Как найти омегу в технической механике

Рассмотрим понятия угловой скорости и углового ускорения при вращении твердого тела в теории и на примерах решения задач.

Угловая скорость

Угловой скоростью называют скорость вращения тела, определяющуюся приращением угла поворота тела за некоторый промежуток (единицу) времени.

Обозначение угловой скорости: ω (омега).

Рассмотрим некоторое твердое тело, вращающееся относительно неподвижной оси.

С этим телом свяжем воображаемую плоскость П, которая совершает вращение вместе с заданным телом.
Угловая скорость вращающегося тела
Вращательное движение определяется двугранным углом φ между двумя плоскостями, проходящими через ось вращения. Изменение этого угла с течением времени есть закон вращательного движения:

Положительным считается угол, откладываемый против хода часовой стрелки, если смотреть навстречу выбранному направлению оси вращения Oz. Угол измеряется в радианах.

Быстрота изменения угла φ (перемещения плоскости П из положения П1 в положение П2) – это и есть угловая скорость:

Приняв вектор k как единичный орт положительного направления оси, получим:

Вектор угловой скорости – скользящий вектор: он может быть приложен к любой точке оси вращения и всегда направлен вдоль оси, при положительном значении угловой скорости направления ω и k совпадают, при отрицательном – противоположны.

Формулы угловой скорости

Формула для расчета угловой скорости в зависимости от заданных параметров вращения может иметь вид:

  1. если известно количество оборотов n за единицу времени t:
    Формула угловой скорости по заданным оборотам
  2. если задан угол поворота φ за единицу времени:
    Формула угловой скорости от угла поворота
  3. если известна окружная скорость точки тела v и расстояние от оси вращения до этой точки r:

Размерности угловой скорости:

  • Количество оборотов за единицу времени [об/мин], [c-1].
  • Угол поворота за единицу времени [рад/с].

Определение угловой скорости

Пример: Диск вращается относительно своего центра.
Известна скорость v некоторой точки A, расположенной на расстоянии r от центра вращения диска.
Угловая скорость вращения диска
Определить величину и направление угловой скорости диска ω, если v = 5 м/с, r = 70 см.

Таким образом, угловая скорость диска составляет 7,14 оборотов в секунду. Направление угловой скорости можно определить по направлению скоростей её точек.

Вектор скорости точки A стремится повернуть диск относительно центра вращения против хода часовой стрелки, следовательно, направление угловой скорости вращения диска имеет такое же направление.

Другие примеры решения задач >

Угловое ускорение

Угловое ускорение характеризует величину изменения угловой скорости при вращении твердого тела:


Обозначение: ε (Эпсилон)

Единицы измерения углового ускорения: [рад/с2], [с-2]

Вектор углового ускорения так же направлен по оси вращения. При ускоренном вращении их направления совпадают, при замедленном — противоположны.

Другими словами, при положительном ускорении угловая скорость нарастает (вращение ускоряется), а при отрицательном — уменьшается (вращение замедляется).

Для некоторых частных случаев вращательного движения твердого тела могут быть использованы формулы:

Расчет углового ускорения

Пример: По заданному значению касательной составляющей полного ускорения aτ точки B, расположенной на расстоянии r от центра вращения колеса.
Пример расчета углового ускорения колеса
Требуется определить величину и направление углового ускорения колеса ε, если aτ = 10 м/с2, r = 50 см.

Угловое ускорение колеса в заданный момент времени составляет 20 оборотов за секунду в квадрате. Направление углового ускорения определяется по направлению тангенциального ускорения точки.

Здесь, угловое ускорение направлено противоположно направлению угловой скорости вращения колеса. Это означает, что вращение колеса замедляется.

В технике угловая скорость часто задается в оборотах в минуту n [об/мин]. Один оборот – это  радиан:

Например, тело совершающее 1,5 оборота за одну секунду имеет угловую скорость

ω = 1,5 с-1 = 9,42 рад/с.

