Как найти определитель матрицы det a

Определи́тель (детермина́нт) в линейной алгебре — скалярная величина, которая характеризует ориентированное «растяжение» или «сжатие» многомерного евклидова пространства после преобразования матрицей; имеет смысл только для квадратных матриц. Стандартные обозначения определителя матрицы A{displaystyle det(A)}, |A|, {displaystyle Delta (A)}[1].

Определитель квадратной матрицы A размеров ntimes n, заданной над коммутативным кольцом R, является элементом кольца R. Эта величина определяет многие свойства матрицы A, в частности, матрица обратима тогда и только тогда, когда её определитель является обратимым элементом кольца R. В случае, когда R — поле, определитель матрицы A равен нулю тогда и только тогда, когда ранг матрицы A меньше n, то есть когда системы строк и столбцов матрицы A являются линейно зависимыми.

История[править | править код]

Теория определителей возникла в связи с задачей решения систем линейных уравнений.

К понятию определителя близко подошли авторы древнекитайского учебника «Математика в девяти книгах»[2].

В Европе определители матриц 2 × 2 встречаются у Кардано в XVI веке.
Для старших размерностей определение детерминанта дано Лейбницем в 1693 году.
Первая публикация принадлежит Крамеру. Теория определителей создана Вандермондом, Лапласом, Коши и Якоби. Термин «определитель» в современном его значении ввёл О. Коши (1815), хотя ранее (1801) «детерминантом» К. Гаусс назвал дискриминант квадратичной формы.

Японский математик Сэки Такакадзу ввёл определители независимо в 1683 году[3].

Определения[править | править код]

Через перестановки[править | править код]

Для квадратной матрицы A=(a_{ij}) размера ntimes n её определитель {displaystyle det A} вычисляется по формуле:

{displaystyle det A=sum _{alpha _{1},alpha _{2},ldots ,alpha _{n}}(-1)^{N(alpha _{1},alpha _{2},ldots ,alpha _{n})}cdot a_{1alpha _{1}}a_{2alpha _{2}}dots a_{nalpha _{n}}},

где суммирование проводится по всем перестановкам {displaystyle alpha _{1},alpha _{2},ldots ,alpha _{n}} чисел 1,2,dots ,n, а {displaystyle N(alpha _{1},alpha _{2},ldots ,alpha _{n})} обозначает число инверсий в перестановке {displaystyle alpha _{1},alpha _{2},ldots ,alpha _{n}}.

Таким образом, в определитель входит n! слагаемых, которые также называют «членами определителя».

Эквивалентная формула:

{displaystyle det A=sum _{i_{1},i_{2},ldots ,i_{n}=1}^{n}varepsilon _{i_{1}i_{2}dots i_{n}}cdot a_{1i_{1}}a_{2i_{2}}dots a_{ni_{n}}},

где коэффициент {displaystyle varepsilon _{i_{1}i_{2}dots i_{n}}} — символ Леви-Чивиты — равен:

0, если не все индексы {displaystyle i_{1},i_{2},ldots ,i_{n}} различны,
1, если все индексы {displaystyle i_{1},i_{2},ldots ,i_{n}} различны и подстановка {displaystyle {begin{pmatrix}1&2&dots &n\i_{1}&i_{2}&dots &i_{n}end{pmatrix}}in S_{n}} чётна,
−1, если все индексы {displaystyle i_{1},i_{2},ldots ,i_{n}} различны и подстановка {displaystyle {begin{pmatrix}1&2&dots &n\i_{1}&i_{2}&dots &i_{n}end{pmatrix}}in S_{n}} нечётна.

Аксиоматическое построение (определение на основе свойств)[править | править код]

Понятие определителя может быть введено на основе его свойств. А именно, определителем вещественной матрицы называется функция det :mathbb {R} ^{ntimes n}rightarrow mathbb {R} , обладающая следующими тремя свойствами[4]:

  1. det(A) — кососимметрическая функция строк (столбцов) матрицы A.
  2. det(A) — полилинейная функция строк (столбцов) матрицы A.
  3. det(E)=1, где E — единичная ntimes n-матрица.

Значение определителя матрицы[править | править код]

Для матрицы первого порядка значение детерминанта равно единственному элементу этой матрицы:

Delta ={begin{vmatrix}a_{11}end{vmatrix}}=a_{11}

Матрицы 2 x 2[править | править код]

Схема расчета определителя матрицы 2×2.

Площадь параллелограмма равна модулю определителя матрицы, образованной векторами — сторонами параллелограмма.

Для матрицы 2times 2 определитель вычисляется как:

Delta ={begin{vmatrix}a&c\b&dend{vmatrix}}=ad-bc

Эта матрица A может быть рассмотрена как матрица линейного отображения, преобразующего единичный квадрат в параллелограмм с вершинами (0, 0), (a, b), (a + c, b + d), и (c, d).

Абсолютное значение определителя |ad-bc| равно площади этого параллелограмма, и, таким образом, отражает коэффициент, на который масштабируются площади при преобразовании A.

Значение определителя со знаком (ориентированная площадь параллелограмма) помимо коэффициента масштабирования также показывает, выполняет ли преобразование A отражение.

Матрицы 3 x 3[править | править код]

Определитель матрицы 3times 3 можно вычислить по формуле:

Delta ={begin{vmatrix}a_{11}&a_{12}&a_{13}\a_{21}&a_{22}&a_{23}\a_{31}&a_{32}&a_{33}end{vmatrix}}=a_{11}{begin{vmatrix}a_{22}&a_{23}\a_{32}&a_{33}end{vmatrix}}-a_{12}{begin{vmatrix}a_{21}&a_{23}\a_{31}&a_{33}end{vmatrix}}+a_{13}{begin{vmatrix}a_{21}&a_{22}\a_{31}&a_{32}end{vmatrix}}=
=a_{11}a_{22}a_{33}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31}

Для более удобного вычисления определителя третьего порядка можно воспользоваться правилом Саррюса или правилом треугольника.

Определитель матрицы, составленной из векторов mathbf {a} ,mathbf {b} ,mathbf {c} равен их смешанному произведению в правой декартовой системе координат и, аналогично двумерному случаю, представляет собой ориентированный объём параллелепипеда, натянутого на mathbf {a} ,mathbf {b} ,mathbf {c} . Геометрически определитель матрицы 3х3 означает объем параллелепипеда, построенного на векторах матрицы. [5]

Матрицы N × N[править | править код]

В общем случае, для матриц более высоких порядков (выше 2-го порядка) ntimes n определитель можно вычислить, применив следующую рекурсивную формулу:

Delta =sum _{j=1}^{n}(-1)^{1+j}a_{1j}{bar {M}}_{j}^{1}, где {bar {M}}_{j}^{1} — дополнительный минор к элементу a_{1j}. Эта формула называется разложением по строке.

Легко доказать, что при транспонировании определитель матрицы не изменяется (иными словами, аналогичное разложение по первому столбцу также справедливо, то есть даёт такой же результат, как и разложение по первой строке):

Delta =sum _{i=1}^{n}(-1)^{i+1}a_{i1}{bar {M}}_{1}^{i}

Также справедливо и аналогичное разложение по любой строке (столбцу):

Delta =sum _{j=1}^{n}(-1)^{i+j}a_{ij}{bar {M}}_{j}^{i}

Обобщением вышеуказанных формул является разложение детерминанта по Лапласу (Теорема Лапласа), дающее возможность вычислять определитель по любым k строкам (столбцам):

{displaystyle Delta =sum _{1leqslant j_{1}<ldots <j_{k}leqslant n}(-1)^{i_{1}+ldots +i_{k}+j_{1}+ldots +j_{k}}M_{j_{1}ldots j_{k}}^{i_{1}ldots i_{k}}{bar {M}}_{j_{1}ldots j_{k}}^{i_{1}ldots i_{k}}}

Альтернативные методы вычисления[править | править код]

  • Метод конденсации Доджсона, основанный на рекурсивной формуле:
{displaystyle Delta ={frac {{bar {M}}_{1}^{1}{bar {M}}_{k}^{k}-{bar {M}}_{1}^{k}{bar {M}}_{k}^{1}}{{bar {M}}_{1,k}^{1,k}}}}.

