Как найти определители при неизвестных

  1. Определители и системы линейных уравнений

1.1.
Системы двух линейных уравнений и
определители второго порядка

Рассмотрим
систему двух линейных уравнений с двумя
неизвестными:

Коэффициенты

при неизвестных
и
имеют два индекса: первый указывает
номер уравнения, второй – номер
переменной.

Главным
определителем системы называется
таблица, составленная из коэффициентов
при неизвестных и заключенная в прямые
скобки:

Вспомогательным
определителем называют определитель,
полученный из главного определителя
заменой одного из столбцов на столбец
свободных членов:

Главнаядиагональ определителя – это диагональ,
направленная из левого верхнего угла
в правый нижний угол. Вторая диагональ
называетсяпобочной.

Определитель
второго порядка равен разности между
произведением элементов главной
диагонали и произведением элементов
побочной диагонали:

Правило
Крамера:
Решение системы находят
путем деления вспомогательных
определителей на главный определитель
системы

,

Замечание
1.
Использование правила Крамера
возможно, если определитель системы
не равен нулю.

Замечание
2.
Формулы Крамера обобщаются и на
системы большего порядка.

Пример
1.
Решить систему:
.

Решение.

;

;

;

Проверка:

Вывод:
Система решена верно:
.

1.2. Системы трех линейных уравнений и определители третьего порядка

Рассмотрим
систему трех линейных уравнений с тремя
неизвестными:

Определитель,
составленный из коэффициентов при
неизвестных, называется определителем
системы или главным определителем:

.

Если

то система имеет единственное решение,
которое определяется по формулам
Крамера:

где

где
определители
– называются вспомогательными и
получаются из определителя
путем замены его первого, второго или
третьего столбца столбцом свободных
членов системы.

Пример
2.
Решить систему
.

Сформируем
главный и вспомогательные определители:

Осталось
рассмотреть правила вычисления
определителей третьего порядка. Их три:
правило дописывания столбцов, правило
Саррюса, правило разложения.

а)
Правило дописывания первых двух столбцов
к основному определителю:

.

Вычисление
проводятся следующим образом: со своим
знаком идут произведения элементов
главной диагонали и по параллелям к
ней, с обратным знаком берут произведения
элементов побочной диагонали и по
параллелям к ней.

б)
Правило Саррюса:

Со
своим знаком берут произведения элементов
главной диагонали и по параллелям к
ней, причем недостающий третий элемент
берут из противоположного угла. С
обратным знаком берут произведения
элементов побочной диагонали и по
параллелям к ней, третий элемент берут
из противоположного угла.

в)
Правило разложения по элементам строки
или столбца:

Определитель
равен сумме произведений элементов
какой-нибудь строки (столбца) на их
соответствующие алгебраические
дополнения.

Если

,
тогда
.

Алгебраическое
дополнение
– это определитель более
низкого порядка, получаемый путем
вычеркивания соответствующей строки
и столбца и учитывающий знак
,
где– номер строки,– номер столбца.

Например,

,

,
и т.д.

Вычислим
по этому правилу вспомогательные
определители
и
,
раскрывая их по элементам первой строки.

Вычислив
все определители, по правилу Крамера
найдем переменные:

Проверка:

Вывод:
система решена верно:
.

    1. Основные
      свойства определителей

Необходимо
помнить, что определитель – это число,
найденное по некоторым правилам. Его
вычисление может быть упрощено, если
пользоваться основными свойствами,
справедливыми для определителей любого
порядка.

Свойство
1.
Значение определителя не изменится
от замены всех его строк соответствующими
по номеру столбцами и наоборот.

Операция
замены строк столбцами называется
транспонированием. Из этого свойства
вытекает, что всякое утверждение,
справедливое для строк определителя,
будет справедливым и для его столбцов.

Свойство
2.
Если в определителе поменять
местами две строки (столбца), то знак
определителя поменяется на противоположный.

Свойство
3.
Если все элементы какой-нибудь
строки определителя равны 0, то определитель
равен 0.

Свойство
4.
Если элементы строки определителя
умножить (разделить) на какое-нибудь
число
,
то и значение определителя увеличится
(уменьшится) в
раз.

Если
элементы какой-нибудь строки, имеют
общий множитель, то его можно вынести
за знак определителя.

Свойство
5.
Если определитель имеет две
одинаковые или пропорциональные строки,
то такой определитель равен 0.

Свойство
6.
Если элементы какой-нибудь строки
определителя представляют собой сумму
двух слагаемых, то определитель равен
сумме двух определителей.

Свойство
7.
Значение определителя не изменится,
если к элементам какой-нибудь строки
добавить элементы другой строки,
умноженной на одно и то же число.