Смотрите также:

  • Примеры расчета угловой скорости и ускорения
  • Скорости и ускорения точек вращающегося тела
Угловое ускорение
{boldsymbol  varepsilon }={frac  {{mathrm  d}{boldsymbol  omega }}{{mathrm  d}t}}={boldsymbol  {dot  omega }}
Единицы измерения
СИ рад/с2
СГС рад/с2
Примечания
псевдовектор

Угловое ускорение — псевдовекторная физическая величина, равная первой производной от псевдовектора угловой скорости по времени

{displaystyle {vec {varepsilon }}={frac {d{vec {omega }}}{dt}}.}

Угловое ускорение характеризует интенсивность изменения модуля и направления угловой скорости при движении твёрдого тела.

Как приходят к понятию углового ускорения: ускорение точки твёрдого тела при свободном движении[править | править код]

К понятию углового ускорения можно прийти, рассматривая вычисление ускорения точки твёрдого тела, совершающего свободное движение. Скорость точки тела B при свободном движении, согласно формуле Эйлера, равна

{displaystyle {vec {v}}_{B}={vec {v}}_{A}+{vec {omega }}times {vec {AB}},}

где {vec  v}_{A} — скорость точки тела A, принятой в качестве полюса; vecomega — псевдовектор угловой скорости тела; {vec  {AB}} — вектор, выпущенный из полюса в точку, скорость которой вычисляется. Дифференцируя по времени данное выражение и используя формулу Ривальса[1], имеем

{displaystyle {vec {a_{B}}}={vec {a_{A}}}+{vec {varepsilon }}times {vec {AB}}+{vec {omega }}times ({vec {omega }}times {vec {AB}})}

{displaystyle {vec {a_{B}}}={vec {a_{A}}}+{vec {a_{BA}^{rot}}}+{vec {a_{BA}^{axis}}},}

где {vec  a}_{A} — ускорение полюса A; {vec  varepsilon }={frac  {d{vec  omega }}{dt}} — псевдовектор углового ускорения. Составляющая ускорения точки B, вычисляемая через угловое ускорение называется вращательным ускорением точки B вокруг полюса A

{displaystyle {vec {a}}_{BA}^{,rot}={vec {varepsilon }}times {vec {AB}}.}

Последнее слагаемое в полученной формуле, зависящее от угловой скорости, называют осестремительным ускорением ускорением точки B вокруг полюса A

{displaystyle {vec {a}}_{BA}^{,axis}={vec {omega }}times left({vec {omega }}times {vec {AB}}right).}

Геометрический смысл псевдовектора углового ускорения[править | править код]

Псевдовектор {vec  varepsilon } направлен по касательной к годографу угловой скорости. Действительно, рассмотрим два значения вектора угловой скорости, в момент времени t и в момент времени t+Delta t. Оценим изменение угловой скорости за рассматриваемый промежуток времени Delta t

Angular velocity hodograph.png

{displaystyle Delta {vec {omega }}={vec {omega }}(t+Delta t)-{vec {omega }}(t).}

Отнесём это изменение к тому промежутку времени, за которое оно произошло

{displaystyle {frac {Delta {vec {omega }}}{Delta t}}={vec {varepsilon }}^{,,'}.}

Получившийся вектор называется вектором среднего углового ускорения. Он занимает положение секущей, пересекая годограф вектора угловой скорости в точках M_{0} и M_{1}. Перейдём к пределу при Delta tto 0

{displaystyle lim _{Delta tto 0}{frac {Delta {vec {omega }}}{Delta t}}={frac {d{vec {omega }}}{dt}}={vec {varepsilon }}.}

Вектор среднего углового ускорения перейдёт в вектор мгновенного углового ускорения и займёт положение касательной в точке M_{0} к годографу угловой скорости.