Основные свойства определителей[править | править код]

Следующие свойства отражают основные результаты теории определителей, применение которых выходит далеко за пределы этой теории:

  1. {displaystyle det E=1} (Определитель единичной матрицы равен 1);
  2. {displaystyle det cA=c^{n}det A} (Определитель является однородной функцией степени n на пространстве матриц размера ntimes n);
  3. {displaystyle det A^{T}=det A} (Определитель матрицы не меняется при её транспонировании);
  4. {displaystyle det(AB)=det Acdot det B} (Определитель произведения матриц равен произведению их определителей, A и B — квадратные матрицы одного и того же порядка);
  5. {displaystyle det A^{-1}=(det A)^{-1}}, причём матрица A обратима тогда и только тогда, когда обратим её определитель {displaystyle det A};
  6. Существует ненулевое решение уравнения AX=0 тогда и только тогда, когда det A=0 (или же {displaystyle det A} должен быть нетривиальным делителем нуля в случае, если R — не целостное кольцо).

Определитель как функция строк (столбцов) матрицы[править | править код]

При изучении теории определителей полезно иметь в виду, что в основе этой теории лежит техника манипулирования со строками и столбцами матриц, разработанная К.Ф. Гауссом (преобразования Гаусса). Суть этих преобразований сводится к линейным операциям над строками (столбцами) и их перестановке. Эти преобразования достаточно простым образом отражаются на определителе, и при их изучении удобно “расчленить” исходную матрицу на строки (или столбцы) и считать определитель функцией, определённой над наборами строк (столбцов). Далее буквами {displaystyle {hat {A}}_{i}} обозначаются строки (столбцы) матрицы A.

1. Определитель — полилинейная функция строк (столбцов) матрицы. Полилинейность означает линейность функции по каждому аргументу при фиксированных значениях остальных аргументов:

{displaystyle det({hat {A}}_{1},ldots ,alpha {hat {A}}_{i}+beta {hat {A'}}_{i},ldots ,{hat {A}}_{n})=alpha det({hat {A}}_{1},ldots ,{hat {A}}_{i},ldots ,{hat {A}}_{n})+beta det({hat {A}}_{1},ldots ,{hat {A'}}_{i},ldots ,{hat {A}}_{n})}
2. Определитель — кососимметрическая функция строк (столбцов) матрицы, то есть при перестановке двух строк (столбцов) матрицы её определитель умножается на −1:

{displaystyle det(ldots ,{hat {A}}_{i},ldots ,{hat {A}}_{j},ldots )=-det(ldots ,{hat {A}}_{j},ldots ,{hat {A}}_{i},ldots )}
3. Если две строки (столбца) матрицы совпадают, то её определитель равен нулю:

{displaystyle {hat {A}}_{i}={hat {A}}_{j}Longrightarrow det(ldots ,{hat {A}}_{i},ldots ,{hat {A}}_{j},ldots )=0}

Замечание. Свойства 1-3 являются основными свойствами определителя как функции строк (столбцов), они легко доказываются непосредственно из определения. Свойство 2 (кососимметричность) является логическим следствием свойств 1 и 3. Свойство 3 является логическим следствием свойства 2, если в кольце R элемент 2 (т.е. 1 + 1) не совпадает с нулём и не является делителем нуля. Из свойств 1 и 3 вытекают также следующие свойства:

4. Общий множитель элементов какой-либо строки (столбца) определителя можно вынести за знак определителя (следствие свойства 1).
5. Если хотя бы одна строка (столбец) матрицы нулевая, то определитель равен нулю (следствие свойства 4).
6. Если две (или несколько) строки (столбца) матрицы линейно зависимы, то её определитель равен нулю (следствие свойств 1 и 3).
7. При добавлении к любой строке (столбцу) линейной комбинации других строк (столбцов) определитель не изменится (следствие свойств 1 и 6).

Фактом, имеющим фундаментальное значение, является универсальность определителя как полилинейной кососимметрической функции полного ранга, аргументами которой являются элементы конечномерного векторного пространства V (или R-модуля V с конечным базисом). Справедлива следующая

Теорема. Пусть V — свободный R-модуль ранга n (n-мерное векторное пространство над R, если R — поле). Пусть {displaystyle varphi (X_{1},X_{2},dots ,X_{n})}R-значная функция на {displaystyle V^{n}}, обладающая свойствами 1-3. Тогда при выборе базиса {displaystyle E_{1},E_{2},dots ,E_{n}} пространства V существует константа {displaystyle c_{0}=varphi (E_{1},E_{2},dots ,E_{n})} такая, что при всех значениях {displaystyle X_{1},X_{2},dots ,X_{n}} справедливо равенство:

{displaystyle varphi (X_{1},X_{2},dots ,X_{n})=c_{0}det({hat {X}}_{1},{hat {X}}_{2},dots ,{hat {X}}_{n})},

где {displaystyle {hat {X}}_{i}} — столбец координат вектора X_{i} относительно базиса {displaystyle E_{1},E_{2},dots ,E_{n}}.

Одним из важнейших следствий универсальности определителя является следующая теорема о мультипликативности определителя.

Теорема. Пусть A — матрица размера ntimes n. Тогда {displaystyle det(AX)=det Acdot det X} для любой матрицы X размера ntimes n.

Доказательство

Рассмотрим на пространстве столбцов R^{n} кососимметрическую полилинейную форму {displaystyle varphi ({hat {X}}_{1},{hat {X}}_{2},dots ,{hat {X}}_{n})=det(A{hat {X}}_{1},A{hat {X}}_{2},dots ,A{hat {X}}_{n})=det(AX)}. Согласно доказанной теореме, эта форма равна {displaystyle c_{0}det({hat {X}}_{1},{hat {X}}_{2},dots ,{hat {X}}_{n})=c_{0}det X}, где {displaystyle c_{0}=varphi (E_{1},E_{2},dots ,E_{n})=det({hat {A}}_{1},{hat {A}}_{2},dots ,{hat {A}}_{n})=det A}.

Определитель и ориентированный объём[править | править код]

Пусть {vec {a}},{vec {b}},{vec {c}} — три вектора в пространстве mathbb {R} ^{3}. Они порождают параллелепипед, вершины которого лежат в точках с радиус-векторами {displaystyle {vec {0}},{vec {a}},{vec {b}},{vec {c}},{vec {a}}+{vec {b}},{vec {c}}+{vec {a}},{vec {b}}+{vec {c}},{vec {a}}+{vec {b}}+{vec {c}}}. Этот параллелепипед может быть вырожден, если вектора {vec {a}},{vec {b}},{vec {c}} компланарны (лежат в одной плоскости, линейно зависимы).

Функция ориентированного объёма {displaystyle {rm {Vol}}({vec {a}},{vec {b}},{vec {c}})} определяется как объём параллелепипеда, порождённого этими векторами, и взятый со знаком “+”, если тройка векторов {displaystyle ({vec {a}},{vec {b}},{vec {c}})} положительно ориентирована, и со знаком “-“, если она ориентирована отрицательно.
Функция {displaystyle {rm {Vol}}({vec {a}},{vec {b}},{vec {c}})} полилинейна и кососимметрична. Свойство 3, очевидно, выполнено. Для доказательства полилинейности этой функции, достаточно доказать её линейность по вектору vec a. Если вектора {displaystyle {vec {b}},{vec {c}}} линейно зависимы, значение {displaystyle {rm {Vol}}({vec {a}},{vec {b}},{vec {c}})} будет нулевым независимо от вектора vec a, и значит, линейно зависящим от него. Если вектора {displaystyle {vec {b}},{vec {c}}} линейно независимы, обозначим через {vec {n}} вектор единичной нормали к плоскости векторов {displaystyle {vec {b}},{vec {c}}}, такой, что {displaystyle {rm {Vol}}({vec {n}},{vec {b}},{vec {c}})>0}. Тогда ориентированный объём параллелепипеда равен произведению площади основания, построенного на векторах {displaystyle {vec {b}},{vec {c}}} и независящего от вектора vec a, и алгебраической величины проекции вектора vec a на нормаль к основанию, которая равна скалярному произведению {displaystyle langle {vec {a}},{vec {n}}rangle } и является величиной, линейно зависящей от вектора vec a. Линейность по vec a доказана, и аналогично доказывается линейность по остальным аргументам.