В
этом определителе вначале ко второй
строке прибавили третью, умноженную на
2, затем из третьего столбца вычли второй,
после чего вторую строку прибавили к
первой и третьей, в результате получили
много нулей и упростили подсчет.

Элементарными
преобразованиями определителя
называются упрощения его благодаря
использованию указанных свойств.

Пример
1.
Вычислить определитель

Непосредственный
подсчет по одному из рассмотренных выше
правил приводит к громоздким вычислениям.
Поэтому целесообразно воспользоваться
свойствами:

а)
из І строки вычтем вторую, умноженную
на 2;

б)
из ІІ строки вычтем третью, умноженную
на 3.

В
результате получаем:

Разложим
этот определитель по элементам первого
столбца, содержащего лишь один ненулевой
элемент.

.

    1. Системы
      и определители высших порядков

Систему

линейных уравнений с
неизвестными можно записать в таком
виде:

Для
этого случая также можно составить
главный и вспомогательные определители,
а неизвестные определять по правилу
Крамера. Проблема состоит в том, что
определители более высокого порядка
могут быть вычислены только путем
понижения порядка и сведения их к
определителям третьего порядка. Это
может быть осуществлено способом прямого
разложения по элементам строк или
столбцов, а также с помощью предварительных
элементарных преобразований и дальнейшего
разложения.

Пример
4.
Вычислить определитель четвертого
порядка

Решение
найдем двумя способами:

а)
путем прямого разложения по элементам
первой строки:

б)
путем предварительных преобразований
и дальнейшего разложения

а)
из І строки вычтем ІІІ

б)
ІІ строку прибавим к ІV

а)
из IV строки вынесем 2

б)
сложим III и IV столбцы

в)
умножим на 2 III столбец и прибавим ко
II

Пример
5.
Вычислить определитель пятого
порядка, получая нули в третьей строке
с помощью четвертого столбца

из
первой строки вычтем вторую, из третьей
вычтем вторую, из четвертой вычтем
вторую, умноженную на 2.

из
второго столбца вычтем третий:

из
второй строки вычтем третью:

Пример
6.
Решить систему:

Решение.Составим определитель системы и, применив
свойства определителей, вычислим его:

(из
первой строки вычтем третью, а затем в
полученном определителе третьего
порядка из третьего столбца вычитаем
первый, умноженный на 2). Определитель

,
следовательно, формулы Крамера применимы.

Вычислим
остальные определители:

Четвертый
столбец умножили на 2 и вычли из остальных

Четвертый
столбец вычли из первого, а затем, умножив
на 2, вычли из второго и третьего столбцов.

.

Здесь
выполнили те же преобразования, что и
для
.

.

При
нахождении
первый столбец умножили на 2 и вычли из
остальных.

По
правилу Крамера имеем:

.

После
подстановки в уравнения найденных
значений убеждаемся в правильности
решения системы.

2.
МАТРИЦЫ и
ИХ
ИСПОЛЬЗОВАНИЕ

В
РЕШЕНИИ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Содержание:

Методы решения систем линейных алгебраических уравнений (СЛАУ)

Метод Крамера

Определение: Системой линейных алгебраических уравнений (СЛАУ) называется выражение

Определение: Определитель, составленный из коэффициентов при неизвестных, называется главным определителем системы

Крамер предложил следующий метод решения СЛАУ: умножим главный определитель на для этого умножим все элементы первого столбца на эту неизвестную:

Второй столбец умножим на третий столбец – на -ый столбец – на и все эти произведения прибавим к первому столбцу, при этом произведение не изменится:

Согласно записи СЛАУ первый столбец получившегося определителя представляет собой столбец свободных коэффициентов, т.е.

Определение: Определитель называется первым вспомогательным определителем СЛАУ.

Поступая аналогично тому, как описано выше, найдем все вспомогательные определители СЛАУ:

31. Для того чтобы найти вспомогательный определитель i, надо в главном определителе СЛАУ заменить столбец i на столбец свободных коэффициентов.

Определение: Полученные выше соотношения называются формулами Крамера. Используя формулы Крамера, находят неизвестные величины Проанализируем полученные формулы:

Пример:

Решить СЛАУ методом Крамера

Решение:

Прежде всего, обращаем внимание на то, что в последнем уравнении переменные записаны в неправильном порядке, в этом случае говорят, что СЛАУ записана в ненормализованном виде. Нормализуем СЛАУ, для чего запишем неизвестные в последнем уравнении системы в правильном порядке, чтобы одноименные неизвестные были записаны друг под другом

Найдем главный определитель СЛАУ (раскрываем по первой строке)

Так как главный определитель системы отличен от нуля, то СЛАУ имеет единственное решение. Найдем три вспомогательных определителя

Воспользуемся формулами Крамера

Замечание: После нахождения решения СЛАУ надо обязательно провести проверку, для чего найденные числовые значения неизвестных подставляется в нормализованную систему линейных алгебраических уравнений.