Выражение вектора углового ускорения через параметры конечного поворота[править | править код]

При рассмотрении вращения тела через параметры конечного поворота, вектор углового ускорения можно расписать формулой

{displaystyle {vec {varepsilon }}=left(1-cos varphi right)left({vec {u}}times {frac {d^{2}{vec {u}}}{dt^{2}}}right)+{dot {varphi }}left(1+cos varphi right){frac {d{vec {u}}}{dt}}+{dot {varphi }}sin varphi left({vec {u}}times {frac {d{vec {u}}}{dt}}right)+sin varphi ,{frac {d^{2}{vec {u}}}{dt^{2}}}+{ddot {varphi }},{vec {u}},}

где vec u — орт, задающий направление оси поворота; varphi — угол, на который совершается поворот вокруг оси vec u.

Угловое ускорение при вращении тела вокруг неподвижной оси[править | править код]

Angular-accleration-and-body-point-acceleration.png

При вращении тела вокруг неподвижной оси, проходящей через неподвижные точки тела O_{1} и O_{2}, производные орта оси вращения равны нулю

{displaystyle {frac {d{vec {u}}}{dt}}={frac {d^{2}{vec {u}}}{dt^{2}}}=0.}

В этом случае вектор углового ускорения определяется тривиально через вторую производную угла поворота

{vec  varepsilon }={ddot  varphi },{vec  u}

или

{displaystyle {vec {varepsilon }}=varepsilon ,{vec {u}},}

где varepsilon ={ddot  varphi } — алгебраическая величина углового ускорения. В этом случае псевдовектор углового ускорения, как и угловая скорость, направлен вдоль оси вращения тела. Если первая и вторая производные угла поворота имеют одинаковый знак

({dot  varphi },{ddot  varphi }>0),

то вектор углового ускорения и вектор угловой скорости совпадают по направлению (тело вращается ускоренно). В противном случае, при {dot  varphi },{ddot  varphi }<0, векторы угловой скорости и углового ускорения направлены в противоположные стороны (тело вращается замедленно).

В курсе теоретической механики традиционным является подход, при котором понятие угловой скорости и углового ускорения вводится при рассмотрении вращения тела вокруг неподвижной оси. При этом в качестве закона движения рассматривается зависимость от времени угла поворота тела

{displaystyle varphi =varphi (t).}

В этом случае закон движения точки тела может быть выражен естественным способом, как длина дуги окружности, пройденная точкой при повороте тела от некоторого начального положения {displaystyle varphi _{0}=varphi (t_{0}).}

{displaystyle s(t)=R,left(varphi (t)-varphi _{0}right),}

где R — расстояние от точки до оси вращения (радиус окружности, по которой движется точка). Дифференцируя последнее соотношение по времени получаем алгебраическую скорость точки

{displaystyle {frac {ds}{dt}}=v_{tau }=R,{frac {dvarphi }{dt}}=omega ,R,}

где {displaystyle omega ={frac {dvarphi }{dt}}} — алгебраическая величина угловой скорости. Ускорение точки тела при вращении может быть представлено как геометрическая сумма тангенциального и нормального ускорения

{displaystyle {vec {a}}_{M}={vec {a}}_{M}^{,tau }+{vec {a}}_{M}^{,n},}

причём тангенциальное ускорение получается как производная от алгебраической скорости точки

{displaystyle a_{M}^{,tau }={frac {dv_{tau }}{dt}}={frac {d}{dt}}left(omega ,Rright)=R,{frac {domega }{dt}}=varepsilon ,R,}

где {displaystyle varepsilon ={frac {domega }{dt}}={frac {d^{2}varphi }{dt^{2}}}} — алгебраическая величина углового ускорения. Нормальное ускорение точки тела может быть вычислено по формулам

{displaystyle a_{M}^{,n}={frac {v_{tau }^{2}}{R}}=omega ^{2},R.}

Выражение псевдовектора углового ускорения через тензор поворота тела[править | править код]

Если поворот твёрдого тела задан тензором ранга {displaystyle left(1,,1right)} (линейным оператором), выраженным, например, через параметры конечного поворота

