Как найти окружность через три точки

Уравнение окружности по трем точкам

Калькулятор расчета онлайн уравнения окружности по трем заданным точкам, а также нахождение координат точки центра и радиус окружности.

Уравнение окружности

r 2 = (x — h) 2 + (y — k) 2

  • h,k — координаты центра Окружности
  • x,y — координаты точки окружности
  • r — радиус

Пример

Найдите координаты точки центра окружности, радиус и уравнение окружности, если известны координаты трех точек A (2,2), B (2,4) и C (5,5)

Решение :

Подставляем координаты точек в формулу

  1. (2 — h) 2 + (2 — k) 2 = r 2
  2. (2 — h) 2 + (4 — k) 2 = r 2
  3. (5 — h) 2 + (5 — k) 2 = r 2

Шаг :2

Найдем значение k упрощая 1 и 2 уравнения

  • (2 — h) 2 + (2 — k) 2 = (2 — h) 2 + (4 — k) 2
  • 4 — 4h + h 2 + 4 — 4k + k 2 = 4 — 4h + h 2 +16 — 8k + k 2
  • 8 — 4k = 20 — 8k
  • k= 3

Шаг :3

Найдем значение h упрощая уравнения 2 и 3

  • (2 — h) 2 + (2 — k) 2 = (5 — h) 2 + (5 — k) 2
  • 4 — 4h + h 2 + 4 — 4k + k 2 = 25 — 10h + h 2 + 25 — 10k + k 2
  • 8 — 4k — 4h = 50 — 10h — 10k
  • 6k + 6h = 42

Подставив значение k=3 в уравнение

Получаем координаты точки центра (h,k) = ( 4,3 )

Шаг :4

Подставим значения h,k в формулу

  • r 2 = (x — h) 2 + (y — k) 2
  • r 2 = (2 — 4) 2 + (2 — 3) 2
  • r 2 = (-2) 2 + (-1) 2
  • r 2 = 5
  • r = 2.24

Шаг :5

Подставим значения h, k в уравнение окружности

(x — h) 2 + (y — k) 2

Уравнение окружности = (x — 4) 2 + (y — 3) 2

Уравнение окружности, проходящей через три заданные точки

Этот онлайн калькулятор выводит уравнение окружности, проходящей через три заданные точки

Этот онлайн-калькулятор находит окружность, проходящую через три заданные точки. Калькулятор находит центр, радиус и уравнение окружности, и строит окружность на графике. Методы, использованные для нахождения центра и радиуса окружности, описаны ниже под калькулятором.

Уравнение окружности, проходящей через три заданные точки

Первая точка

Вторая точка

Третья точка

Центр

Как найти окружность, проходящюю через три заданные точки

Давайте вспомним как выглядит уравнение окружности в стандартной форме:

Так как все три точки принадлежат одной окружности, мы можем записать систему уравнений

Значения , и мы знаем. Давайте сделаем подстановку с неизвестными переменнами a, b и c.

Теперь у нас есть три линейных уравнения для трех неизвестных – составим систему уравнений соответствующую матричной форме:

Мы можем решить эту систему уравнений, используя, к примеру, Гауссово исключение. (подробнее прочитать об этом можно здесь – Решение системы линейных алгебраических уравнений методом Гаусса ). “Нет решений” – означает, что точки коллинеарны и окружность через них провести нельзя.

Координаты центра окружность и ее радиус относится к подобному решению

Зная центр и радиус, мы можем получить уравнение окружности, используя этот калькулятор – Уравнение окружности по заданному центру и радиусу в различных формах

Окружность и радиус окружности по трем точкам

Уравнение окружности, проходящей через три заданные точки

Этот онлайн калькулятор выводит уравнение окружности, проходящей через три заданные точки

Этот онлайн-калькулятор находит окружность, проходящую через три заданные точки. Калькулятор находит центр, радиус и уравнение окружности, и строит окружность на графике. Методы, использованные для нахождения центра и радиуса окружности, описаны ниже под калькулятором.

Уравнение окружности, проходящей через три заданные точки

Первая точка

Вторая точка

Третья точка

Центр

Как найти окружность, проходящюю через три заданные точки

Давайте вспомним как выглядит уравнение окружности в стандартной форме:

Так как все три точки принадлежат одной окружности, мы можем записать систему уравнений

Значения , и мы знаем. Давайте сделаем подстановку с неизвестными переменнами a, b и c.

Теперь у нас есть три линейных уравнения для трех неизвестных — составим систему уравнений соответствующую матричной форме:

Мы можем решить эту систему уравнений, используя, к примеру, Гауссово исключение. (подробнее прочитать об этом можно здесь — Решение системы линейных алгебраических уравнений методом Гаусса ). «Нет решений» — означает, что точки коллинеарны и окружность через них провести нельзя.

Координаты центра окружность и ее радиус относится к подобному решению

Зная центр и радиус, мы можем получить уравнение окружности, используя этот калькулятор — Уравнение окружности по заданному центру и радиусу в различных формах

Уравнение окружности по трем точкам

Калькулятор расчета онлайн уравнения окружности по трем заданным точкам, а также нахождение координат точки центра и радиус окружности.

Уравнение окружности

r 2 = (x — h) 2 + (y — k) 2

  • h,k — координаты центра Окружности
  • x,y — координаты точки окружности
  • r — радиус

Пример

Найдите координаты точки центра окружности, радиус и уравнение окружности, если известны координаты трех точек A (2,2), B (2,4) и C (5,5)

Решение :

Подставляем координаты точек в формулу

  1. (2 — h) 2 + (2 — k) 2 = r 2
  2. (2 — h) 2 + (4 — k) 2 = r 2
  3. (5 — h) 2 + (5 — k) 2 = r 2

Шаг :2

Найдем значение k упрощая 1 и 2 уравнения

  • (2 — h) 2 + (2 — k) 2 = (2 — h) 2 + (4 — k) 2
  • 4 — 4h + h 2 + 4 — 4k + k 2 = 4 — 4h + h 2 +16 — 8k + k 2
  • 8 — 4k = 20 — 8k
  • k= 3

Шаг :3

Найдем значение h упрощая уравнения 2 и 3

  • (2 — h) 2 + (2 — k) 2 = (5 — h) 2 + (5 — k) 2
  • 4 — 4h + h 2 + 4 — 4k + k 2 = 25 — 10h + h 2 + 25 — 10k + k 2
  • 8 — 4k — 4h = 50 — 10h — 10k
  • 6k + 6h = 42

Подставив значение k=3 в уравнение

Получаем координаты точки центра (h,k) = ( 4,3 )

Шаг :4

Подставим значения h,k в формулу

  • r 2 = (x — h) 2 + (y — k) 2
  • r 2 = (2 — 4) 2 + (2 — 3) 2
  • r 2 = (-2) 2 + (-1) 2
  • r 2 = 5
  • r = 2.24

Шаг :5

Подставим значения h, k в уравнение окружности

(x — h) 2 + (y — k) 2

Уравнение окружности = (x — 4) 2 + (y — 3) 2

График окружности по трем точкам

Уравнение окружности, проходящей через три заданные точки

Этот онлайн калькулятор выводит уравнение окружности, проходящей через три заданные точки

Этот онлайн-калькулятор находит окружность, проходящую через три заданные точки. Калькулятор находит центр, радиус и уравнение окружности, и строит окружность на графике. Методы, использованные для нахождения центра и радиуса окружности, описаны ниже под калькулятором.

Уравнение окружности, проходящей через три заданные точки

Первая точка

Вторая точка

Третья точка

Центр

Как найти окружность, проходящюю через три заданные точки

Давайте вспомним как выглядит уравнение окружности в стандартной форме:

Так как все три точки принадлежат одной окружности, мы можем записать систему уравнений

Значения , и мы знаем. Давайте сделаем подстановку с неизвестными переменнами a, b и c.

Теперь у нас есть три линейных уравнения для трех неизвестных — составим систему уравнений соответствующую матричной форме:

Мы можем решить эту систему уравнений, используя, к примеру, Гауссово исключение. (подробнее прочитать об этом можно здесь — Решение системы линейных алгебраических уравнений методом Гаусса ). «Нет решений» — означает, что точки коллинеарны и окружность через них провести нельзя.

Координаты центра окружность и ее радиус относится к подобному решению

Зная центр и радиус, мы можем получить уравнение окружности, используя этот калькулятор — Уравнение окружности по заданному центру и радиусу в различных формах

Уравнение окружности по трем точкам

Калькулятор расчета онлайн уравнения окружности по трем заданным точкам, а также нахождение координат точки центра и радиус окружности.