Применяя теорему об универсальности определителя как кососимметрической полилинейной функции, получаем, что при выборе ортонормированного базиса {displaystyle ({vec {e}}_{1},{vec {e}}_{2},{vec {e}}_{3})} пространства mathbb {R} ^{3}

{displaystyle {rm {Vol}}({vec {a}},{vec {b}},{vec {c}})={rm {Vol}}({vec {e}}_{1},{vec {e}}_{2},{vec {e}}_{3})det {begin{pmatrix}a_{1}&b_{1}&c_{1}\a_{2}&b_{2}&c_{2}\a_{3}&b_{3}&c_{3}end{pmatrix}}=det {begin{pmatrix}a_{1}&b_{1}&c_{1}\a_{2}&b_{2}&c_{2}\a_{3}&b_{3}&c_{3}end{pmatrix}}},

где a_{i},b_{i},c_{i} — координаты векторов {displaystyle ({vec {a}},{vec {b}},{vec {c}})} в выбранном базисе.

Таким образом, определитель матрицы коэффициентов векторов относительно ортонормированного базиса имеет смысл ориентированного объёма параллелепипеда, построенного на этих векторах.

Всё вышесказанное без существенных изменений переносится на пространство mathbb {R} ^{n} произвольной размерности.

Разложение определителя по строке/столбцу и обращение матриц[править | править код]

Формулы разложения определителя по строке/столбцу позволяют сводить вычисление определителей к рекурсивной процедуре, использующей вычисление определителей меньших порядков. Для вывода этих формул сгруппируем и просуммируем в формуле для определителя матрицы {displaystyle C=(c_{ij})}, с учётом равенства {displaystyle varepsilon _{i_{1}dots i_{n-1}n}=varepsilon _{i_{1}dots i_{n-1}}}, все ненулевые члены, содержащие элемент {displaystyle c_{nn}}. Эта сумма равна:

{displaystyle c_{nn}sum _{i_{1},dots i_{n-1}=1}^{n-1}varepsilon _{i_{1}dots i_{n-1}n}c_{1i_{1}}dots c_{n-1,i_{n-1}}=c_{nn}sum _{i_{1},dots i_{n-1}=1}^{n-1}varepsilon _{i_{1}dots i_{n-1}}c_{1i_{1}}dots c_{n-1,i_{n-1}}=c_{nn}det C_{n}^{n}},

где {displaystyle C_{i}^{j}} — матрица, получаемая из C удалением строки с номером i и столбца с номером j.

Так как произвольный элемент c_{ij} можно {displaystyle (n-j)} перестановками соответствующего столбца вправо и {displaystyle (n-i)} перестановками соответствующей строки вниз переместить в правый нижний угол матрицы, причём дополнительная к нему матрица сохранит свой вид, то сумма всех членов в разложении определителя, содержащих c_{ij}, будет равна

{displaystyle (-1)^{(n-i)}(-1)^{(n-j)}c_{ij}det C_{i}^{j}=(-1)^{i+j}c_{ij}det C_{i}^{j}=c_{ij}A_{i}^{j}}.

Величина {displaystyle A_{i}^{j}=(-1)^{i+j}det C_{i}^{j}} называется алгебраическим дополнением элемента матрицы c_{ij}.

Учитывая, что каждый член разложения определителя с ненулевым коэффициентом содержит ровно один элемент из i-ой строки, можно разложить определитель по членам этой строки:

{displaystyle det C=sum _{j=1}^{n}c_{ij}A_{i}^{j}} — Формула разложения определителя по i-ой строке

Аналогично, учитывая, что каждый член разложения определителя с ненулевым коэффициентом содержит ровно один элемент из j-го столбца, можно разложить определитель по членам этого столбца:

{displaystyle det C=sum _{i=1}^{n}c_{ij}A_{i}^{j}} — Формула разложения определителя по j-ому столбцу

Если элементы k-й строки матрицы C скопировать в i-ую строку, её определитель станет равен нулю, а по формуле разложения определителя по i-ой строке получится:

{displaystyle 0=sum _{j=1}^{n}c_{kj}A_{i}^{j}} — Формула “фальшивого” разложения определителя по i-ой строке ({displaystyle ineq k}).

Аналогично для столбцов:

{displaystyle 0=sum _{j=1}^{n}c_{ik}A_{i}^{j}} — Формула “фальшивого” разложения определителя по j-ому столбцу (jne k)

Полученные формулы полезно записать в матричном виде. Введём матрицу алгебраических дополнений к элементам матрицы C: {displaystyle A=(A_{i}^{j})}.
Тогда, согласно с полученными формулами,

{displaystyle CA^{T}=A^{T}C=(det C)cdot E}.

Следствие 1 (Критерий обратимости матриц). Квадратная матрица C является обратимой тогда и только тогда, когда {displaystyle det C} — обратимый элемент кольца R, при этом {displaystyle C^{-1}=(det C)^{-1}cdot A^{T}}.

Следствие 2. Если произведение матриц равно нулю {displaystyle CX=0}, и матрица C — квадратная, тогда {displaystyle (det C)cdot X=0}.

Решение систем линейных алгебраических уравнений с помощью определителей[править | править код]

Формула Крамера позволяет выразить решение системы линейных алгебраических уравнений в виде отношения определителей, в знаменателе которого стоит определитель системы, а в числителе — определитель матрицы системы, в которой столбец коэффициентов при соответствующей переменной заменён на столбец из правых частей уравнений.

Формула Крамера. Пусть задана система линейных алгебраических уравнений в матричном виде: {displaystyle CX=B}, где {displaystyle C=(c_{ij})} — матрица коэффициентов системы размера ntimes n, {displaystyle B=(b_{1},b_{2},dots ,b_{n})^{T}} — столбец из правых частей уравнений системы, и вектор {displaystyle X=(x_{1},x_{2},dots ,x_{n})^{T}} — решение этой системы. Тогда при любых {displaystyle lambda _{1},lambda _{2},dots ,lambda _{n}in R} справедливо равенство:

{displaystyle (lambda _{1}x_{1}+lambda _{2}x_{2}+dots +lambda _{n}x_{n})cdot (det C)=-det {begin{pmatrix}c_{11}&c_{12}&dots &c_{1n}&b_{1}\c_{21}&c_{22}&dots &c_{2n}&b_{2}\dots &dots &dots &dots &dots \c_{n1}&c_{n2}&dots &c_{nn}&b_{n}\lambda _{1}&lambda _{2}&dots &lambda _{n}&0end{pmatrix}}}

Из этой формулы следует, в частности, что если {displaystyle det C} — не вырожден (не является нулём или делителем нуля), система может обладать не более чем одним решением, а если определитель ещё и обратим, то система обладает единственным решением.

Одной из важнейших теорем в теории определителей является следующая теорема о решениях однородной системы линейных уравнений.

Теорема. Пусть R — поле. Однородная система линейных уравнений {displaystyle CX=0} имеет нетривиальное (ненулевое) решение тогда и только тогда, когда определитель матрицы коэффициентов равен нулю: {displaystyle det C=0}.

Доказательство

Необходимость условия содержится в следствии 2 предыдущего раздела. Докажем необходимость.