{displaystyle B_{,m}^{,p}=left(1-cos varphi right),u^{,p},u_{,m}+cos varphi ,delta _{,m}^{,p}+sin varphi ,g^{,pl},epsilon _{,lkm},u^{,k},}

где {displaystyle delta _{,m}^{,p}} — символ Кронекера; {displaystyle epsilon _{,lkj}} — тензор Леви-Чивиты, то, псевдовектор углового ускорения может быть вычислен по формуле

{displaystyle varepsilon ^{,i}={frac {1}{2}},epsilon ^{ikl},g_{,lp},left(B_{,m}^{',p},{ddot {B}}_{,k}^{,m}+{dot {B}}_{,m}^{',p},{dot {B}}_{,k}^{,m}right),}

где {displaystyle B_{,m}^{',p}} — тензор обратного преобразования, равный

{displaystyle B_{,m}^{',p}=left(1-cos varphi right),u^{,p},u_{,m}+cos varphi ,delta _{,m}^{,p}-sin varphi ,g^{,pl},epsilon _{,lkm},u^{,k}.}

Примечания[править | править код]

  1. В.И. Дронг, В.В. Дубинин, М.М. Ильин и др.; под ред. К.С. Колесникова, В.В. Дубинина. Курс теоретической механики: учебник для вузов. — 2017. — С. 101, 111. — 580 с. — ISBN 978-5-7038-4568-4.

Литература[править | править код]

  1. Тарг С. М. Краткий курс теоретической механики — 10-е изд., перераб. и доп. — М.: Высш. шк., 1986 — 416 С.
  2. Погорелов Д. Ю. Введение в моделирование динамики систем тел: Учебное пособие. — Брянск: БГТУ, 1997. — 197 С.

Угловое ускорение что это?

Угловое ускорение (varepsilon)  физическая величина, характеризующая изменение угловой скорости при движении тела.

Единица измерения: (lbrackvarepsilonrbrack=frac1{с^2}) или (с^{-2})

Угловая скорость

Круговым движением точки вокруг оси называют движение, где траектория точки  окружность с центром, который лежит на оси вращения, перпендикулярной плоскости окружности.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Угловая скорость (omega) векторная физическая величина, характеризующая скорость изменения угла поворота при круговом движении точки или твердого тела.

При движении по окружности (круговом движении) скорость меняет свое направление, значит такое движение не может считаться равномерным, оно ускоренное или равноускоренное (в частных случаях).

Вектор угловой скорости направлен вдоль оси вращения.

Основные формулы для вычисления угловой скорости

Для равномерного вращения (когда за равные отрезки времени тело поворачивается на один и тот же угол):

  1. (omega=frac nt), где (n) количество оборотов за единицу времени (t).
  2. (omega=fracvarphi t), где (varphi) угол поворота, (t) время, за которое он совершен.
  3. (omega=frac{2pi}T), где (Т) период обращения (время, за которое тело/точка совершает один оборот).
  4. (omega=2pinu), где (nu) числом оборотов в единицу времени.

Единица измерения угловой скорости в СИ: (lbrackomegarbrack=frac{рад}с)

Связь между угловой скоростью и нормальным (центростремительным) ускорением

Центростремительное (нормальное) ускорение (a_n)  это составляющая полного ускорения, которая характеризует изменение направления вектора скорости при криволинейном движении. Другим компонентом полного ускорения является тангенциальное ускорение, оно характеризует изменение величины скорости.

Центростремительное ускорение определяется по формуле:

 (a_n=frac{V^2}R),

где (V)  скорость движения, (R)  радиус окружности.

Единица измерения в СИ: (lbrack a_nrbrack=frac м{с^2})

Итак, формула связывающая эти две величины:

(a_n=omega^2R)

Основные формулы для расчета углового ускорения

Значение углового ускорения в определенный момент времени вычисляется как первая производная от угловой скорости или вторая производная от угла поворота по времени.