Уравнение окружности

r 2 = (x — h) 2 + (y — k) 2

  • h,k — координаты центра Окружности
  • x,y — координаты точки окружности
  • r — радиус

Пример

Найдите координаты точки центра окружности, радиус и уравнение окружности, если известны координаты трех точек A (2,2), B (2,4) и C (5,5)

Решение :

Подставляем координаты точек в формулу

  1. (2 — h) 2 + (2 — k) 2 = r 2
  2. (2 — h) 2 + (4 — k) 2 = r 2
  3. (5 — h) 2 + (5 — k) 2 = r 2

Шаг :2

Найдем значение k упрощая 1 и 2 уравнения

  • (2 — h) 2 + (2 — k) 2 = (2 — h) 2 + (4 — k) 2
  • 4 — 4h + h 2 + 4 — 4k + k 2 = 4 — 4h + h 2 +16 — 8k + k 2
  • 8 — 4k = 20 — 8k
  • k= 3

Шаг :3

Найдем значение h упрощая уравнения 2 и 3

  • (2 — h) 2 + (2 — k) 2 = (5 — h) 2 + (5 — k) 2
  • 4 — 4h + h 2 + 4 — 4k + k 2 = 25 — 10h + h 2 + 25 — 10k + k 2
  • 8 — 4k — 4h = 50 — 10h — 10k
  • 6k + 6h = 42

Подставив значение k=3 в уравнение

Получаем координаты точки центра (h,k) = ( 4,3 )

Шаг :4

Подставим значения h,k в формулу

  • r 2 = (x — h) 2 + (y — k) 2
  • r 2 = (2 — 4) 2 + (2 — 3) 2
  • r 2 = (-2) 2 + (-1) 2
  • r 2 = 5
  • r = 2.24

Шаг :5

Подставим значения h, k в уравнение окружности

(x — h) 2 + (y — k) 2

Уравнение окружности = (x — 4) 2 + (y — 3) 2

Определить формулу окружности по трем точкам

Три точки по которым необходимо построить окружность
Первая координата
Вторая координата
Третья координата

Полученная формула окружности

Напомним, что общее уравнение кривой второго порядка выглядит так

Частные примеры кривой второго порядка это и парабола и гибербола и окружность и прямая линия.

Формула окружности с центром (a;b) и радиусом R имеет вид

или если мы раскроем скобки

из этого уравнения мы можем видеть что кривая второго порядка превращается в формулу окружности если

Из этого же мы можем утверждать, что для построения окружности нам нужно как минимум три точки, так как у нас из всех шести вышеуказанных коэффициентов, только три коэффицента неизвестны.

Бот, позволяет Вам рассчитывать формулу окружности по заданным трем точкам.

Если бы бота не было, то Вам пришлось бы решать систему уравнений из трех переменных, что не очень удобно и трудоёмко.

Интересные факты

Если Вам известны все коэффициенты кривой второго порядка , которые выражают окружность ( ), то очень легко по ним определить два основных параметра:центр окружности и радиус окружности

Центр окружности

Радиус окружности

Синтаксис

Так как это частный пример уже созданного бота то просто расскажем о нюансах

kp2 1 1 0 координаты точек

Где координаты точек есть представление в виде x:y (х-абсцисса, y-ордината)

Каждая координата точки, должна разделятся как минимум одним пробелом.

Что же такое 1 1 0 ? Это уже известные нам коэффициенты при общей формуле.

Примеры

Составить уравнение окружности, проходящей через точки (3,1) (-2,6) и (-5,-3)

Так и запишем kp2 1 1 0 3:1 -2:6 -5:-3

[spoiler title=”источники:”]

http://planetcalc.ru/8116/

http://b4.cooksy.ru/articles/okruzhnost-i-radius-okruzhnosti-po-trem-tochkam

[/spoiler]


Download Article


Download Article

A circle is defined by any three non-collinear points.[1]
This means that, given any three points that are not on the same line, you can draw a circle that passes through them. It is possible to construct this circle using only a compass and straightedge.

  1. Image titled Draw a Circle Given Three Points Step 1

    1

    Draw your three points. If you have the coordinates of the points, map them on a coordinate plane. If you are not working with specific points, you can draw your own on a piece of paper.

    • For example, you might draw points A, B, and C in any position you’d like.
  2. Image titled Draw a Circle Given Three Points Step 2

    2

    Determine whether your points are noncollinear. Noncollinear means that they are not on the same line. You can draw a circle from any three points, as long as they are not on the same line.[2]

    • If you aren’t sure whether the points are collinear, lay a straightedge across them. If the straightedge passes through all three points, the points are collinear, and you cannot use them to draw a circle.

    Advertisement

  3. Image titled Draw a Circle Given Three Points Step 3

    3

    Draw two line segments between any two sets of points. Use a straightedge to connect all of the points.[3]

    • For example, you might draw line segments AB and BC.
  4. Advertisement

  1. Image titled Draw a Circle Given Three Points Step 4

    1

    Draw an arc centered at the first endpoint of the first line segment. To do this, place the compass tip on the first endpoint. Open the compass to a little more than halfway across the line segment. Draw an arc across the line segment.[4]

  2. Image titled Draw a Circle Given Three Points Step 5

    2

    Draw an arc centered at the second endpoint. Without changing the width of the compass, place the compass tip on the second endpoint. Draw a second arc across the line segment.[5]

    • The two arcs should intersect above and below the line.
  3. Image titled Draw a Circle Given Three Points Step 6

    3

    Draw a line connecting the intersections of the arc. Line up a straightedge with the intersection of the arcs above the line, and the intersection of the arcs below the line. Draw a line connecting these two points. The line you draw is a perpendicular bisector. It bisects the line at a right angle.[6]

  4. Image titled Draw a Circle Given Three Points Step 7

    4

    Draw the perpendicular bisector of the second line segment. Use a compass and straightedge to construct the bisectors as you did with the first line segment.[7]
    Extend the bisectors long enough that they intersect. The point of their intersection is the center of the circle.[8]

  5. Advertisement

  1. Image titled Draw a Circle Given Three Points Step 8

    1

    Set the compass width to the circle’s radius. The radius of a circle is the distance from the center to any point on the circle’s edge.[9]
    To set the width, place the tip of the compass on the center of the circle, and open the compass to any one of your original points.[10]

    • For example, you might set the tip of the compass on the circle center, and reach the pencil to point B.
  2. Image titled Draw a Circle Given Three Points Step 9

    2

    Draw the circle. Swing the compass around 360 degrees so that it draws a complete circle. The circle should pass through all three points.

  3. Image titled Draw a Circle Given Three Points Step 10

    3

    Erase your guidelines. For a neat circle, make sure to erase your line segments, arcs, and perpendicular bisectors.

  4. Advertisement

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

Thanks for submitting a tip for review!

References

About This Article

Thanks to all authors for creating a page that has been read 55,469 times.

Reader Success Stories

  • Joshua Chakramakal

    Joshua Chakramakal

    Jan 28, 2019

    “This was a really difficult problem to solve in math class, as they had very complex ways to solve it. This method…” more

Did this article help you?

Этот онлайн-калькулятор находит окружность, проходящую через три заданные точки. Калькулятор находит центр, радиус и уравнение окружности, и строит окружность на графике. Методы, использованные для нахождения центра и радиуса окружности, описаны ниже под калькулятором.

PLANETCALC, Уравнение окружности, проходящей через три заданные точки

Уравнение окружности, проходящей через три заданные точки

Первая точка

Вторая точка

Третья точка

Точность вычисления

Знаков после запятой: 2

Центр

Стандартное уравнение окружности

Общее уравнение окружности

Параметрическое уравнение окружности

Как найти окружность, проходящюю через три заданные точки

Давайте вспомним как выглядит уравнение окружности в стандартной форме:

x^2+y^2+2ax+2by+c=0

Так как все три точки принадлежат одной окружности, мы можем записать систему уравнений

x_1^2+y_1^2+2ax_1+2by_1+c=0\x_2^2+y_2^2+2ax_2+2by_2+c=0\x_3^2+y_3^2+2ax_3+2by_3+c=0

Значения (x_1, y_1), (x_2, y_2) и (x_3, y_3) мы знаем. Давайте сделаем подстановку с неизвестными переменнами a, b и c.

2x_1a+2y_1b+c + x_1^2+y_1^2+=0\2x_2a+2y_2b+c+x_2^2+y_2^2=0\2x_3a+2y_3b+c+x_3^2+y_3^2=0

Теперь у нас есть три линейных уравнения для трех неизвестных – составим систему уравнений соответствующую матричной форме:

begin{bmatrix}2x_1 & 2y_1 & 1 \2x_2 & 2y_2 & 1 \2x_3 & 2y_3 & 1 \end{bmatrix} * begin{bmatrix}a\b\c\end{bmatrix} = begin{bmatrix}-(x_1^2+y_1^2)\-(x_2^2+y_2^2)\-(x_3^2+y_3^2)\end{bmatrix}

Мы можем решить эту систему уравнений, используя, к примеру, Гауссово исключение. (подробнее прочитать об этом можно здесь – Решение системы линейных алгебраических уравнений методом Гаусса ). “Нет решений” – означает, что точки коллинеарны и окружность через них провести нельзя.