Если матрица C — нулевая, любой вектор X является решением.
Пусть C_{0} — максимальный невырожденный минор в матрице C имеет размеры rtimes r. Не ограничивая общности, считаем, что этот минор образован первыми r строками и столбцами (иначе перенумеруем переменные и переставим уравнения в другом порядке.)
Введём вектора {displaystyle X_{0}=(x_{1},x_{2},dots ,x_{r})^{T}} и {displaystyle X_{1}=(x_{r+1},dots ,x_{n})^{T}}. Тогда первые r уравнений системы в матричном виде записываются так:

{displaystyle C_{0}X_{0}+C_{1}X_{1}=0}

Поскольку матрица C_{0} обратима, любому значению X_{1} соответствует единственный вектор {displaystyle X_{0}=-C_{0}^{-1}C_{1}X_{1}}, удовлетворяющий этим уравнениям. Покажем, что при этом остальные уравнения будут выполнены автоматически. Пусть {displaystyle j>r}.

Введём две матрицы:

{displaystyle D_{1}={begin{pmatrix}c_{11}&dots &c_{1r}&c_{1r+1}x_{r+1}+dots +c_{1n}x_{n}\c_{21}&dots &c_{2r}&c_{2r+1}x_{r+1}+dots +c_{2n}x_{n}\dots &dots &dots &dots dots dots dots \c_{r1}&dots &c_{rr}&c_{rr+1}x_{r+1}+dots +c_{rn}x_{n}\c_{j1}&dots &c_{jr}&c_{jr+1}x_{r+1}+dots +c_{jn}x_{n}\end{pmatrix}}} и {displaystyle D_{2}={begin{pmatrix}c_{11}&dots &c_{1r}&c_{1r+1}x_{r+1}+dots +c_{1n}x_{n}\c_{21}&dots &c_{2r}&c_{2r+1}x_{r+1}+dots +c_{2n}x_{n}\dots &dots &dots &dots dots dots dots \c_{r1}&dots &c_{rr}&c_{rr+1}x_{r+1}+dots +c_{rn}x_{n}\c_{j1}&dots &c_{jr}&-(c_{j1}x_{1}+dots +c_{jr}x_{r})\end{pmatrix}}}.

У матрицы D_{1} все столбцы являются частями столбцов из матрицы C, а последний столбец есть линейная комбинация столбцов матрицы C с коэффициентами {displaystyle x_{r+1},dots ,x_{n}}, поэтому в силу линейности определителя по столбцам {displaystyle det D_{1}} есть линейная комбинация определителей миноров матрицы C размера {displaystyle (r+1)times (r+1)}. Так как C_{0} — максимальный по размеру невырожденный минор, все миноры большего размера имеют нулевой определитель, поэтому {displaystyle det D_{1}=0}.

Из соотношения {displaystyle C_{0}X_{0}+C_{1}X_{1}=0} следует, что {displaystyle D_{2}Y=0}, где столбец {displaystyle Y=(x_{1},dots ,x_{r},1)^{T}neq 0}. Поэтому {displaystyle det D_{2}=0}.

Тогда {displaystyle 0=det D_{1}-det D_{2}=(det C_{0})cdot (c_{j1}x_{1}+c_{j2}x_{2}+dots +c_{jn}x_{n})}. И так как {displaystyle det C_{0}neq 0}, то j-ое уравнение системы тоже выполнено.

Данная теорема используется, в частности, для нахождения собственных значений и собственных векторов матриц.

Критерий полноты и линейной независимости системы векторов[править | править код]

Тесно связанными с понятием определителя является понятие линейной зависимости и полноты систем векторов в векторном пространстве.

Пусть R — поле, V — векторное пространство над R с конечным базисом {displaystyle {vec {e_{1}}},{vec {e_{2}}},dots ,{vec {e_{n}}}}. Пусть задан ещё набор из n векторов {displaystyle {vec {v_{1}}},{vec {v_{2}}},dots ,{vec {v_{n}}}}. Их координатами {displaystyle v_{ij}} относительно заданного базиса являются коэффициенты разложения {displaystyle {vec {v_{i}}}=sum v_{ij}{vec {e_{j}}}}. Составим (квадратную) матрицу {displaystyle A=(v_{ij})}. Справедлива теорема:

Теорема (Критерий полноты и линейной независимости системы векторов).

(1) Система векторов {displaystyle {vec {v_{1}}},{vec {v_{2}}},dots ,{vec {v_{n}}}} линейно зависима тогда и только тогда, когда det A=0.
(2) Система векторов {displaystyle {vec {v_{1}}},{vec {v_{2}}},dots ,{vec {v_{n}}}} полна, тогда и только тогда, когда матрица A не вырождена (det Aneq 0).

Доказательство

(1) Доказательство основано на том, что вектор {displaystyle sum x_{i}{vec {v_{i}}}} имеет столбец координат, равный {displaystyle AX}, где {displaystyle X=(x_{1},x_{2},dots ,x_{n})^{T}}.

Если {displaystyle sum x_{i}{vec {v_{i}}}=0}, то AX=0. Тогда {displaystyle (det A)cdot X=0} и если X отличен от нуля, то det A=0.

Обратно, если det A=0, существует ненулевой столбец X, такой что AX=0. Это означает, что {displaystyle sum x_{i}{vec {v_{i}}}=0}.

(2) Если матрица A не вырождена, она обратима. Пусть {vec  {u}} — произвольный вектор, {displaystyle Y=(y_{1},y_{2},dots ,y_{n})^{T}} — столбец его координат, {displaystyle X=A^{-1}Y=(x_{1},x_{2},dots ,x_{n})^{T}}. Тогда {displaystyle {vec {u}}=sum x_{i}{vec {v_{i}}}}. Таким образом, произвольный вектор разложим по системы векторов {displaystyle {vec {v_{1}}},{vec {v_{2}}},dots ,{vec {v_{n}}}}, что означает её полноту.

Обратно, пусть матрица A вырождена. Тогда существует ненулевая строка коэффициентов {displaystyle C=(c_{1},c_{2},dots ,c_{n})}, такая, что {displaystyle CA=0}. Это значит, что любой вектор {displaystyle {vec {u}}=sum x_{i}{vec {v_{i}}}}, разложимый по системе векторов {displaystyle {vec {v_{1}}},{vec {v_{2}}},dots ,{vec {v_{n}}}}, удовлетворяет ограничению {displaystyle c_{1}x_{1}+c_{2}x_{2}+dots +c_{n}x_{n}=0}. Если какой-то коэффициент c_{k} отличен от нуля, то базисный вектор {displaystyle {vec {e_{k}}}} не разложим по этой системе векторов, и значит, она не полна.

Следствие. В векторном пространстве V, обладающем конечным базисом из n векторов:

(1) всякая система, состоящая менее, чем из n векторов, не полна;
(2) всякая система, состоящая более, чем из n векторов, линейно зависима;
(3) всякий базис пространства V содержит ровно n векторов.

Таким образом, размерность векторного пространства V с конечным базисом корректно определена.

Некоторые специальные свойства определителей[править | править код]

  • Определитель матрицы равен произведению её собственных значений.
  • Если квадратная матрица выражает линейное преобразование, то её определитель не меняется при замене базиса линейного пространства.