(varepsilon=lim_{triangle trightarrow0}frac{triangleomega}{triangle t}=frac{domega}{dt}=frac{d^2varphi}{dt}=overset.omega=overset{..}varphi)

Угловое ускорение маховика

(varepsilon=fracomega t=frac{2pi n}t), где (n)  количество оборотов за единицу времени (t).

Среднее угловое ускорение

Средним угловым ускорением тела называют отношение изменения угловой скорости к отрезку времени, за который оно совершилось.

(leftlanglevarepsilonrightrangle=frac{triangleomega}{triangle t})

Тангенциальное ускорение

Тангенциальным (касательным) ускорением (a_tau) называют ту составляющую полного ускорения, которая направлена по касательной к траектории движения в данной точке. Тангенциальное ускорение описывает изменение скорости по модулю при криволинейном движении.

(a_tau=varepsilon r), где (varepsilon) угловое ускорение, (r)   радиус кривизны траектории в заданной точке.

Мгновенное угловое ускорение

Мгновенное угловое ускорение (alpha) есть первая производная угловой скорости по времени или вторая производная углового перемещения по времени.

(alpha=tg(varepsilon)=frac{;domega}{dt}=frac{d^2phi}{dt^2})

Что такое Эпсилон и Омега в механике.

Некто некто



Профи

(592),
на голосовании



4 месяца назад

Как они связаны, по каким формулам их можно найти. И как например из Омеги найти Эпсилон или наоборот.

Голосование за лучший ответ

Amaxar 777

Высший разум

(104457)


6 месяцев назад

Омега – угловая сорость. Угол (в радианах), на который поворачивается вращающееся тело за секунду.
Эпсилон – угловое ускорение. Величина, на которую возрастает угловая скорость за секунду.
Формулки тут такие же, как при равноускоренном движении:
ω = ω0 + ε t
ф = ф0 + ω0 е + (ε / 2) t²

Рассмотрим
твердое тело, которое враща­ется
вокруг неподвижной оси. Тогда от­дельные
точки этого тела будут описывать
окружности разных радиусов, центры
ко­торых лежат на оси вращения. Пусть
не­которая точка движется по окружности
радиуса R
(рис.6).
Ее положение через промежуток времени
t
зададим
углом .
Элементарные (бесконечно малые) углы
поворота рассматривают как векторы.
Мо­дуль вектора d
равен
углу поворота, а его направление совпадает
с направле­нием поступательного
движения острия винта, головка которого
вращается в на­правлении движения
точки по окружности, т. е. подчиняется
правилу
правого, винта
(рис.6).
Векторы, направления которых связываются
с направлением вращения, называются
псевдовекторами
или
акси­альными
векторами.
Эти
векторы не имеют определенных точек
приложения: они мо­гут откладываться
из любой точки оси вращения.

Угловой
скоростью
называется
вектор­ная величина, равная первой
производной угла поворота тела по
времени:

Вектор
«в направлен вдоль оси вращения по
правилу правого винта, т. е. так же, как
и вектор d
(рис. 7). Размерность угловой скорости
dim=T-1,
a .
ее единица — радиан в секунду (рад/с).

Линейная скорость
точки (см. рис. 6)

В векторном виде
формулу для линейной скорости можно
написать как вектор­ное произведение:

При
этом модуль векторного произведе­ния,
по определению, равен

,
а
направление совпадает с
направлением
поступательного движения правого винта
при его вращении от 
к R.

Если
=const,
то
вращение равномер­ное и его можно
характеризовать перио­дом
вращения
Т

временем, за которое точка совершает
один полный оборот, т. е. поворачивается
на угол 2.
Так как промежутку времени t=T
соответствует =2,
то =
2/Т,
откуда

Число
полных оборотов, совершаемых телом при
равномерном его движении по окружности,
в единицу времени называет­ся частотой
вращения:

Угловым
ускорением
называется
век­торная величина, равная первой
производ­ной угловой скорости по
времени:

При вращении тела
вокруг неподвижной оси вектор углового
ускорения направлен вдоль оси вращения
в сторону вектора элементарного
приращения угловой ско­рости. При
ускоренном движении вектор

13

 сонаправлен
вектору 
(рис.8),
при замедленном.— противонаправлен
ему (рис. 9).