Координаты центра окружность и ее радиус относится к подобному решению
x_c=-a\y_c=-b\R=sqrt{x_c^2+y_c^2-c}

Зная центр и радиус, мы можем получить уравнение окружности, используя этот калькулятор – Уравнение окружности по заданному центру и радиусу в различных формах

Уравнение окружности, проходящей через три заданные точки

Этот онлайн калькулятор выводит уравнение окружности, проходящей через три заданные точки

Этот онлайн-калькулятор находит окружность, проходящую через три заданные точки. Калькулятор находит центр, радиус и уравнение окружности, и строит окружность на графике. Методы, использованные для нахождения центра и радиуса окружности, описаны ниже под калькулятором.

Уравнение окружности, проходящей через три заданные точки

Первая точка

Вторая точка

Третья точка

Центр

Как найти окружность, проходящюю через три заданные точки

Давайте вспомним как выглядит уравнение окружности в стандартной форме:

Так как все три точки принадлежат одной окружности, мы можем записать систему уравнений

Значения , и мы знаем. Давайте сделаем подстановку с неизвестными переменнами a, b и c.

Теперь у нас есть три линейных уравнения для трех неизвестных — составим систему уравнений соответствующую матричной форме:

Мы можем решить эту систему уравнений, используя, к примеру, Гауссово исключение. (подробнее прочитать об этом можно здесь — Решение системы линейных алгебраических уравнений методом Гаусса ). «Нет решений» — означает, что точки коллинеарны и окружность через них провести нельзя.

Координаты центра окружность и ее радиус относится к подобному решению

Зная центр и радиус, мы можем получить уравнение окружности, используя этот калькулятор — Уравнение окружности по заданному центру и радиусу в различных формах

Уравнение окружности по трем точкам

Калькулятор расчета онлайн уравнения окружности по трем заданным точкам, а также нахождение координат точки центра и радиус окружности.

Уравнение окружности

r 2 = (x — h) 2 + (y — k) 2

  • h,k — координаты центра Окружности
  • x,y — координаты точки окружности
  • r — радиус

Пример

Найдите координаты точки центра окружности, радиус и уравнение окружности, если известны координаты трех точек A (2,2), B (2,4) и C (5,5)

Решение :

Подставляем координаты точек в формулу

  1. (2 — h) 2 + (2 — k) 2 = r 2
  2. (2 — h) 2 + (4 — k) 2 = r 2
  3. (5 — h) 2 + (5 — k) 2 = r 2

Шаг :2

Найдем значение k упрощая 1 и 2 уравнения

  • (2 — h) 2 + (2 — k) 2 = (2 — h) 2 + (4 — k) 2
  • 4 — 4h + h 2 + 4 — 4k + k 2 = 4 — 4h + h 2 +16 — 8k + k 2
  • 8 — 4k = 20 — 8k
  • k= 3

Шаг :3

Найдем значение h упрощая уравнения 2 и 3

  • (2 — h) 2 + (2 — k) 2 = (5 — h) 2 + (5 — k) 2
  • 4 — 4h + h 2 + 4 — 4k + k 2 = 25 — 10h + h 2 + 25 — 10k + k 2
  • 8 — 4k — 4h = 50 — 10h — 10k
  • 6k + 6h = 42

Подставив значение k=3 в уравнение

Получаем координаты точки центра (h,k) = ( 4,3 )

Шаг :4

Подставим значения h,k в формулу

  • r 2 = (x — h) 2 + (y — k) 2
  • r 2 = (2 — 4) 2 + (2 — 3) 2
  • r 2 = (-2) 2 + (-1) 2
  • r 2 = 5
  • r = 2.24

Шаг :5

Подставим значения h, k в уравнение окружности

(x — h) 2 + (y — k) 2

Уравнение окружности = (x — 4) 2 + (y — 3) 2

Уравнение окружности через три точки

Написать уравнение окружности, проходящей через три точки: (0, 1); (2, 0); (3, -1).

Искомое уравнение имеет вид (xa) 2 + (yb) 2 = r 2 . Поскольку окружность проходит через заданные точки, координаты каждой из этих точек удовлетворяют уравнению окружности. Подставляя поочередно в искомое уравнение координаты данных точек, получим три уравнения для определения a, b и r. Вот эти уравнения:

Возьмем уравнения первое и второе, а потом первое и третье. Правые части этих уравнений между собой равны, значит, равны и левые их части, и мы получаем

Раскрывая скобки и упрощая, будем иметь

Отсюда . Подставляя эти значения a и b в первое из уравнений системы, получим . Искомое уравнение имеет вид

или после упрощений x 2 + y 2 + 3x + 9y — 10 = 0.

источники:

http://wpcalc.com/uravnenie-okruzhnosti-po-trem-tochkam/

http://www.pm298.ru/reshenie/iyfdg.php

Добавить комментарий