Алгоритмическая реализация[править | править код]

  • Прямые методы вычисления определителя могут быть основаны непосредственно на его определении, как суммы по перестановкам, или на разложении Лапласа по определителям меньшего порядка. Однако такие методы очень неэффективны, так как требуют О(n!) операций для вычисления определителя n-го порядка. В то же время они универсальны, применимы в тех случаях, когда элементы матрицы не являются числами (функции, многочлены, дифференциальные формы чётной степени и т. д.), и не требуют выполнения операций деления.
  • Можно вычислить определитель и выполнив меньшее количество операций умножения; точнее, можно для матрицы ntimes n обойтись лишь количеством слагаемых, равным количеству разбиений числа n вместо n!, например 5 вместо 6 для 3times3[6]:
    {displaystyle {begin{vmatrix}a_{11}&a_{12}&a_{13}\a_{21}&a_{22}&a_{23}\a_{31}&a_{32}&a_{33}end{vmatrix}}=(a_{11}+a_{12})(a_{21}+a_{23})(a_{31}+a_{32})-a_{12}a_{21}(a_{31}+a_{32}+a_{33})-a_{13}(a_{21}+a_{22}+a_{23})a_{31}-(a_{11}+a_{12}+a_{13})a_{23}a_{32}+a_{11}a_{22}a_{33}}.
  • Один из наиболее быстрых численных методов вычисления определителя заключается в простой модификации метода Гаусса. Следуя методу Гаусса, произвольную матрицу A можно привести к ступенчатому виду (Верхнетреугольная матрица), используя лишь две следующие операции над матрицей — перестановку двух строк и добавление к одной из строк матрицы другой строки, умноженной на произвольное число. Из свойств определителя следует, что вторая операция не изменяет определителя матрицы, а первая лишь меняет его знак на противоположный. Определитель матрицы, приведённой к ступенчатому виду, равен произведению элементов на её диагонали, так как она является треугольной, поэтому определитель исходной матрицы равен:
    {displaystyle det A=(-1)^{s}cdot det A_{mbox{ref}},}
где s — число перестановок строк, выполненных алгоритмом, а A_{mbox{ref}} — ступенчатая форма матрицы A, полученная в результате работы алгоритма. Сложность этого метода, как и метода Гаусса, составляет O(n^{3}), для его реализации необходимо использование операции деления.
  • Определитель можно вычислить, зная LU-разложение матрицы. Если A=LU, где L и U — треугольные матрицы, то det A=(det L)(det U). Определитель треугольной матрицы равен просто произведению её диагональных элементов.
  • Если доступен алгоритм, выполняющий умножение двух матриц порядка n за время M(n), где M(n)geqslant n^{a}, для некоторого a>2, то определитель матрицы порядка n может быть вычислен за время O(M(n)).[7] В частности это означает, что, используя для умножения матриц алгоритм Копперсмита — Винограда, определитель можно вычислить за время O(n^{2.376}).

Специальные виды определителей[править | править код]

  • Определитель Вронского (Вронскиан)
  • Определитель Вандермонда
  • Определитель Грама
  • Определитель Якоби (Якобиан)

См. также[править | править код]

  • Циркулянт
  • Перманент
  • Пфаффиан
  • Результант

Примечания[править | править код]

  1. Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — 13-е изд., исправленное. — М.: Наука, 1986.
  2. Э. И. Березкина. Математика древнего Китая. — М.: Наука, 1980.
  3. H. W. Eves. An Introduction to the History of Mathematics. — Saunders College Publishing, 1990.
  4. Скорняков Л. А. Элементы алгебры. — М.: Наука, 1986. — С. 16-23. — Тираж 21 000 экз.
  5. Определитель матрицы и геометрический смысл определителя матрицы (рус.). Математика для всех.
  6. Houston, Robin; Goucher, Adam P. & Johnston, Nathaniel (2023), A New Formula for the Determinant and Bounds on Its Tensor and Waring Ranks, arΧiv:2301.06586 [math.CO].
  7. J. R. Bunch and J.E. Hopcroft. Triangular factorization and inversion by fast matrix multiplication, Mathematics of Computation, 28 (1974) 231—236.

Литература[править | править код]

  • В. А. Ильин, Э. Г. Позняк Линейная алгебра, М.: Наука — Физматлит, 1999.
  • Беклемишев Д. В. Курс аналитической геометрии и линейной алгебры. М.: Физматлит, 2000.
  • Кострикин А. И. Введение в алгебру. Часть 1. Основы алгебры: Учебник для вузов. М.: Физматлит, 2004.
  • Боревич З. И. Определители и матрицы. – М.: Наука, 1988.

Определитель матрицы: алгоритм и примеры вычисления определителя матрицы

Перед тем как находить и считать определитель, дадим определение определителю матрицы. 

Определение 1

Что такое определитель матрицы или детерминант матрицы? Определитель матрицы — это некоторое число, с которым можно сопоставить любую квадратную матрицу А=(aij)n×n. 

|А|, ∆, det A – символы, которыми обозначают определитель матрицы.

Как найти определитель матрицы? Вычислить определитель или найти определитель можно с помощью разных способов (в том числе онлайн и при помощи калькулятора). Конкретный способ поиска и того, как решать, выбирают в зависимости от порядка матрицы.

Пример 1​​​​​

Определитель матрицы второго порядка можно вычислять по формуле:

А=1-231.

Решение матрицы:

det A=1-231=1×1-3×(-2)=1+6=7

Определитель матрицы 3-го порядка: правило треугольника 

Нахождение определителя матрицы 3-го порядка осуществляется по одному из правил:

  • он может считаться по правилу треугольника;
  • расчет также проводится по правилу Саррюса.

Как найти определитель матрицы третьего порядка по методу треугольника (определитель матрицы 3×3)?

а11а12а13а21а22а23а31а32а33=a11×a22×a33+a31×a12×a23+a21×a32×a13-a31×a22×a13-a21×a12×a33-a11×a23×a32

Пример 2

А=13402115-1

Решение:

det A=13402115-1=1×2×(-2)+1×3×1+4×0×5-1×2×4-0×3×(-1)-5×1×1=(-2)+3+0-8-0-5=-12

Правило Саррюса

Чтобы вычислить определитель по методу Саррюса, необходимо учесть некоторые условия и выполнить следующие действия:

  • дописать слева от определителя два первых столбца;
  • перемножить элементы, которые расположены на главной диагонали и параллельных ей диагоналях, взяв произведения со знаком «+»;
  • перемножить элементы, которые расположены на побочных диагоналях и параллельных им, взяв произведения со знаком «—».

а11а12а13а21а22а23а31а32а33=a11×a22×a33+a31×a12×a23+a21×a32×a13-a31×a22×a13-a21×a12×a33-a11×a23×a32

Пример 3

А=134021-25-11302-25=1×2×(-1)+3×1×(-2)+4×0×5-4×2×(-2)-1×1×5-3×0×(-1)=-2-6+0+16-5-0=3

Методы разложения по элементам строки и столбца

Чтобы вычислить определитель матрицы четвертого порядка, можно воспользоваться одним из 2-х способов:

  • разложением по элементам строки;
  • разложением по элементам столбца.

Представленные способы определяют вычисление определителя n как вычисление определителя порядка n-1 за счет представления определителя суммой произведений элементов строки (столбца) на их алгебраические дополнения.

Пример 4

Разложение матрицы по элементам строки:

det A=ai1×Ai1+ai2×Ai2+…+аin×Аin

Разложение матрицы по элементам столбца:

det A=а1i×А1i+а2i×А2i+…+аni×Аni

Замечание

Если раскладывать матрицу по элементам строки (столбца), необходимо выбирать строку (столбец), в которой(-ом) есть нули.

Пример 5

А=01-132100-24513210

Решение:

  • раскладываем по 2-ой строке:

А=01-132100-24513210=2×(-1)3×1-13-251310=-2×1-13451210+1×0-13-251310

  • раскладываем по 4-му столбцу:

А=01-132100-24513210=3×(-1)5×210-245321+1×(-1)7×01-1210321=-3×210-245321-1×01-1210321

Свойства определителя

Свойства определителя:

  • если преобразовывать столбцы или строки незначительными действиями, то это не влияет на значение определителя;
  • если поменять местами строки и столбцы, то знак поменяется на противоположный;
  • определитель треугольной матрицы представляет собой произведение элементов, которые расположены на главной диагонали.
Замечание 

В рамках темы советуем обратиться к модулю определителя.

Пример 6

А=134021005

Решение:

det А=134021005=1×5×2=10

Замечание

Матричныый определитель, который содержит нулевой столбец, равный нулю (представляет собой минор).

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Determinant of a Matrix is defined as the function that gives the unique output (real number) for every input value of the matrix. the scalar value computed for a given square matrix. Determinant of the matrix is considered the scaling factor that is used for the transformation of a matrix. Determinant of a matrix is useful for finding the solution of a system of linear equations, the inverse of the square matrix, and others. The determinant of only square matrices exists.

Definition of Determinant of Matrix

Determinant of a Matrix is defined as the sum of products of the elements of any row or column along with their corresponding co-factors. Determinant is defined only for square matrices.

Determinant of any square matrix of order 2×2, 3×3, 4×4, or n × n, where n is the number of rows or the number of columns. (For a square matrix number of rows and columns are equal). Determinant can also be defined as the function which maps every matrix with the real numbers. 

For any set S of all square matrices, and R the set of all numbers the function f, f: S → R is defined as f (x) = y, where x ∈ S and y ∈ R, then f (x) is called the determinant of the input matrix.

Symbol of Determinant

Let’s take any square matrix A, then the determinant of A is denoted as det A (or) |A|. Determinant is also denoted by the symbol Δ.

Minor of Element of Matrix

Minor is required to find determinant for single elements (every element) of the matrix. They are the determinants for every element obtained by eliminating the rows and columns of that element. If the matrix given is:

Minor of a12 will be the determinant:

Question: Find the Minor of element 5 in the determinant 

Answer:

The minor of element 5 will be the determinant of 

Calculating the determinant, the minor is obtained as: 

(2 × 1) – (2 × 2) = -2

Cofactors of Element of Matrix

Cofactors are related to minors by a small formula, for an element aij, the cofactor of this element is Cij and the minor is Mij then, the cofactor can be written as: 

Cij = (-1)i+jMij

Question: Find the cofactor of the element placed in the first row and second column of the determinant:

Answer: 

In order to find out the cofactor of the first row and second column element i.e the cofactor for 1. First find out the minor for 1, which will be: 

M12 = 4

Now, applying the formula for cofactor: 

C12 = (-1)1 + 2M12

C12 = (-1)3 × 4

C12 = -4

Adjoint of a Matrix

The Adjoint of a matrix for order n can be defined as the transpose of its cofactors. For a matrix A:

Adj. A = [Cij]n×nT

Transpose of a Matrix

Transpose of a Matrix A is denoted as AT or A’. It is clear that the vertical side in the matrix is known as a column and the horizontal side is known as a row, Transposing a Matrix means replacing the Rows with columns and Vice-Versa, since the Rows and Columns are changing, the Order of the Matrix also changes.

 If a Matrix is given as A= [aij]m×n, then its Transpose will become

AT or A’ = [aji]n×m

Question: What will be the transpose of the Matrix A =

Answer: 

Interchanging Rows and Columns, AT

Determinant of a 1×1 Matrix

Let X = [a] be the matrix of order one, then its determinant is given by det(X) = a. 

Determinant of a 2×2 Matrix

The determinant of any 2×2 square matrix A = 
is calculated using the formula |A| = ad – bc

Example: Find the Determinant of A = 

Solution:

Determinant of A =   is calculated as,

| A | = 

| A | = 3×3 – 2×2 
       = 9 – 4 
       = 5

Physical Significance of Determinant

Consider a 2D matrix, each column of this matrix can be considered as a vector on the x-y plane.  So, the determinant between two vectors on a 2d plane gives us the area enclosed between them. If we extend this concept, in 3D the determinant will give us the volume enclosed between two vectors. 

Area enclosed between two vectors in 2D

Determinant of a 3×3 Matrix

Determinant of a 3×3 Matrix is determined by expressing it in terms of 2nd-order determinants. It can be expanded either along rows(R1, R2 or R3) or column(C1, C2 or C3). Consider a  matrix A of order 3×3 

A =   

For calculating the Determinant of 3×3 Matrix use the following step:

Step 1: Multiply the first element a11 of row R1 with (-1)(1 + 1)[(-1)sum of suffixes in a11] and with the second order determinant obtained by deleting the elements of row R1 and C1 of A as a11 lies in R1 and C1

Step 2: Similarly, multiply the second element of the first rowR1,  with the determinant obtained after deleting the first row and second column. 

Step 3: Multiply the third element of row R1 with the determinant obtained after deleting the first row and third column. 

Step 4: Now the expansion of the determinant of A, that is |A| can be written as |A| =  

Similarly, in this way, we can expand it along any row and any column. 

Example: Evaluate the determinant det(A) = 

Solution: 

We see that the third column has most number of zeros, so it will be easier to expand along that column. 

det(A) = 

Laplace Formula for Determinant

Laplace’s formula, is used to expressed the determinant of a matrix in terms of the minors of the matrix.

If  An×n is the given suare matrix and Cij is the cofactor of Aij the solving for any row i or column j

det (A) = 

Properties of Determinants

Various Properties of the Determinants of the square matrix are discussed below:

  • Reflection Property: Value of the determinant remains unchanged even after rows and columns are interchanged. That determinant of a matrix and its transpose remains the same.
  • Switching Property: If any two rows or columns of a determinant are interchanged, then the sign of the determinant changes.

Example: 

Solution:

det. A = [3×{(1×1)-(0×1)}]-[3×{(2×1)-(5×1)}]+[0×{(2×0)-(5×1)}]

= {3×(1-0)}-{3×(2-5)+0

= [3-{3(-3)}+0]

= (3+9)

=12

Now, Interchanging Row 1 with Row 2, determinant will be:

det. A = [2×{(3×1)-(0×0)}]-[1×{(3×1)-(5×0)}]+[1×{(3×0)-(5×3)}]

= (6-3-15)

= -12

  • Repetition Property/Proportionality Property: If any two rows or any two columns of a determinant are identical, then the value of the determinant becomes zero.
  • Scalar Multiple Property: If each element of a row (or a column) of a determinant is multiplied by a constant k, then its value gets multiplied by k
  • Sum Property: If some or all elements of a row or column can be expressed as the sum of two or more terms, then the determinant can also be expressed as the sum of two or more determinants.

Also, Check

  • Transpose of a Matrix
  • Inverse of a Matrix Formula

Solved Examples on Determinant of Matrix

Example 1: If x, y, and z are different. and A = , then show that 1 + xyz = 0. 

Solution: 

Using Sum Property

On solving this determinant and expanding it, 

A = (1 + xyz)(y- x)(z-y)(z-x) 

Since it’s given in the question, that all x, y and z have different values and A =0. So the only term that can be zero is 1 + xyz. 

Hence, 1 + xyz = 0

Example 2: Evaluate 

Solution: 

Using Scalar Multiple Property and Repetition Property

Example 3: Evaluate the determinant  

Solution: 

Using Proportionality Property

Two of the rows of the matrix are identical. 

So, 

FAQs on Determinant of Matrix

Question 1: What is meant by the determinant formula?

Answer:

For any 3×3 matrix A =  the shortcut formula for computing its determinant is: 

|A| = a (ei − fh) − b (di − fg) + c (dh − eg)

Question 2: Can determinant of any matrix be negative?

Answer:

Yes, the determinant of any matrix can be negative.

Question 3: Can determinant of any matrix ever be equal to 0?

Answer:

Yes, the determinant of any matrix can be zero if any one row or column of the matrix has all the zero values. It can also be zero if any two rows or columns of the matrix are equal.

Question 4: How to find the Determinant of Matrix?

Answer:

The determinant of any matrix can be found by using the following steps:

Step 1: Select any row or column of our choice.

Step 2: Calculate the cofactors of all the elements of the selected row or column

Step 3: The product of the elements of the row or column by their corresponding cofactors is found. The calculated product is added with alternate negative sign.

Определитель матрицы.

Навигация по странице:

  • Определение определителя матрицы
  • Свойства определителя матрицы
  • Методы вычисления определителя матрицы
    • Определитель матрицы 1×1
    • Определитель матрицы 2×2
    • Определитель матрицы 3×3
      • Правило треугольника для вычисления определителя матрицы 3-тего порядка
      • Правило Саррюса для вычисления определителя матрицы 3-тего порядка
    • Определитель матрицы произвольного размера
      • Разложение определителя по строке или столбцу
      • Приведение определителя к треугольному виду
      • Теорема Лапласа

Определитель матрицы или детерминант матрицы – это одна из основных численных характеристик квадратной матрицы, применяемая при решении многих задач.

Определение.

Определителем матрицы n×n будет число:

det(A) =  Σ (-1)N(α1,α2,…,αn)·aα11·aα22·…·aαnn
(α1,α2,…,αn)

где (α1,α2,…,αn) – перестановка чисел от 1 до n, N(α1,α2,…,αn) – число инверсий в перестановке, суммирование идёт по всем возможным перестановкам порядка n.

Обозначение

Определитель матрици A обычно обозначается det(A), |A|, или ∆(A).

Свойства определителя матрицы

  1. Определитель матрицы с двумя равными строками (столбцами) равен нулю.

  2. Определитель матрицы с двумя пропорциональными строками (столбцами) равен нулю.

  3. Определитель матрицы, содержащий нулевую строку (столбец), равен нулю.

  4. Определитель матрицы равен нулю если две (или несколько) строк (столбцев) матрицы линейно зависимы.

  5. При транспонировании значение определителя матрицы не меняется:

    det(A) = det(AT)

  6. Определитель обратной матрицы:

    det(A-1) = det(A)-1

  7. Определитель матрицы не изменится, если к какой-то его строке (столбцу) прибавить другую строку (столбец), умноженную на некоторое число.

  8. Определитель матрицы не изменится, если к какой-то его строке (столбцу) прибавить линейную комбинации других строк (столбцов).

  9. Если поменять местами две строки (столбца) матрицы, то определитель матрицы поменяет знак.

  10. Общий множитель в строке (столбце) можно выносить за знак определителя:

    a11a12a1n
    a21a22a2n
    ….
    k·ai1k·ai2k·ain
    ….
    an1an2ann

    =
    k·
    a11a12a1n
    a21a22a2n
    ….
    ai1ai2ain
    ….
    an1an2ann

  11. Если квадратная матрица n-того порядка умножается на некоторое ненулевое число, то определитель полученной матрицы равен произведению определителя исходной матрицы на это число в n-той степени:

    B = k·A   =>   det(B) = kn·det(A)

    где A матрица n×n, k – число.

  12. Если каждый элемент в какой-то строке определителя равен сумме двух слагаемых, то исходный определитель равен сумме двух определителей, в которых вместо этой строки стоят первые и вторые слагаемые соответственно, а остальные строки совпадают с исходным определителем:

    a11a12a1n
    a21a22a2n
    ….
    bi1 + ci1bi2 + ci2bin + cin
    ….
    an1an2ann

    =

    a11a12a1n
    a21a22a2n
    ….
    bi1bi2bin
    ….
    an1an2ann

    +

    a11a12a1n
    a21a22a2n
    ….
    ci1ci2cin
    ….
    an1an2ann

  13. Определитель верхней (нижней) треугольной матрицы равен произведению его диагональных элементов.

  14. Определитель произведения матриц равен произведению определителей этих матриц:

    det(A·B) = det(A)·det(B)

Методы вычисления определителя матрицы

Вычисление определителя матрицы 1×1

Правило:

Для матрицы первого порядка значение определителя равно значению элемента этой матрицы:

∆ = |a11| = a11

Вычисление определителя матрицы 2×2

Правило:

Для матрицы 2×2 значение определителя равно разности произведений элементов главной и побочной диагоналей:

∆ = 
a11 a12
a21 a22
 = a11·a22a12·a21

Пример 1.

Найти определитель матрицы A

Решение:

det(A) = 
5 7
-4 1
 = 5·1 – 7·(-4) = 5 + 28 = 33

Вычисление определителя матрицы 3×3

Правило треугольника для вычисления определителя матрицы 3-тего порядка

Правило:

Для матрицы 3×3 значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

∆ = 
a11 a12 a13
a21 a22 a23
a31 a32 a33
 =


a11·a22·a33 +
a12·a23·a31 +
a13·a21·a32
a13·a22·a31
a11·a23·a32
a12·a21·a33

Правило Саррюса для вычисления определителя матрицы 3-тего порядка

Правило:

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком “плюс”; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком “минус”:

∆ = 
a11 a12 a13 a11 a12
a21 a22 a23 a21 a22
a31 a32 a33 a31 a32
 =


a11·a22·a33 +
a12·a23·a31 +
a13·a21·a32
a13·a22·a31
a11·a23·a32
a12·a21·a33

Пример 2.

Найти определитель матрицы A =

571
-410
203

Решение:

det(A) =

571
-410
203

=
5·1·3 + 7·0·2 + 1·(-4)·0
1·1·25·0·07·(-4)·3 = 15 + 0 + 0 – 2 – 0 + 84 = 97

Вычисление определителя матрицы произвольного размера

Разложение определителя по строке или столбцу

Правило:

Определитель матрицы равен сумме произведений элементов строки определителя на их алгебраические дополнения:

n
det(A) =  Σ aij·Aij – разложение по i-той строке
j = 1

Правило:

Определитель матрицы равен сумме произведений элементов столбца определителя на их алгебраические дополнения:

n
det(A) =  Σ aij·Aij – разложение по j-тому столбцу
i = 1

При разложение определителя матрицы обычно выбирают ту строку/столбец, в которой/ом максимальное количество нулевых элементов.

Пример 3.

Найти определитель матрицы A

Решение: Вычислим определитель матрицы разложив его по первому столбцу:

det(A) = 
2 4 1
0 2 1
2 1 1
 =

= 2·(-1)1+1·

21
11

+ 0·(-1)2+1·

41
11

+ 2·(-1)3+1·

41
21

=

= 2·(2·1 – 1·1) + 2·(4·1 – 2·1) = 2·(2 – 1) + 2·(4 – 2) = 2·1 + 2·2 = 2 + 4 = 6

Пример 4.

Найти определитель матрицы A

Решение: Вычислим определитель матрицы, разложив его по второй строке (в ней больше всего нулей):

det(A) =

2411
0200
2113
4023

=

– 0·

411
113
023

+

211
213
423

241
213
403

+

241
211
402
=

= 2·(2·1·3 + 1·3·4 + 1·2·2 – 1·1·4 – 2·3·2 – 1·2·3) = 2·(6 +12 + 4 – 4 – 12 – 6) = 2·0 = 0

Приведение определителя к треугольному виду

Правило:

Используя свойства определителя для элементарных преобразований над строками и столбцами 8 – 11, определитель приводится к треугольному виду, и тогда его значение будет равно произведению элементов стоящих на главной диагонали.

Пример 5.

Найти определитель матрицы A приведением его к треугольному виду

Решение:

det(A) =

2411
0210
2113
4023

Сначала получим нули в первом столбце под главной диагональю. Для этого отнимем от 3-тей строки 1-ую строку, а от 4-той строки 1-ую строку, умноженную на 2:

det(A) =

2411
0210
2 – 21 – 41 – 13 – 1
4 – 2·20 – 4·22 – 1·23 – 1·2

=

2411
0210
0-302
0-801

Получим нули во втором столбце под главной диагональю. Для этого поменяем местами 2-ой и 3-тий столбцы (при этом детерминант сменит знак на противоположный):

det(A) = –

2141
0120
00-32
00-81

Получим нули в третьем столбце под главной диагональю. Для этого к 3-ему столбцу добавим 4-тий столбец, умноженный на 8:

det(A) = –

214 + 1·81
012 + 0·80
00-3 + 2·82
00-8 + 1·81

=

21121
0120
00132
0001
= -2·1·13·1 = -26

Теорема Лапласа

Теорема:

Пусть ∆ – определитель n-ого порядка. Выберем в нем произвольные k строк (столбцов), причем k < n. Тогда сумма произведений всех миноров k-ого порядка, которые содержатся в выбранных строках (столбцах), на их алгебраические дополнения равна определителю.

Автор статьи

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Любой квадратной матрице $A=left(a_{ij} right)_{ntimes n} $ можно сопоставить некоторое число, которое будем называть определителем данной матрицы (детерминант).

Для обозначения определителя матрицы используют следующие символы: $|A|,, Delta $ или $det A$.

В зависимости от порядка матрицы различают несколько способов вычисления определителя.

Определитель матрицы 2-го порядка можно вычислить по формуле:

Пример 1

Дана матрица $A=left(begin{array}{cc} {1} & {-2} \ {3} & {1} end{array}right)$. Найти определитель.

Решение:

[det A=left|begin{array}{cc} {1} & {-2} \ {3} & {1} end{array}right|=1cdot 1-3cdot (-2)=1+6=7]

Для нахождения определителя матрицы 3-го порядка можно использовать одно из двух правил:

  • правило треугольника;
  • правило Саррюса.

Определитель матрицы 3-го порядка с помощью правила треугольника вычисляется по формуле:

[left|begin{array}{ccc} {a_{11} } & {a_{12} } & {a_{13} } \ {a_{21} } & {a_{22} } & {a_{23} } \ {a_{31} } & {a_{32} } & {a_{33} } end{array}right|=]

[=a_{11} cdot a_{22} cdot a_{33} +a_{31} cdot a_{12} cdot a_{23} +a_{21} cdot a_{32} cdot a_{13} -a_{31} cdot a_{22} cdot a_{13} -a_{21} cdot a_{12} cdot a_{33} -a_{11} cdot a_{23} cdot a_{32} ]

Для лучшего запоминания правила треугольника можно пользоваться следующей схемой:

Для лучшего запоминания правила треугольника

Пример 2

Дана матрица $A=left(begin{array}{ccc} {1} & {3} & {4} \ {0} & {2} & {1} \ {1} & {5} & {-1} end{array}right)$. Найти определитель.

Решение:

[begin{array}{l} {det A=left|begin{array}{ccc} {1} & {3} & {4} \ {0} & {2} & {1} \ {1} & {5} & {-1} end{array}right|=1cdot 2cdot (-1)+1cdot 3cdot 1+4cdot 0cdot 5-1cdot 2cdot 4-0cdot 3cdot (-1)-5cdot 1cdot 1=} \ {=-2+3+0-8-0-5=-12} end{array}]

Для вычисления определителя по правилу Саррюса необходимо выполнить следующие действия:

  • дописать слева от определителя для первых столбца;
  • перемножить элементы, расположенные на главной диагонали и параллельных ей диагоналях, взяв произведения со знаком «+»;
  • перемножить элементы побочной диагонали и параллельных ей диагоналей, взяв произведения со знаком «-»

[left|begin{array}{ccc} {a_{11} } & {a_{12} } & {a_{13} } \ {a_{21} } & {a_{22} } & {a_{23} } \ {a_{31} } & {a_{32} } & {a_{33} } end{array}right|=]

[=a_{11} cdot a_{22} cdot a_{33} +a_{12} cdot a_{23} cdot a_{31} +a_{13} cdot a_{21} cdot a_{32} -a_{13} cdot a_{22} cdot a_{31} -a_{11} cdot a_{23} cdot a_{32} -a_{12} cdot a_{21} cdot a_{33} ]

Для лучшего запоминания правила треугольника можно пользоваться следующей схемой:

Для лучшего запоминания правила треугольника

«Определитель матрицы и его вычисление» 👇

Пример 3

Дана матрица $A=left(begin{array}{ccc} {1} & {3} & {4} \ {0} & {2} & {1} \ {-2} & {5} & {-1} end{array}right)$. Найти определитель.

Решение:

[begin{array}{l} {A=left|begin{array}{ccc} {1} & {3} & {4} \ {0} & {2} & {1} \ {-2} & {5} & {-1} end{array}right|, , , begin{array}{c} {1} \ {0} \ {-2} end{array}, , , , begin{array}{c} {3} \ {2} \ {5} end{array}=1cdot 2cdot (-1)+3cdot 1cdot (-2)+4cdot 0cdot 5-4cdot 2cdot (-2)-1cdot 1cdot 5-3cdot 0cdot (-1)=} \ {=-2-6+0+16-5-0=3} end{array}]

Для вычисления определителя матрицы 4-го порядка и выше можно использовать один из двух способов:

  • разложение по элементам строки;
  • разложение по элементам столбца.

Данные способы сводят вычисление определителя порядка $n$ к вычислению определителя порядка $n-1$ за счет представления определителя суммой произведений элементов строки (столбца) на их алгебраические дополнения.

Разложение определителя матрицы по элементам строки в общем виде можно записать по формуле:

[det A=a_{i1} cdot A_{i1} +a_{i2} cdot A_{i2} +…+a_{in} cdot A_{in} ]

Разложение определителя матрицы по элементам столбца в общем виде можно записать по формуле:

[det A=a_{1j} cdot A_{1j} +a_{2j} cdot A_{2j} +…+a_{nj} cdot A_{nj} ]

Замечание 1

При разложении определителя по элементам строки (столбца) желательно выбирать строку (столбец), в которой(-ом) есть нули.

Пример 3

Дана матрица $A=left(begin{array}{cccc} {0} & {1} & {-1} & {3} \ {2} & {1} & {0} & {0} \ {-2} & {4} & {5} & {1} \ {3} & {2} & {1} & {0} end{array}right)$. Записать разложение определителя по произвольной строке (столбцу).

Решение:

  • разложение по второй строке:
  • [A=left|begin{array}{cccc} {0} & {1} & {-1} & {3} \ {2} & {1} & {0} & {0} \ {-2} & {4} & {5} & {1} \ {3} & {2} & {1} & {0} end{array}right|=2cdot (-1)^{3} cdot left|begin{array}{ccc} {1} & {-1} & {3} \ {4} & {5} & {1} \ {2} & {1} & {0} end{array}right|+1cdot (-1)^{4} cdot left|begin{array}{ccc} {0} & {-1} & {3} \ {-2} & {5} & {1} \ {3} & {1} & {0} end{array}right|=-2cdot left|begin{array}{ccc} {1} & {-1} & {3} \ {4} & {5} & {1} \ {2} & {1} & {0} end{array}right|+1cdot left|begin{array}{ccc} {0} & {-1} & {3} \ {-2} & {5} & {1} \ {3} & {1} & {0} end{array}right|]

  • разложение по четвертому столбцу:
  • [A=left|begin{array}{cccc} {0} & {1} & {-1} & {3} \ {2} & {1} & {0} & {0} \ {-2} & {4} & {5} & {1} \ {3} & {2} & {1} & {0} end{array}right|=3cdot (-1)^{5} cdot left|begin{array}{ccc} {2} & {1} & {0} \ {-2} & {4} & {5} \ {3} & {2} & {1} end{array}right|+1cdot (-1)^{7} cdot left|begin{array}{ccc} {0} & {1} & {-1} \ {2} & {1} & {0} \ {3} & {2} & {1} end{array}right|=-3cdot left|begin{array}{ccc} {2} & {1} & {0} \ {-2} & {4} & {5} \ {3} & {2} & {1} end{array}right|-1cdot left|begin{array}{ccc} {0} & {1} & {-1} \ {2} & {1} & {0} \ {3} & {2} & {1} end{array}right|]

Свойства определителя:

  • элементарные преобразования строк (столбцов) матрицы не меняют значения определителя;
  • перестановка строк (столбцов) меняет знак определителя на противоположный (c «+» на «-» и наоборот);
  • определитель треугольной матрицы находится как произведение элементов, которые расположены на главной диагонали.

Пример 4

Дана матрица $A=left(begin{array}{ccc} {1} & {3} & {4} \ {0} & {2} & {1} \ {0} & {0} & {5} end{array}right)$. Найти определитель.

Решение:

[det A=left|begin{array}{ccc} {1} & {3} & {4} \ {0} & {2} & {1} \ {0} & {0} & {5} end{array}right|=1cdot 2cdot 5=10]

Замечание 2

Определитель матрицы, содержащей нулевую строку, равен нулю.

Замечание 3

Определитель матрицы, содержащей нулевой столбец, равен нулю.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Добавить комментарий