Тангенциальная
составляющая ускорения

Нормальная
составляющая ускорения

Таким
образом, связь между линейны­ми (длина
пути s,
пройденного
точкой по дуге окружности радиуса R,
линейная
ско­рость v,
тангенциальное
ускорение а,
нор­мальное ускорение аn)
и угловыми величи­нами (угол поворота
,
угловая скорость (о, угловое ускорение
)
выражается сле­дующими формулами:

В
случае равнопеременного движения точки
по окружности (=const)

где
0
— начальная угловая скорость.

Контрольные
вопросы

• Что
называется материальной точкой? Почему
в механике вводят такую модель?

• Что
такое система отсчета?

• Что
такое вектор перемещения? Всегда ли
модуль вектора перемещения равен отрезку
пути,

пройденному точкой?

• Какое
движение называется поступательным?
вращательным?

• Дать
определения векторов средней скорости
и среднего ускорения, мгновенной
скорости

и мгновенного
ускорения. Каковы их направления?

• Что
характеризует тангенциальная
составляющая ускорения? нормальная
составляющая

ускорения? Каковы
их модули?

• Возможны
ли движения, при которых отсутствует
нормальное ускорение? тангенциальное

ускорение? Приведите
примеры.

• Что
называется угловой скоростью? угловым
ускорением? Как определяются их
направления?

• Какова
связь между линейными и угловыми
величинами?

Задачи

1.1.
Зависимость
пройденного телом пути от времени
задается уравнением s
= Att2+Dt3
(С
= 0,1 м/с2,
D
= 0,03 м/с3).
Определить: 1) через какое время после
начала движения ускорение а тела будет
равно 2 м/с2;
2) среднее ускорение <а>
тела за этот промежуток времени. [ 1) 10
с; 2) 1,1 м/с2]

1.2.
Пренебрегая сопротивлением воздуха,
определить угол, под которым тело брошено
к гори­зонту, если максимальная высота
подъема тела равна 1/4 дальности его
полета. [45°]

1.3.
Колесо
радиуса R
=
0,1 м вращается так, что зависимость
угловой скорости от времени задается
уравнением 
= 2At+5Вt4
(A=2
рад/с2
и B=1
рад/с5).
Определить полное ускорение точек обода
колеса через t=1
с после начала вращения и число оборотов,
сделан­ных колесом за это время. [а =
8,5 м/с2;
N
= 0,48]

14

1.4.
Нормальное ускорение точки, движущейся
по окружности радиуса r=4
м,
задается уравнением аn+-Bt+Ct2
(A=1
м/с2,
В=6
м/с3,
С=3
м/с4).
Определить: 1) тангенциальное ускорение
точки; 2) путь, пройденный точкой за время
t1=5
с после начала движения; 3) полное
ускорение для момента времени t2=1
с. [ 1) 6 м/с2;
2) 85 м; 3) 6,32 м/с2]

1.5.
Частота
вращения колеса при равнозамедленном
движении за t=1
мин
уменьшилась от 300 до 180 мин-1.
Определить: 1) угловое ускорение колеса;
2) число полных оборотов, сделанных
колесом за это время. [1)
0,21 рад/с2;
2) 360]

1.6.
Диск
радиусом R=10
см вращается вокруг неподвижной оси
так, что зависимость угла поворота
радиуса диска от времени задается
уравнением =A+Bt+Ct2+Dt3
(B
= l рад/с,
С=1
рад/с2,
D=l
рад/с3).
Определить для точек на ободе колеса к
концу второй секунды после начала
движения: 1) тангенциальное ускорение
а;
2) нормальное ускорение аn;
3) полное ускорение а. [ 1) 0,14 м/с2;
2) 28,9 м/с2;
3) 28,9 м/с2]

Соседние файлы в папке Трофимова

  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий