить проще.

Когда объект очень заметен, то вы сами увидите, как он «вплывет» к вам в поле зрения из-за его края. Если же объект весьма слаб или неприметен, то необходимо поместить в поле зрения всю его окрестность целиком, чтобы указанное в поисковой карте положение объекта оказалось в центре поля зрения.

Надеюсь данная статья окажется для кого-то полезной, всем чистого неба и успешных наблюдений!

С уважением Константин Радченко, главный редактор группы в ВК «Open Astronomy»

Источник

Программа Stellarium

Stellarium – лучший путеводитель любителя-астронома. Данная программа является неким интерактивным атласом небесных тел и предоставляет множество возможностей для пользователя.

Технические особенности

Программа Stellarium – свободное программное обеспечение, планетарий, который имеет открытый исходный код. Программа совместима со следующими оперативными системами: Windows, macOS, GNU/Linux, UNIX-подобные операционные системы. Выпускается с 2001-го года и поддерживает 136 языков, использует интерфейс Qt.

Минимальные системные требования:

  • 3D видеокарта, поддерживающая технологию OpenGL0, а также GLSL 1.3
  • Наличие 250 Мб на жестком диске
  • 512 Мб оперативной памяти

Рекомендуемые системные требования:

  • 3D видеокарта, поддерживающая технологию OpenGL3, а также GLSL 1.3
  • Наличие 1,5 Гб на жестком диске
  • 1 Гб оперативной памяти

Возможности программы

  • Каталог по умолчанию, который содержит более 600 000 звезд и дополнительные каталоги с более чем 177 миллионами звезд. Поиск звезд можно производить как по названию, так и визуально на небе. При выделении звезды отображается краткая информация о ней, начиная от спектрального класса и видимой звездной величины, и заканчивая координатами.
  • Каталог по умолчанию, который содержит более 80 000 объектов глубокого неба и дополнительный каталог с более чем 1 млн объектов глубокого неба. Как и в случае со звездами, присутствует краткое описание объектов. Кроме того, в программу встроены изображения туманностей. Имеется полный каталог Мессье.
  • Астеризмы, выделяемые линиями, и иллюстрации созвездий, которые при желании можно отключить.

Иллюстрации созвездий в программе Stellarium

  • Названия, описание и история наблюдаемых объектов с точки зрения различных культур.
  • При отключении эффекта атмосферы, на нижней панели (горячая клавиша «A»), можно наблюдать изображение полосы Млечного Пути.
  • Есть возможность приблизить планеты Солнечной системы настолько, что можно рассмотреть движение их спутников. Примечательно, что в силу вращения Земли, которое учитывается в программе Stellarium, для наблюдения за планетой придется либо «Центрировать наблюдаемый объект» (при помощи клавиши «Пробел»), либо остановить течение времени. Иначе объект постоянно будет уходить из-под взора.

Сатурн в приближении в программе Stellarium

  • Контроль времени – одна из самых важных функций программы, которая позволяет не только останавливать течение времени, но также перематывать его вперед и назад. Это позволяет предсказать положение небесных тел, открытых для наблюдения ночью из места Вашего расположения.
  • Присутствует эффект рыбий глаз, который актуален для создания проекций на купола планетария.
  • Имеется возможность наблюдения через симулятор телескопа, с различными окулярами и линзами.
  • Включение/отключение экваториальной и азимутальной сетки.

Сетка и Млечный Путь в программе Stellarium

  • Отображение метеорных потоков.
  • Симуляция вспышек «Иридиума». Данное явление представляет собой отражение солнечного света от гладких поверхностей искусственных спутников Земли, сети «Иридиум». Данная сеть включает 66 космических аппаратов.
  • Симуляция затмений.
  • Симуляция новых и сверхновых.
  • Симуляция сверхновых и новых звезд
  • Присутствует система плагинов, позволяющая добавлять искусственные спутники, симуляцию окуляра, конфигурацию телескопа и многое другое.
  • Присутствует функция добавления новых объектов Солнечной системы с интернет-ресурсов. Также можно добавлять свои собственные объекты глубокого неба, пейзажи, изображения созвездий, скрипты и тп.

Интерфейс программы Stellarium

После запуска программы перед Вами откроется вид с земной поверхности на небосвод, расположение объектов на котором соответствует расположению объектов с Вашей точки зрения. Для автоматического определения координат пользователя может потребоваться интернет соединение. В случае если местоположение не определено, следует воспользоваться соответствующей функцией на панели слева.

Интерфейс программы представлен несколькими выдвижными панелями, которые находятся по бокам монитора.

Панель слева

    1. Окно местоположения [F6] – позволяет выбрать местоположение для наблюдения за небом.

  1. Окно даты/времени [F5] — ручной выбор даты и времени наблюдения.
  2. Окно настроек неба и наблюдения [F4] – содержит пять вкладок настроек:
      1. Небо. Позволяет настроить особенности отображения звезд, неба и атмосферы, объектов Солнечной системы и метеоров.
      2. ОГК – объекты глубокого космоса. Позволяет выбрать каталоги, из которых будут доступны объекты для наблюдения, настроить маркеры и подписи объектов, а также установить фильтр по типу объектов.
      3. Обозначения. Включает настройки различных элементов, вроде отображение экваториальной сетки или меридиана, вместе с выбором цвета отображаемой сетки. Здесь же можно изменить проекцию изображения, например, с рыбьего глаза на «перспективную». В таком случае небо и окружение наблюдателя будут выглядеть так, как его видел бы человеческий глаз.

    Окно настроек неба и наблюдения, обозначения

    1. Ландшафт – позволяет сменить внешний вид окружающего наблюдателя ландшафта, и настроить его параметры.
    2. Знания о звездах – довольно интересная функция, позволяющая наблюдать за небесными телами с точки зрения различных культур. Под этим подразумеваются иные созвездия, названия космических тел и различные особенности астрономии, включая мифы, поверья, и прочее.

Египетские названия Луны и Солнца

  1. Окно поиска [F3] – позволяет производить поиск по названию объекта, по его координатам, либо просто выбрать из списка известных объектов.
  2. Окно настройки [F2] — содержит шесть вкладок:
    1. Основные – содержит настройки языка, таблицы небесных координат (эфемерид), а также сохранение текущих настроек наблюдения.
    2. Информация – позволяет настроить пункты, отображаемые в описании космических тел.
    3. Навигация – включает настройки управления (в т.ч. горячие клавиши), даты/времени, их отображения и коррекции.
    4. Сервис – изменение особенностей самого интерфейса наблюдения, выбор папки для скриншотов, обновление каталога звезд.
    5. Сценарии – великолепная функция, которая позволяет использовать заготовленные сценарии отображения тех или иных объектов, а также целых послед овальностей объектов. Это актуально для проведения лекций, особенно в планетариях.
    6. Плагины – содержит перечень и описание доступных плагинов.
  3. Окно астрономических расчетов [F10] – содержит несколько инструментов для определения координат движущихся объектов (комет, метеоров и тп), расчета эфемерид, явлений объектов (например, соединение или противостояние планет), и зависимость высоты от времени.
  4. Окно справки [F1]. Помимо руководства, службы поддержки и прочего, имеется список горячих клавиш.

Панель снизу

Нижняя панель программы Stellarium содержит 24 кнопки управления и отображения:

  • Вкл/выкл линии созвездий [C]
  • Вкл/выкл названия созвездий [V]
  • Вкл/выкл изображения созвездий [R]
  • Вкл/выкл экваториальную сетку [E]
  • Вкл/выкл азимутальную сетку [Z]
  • Вкл/выкл отображение Земли [G]
  • Вкл/выкл сторон света [Q]
  • Вкл/выкл атмосферы [A]

Небо с выключенной атмосферой в программе Stellarium

  • Вкл/выкл объекты глубокого космоса [D]
  • Вкл/выкл названия планет [Alt+P]
  • Переключение между экваториальным и азимутальным восхождением [Ctrl+M]
  • Центрировать выбранный объект [Пробел] – позволяет зафиксировать взгляд на объекте
  • Ночной режим [Ctrl+N]
  • Полноэкранный режим [F11]
  • Вкл/выкл отображение экзопланет [Ctrl+Alt+E]
  • Вкл/выкл отображение метеорных потоков [Ctrl+Alt+E]
  • Отобразить окно поиска метеорных потоков [Ctrl+Alt+M]
  • Вид в окуляр телескопа [A] – имитация наблюдения за объектом через телескоп. В правом верхнем углу возникнет окно выбора телескопа, линзы и окуляра [Ctrl+O]
  • Вкл/выкл отображение искусственных спутников Земли [Ctrl+Z]
  • Четыре кнопки управления временем: перемотка назад [J], пауза/пуск [K], перемотка вперед [8], возврат к текущему времени [L].
  • Выход из программы [Ctrl+Q].

Симуляция телескопа

При выделении конкретного объекта для наблюдения, в правом верхнем углу становится активной панель настройки телескопа. Прежде всего можно включить симуляцию окуляра «Вид в окуляр», при этом возникает выпадающее меню выбора окуляра, телескопа и линзы.

Наблюдение в окуляр в программе Stellarium

Также в правом верхнем углу имеется «Конфигурация плагина», крайняя кнопка.

Подведем итоги

Программа Stellarium является единственным в своем роде виртуальным планетарием. К ее преимуществам можно отнести широкий спектр возможностей, внушительная база космических тел с описанием их параметров, интуитивно понятный интерфейс, умеренные системные требования, а также бесплатное распространение. Таким образом каждый астроном-любитель может позволить себе заиметь столь великолепный виртуальный путеводитель по космическим объектам.

Скачать программу Stellarium можно с официального сайта по этой ссылке.

Похожие статьи

Понравилась запись? Расскажи о ней друзьям!

Источник

Главная »
Статьи и полезные материалы »
Телескопы »
Статьи »
Телескоп. Как начать наблюдения

Телескоп. Как начать наблюдения

Вам подарили телескоп? Или же вы его купили ребенку, и надо ему рассказать, как им пользоваться? Или же появилась возможность приобрести телескоп и реализовать давнюю мечту взглянуть через него на небесные светила, но вы сомневаетесь, справитесь ли самостоятельно? Если хотя бы на один из этих вопросов вы ответили “да”, то, безусловно, лучшим советом будет найти опытного человека, который все покажет на месте. Но, к сожалению, такая возможность есть далеко не всегда и не везде, поэтому в этой статье мы попробуем помочь тем, кто еще не имеет опыта астрономических наблюдений, но хочет научиться.

Во-первых, не нужно бояться, это не сложно, и по силам десяткам тысяч людей, которые выходят наблюдать каждую ясную ночь. Во-вторых, все же придется освоиться с некоторыми новыми понятиями или освежить известные сведения из области географии и астрономии.

Знакомство с телескопом: сборка и настойка

Об окулярах и объективах


Фотогалерея: фокусировщик, окуляр, искатель

Итак, у вас есть телескоп. Соберите его, руководствуясь прилагаемой инструкцией, днем в комнате, чтобы ознакомиться с его устройством и попробовать типичные операции, которые потом нужно будет выполнять в ночной темноте. Основной оптический элемент телескопа – это его объектив или зеркало, в зависимости от примененной схемы. Этот элемент собирает свет и строит изображение объекта в некоторой плоскости, называемой фокальной. Диаметр, фокусное расстояние и качество объектива или зеркала определяют основные параметры телескопа. При наблюдениях объектив направлен на рассматриваемый объект (отсюда и название), а изображение наблюдатель может увидеть в окуляре. Большинство телескопов поставляются с несколькими сменными окулярами, отличающимися фокусными расстояниями и дающими различное увеличение.

Поставьте в телескоп окуляр с самым большим фокусным расстоянием (наименьшим увеличением) и попробуйте навести трубу на какой-нибудь предмет за окном. Скорее всего, изображение сразу покажется размытым. Дело в том, что, как и бинокль, телескоп необходимо сфокусировать на нужном объекте. Для этого с помощью специального механизма –  фокусировщика, совмещаются фокальные плоскости объектива и окуляра. Попробуйте покрутить рукоятки фокусировщика, пока не добьетесь более-менее четкого изображения. На слишком близкие объекты телескоп, как правило, не фокусируется, ведь он предназначен для наблюдений очень далеких объектов, а кроме того, не получится точно сфокусироваться через оконные стекла – они обычно слишком неровные. При наблюдениях небесных объектов фокусировка также очень важна, и ее придется подстраивать при смене окуляров, при изменении окружающей температуры и при групповых наблюдениях ввиду индивидуальности зрения у разных людей. Поэтому нужно привыкнуть проводить эту частую процедуру не отрывая глаза от окуляра. Разберитесь также с тем, как фиксируются окуляры в своих посадочных местах, чтобы смена окуляров по возможности не влияла на положение трубы и не занимала много времени.

Искатели: учимся наводить телескоп на объект


Фотогалерея: экваториальная и азимутальная монтировки

Кроме собственно оптической системы, спрятанной в трубе, конструкция телескопа имеет несколько важных вспомогательных элементов. Один из них – это искатель. Часто это маленькая зрительная труба, укрепленная параллельно главной трубе и имеющая перекрестье. Ее увеличение невелико (редко больше 8 крат), а видимое поле зрения гораздо шире, чем у телескопа. Обычно наведение на интересующий объект происходит так: наблюдатель, посмотрев на карту, находит на небе невооруженным глазом созвездие или заметную группу звезд, недалеко от которой расположен нужный объект, и разворачивает в том направлении трубу телескопа. Далее, глядя в искатель и перемещая трубу телескопа, наблюдатель совмещает перекрестье с объектом (если он виден) или с заметным ориентиром (характерным звездным рисунком, например) вблизи него. Стоит научиться при наведении через искатель держать второй глаз открытым – это позволит быстро соотносить область неба, видимую невооруженным глазом, с ее частью, видимой в искатель. После наведения наблюдатель смотрит в окуляр телескопа и, чаще всего, видит нужный объект.

Процедура простая, но она обязательно требует весьма точной параллельности осей искателя и главной трубы. Это обеспечивается наличием регуляторов подстройки (юстировки) искателя, и эту подстройку необходимо проводить каждый раз перед сеансом наблюдений или периодически ее проверять, если телескоп между наблюдениями не разбирается. Попробуйте отъюстировать искатель предварительно днем, чтобы освоиться с регулировками. Поставьте окуляр с небольшим увеличением (с большим фокусным расстоянием) и наведите трубу телескопа на какой-либо приметный, значительно удаленный объект (мачту антенны, фонарь, трубу завода и т.п.). Зафиксируйте положение трубы с помощью соответствующих механизмов монтировки. Далее, глядя в искатель, вращайте винты регулировки так, чтобы перекрестье (или точка) смещалось в сторону выбранного вами объекта. Возможно, при затягивании некоторых винтов потребуется ослабить противоположные. Когда перекрестье встанет на объект, убедитесь, что он также виден в окуляре, и аккуратно подтяните все регулировочные винты так, чтобы ни один из них не остался в ослабленном состоянии, иначе параллельность искателя трубе быстро утратится при наблюдениях. Кроме оптических искателей, нередко встречаются коллиматорные, словно “проецирующие” светящуюся красную точку на небесную сферу, а также простые прицельные устройства. Независимо от типа искателя, его правильная настройка важна для успешной работы.

Монтировка: учимся сопровождать объекты на небе

Не менее важна и монтировка телескопа. Если объектив определяет предельные оптические возможности телескопа, то монтировка определяет то, насколько удобно будет наводить телескоп и наблюдать в него. Монтировки любительских телескопов делятся на два основных типа – альтазимутальные и экваториальные. Первые интуитивно понятны в управлении и легче весят, вторые “заточены” под используемую в астрономии систему экваториальных небесных координат, позволяют удобнее находить и сопровождать объекты, но требуют предварительной настройки на полюс Мира и более сложны механически. Ознакомьтесь с устройством вашей монтировки, попробуйте в действии имеющиеся механизмы. Глядя в окуляр, руками найдите ручки тормозов и тонких движений, это придется делать потом в темноте.

Первые наблюдения: изучаем литературу, смотрим на Луну

Вот мы и дождались ночи, и, будем надеяться, она ясная и достаточно теплая, чтобы не испытывать неудобств (хотя нередко любители астрономии наблюдают и в мороз, но для первого раза такие крайности излишни). К слову, не расстраивайтесь, если ночное небо оказалось облачным, значит, сработало известное в любительской среде правило “новый телескоп портит погоду”, но будут и другие ночи, а их ожидание можно провести с пользой, изучая оборудование вашего инструмента и теоретические основы астрономических наблюдений по книгам и статьям.

Подняв глаза к небу, вы увидите множество звезд. Помимо звезд, на небе найдется множество других больших и малых объектов – Млечный Путь (проекция диска нашей Галактики на небесную сферу), Солнце, Луна, планеты, кометы и астероиды, а также огромное количество туманностей, галактик и звездных скоплений. Все эти объекты расположены на разном расстоянии от нас, но даже самые близкие настолько далеки, что человек воспринимает их так, как будто они находятся на некоторой удаленной воображаемой сфере, точнее, куполе. Собственно, довольно долго такое представление было основным в науке и для некоторых целей допускается и сейчас. Поэтому ночное небо и называют “небесной сферой”, а для отсчета координат объектов и расстояний между ними используются угловые меры – градусы, минуты и секунды дуги.

Подготовка к наблюдениям: изучаем руководства, знакомимся с планетариями, вооружаемся компасом


Фотогалерея: что поможет в астронаблюдениях

Не вдаваясь здесь в описания систем небесных координат, которые есть в любом руководстве по астрономии, скажем лишь, что для первого раза желательно знать, в каком направлении в вашем наблюдательном пункте расположены основные стороны света – север, юг, запад и восток. Если вы раньше наблюдали за движением светил (познакомиться с ним можно в любой свободный вечер) невооруженным глазом в течение длительного времени (например, пару часов), то знаете, что из-за вращения Земли вокруг оси, Солнце, Луна и прочие светила восходят на востоке и, описав дугу, заходят за горизонт на западе (в южном полушарии наоборот). Кроме этого, обращение Земли вокруг Солнца приводит к постепенному изменению вида вечернего неба в течение года. Поначалу закономерности видимого движения светил кажутся слишком замысловатыми, а их количество просто обескураживает и ставит вопросы типа “как найти нужный?”, “а на что это я сейчас смотрю?” и подобные, но со временем, если астрономия увлечет вас, вы увидите стройность и красоту этих “небесных часов”. К счастью, на сегодняшний момент в достатке имеется литература, посвященная тематике любительских астрономических наблюдений, а кроме этого – существуют компьютерные программы-планетарии (Stellarium, Cartes du Ciel, StarCalc и т.п.), которые способны достаточно точно рассчитать вид звездного неба в нужном времени и месте на Земле в соответствии именно с вашими координатами. Это помогает значительно ускорить подготовку наблюдений и дает отправные точки для поиска интересующих объектов.

Первые наблюдения: цель – Луна

Впрочем, вернемся к нашему первому вечеру. Если будет удачное время, на небе невозможно не заметить диск или серп Луны. Это отличная и первая цель, и объект, возвращаться к наблюдению которого можно многократно, поскольку вид деталей поверхности очень сильно зависит от их освещения и, соответственно, фазы Луны. Попробуем навести телескоп на Луну. Установите его согласно инструкции. Подберите высоту ног монтировки так, чтобы окуляр был легко доступен при любом положении трубы. Если у вас экваториальная монтировка, наклоните ее полярную ось (см. инструкцию) на угол, примерно равный широте вашего местонахождения, и установите монтировку так, чтобы полярная ось верхним концом “смотрела” в направлении севера или на Полярную звезду, если можете ее отыскать. Поставьте самый длиннофокусный окуляр и проверьте искатель, наведя телескоп на далекую вышку или фонарь (не забудьте про фокусировку!) и убедившись, что выбранный объект находится на перекрестье. Теперь разверните телескоп примерно в сторону Луны и посмотрите в искатель. Скорее всего, Луна окажется не в центре поля зрения. Подвиньте трубу (руками или специальными ручками на монтировке) так, чтобы перекрестье искателя оказалось на лунном диске. А теперь посмотрите в окуляр…

Скорее всего, яркая, детальная картинка многократно приближенной поверхности Луны займет ваши чувства и эмоции на некоторое время. Смотрите вдоволь, за этим все это и затевалось. Можно вас поздравить с “первым светом“! Так полушутя принято называть первые наблюдения с новым телескопом. Не забудьте проверить фокусировку – возможно, картинка станет еще немного четче. Фокусируя изображение (особенно на высоких увеличениях), придется смириться с некоторой вибрацией картинки (вибрация также увеличивается в размере при увеличении изображения). Это обычное явление для большинства телескопов. Аккуратно поворачивайте ручки фокусировки, небольшими шагами, делая паузы для утихания вибрации. В какой-то момент вы заметите, что прошли точку лучшего фокуса и нужно вернуться. Иногда может показаться, что даже в наилучшем фокусе изображение недостаточно четкое. Это тоже особенность оптики, работающей на предельных увеличениях – каждый телескоп имеет предельное полезное увеличение, выше которого уже не добавляется деталей. Кроме того, состояние атмосферы, восходящие тепловые потоки от предметов, облачность, и другие причины могут мешать достичь возможного качественного изображения в данный момент.

Можете поменять окуляр, для более высокого увеличения, и снова проверить фокусировку. Такой ход наблюдений будет типичным для большинства объектов – сначала малое увеличение и общий вид объекта, потом – переход на более высокие для подробного изучения деталей.
Вы наверняка заметили, особенно на больших увеличениях, что изображение не остается на одном месте, а быстро смещается в поле зрения. Причина здесь не в том, что труба телескопа “куда-то едет”, а, собственно, в суточном вращении Земли. Многократно увеличенное, обычно незаметное суточное вращение небесной сферы потребует от вас корректировать положение трубы, чтобы объект оставался в поле зрения. Это можно делать руками или вращая ручки тонких движений, или же с помощью специального мотора, который устанавливается на некоторые модели монтировок и берет на себя поворот трубы за небом, и при этом не создает вибраций изображения.

Если с Луной не повезло: почему не стоит отчаиваться

Если в ваш первый вечер Луны на небе нет, не отчаивайтесь, можно попробовать навести телескоп на яркую планету (Венеру, Юпитер) или группу звезд. Процесс наведения выглядит обычно – развернули трубу в направлении объекта и поставили его на перекрестье искателя. Теперь можно наблюдать (не забудьте о фокусировке). К слову, если Луна выглядит достаточно большой в любой телескоп, то вид многих других объектов (планет, некоторых туманностей и скоплений) может поначалу разочаровать. Телескоп исправен, и показывает все сообразно своим возможностям, но вы ожидали изображения настолько же красочного, яркого и крупного, как на фото профессиональных обсерваторий, печатающих в журналах и Интернете шикарные космические виды. Не надо удивляться – маленький любительский телескоп никогда не сравнится с космическим телескопом Хаббла по качеству конечного изображения. Зато у него есть несколько важных свойств: он может дать вам опыт наблюдений, и вы будете замечать все новые детали уже известных объектов; телескоп даст вам ощущение сопричастности к тайнам небесных тел, а это то, что не передает никакое фото из Интернета. К тому же, каждое наблюдение, которое вы проводите,  уникально в том смысле, что отражает состояние небесного тела в данный момент, и, однажды, набравшись опыта наблюдений и их обработки, вы, возможно, сможете первым открыть новую комету или взрыв Сверхновой.

Не останавливаемся на достигнутом: изучаем 280 объектов звездного неба

Надеемся, ваши первые наблюдения вам понравились. Тогда вперед, вас ждут еще огромное количество новых интересных объектов и увлекательный путь совершенствования своих навыков наблюдателя. А в качестве гида в этом путешествии замечательно подойдет новая книга Александра Шимбалева “Увидеть всё!” – это красочно иллюстрированный справочник начинающего любителя астрономии, в котором рассказывается о самых интересных объектах неба и о том, как и когда их наблюдать.

Обложка Оглавление Карта созвездий Справочная
информация
(кликните на фото для увеличения)

Имея под рукой такого помощника, вы быстро научитесь ориентироваться на небе, находить объекты и максимально полно использовать возможности вашего телескопа. Книга увидела свет при поддержке компании Levenhuk, одной из ведущих компаний на рынке оптических приборов. По взаимной договоренности с автором компания Levenhuk также включила эту книгу в базовый комплект поставки трех телескопов Levenhuk Strike NG – новой серии телескопов Левенгук с расширенной комплектацией для начинающих наблюдателей.  

Расширенная комплектация включает: телескоп Levenhuk Strike NG, альтазимутальную монтировку, металлическую треногу, набор окуляров, диагональное зеркало, линзу Барлоу, руководство “Увидеть все”, 3D-планетарий, планисферу, набор постеров “Космос”, компас.

Наталья Чернявская
19 сентября 2011 года

Перепечатка без активной ссылки на сайт www.4glaza.ru запрещена.

Рекомендуемые товары


Другие обзоры и статьи о телескопах и астрономии:

Обзоры оптической техники и аксессуаров:

  • Видео! Телескоп Sky-Watcher BK MAK80EQ1 и визуальное сближение Сатурна и Юпитера. Репортаж «Вести.Ru».
  • Видео! Телескоп с автонаведением Levenhuk SkyMatic 127 GT MAK: видеообзор модели (канал MAD SCIENCE, Youtube.com)
  • Обзор телескопа Sky-Watcher BK P150750EQ3-2 на сайте star-hunter.ru
  • Обзор оптической трубы Sky-Watcher BK MAK90SP OTA на сайте star-hunter.ru
  • Обзор телескопа Levenhuk Strike 1000 PRO на сайте www.exler.ru
  • Книги знаний издательства Levenhuk Press: подробный обзор на сайте levenhuk.ru
  • Видео! Книга знаний в 2 томах. «Космос. Микромир»: видеопрезентация (канал LevenhukOnline, Youtube.ru)
  • Видео! Книга знаний «Космос. Непустая пустота»: видеопрезентация (канал LevenhukOnline, Youtube.ru)
  • Видео! Монтировка Sky-Watcher EQ5 SynScan GOTO со стальной треногой: распаковка монтировки (канал «Небо – не предел», Youtube.ru)
  • Видео! Монтировка Sky-Watcher EQ5 SynScan GOTO со стальной треногой: сборка и настройка монтировки (канал «Небо – не предел», Youtube.ru)
  • Видео! Подробный обзор телескопа Sky-Watcher BK MAK90EQ1 (канал Kent Channel TV, Youtube.ru)
  • Видео! Подробный обзор телескопа Levenhuk Strike 50 NG (канал Kent Channel TV, Youtube.ru)
  • Видео! Телескоп Sky-Watcher Dob 76/300 Heritage: видеообзор настольного телескопа (канал Kent Channel TV, Youtube.ru)
  • Видео! Подробный обзор любительского телескопа Levenhuk Skyline 90х900 EQ (канал Kent Channel TV, Youtube.ru)
  • Видео! Подробный обзор детского телескопа Levenhuk Фиксики Файер (канал Kent Channel TV, Youtube.ru)
  • Обзор настольного телескопа Sky-Watcher Dob 130/650 Heritage Retractable
  • Обзор телескопа Sky-Watcher BK P130650AZGT SynScan GOTO
  • Обзор настольного телескопа Sky-Watcher Dob 76/300 Heritage
  • Видео! Как выбрать телескоп: видеообзор для любителей астрономии (канал LevenhukOnline, Youtube.ru)
  • Видео! Телескопы Sky-Watcher AZ: сборка и настройка телескопа (канал Sky-Watcher Russia, Youtube.ru)
  • Видео! Смотрите яркие видео, снятые телескопом с автонаведением Levenhuk SkyMatic 135 GTA
  • Видео! Телескоп с автонаведением Levenhuk SkyMatic 135 GTA (канал LevenhukOnline, Youtube.ru)
  • Видео! Телескопы Levenhuk Skyline: сборка и настройка телескопа (канал LevenhukOnline, Youtube.ru)
  • Обзор телескопа Добсона Levenhuk Ra 150N Dob
  • Обзор телескопа Bresser National Geographic 90/1250 GOTO
  • Обзор оптической трубы Levenhuk Ra R80 ED Doublet Carbon OTA
  • Обзор оптической трубы Levenhuk Ra R80 ED Doublet OTA
  • Обзор телескопа Bresser National Geographic 114/900 AZ
  • Инновационная встроенная система гидирования StarLock – сердце LX800
  • Уникальная монтировка-трансформер Meade LX80
  • Выпуск дизайнерских телескопов и биноклей Levenhuk
  • Сравнительная таблица телескопов Bresser и телескопов Celestron
  • Ищете телескоп? Попробуйте телескопы Levenhuk и Bresser

Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения:

  • Что видно в телескоп: статья на сайте star-hunter.ru
  • Устройство телескопа: статья на сайте star-hunter.ru
  • Выбор окуляра: статья на сайте star-hunter.ru
  • Виды фокусеров: статья на сайте star-hunter.ru
  • Искатель с красной точкой: статья на сайте star-hunter.ru
  • Наблюдаем Солнце: статья на сайте star-hunter.ru
  • Модернизация монтировки Добсона: статья на сайте star-hunter.ru
  • Астрофотосъемка для начинающих: статья на сайте star-hunter.ru
  • Видео! Как настроить экваториальную монтировку для визуальных наблюдений? (канал «Небо – не предел», Youtube.ru)
  • Видео! Как юстировать рефлектор Ньютона? (канал «Небо – не предел», Youtube.ru)
  • Видео! Как настроить оптический искатель телескопа? (канал «Небо – не предел», Youtube.ru)
  • Какой телескоп-рефрактор лучше: обзор магазина «Четыре глаза»
  • Как установить дополнительные аксессуары на телескоп? Полезные схемы (pdf)
  • Виды телескопов
  • Видео! Что такое телескоп. Виды телескопов и их устройство (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Что такое телескоп-рефлектор и как его изобрели (канал GetAClassRus, Youtube.ru)
  • Телескопы для детей
  • Преимущества больших телескопов
  • Телескопы с автонаведением
  • Что можно увидеть в телескоп?
  • Что мы можем увидеть в телескопы разных апертур
  • Это можно увидеть в наши телескопы
  • Телескоп. Как начать наблюдения
  • Как справиться с орошением
  • Выбор окуляров
  • Окуляры с подсвеченной сеткой
  • О монтировках
  • Различные типы фильтров
  • Линзы Барлоу
  • Искатели
  • Астрофото: особенности оборудования и выбор объектов для съемки
  • Телескоп Meade: инструкция по эксплуатации
  • Телескоп Veber: инструкция по применению
  • Обзор телескопов Veber: где прочитать?
  • Как настроить телескоп Synta?
  • Как настроить телескоп Штурман?

Все об основах астрономии и «космических» объектах:

  • Зачем астрономам прогноз погоды?
  • Астрономия под городским небом
  • Видео! Основы астрономии (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Основы строномии. Что такое эклиптика (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Солнечная система ч. 1 (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Солнечная система ч. 2 (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Созвездие Ориона (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Каталог Мессье (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Экзопланеты (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Небесные координаты. Горизонтальная система (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Небесные координаты. Галактическая система (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Небесные координаты. Эклиптическая система (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Небесные координаты. Экваториальные координаты (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Что такое солнечное затмение (и затмение 2015 г.) (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Как увидеть Луну в телескоп
  • Краткая история создания телескопа
  • Оптический искатель для телескопа
  • Делаем телескоп своими руками
  • Венера в объективе телескопа
  • Что можно разглядеть в телескоп
  • Выбираем телескоп для наблюдения за планетами
  • Телескоп Максутова-Кассегрена
  • Делаем телескоп своими руками из объектива фотоаппарата
  • Галилео Галилей и изобретение телескопа
  • Дешевый телескоп
  • Как выбрать астрономический телескоп
  • Какой телескоп ребенку точно понравится?
  • Как выглядит галактика Андромеды в телескоп
  • Как выбрать хорошие окуляры для телескопа
  • Главное зеркало телескопа: сферическое или параболическое?
  • Как работает телескоп
  • Фокусное расстояние телескопа
  • Апертура телескопа
  • Светосила телескопа
  • Почему телескоп переворачивает изображение
  • Лазерный коллиматор
  • Выбор телескопа для наземных наблюдений
  • Как найти планеты на небе в телескоп
  • Разрешающая способность телескопа
  • Производители телескопов
  • Телескопы Ричи-Кретьена
  • Адаптер для смартфона на телескоп
  • Как пользоваться телескопом
  • Строение телескопа
  • Почему вам нужно купить пленку-светофильтр для телескопа?
  • «Большой телескоп азимутальный» – крупнейший российский телескоп
  • Что такое линзовый телескоп?
  • Профессиональные телескопы: цены, особенности, возможности
  • Телескоп: руководство к действию
  • Как выглядит телескоп, подключаемый к компьютеру
  • «Телескоп ночного видения» – есть ли такой оптический прибор?
  • Ищете телескоп для смартфона? Подойдет любой!
  • Первый оптический телескоп, созданный Ньютоном
  • Bresser – знаменитые немецкие телескопы
  • Как найти Сатурн в телескоп?
  • Вселенная глазами телескопа «Хаббл»
  • Самый дорогой телескоп в мире
  • Фото галактик с телескопа «Хаббл» высокого разрешения
  • Марс в телескоп: фото и особенности наблюдений
  • Так ли плох телескоп из Китая?
  • Фото МКС в телескоп: как найти?
  • Где в Москве посмотреть в телескоп
  • Российские телескопы
  • Самые известные американские телескопы
  • Инфракрасный телескоп «Страж»
  • Как посмотреть на Солнце в телескоп и не ослепнуть?
  • Телескоп на орбите – современный научный инструмент для изучения космоса
  • Как появился «Хаббл» – космический телескоп НАСА
  • Самый мощный телескоп
  • Как смотреть космос: в телескоп или бинокль?
  • Рейтинг телескопов: как выбрать телескоп в сети
  • Как выглядят фото с любительских телескопов?
  • Бесплатные телескопы онлайн
  • Выбираем диаметр и кратность лупы (линзы) для телескопа
  • Как выбрать телескоп для начинающих – подробный гайд
  • Изучаем звездное небо: телескоп для наблюдений за дальним космосом
  • Гигантские телескопы
  • Астрономия детям: Солнечная система
  • Где читать новости астрономии и астрофизики?
  • Космос: астрономия – наука о необъятной Вселенной
  • Краткая история астрономии
  • Авторы учебников по астрономии
  • Астрономия: звезды, планеты, астероиды
  • Ищем сайт любителей астрономии
  • Выбираем телескопы для любителей астрономии
  • Новости астрономии в 2018 году
  • Где читать новости астрономии и космонавтики?
  • Титан – самый большой спутник планеты Сатурн
  • Сатурн (планета): фото из космоса
  • Ближайшие планеты Венеры
  • Нептун – какая планета от Солнца?
  • Каково расстояние от Нептуна до его спутника?
  • Венера: планета на небе
  • Какая самая маленькая планета в Солнечной системе?
  • Изучаем планеты Солнечной системы: Сатурн
  • Какая по счету планета Сатурн?
  • Какая планета от Солнца Уран?
  • Спутники Урана: список
  • Какого цвета Уран (планета)?
  • Почему Марс – Красная планета?
  • Планета Меркурий: интересные факты для детей
  • Планеты Солнечной системы: Уран
  • Европа – спутник Юпитера (фото)
  • Сколько спутников у Юпитера
  • Факты о Красной планете, или Какого цвета планета Марс?
  • Планета Венера: фото в телескоп
  • Планеты Солнечной системы: Нептун
  • Планета Уран: интересные факты
  • Юпитер (планета): интересные факты для детей
  • Какие планеты больше Юпитера?
  • Цвет планеты Меркурий
  • Самая маленькая планета Солнечной системы: Меркурий
  • Наблюдаем ближайший парад планет
  • Расстояние от Солнца до Юпитера
  • Марс – планета Солнечной системы
  • Новые исследования планеты Марс
  • WOH G64 – звезда в созвездии Золотой Рыбы
  • Взрыв Бетельгейзе
  • Самая яркая звезда в созвездии Лебедь
  • Созвездие Лебедь: звезда Денеб
  • Мирфак – ярчайшая звезда в созвездии Персея
  • Созвездие Южный Крест на карте звездного неба
  • Большой и Малый Пес – созвездия южного полушария неба
  • Большое и Малое Магеллановы Облака
  • Звезда Бетельгейзе относится к сверхгигантам или карликам?
  • Созвездие Большого Пса – легенда Южного полушария неба
  • Созвездие Большой Пес: яркие звезды
  • Созвездие Цефей: звезды
  • Созвездие Щита на небе
  • Созвездия зодиака (Стрелец) и астрономия
  • Созвездие Лебедь – легенда о появлении
  • Созвездия Кассиопея, Лебедь, Орион – рассказываем об астрономии детям
  • Как найти созвездие Скорпиона на небе
  • Как называются звезды в созвездии Скорпиона?
  • Созвездия Персей и Андромеда
  • Окуляр Супер Кельнер: схема, достоинства и недостатки
  • Окуляр Эрфле
  • Менисковый телескоп: особенности и назначение
  • Зрительная труба Кеплера
  • Объектив с постоянным фокусным расстоянием
  • Японские телескопы – какие они?
  • Хочу телескоп! Какой выбрать?
  • Крупнейшие метеориты, упавшие на землю
  • Магнитные вспышки на Солнце
  • Чем занять детей дома?
  • Чем заняться на карантине дома?
  • Чем заняться школьникам на карантине?
  • Карта подвижного звездного неба Северного полушария
  • Виды карт звездного неба
  • Подвижная карта звездного неба «Созвездия»
  • Карта звездного неба «Малая Медведица»
  • Астрономическая карта звездного неба
  • Созвездие Лебедя на карте звездного неба
  • Карта звездного неба Южного полушария
  • Созвездие Ориона на карте звездного неба
  • Комета Атлас на карте звездного неба
  • Созвездие Лиры на карте звездного неба
  • Как видны звезды в телескоп?
  • Как правильно установить телескоп?
  • Как наблюдать Солнце в телескоп?
  • Как собрать телескоп?
  • Как выглядит Луна в телескоп?
  • Как называется самый большой телескоп?
  • Какая галактика может поглотить Млечный Путь?
  • К какому типу галактик относится Млечный Путь?
  • Сколько звезд в Млечном Пути?
  • Что находится в центре галактики Млечный Путь?
  • Черная дыра в центре Млечного Пути
  • Положение Солнца в Млечном Пути
  • Структура Млечного Пути
  • Туманности галактики Млечный Путь
  • Млечный Путь и туманность Андромеды
  • Почему Млечный Путь – спиральная галактика?
  • Самые известные цефеиды
  • От чего зависит изменение блеска цефеиды?
  • Почему цефеиды называют маяками Вселенной и как ими пользуются астрономы
  • Что остается на месте вспышки сверхновой звезды: черные дыры и не только
  • Что остается после взрыва сверхновых звезд в космосе
  • Существующие типы сверхновых звезд
  • Сверхновая нейтронная звезда: что это такое?
  • Окажется ли Солнце в стадии красного гиганта
  • Характеристика последовательности красных гигантов – особенности звезд
  • Что такое Солнце: красный гигант или желтый карлик?
  • Звезда Рас Альхаге
  • Звезда Таразед
  • Шаровые звездные скопления
  • Чем различаются рассеянные и шаровые скопления
  • Основные части радиотелескопа
  • Крупнейший радиотелескоп
  • Радиотелескоп FAST
  • Система, которая объединяет несколько радиотелескопов
  • Как построить сферу Дайсона
  • Излучение Хокинга простыми словами
  • Как найти Полярную звезду на звездном небе
  • Как называется наша Галактика
  • Возраст Вселенной
  • Великая стена Слоуна
  • Из чего состоят звезды
  • Ядро звезды
  • Эффект Доплера
  • Сила гравитации
  • Закон Хаббла
  • Астеризм
  • Чем отличается комета от астероида
  • Байкальский нейтринный телескоп
  • Проект «Радиоастрон»
  • Большой магелланов телескоп
  • Виртуальный телескоп в реальном времени
  • Метеорный поток
  • Экзопланеты, пригодные для жизни
  • Туманность Ориона на небе
  • Крабовидная туманность
  • Самый большой квазар во Вселенной
  • Астрокупол
  • Древние обсерватории
  • Специальная астрофизическая обсерватория РАН
  • Пулковская обсерватория
  • Астрономические обсерватории
  • Астрофизическая обсерватория в Крыму
  • Мауна-Кеа обсерватория
  • Обсерватория Эль-Караколь
  • Гозекский круг
  • Монтировка для телескопа своими руками
  • Что такое двойные системы звезд
  • Каковы размеры Вселенной: можно ли ответить на этот вопрос?
  • Что такое Бозон Хиггса простыми словами
  • Что такое летящая звезда Барнарда
  • Паргелий (ложное Солнце): что это такое?
  • Что такое гамма всплески во Вселенной
  • Кто установил факт ускоренного расширения Вселенной
  • Коричневый карлик – звезда или планета
  • Как называются галактики, входящие в местную группу
  • Какие тайны хранит яркая звезда Арктур
  • Как объяснить, почему ночью небо черное
  • Телескоп Tess и его достижения
  • Седна – карликовая планета или планета?
  • Чем удивляет планета Эрида
  • Загадочные Троянские астероиды
  • Хаумеа – самая быстрая карликовая планета
  • Между орбитами каких планет Солнечной системы проходит пояс астероидов
  • Самый крупный объект Главного пояса астероидов
  • Главные объекты пояса Койпера
  • Из чего состоит Облако Оорта и пояс Койпера
  • Карликовые планеты Солнечной системы: список
  • История черных дыр
  • Что такое поток Персеиды?
  • Тень лунного затмения
  • Период противостояния Марса: что это?
  • Венера: утренняя звезда
  • Важнейшие типы небесных тел в Солнечной системе
  • Зеркало для телескопа: виды и ключевые типы систем
  • Созвездия знаков зодиака на небе
  • Как увидеть спутник?
  • Где обратная сторона Луны и что там находится?
  • Расположение Солнечной системы в галактике Млечный Путь
  • Ученые обнаружили самую далекую галактику
  • Вспышка сверхновой звезды простыми словами
  • Войд Волопаса – загадочное место во Вселенной
  • Можно увидеть МКС без телескопа?
  • Самые сильные вспышки на Солнце
  • Какова природа полярного сияния
  • Лунный модуль «Аполлон» – первый космический «лифт»
  • Почему звезды разного цвета и кому это нужно
  • Проблема космического мусора все еще не решена
  • Самый редкий знак зодиака – Змееносец
  • Солнечное затмение 2021 года в России – запасайтесь светофильтрами
  • Самая-самая комета 2021 – январь преподнес сюрприз
  • Очередной «апокалиптический» метеорит в 2021 году
  • Климатическая карта ветра – незаменимый помощник астронома
  • Сколько лететь до ближайшей звезды
  • Что такое кратная система звезд
  • Как зависит от яркости обозначение звезд
  • Почему в космосе не видно звезд
  • Что видно из космоса на Земле
  • Пульсар – космический объект
  • Аккреционный диск черной дыры
  • Галактика Хога: уникальная космическая симметрия
  • Характеристики и состав эллиптических галактик
  • Особенности и структура неправильных галактик
  • Классификация галактик: виды и строение самых больших космических объектов
  • Где расположена галактика Треугольника и в чем ее особенности?
  • Что является источником излучения в радиогалактиках и как они возникают
  • Яркий блазар: наблюдается сверху и постоянно меняется
  • Как происходит звездообразование в галактике
  • Самые красивые и необычные имена галактик
  • Что такое перицентр орбиты и где он расположен
  • Что такое апоцентр, взаимосвязь апоцентра и перицентра
  • Меры расстояния в космосе: астрономический парсек
  • Понятие и даты прохождения через перигелий
  • Что такое точка афелия и когда планеты ее проходят
  • Марсоход NASA Perseverance – очередной искатель жизни в космосе
  • Корабль Crew Dragon – американцы снова летают к МКС
  • Славная страница отечественной космонавтики – орбитальная космическая станция МИР
  • Пилотируемый корабль «Союз» в ожидании преемника
  • Лунная программа Роскосмоса и другие изменения в политике корпорации
  • Тяжелая ракета «Ангара» официально доказала свой статус
  • Герцшпрунг – самый большой кратер Луны
  • Ракета «Протон-М» – еще одна страничка истории российской космонавтики будет перевернута
  • Разбираемся в терминах: астронавт и космонавт – в чем разница?
  • Шлягер наступившего 2021 года – реальные звуки Марса
  • Снимки «города богов» в космосе снова в сети
  • Самый-самый марсианский кратер
  • Фото ночного города из космоса
  • Планетоиды Солнечной системы – что это?
  • Приземление на Марс 18 февраля – успешное завершение и… только начало
  • Кратеры на поверхности Венеры: слава женщинам!
  • Магнитосфера планет: что это такое?
  • Ганимед, спутник планеты Юпитер, – верный друг на века!
  • Каллисто – спутник Юпитера: жизнь в космосе возможна?
  • Спутник Адрастея: питание для колец Юпитера!
  • Система неподвижных звезд: всегда на одном месте?
  • Канопус сверхгигант: яркий маяк на ночном небе
  • Звезда Толиман в астрономии: знакомство и Топ фактов
  • Звезда Вега: самый яркий объект в созвездии Лиры
  • Яркая звезда Капелла: вдвое больше сияния!
  • Звезда Ригель является сверхгигантом
  • Параллакс звезды Процион, верного спутника Сириуса
  • Звезда Ахернар: знакомство с альфой Эридана
  • Кульминация звезды Альтаир: на крыльях Орла
  • «Арктика-М» спутник: земля под надежным контролем!
  • Солнечный зонд Паркер: курс прямиком на звезду
  • Земля Афродиты на Венере: скорпион, обращенный на запад
  • Земля Иштар на Венере: Австралия в космосе!
  • Равнина Снегурочки на Венере
  • На какой планете находится каньон Бабы-яги?
  • Горы Максвелла в 12 км на Венере: мужская часть планеты!
  • Рельеф поверхности Венеры и его особенности
  • Кратеры на планете Меркурий: искусство во плоти!
  • Попигайская, Карская и Фарерская астроблема: как менялась Земля
  • Кратер Вредефорт: столкновение 10-километрового метеорита с Землей, как оно повлияло на историю
  • Зонд «Маринер-10»: первый посетитель Меркурия
  • Небесный экватор: что это такое, и как он пересекается с линией горизонта?
  • Акрукс в созвездии Южного Креста: характеристика и физические свойства
  • Альдебаран: класс звезды, характеристика и планеты рядом
  • Спика: физическая характеристика и класс звезды
  • Поллукс в созвездии Близнецов и его характеристики
  • Фомальгаут: спектральный класс, характеристики и система
  • Звезда Мимоза, или Бекрукс: характеристики и особенности
  • Регул: альфа созвездия Льва и принц ночного неба
  • Кастор: спектральный класс и характеристика звезды
  • Звезда Гакрукс: расположение на небе, характеристика и система
  • Звезда Шаула в астрономии: характеристики и особенности
  • Линия эклиптики: ежегодное движение Солнца
  • Метеорный поток Лириды
  • Эволюция массивных звезд и черные дыры
  • Спутник Сатурна Пан: описание, характеристики
  • Сатурн и его спутник Прометей
  • Удивительная Пандора – спутник планеты Сатурн
  • Загадочный Янус: все о спутнике Сатурна
  • Мимас – спутник Сатурна
  • Спутник Сатурна Тефия
  • Калипсо – яркий спутник Сатурна
  • Спутник Сатурна Диона
  • Рея – спутник Сатурна
  • Спутник Сатурна Гиперион
  • Спутник Сатурна Япет
  • Закон абсолютного черного тела
  • Сколько колец у Юпитера?
  • Есть ли кольца у Урана?
  • Естественные спутники Венеры
  • Квазиспутники Земли
  • Лунотрясения на Луне
  • Сверхскопление галактик Ланиакея
  • Местное сверхскопление галактик
  • Центр дальней космической связи в Евпатории
  • Марсианский вертолет Ingenuity совершил полет
  • Какие облака на Юпитере?
  • Уровень радиации на Луне
  • Харон – спутник какой планеты?
  • Миранда – загадочный спутник Урана
  • Ариэль – спутник Урана
  • Главная последовательность: характеристики и особенности
  • Стадия протозвезды
  • Сверхгиганты: класс светимости
  • Планеты в зоне обитаемости
  • Спутник Урана Оберон полон загадок
  • Титания – таинственный спутник Урана
  • Умбриэль – синхронный спутник Урана
  • Какое количество спутников у Меркурия?
  • Фобос – таинственный спутник планеты Марс
  • Деймос: спутник какой планеты
  • Галатея – загадочный спутник Нептуна
  • Нереида – малоизученный спутник Нептуна
  • Протей – таинственный спутник Нептуна
  • Причины возникновения пятен на Солнце
  • Орбитальная скорость планет
  • Космическая пыль: состав и особенности
  • Какие элементы входят в состав Солнца?
  • Загадочная земля Тейя
  • Объекты межзвездной среды
  • На Марсе нашли грибы
  • Самая маленькая черная дыра
  • Структура метагалактики
  • Solar Orbiter
  • Плутон – бывшая планета
  • Транснептуновые объекты Солнечной системы
  • Объекты рассеянного диска
  • Харон – спутник какой планеты?
  • Стикс – спутник Плутона
  • Никта – спутник Плутона
  • Кербер – спутник Плутона
  • Гидра – спутник Плутона
  • Плутон имеет кольца?
  • Макемаке – карликовая планета
  • Квавар – планета?
  • Станция «Тяньгун»
  • Где находится астероид Психея
  • «Кассини» – космический аппарат
  • Аппарат «Чанъэ»
  • Спутник Хииака
  • Карликовая планета Эрида
  • Спутник Дисноми
  • Карликовая планета Церера
  • Орбита астероида Паллада
  • Орбита астероида Веста
  • Орбита астероида Юнона
  • Астероид Геба
  • Астероид Эвномия
  • Астероид Апофис
  • Поток Геминиды
  • Сидерические сутки
  • Какие планеты относят к планетам-гигантам
  • Газовые гиганты в Солнечной системе
  • Планеты: ледяные гиганты
  • Какая скорость является первой космической скоростью
  • Сидерический год
  • Северный и Южный полюс мира
  • Образование планетезималей
  • Протопланеты Солнечной системы
  • Гигантские молекулярные облака
  • Облако межзвездного газа
  • Гравитационный коллапс звезды
  • Звездное население галактики
  • Звездное гало
  • Звездные плеяды
  • Виды туманностей
  • Темная туманность в астрономии
  • Звездные скопления и ассоциации
  • Планетарные туманности
  • Солнечный ветер
  • Объекты каталога Мессье
  • Красные гиганты: это звезды или их останки?
  • Звезда: красный сверхгигант
  • Как образуются отражательные туманности
  • Остатки сверхновых: туманности из света
  • Туманность Гантель М 27
  • Туманность Кольцо в телескопе
  • Туманность Кошачий глаз: фото, удивившее всех
  • Туманность Песочные Часы
  • Туманность Улитка в созвездии Водолей
  • Туманность Конская Голова: фото, изменившее мир
  • Угольный Мешок в созвездии Южный Крест
  • Туманность Душа
  • Туманность Орион
  • Туманность Тарантул: фото и наблюдения
  • Туманность Вуаль в созвездии Лебедь
  • Звезды в созвездии Близнецы
  • Созвездие Весы на небе
  • Созвездие Водолей на небе
  • Звезды в созвездии Возничий
  • Созвездие Волк: фото и наблюдения
  • Звезды в созвездии Волопас
  • Созвездие Волосы Вероники: фото и наблюдения
  • Звезды созвездия Ворон
  • Звезды созвездия Геркулес
  • Звезды созвездия Гидра
  • Звезды созвездия Голубь
  • Звезды созвездия Гончие Псы
  • Звезды в созвездии Дева
  • Звезды созвездия Дельфин
  • Звезды созвездия Дракон
  • Созвездие Единорог: фото и наблюдения
  • Легенда о созвездии Жертвенник
  • Созвездие Жираф на небе
  • Созвездие Заяц на небе
  • Созвездие Змееносец на небе
  • Созвездие Змея на небе
  • Созвездие Кассиопея: фото и наблюдения
  • Звезды в созвездии Киль
  • Звезды в созвездии Кита
  • Созвездие Козерога на небе
  • Сколько звезд в созвездии Компас
  • Звезды в созвездии Корма
  • Созвездие Льва на небе
  • Легенда о созвездии Летучая Рыба
  • Легенда о созвездии Лисичка
  • Созвездие Малый Конь
  • Созвездие Малый Лев
  • Как выглядит созвездие Муха
  • Созвездие Насос: фото и наблюдения
  • Созвездие Овна на небе
  • Звезды созвездия Орла
  • Созвездие Павлин
  • Звезды созвездия Паруса
  • Альфа-Каприкорниды – поток из самых ярких «падающих звезд»
  • Самый сильный поток метеоров: Леониды
  • Поток Ориониды: информация для начинающих астрономов-любителей
  • Астероид Бенну: дата, когда приблизится к планете Земля и возможные последствия
  • Joby Aviation — экспериментальное аэротакси будущего
  • Большой круг небесной сферы и другие элементы: базовая теория
  • Небесная механика: что изучает и на каких законах базируется
  • Скорость искусственного спутника Земли и другие его особенности
  • Естественные космические спутники планет
  • Как идет время в космосе: сравнение с Землей и использование атомных часов
  • Горизонтальный параллакс Солнца — показатель для определения расстояния до Земли
  • Болид: что это, астрономия в теории и реальные случаи
  • Луноход: серия аппаратов, фото и исторические факты
  • «Аполлон-11» на Луне: факты о полете и результаты исследований спутника Земли
  • Почему на Луне нет атмосферы: особенности спутника Земли
  • Барицентр Земли
  • Метеорит палласит
  • Узловой модуль «Причал»
  • Девятая планета Солнечной системы
  • Телескоп Уэбба: дата запуска, миссия
  • Максимальная элонгация Венеры
  • Внутренние планеты: какие критерии определяют их «статус»
  • Внешние планеты: какие космические тела к ним относятся
  • Кеплеровы элементы орбиты
  • Источники космических лучей
  • Радиационный пояс Земли
  • Нить Персея-Пегаса
  • Гамма-телескопы: характеристики и свойства
  • Рентгеновские телескопы: характеристики и свойства
  • Ультрафиолетовый телескоп: принцип действия
  • Типы космических телескопов
  • Антенна радиотелескопа: особенности устройства
  • Инфракрасные телескопы: характеристики, примеры открытий
  • Исследуемые объекты инфракрасной астрономии
  • Радиоастрономия: годы наблюдений – от начала до современности
  • Рентгеновский телескоп «Чандра»
  • Телескоп Уильяма Гершеля
  • Телескоп-рефлектор Ньютона
  • У каких планет система колец
  • Звук черной дыры в космосе
  • Является ли Дидим астероидом или угрозой
  • Открытия в астрономии: Астрея
  • Является ли Ундина астероидом
  • Созвездие Пегас на небе
  • Созвездие Печь: легенды и факты
  • Легенда о созвездии Райская Птица
  • Созвездие Рака: звездное величие
  • В какое время лучше наблюдать созвездие Рыбы
  • В какое время года лучше наблюдать созвездие Рысь
  • Звезды созвездия Северная Корона
  • Карликовая галактика в созвездии Скульптор
  • Звезды созвездия Стрела
  • Когда наблюдать созвездие Тельца
  • Звезды созвездия Треугольник
  • Созвездие Тукан: легенды и факты
  • Легенда о созвездии Феникс
  • Звезды созвездия Центавра
  • Легенда о созвездии Чаша
  • Звезды созвездия Эридан
  • Звезды созвездия Южной Рыбы
  • Звезды созвездия Ящерица
  • ExoMars
  • Лунная программа «Артемида»
  • Компания Blue Origin
  • Ракеты SpaceX
  • Космический корабль Endeavour
  • Ближайшая к Земле черная дыра
  • Гора Олимп на Марсе
  • Долина Маринер на Марсе
  • Событие Кэррингтона 1859 года
  • Спрайты в небе
  • Природное явление эльф
  • Кратер Гейла
  • Космодромы страны
  • Где в России космодромы?
  • Где находится космодром Байконур
  • Космодром на мысе Канаверал
  • Космодром Куру: где находится и кому принадлежит
  • Европейское космическое агентство и не только
  • Космодром Плесецк: где находится
  • Капустин Яр в списке космодромов
  • Космодром Ясный: где находится
  • Ракеты на космодроме Восточный
  • «Роскосмос»: сфера деятельности
  • Что содержит образец лунного грунта
  • Лунный реголит
  • Море Кризисов на Луне
  • Океан Бурь на Луне
  • Солнечная гелиосфера и ее структура: через тернии к звезде!
  • Большие ударные кратеры и их история
  • Рельеф поверхности Меркурия: холмы, горы и равнины
  • Сидерический период времени и его секреты
  • Продолжительность синодического периода и его расчет
  • Тропический год: секреты времени!
  • Первичный нуклеосинтез: история появления всего!
  • Когда наблюдать полное солнечное затмение на Луне
  • Горизонт событий черных дыр
  • Кротовые норы и черные дыры
  • Эргосфера и горизонт событий
  • Черная дыра Керра
  • Теорема об отсутствии волос у черной дыры
  • Гиперновая звезда
  • Шаттл «Колумбия» 2003 год
  • Шаттлы «Индевор» и «Атлантис»
  • Космический «Спейс Шаттл»
  • Корабль «Челленджер»
  • Шаттл НАСА «Дискавери»
  • Шаттл «Индевор»
  • Шаттл «Энтерпрайз»
  • Телескоп «Миллиметрон»
  • Федеральная космическая программа России
  • Планеты в зоне Златовласки
  • Формула Дрейка
  • Малые спутники: масса, типы, задачи
  • Вторая точка Лагранжа
  • Синие струи, заснятые с борта МКС
  • Лунное затмение в России в 2022 году
  • Солнечное затмение в России в 2022 году
  • Астероиды 2022 года
  • Вспышечная активность Солнца
  • Модуль МКС «Звезда»
  • Кометы в 2022 году
  • Продолжительность зимнего солнцестояния
  • Высота Солнца в летнее солнцестояние
  • Либрация Луны
  • Красное смещение в спектрах галактик
  • Скорость мезона
  • Частица Х
  • Биоспутники
  • Какова цена антивещества?
  • Самая большая найденная звезда
  • Экзоспутники – неразгаданная загадка астрономов
  • Самая низкая температура во Вселенной
  • Компания Virgin Galactic отложила туристические полеты в космос
  • Открытия Стивена Хокинга
  • Темные галактики: описание и гипотезы
  • Великая стена Геркулес – Северная Корона
  • «Спутник-1» – первый искусственный спутник Земли
  • Кладбище космических кораблей в Тихом океане
  • Открытие гравитационных волн
  • Фото черных дыр в космосе
  • Плавучий космодром «Морской старт»
  • Формула второй космической скорости
  • Третья космическая скорость
  • Какой была Вселенная на ранней стадии?
  • Астрономические единицы измерения
  • Имеют ли астероиды спутники?
  • Астероид Ида и его спутник Дактиль
  • Планета суперземля
  • История открытия Плутона
  • Реликтовое излучение Вселенной
  • «Марс-экспресс» – автоматическая межпланетная станция
  • Есть ли снег на Марсе?
  • Программа колонизации Марса
  • Что такое эффект гравитационной линзы
  • Что означает полость Роша в астрономии
  • Какова высота орбиты МКС от Земли
  • Что такое бомбардировка астероида Рюгу
  • Какие существуют спектральные классы астероидов
  • Понятие сол на Марсе – сколько это на Земле
  • Чем покрыта поверхность Луны – моря и океаны
  • Море Дождей: где находится и каковы размеры
  • Где на Луне находится кратер Тихо
  • Кратер Аристарх на Луне
  • Кратер Коперник на Луне
  • Кратер Платон на Луне
  • Что такое прецессия Земли
  • Что такое ретроградное движение планет
  • Зачем нужна таблица эфемерид
  • Первый выход человека в космос
  • Как называется область, заполненная веществом, оставшимся от протопланетного диска
  • Кто построил МКС: страны-участники проекта
  • Что такое микроквазар
  • Что такое сравнительная планетология и зачем нужна
  • Что такое астрометрия как наука
  • Теоретическая астрономия как наука
  • Основы сферической астрономии: базовые понятия
  • Что изучает космохимия
  • Древняя космогония: как зарождался мир
  • Что такое классическая космология
  • Самая далекая звезда Эарендель
  • Первые суборбитальные полеты в космос
  • Как определить лунный метеорит
  • Золотая пластинка «Вояджера»: слушать
  • Скорость вращения планет вокруг Солнца
  • Жидкость: поведение в невесомости
  • Минимум Маундера в 21 веке
  • Минимум Маундера и минимум Дальтона
  • Цикличность солнечной активности
  • Что такое минимум Шперера: определение
  • Метод гравитационного микролинзирования
  • Axiom Space
  • Условия микрогравитации
  • Метеороиды: размеры
  • Какая планета имеет плотную облачную атмосферу?
  • Геостационарная орбита: высота
  • Геостационарные спутники Земли
  • Магнитное поле черной дыры
  • Какую роль играет магнитное поле Земли в космосе
  • Особенности гидросферы Марса
  • Гесперийский период на Марсе
  • Марсианское море
  • Карта озер Марса
  • Марсианский океан
  • Почему на Марсе горы выше
  • Арсия на Марсе
  • Гора Аскрийская на Марсе
  • Черные дыры звездных масс на фото
  • Черные дыры средней массы
  • Первое живое существо в космосе
  • Галактика М 104 – Сомбреро
  • «Телескоп горизонта событий» помог выявить черную дыру в центре Млечного Пути
  • Сверхмассивная черная дыра в центре галактики
  • Астероид Харикло
  • Падение Тунгусского метеорита
  • Алмаз – какая планета?
  • Первый полет корабля «Восток» в космос
  • Среда обитания: тихоходка выжила в космосе
  • Какие планеты не пригодны для терраформирования
  • Что такое cолнечная аналемма
  • Зодиакальный свет: фото уникального феномена
  • Сейфертовские галактики – класс активных галактик
  • Ячеистая структура Вселенной: в чем сущность
  • Линии Фраунгофера – спектральные линии поглощения
  • Большое Темное Пятно на Нептуне
  • Сизигия и квадратура
  • «Сатурн-5»: ракета-носитель
  • Солнечные пятна и протуберанцы
  • Самое первое фото Земли
  • Как выглядит Земля без воды
  • Планета без атмосферы – воздушной оболочки Земли
  • Спутник Титан: поверхность небесного тела
  • Собаки в космосе: Белка и Стрелка
  • Проект SETI
  • Энцелад – спутник Сатурна
  • Радуга из космоса: фото и описание
  • Туманность «Столпы творения»
  • Herbig–Haro
  • Что происходит с телом человека в космосе
  • TrES-2b: планета чернее угля
  • Космический аппарат «Вояджер»
  • Вулканическая молния
  • Зодиакальный свет: фото и подробное описание
  • Как выглядит транзит МКС по Луне
  • Какая температура на Луне днем и ночью: основные различия
  • Корейская ракета Nuri выполнила успешный полет в космос
  • Суперскопление галактик Шепли
  • Из чего состоит марсианский грунт
  • Запуск миссии Сapstone к Луне
  • Запуски «СпейсИкс»: история развития
  • Запуск ракеты Falcon Heavy
  • Ракета New Glenn от основателя «Амазон»
  • Зонд Bepicolombo и его миссия на Меркурий
  • Ракета «СЛС» – основной модуль лунной программы NASA
  • «Астра Спейс» – история запусков
  • Небесный кран на Марсе
  • Марсоход Curiosity
  • Созвездие Индеец: история
  • Созвездие Часы на карте звездного неба
  • Шелиак
  • Траппист-1
  • Звезды созвездия Журавль
  • Из чего состоит астероид
  • Solar Dynamics Observatory
  • Индийская организация космических исследований
  • Корональные выбросы массы
  • Полярный вихрь Сатурна
  • Галактика Спящая красавица
  • Гало Луны
  • Собственное свечение атмосферы
  • TON 618 – черная дыра
  • Ракета «Атлас-5»
  • Дзета Змееносца – звезда, которая убегает
  • Неовайз
  • История возникновения Солнечной системы
  • NGC 6302 – бабочка в космическом пространстве
  • Космический адрес планеты Земля
  • Возраст планеты Земля
  • В галактике Волопаса произойдет слияние черных дыр
  • Туманность Красный прямоугольник
  • NGC 7635 – детище звездного ветра
  • Явление «огненная радуга»
  • Туманность Орла: Столпы Творения
  • Messier 8
  • Звезда Хадар
  • Звезда Менкент
  • Станция Orbital Reef
  • Пилеус – явление радужных облаков
  • Корона Солнца
  • Гранатовая звезда
  • Альнитак – звезда в созвездии Ориона
  • Яркая звезда в созвездии Киля
  • Алголь: звезда на небе, прозванная зловещей
  • Самая яркая звезда Большой медведицы – Алиот
  • Мицар – двойная звезда Большой Медведицы
  • Звезда Альциона – главная звезда скопления Плеяды
  • Менкар: звезда в созвездии Кита
  • Минтака – звезда в Поясе Ориона
  • Турайс: звезда в созвездии Киля
  • Йота Дракона
  • Алмазные дожди на планетах
  • Скопление Гиады
  • Как создавали и запускали ракету Alpha
  • Стрелец А* – черная дыра в центре Млечного Пути
  • Твердая поверхность Юпитера
  • Спутники Юпитера: Леда
  • Галактика Колесо Телеги
  • Планета Орк
  • Кратер Езеро
  • Кидония на Марсе
  • Планета GJ 1214 b: водный мир, открытый в 2009 году
  • Что ощущает космонавт в скафандре в космосе?
  • Выживет ли человек без скафандра в космосе?
  • Какого цвета метеориты?
  • Комета Леонард в 2022 году
  • «Зевс»: космический буксир российского производства
  • Метеорит Фукан
  • Самая яркая звезда созвездия Золотая Рыба
  • Звезда Вольфа – Райе
  • Миссия DART: столкновение с астероидом для спасения Земли
  • «Юнона» – космический аппарат для полетов к Юпитеру
  • Холодно ли в космосе?
  • Как становятся космонавтами в России
  • Байконур, Гагаринский старт: путь к звездам
  • Развитие космической техники в СССР
  • Первая околоземная орбита
  • «Чанчжэн-9»: китайская сверхтяжелая ракета
  • Звезды Летне-осеннего треугольника
  • Диморф: астероид с измененной орбитой
  • «Сириус-21» – эксперимент для длительных полетов
  • Дельта-Аквариды – летний метеорный поток
  • Метеорный поток Дракониды
  • Комета Свифта — Туттля
  • Суперлуние в России
  • Нил Армстронг и «Аполлон-11»
  • «Селенография» Яна Гевелия: описание Луны
  • Почему видима одна сторона Луны?
  • Молния в космосе
  • Закат на разных планетах
  • Звезды созвездия Журавль
  • Кратер Уилкса
  • Лунное затмение Марса
  • Скопление галактик Квинтет Стефана
  • Рэлеевское рассеяние света
  • «Сохо» – аппарат для изучения Солнца
  • Eros – астероид с кладом в недрах
  • 69230 Гермес – «убегающий» астероид
  • Аппарат «Скиф Д»: российский аналог Starlink
  • Туманность NGC 1999
  • Метеорит Чиксулуб – причина исчезновения динозавров
  • Звезда R136a1: самая яркая во Вселенной
  • Protogalaxy – что это такое?
  • Кратер Чиксулуб: не на Луне, а на Земле
  • Звезда R136a1: космический рекордсмен
  • Туманная радуга: явление
  • Галактика Водоворот: от Земли рукой подать
  • NGC 4151: всевидящее Око Саурона
  • Группа галактик Квинтет Стефана
  • Скопление Феникса: самая большая черная дыра
  • Скорость галактики Млечный Путь
  • Эпиметей – спутник Сатурна
  • Туманность Рука Бога
  • Зеленый луч заходящего Солнца
  • Общее количество солнечной энергии, достигающей поверхности Земли
  • Температура поверхности планет Солнечной системы
  • Как космонавты моют голову в космосе
  • Растение, выращенное на МКС
  • Boeing X-37B
  • Японский спутник «Хинодэ»
  • Почему Земля уникальна
  • Протозвезды l1527
  • Темная энергия во Вселенной
  • Виды дюн на Марсе
  • Спутник «Данури»
  • Галактика Млечный Путь: столкновение с Андромедой
  • «Пионер»: космический аппарат для изучения дальнего космоса
  • Современный лунный космический скафандр «Орлан МКС» и другие разработки
  • Туманность M97
  • Лунное затмение Марсом
  • Солнечное затмение на Марсе
  • Туманность Голубой Снежок
  • Полет Германа Титова
  • Тип галактики, состоящей из старых звезд
  • Метеорит Кампо-дель-Сьело
  • Световые столбы: природное явление редкой красоты
  • Огромные пузыри Ферми
  • Супер-cатурн J1407b
  • Планета Глизе 581
  • Комета C/2022 E3 (ZTF)
  • Почему прохождение Венеры по диску Солнца мы не увидим с Земли?
  • Прохождение Меркурия по диску Солнца
  • Сверхновая ярчайшая звезда ASASSN-15lh
  • Звездное скопление Рождественская елка
  • Туманность Конус
  • Если исчезнет Луна, что будет с Землей?
  • Эффект обзора
  • Спиральная галактика с перемычкой
  • Галактика M101
  • Gliese 667 Cс: потенциальный второй дом для землян
  • Kepler-69 c – аналог Солнца
  • Kepler-452b – планета, похожая на Землю
  • Петли на Солнце
  • «Кассини-Гюйгенс»: автоматическая станция для исследования Сатурна
  • Нити Вселенной
  • Планета-бродяга
  • Самые богатые железом планеты во Вселенной
  • Планета железных дождей
  • Магнетара: звезда-магнит
  • Голубой карлик: звезда
  • Хтоническая планета: история происхождения и примеры объектов
  • Квазизвезда вместо Солнца
  • Звезды-гипергиганты
  • Солнце – звезда какого цвета?
  • Килоновая звезда: происхождение
  • HAT-P-1 b
  • Туманность NGC 2237 в созвездии Единорога
  • Вращение кометы Энке вокруг Солнца
  • Туманность гигантского кальмара

Добавить комментарий