Выполним проверку Отсюда видно, что СЛАУ решена верно.

Матричный способ решения СЛАУ

Для решения СЛАУ матричным способом введем в рассмотрение матрицу, составленную из коэффициентов при неизвестных матpицы-столбцы неизвестных и свободных коэффициентов

Тогда СЛАУ можно записать в матричном виде Матричный способ решения СЛАУ состоит в следующем: умножим слева матричное уравнение на обратную матрицу к матрице А, получим в силу того, что произведение найдем Таким образом, для нахождения неизвестных матричным способом, надо найти обратную к А матрицу после чего надо умножить эту матрицу на матрицу-столбец свободных коэффициентов.

Пример:

Решить СЛАУ матричным способом

Решение:

Введем в рассмотрение следующие матрицы

Найдем матрицу (см. Лекцию № 2): найдем детерминант матрицы А.

Пример:

Решение:

Найдем алгебраические дополнения всех элементов Запишем обратную матрицу (в правильности нахождения обратной матрицы убедиться самостоятельно). Подействуем пай денной матрицей на матрицу-столбец свободных коэффициентов В:

Отсюда находим, что х = 1; y = l; z = l.

Метод Гаусса

Метод Гаусса или метод исключения неизвестных состоит в том, чтобы за счет элементарных преобразований привести СЛАУ к треугольному виду. Покажем использование расширенной матрицы, составленной из коэффициентов при неизвестных и расширенной за счет столбца свободных коэффициентов, для приведения СЛАУ к треугольному виду на примере системы, рассматриваемой в этой лекции. Расширенная матрица для СЛАУ имеет вид:

Замечание: В методе Гаусса желательно, чтобы первая строка расширенной матрицы начиналась с единицы.

Обменяем в расширенной матрице первую и вторую строки местами, получим Приведем матрицу к треугольному виду, выполнив следующие преобразования: умножим элементы первой строки на (-2) и прибавим к соответствующим элементам второй строки Разделим все элементы второй строки на (-5), получим эквивалентную матрицу

Умножим элементы первой строки на (—1) и прибавим к соответствующим элементам третьей строки Разделим все элементы третьей строки на (-3), получим Таким образом, эквивалентная СЛАУ имеет вид (напомним, что первый столбец это коэффициенты при неизвестной х, второй – при неизвестной у, третий – при неизвестной z, а за вертикальной чертой находится столбец свободных коэффициентов):

Из первого уравнения находим, что х = 1.

Вывод: Из вышеизложенного материала следует, что вне зависимости от

способа решения СЛАУ всегда должен получаться один и тот же ответ.

Замечание: После нахождения решения СЛАУ надо обязательно выполнить проверку, то есть подставить полученные значения неизвестных в заданную СЛАУ и убедиться в тождественности левой части всех равенств системы соответствующим правым частям. Отметим, что задание СЛАУ всегда верно, то есть, если проверка показывает нарушение оговоренной тождественности, то надо искать ошибку в проведенных вычислениях.

Ранг матрицы. Теорема Кронекера-Капелли

Определение: Рангом матрицы называется наивысший порядок отличного от нуля минора этой матрицы.

Если то среди всевозможных миноров этой матрицы есть хотя бы один минор порядка r, который отличен от нулю, а все миноры порядков больших, чем r, равны нулю.

При вычислении ранга необходимо начинать вычислять миноры 2 порядка, затем миноры 3 порядка и так далее, пока не будут найдены миноры, обращающиеся в нуль. Если все миноры порядка p равны нулю, то и все миноры, порядок которых больше p, равны нулю.

Пример:

Найти ранг матрицы

Решение:

Очевидно, что среди миноров второго порядка есть миноры отличные от нуля, например, среди миноров третьего порядка также есть миноры, которые не равны нулю, например, Очевидно, что определитель четвертого порядка равен нулю, так как он будет содержать строку, состоящую из одних нулей (см. свойство для определителей). Следовательно, ранг матрицы А равен 3.

Теорема Кронекера-Капелли (критерий совместности СЛАУ). Для совместности системы линейных алгебраических уравнений (СЛАУ) необходимо и достаточно, чтобы ранг расширенной матрицы совпадал с рангом основной матрицы, составленной из коэффициентов при неизвестных величинах.

Следствия из теоремы Кронекера – Капелли

Следствие: Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение (то есть она определенная).

Следствие: Если ранг матрицы совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений (т.е. она неопределенная).

В случае неопределенной системы решения ищут следующим образом: выбираются главные неизвестные, число которых равно рангу, а остальные неизвестные считаются свободными; далее главные неизвестные выражаются через свободные и получают множество решений, зависящих от свободных неизвестных. Это множество решений называется общим решением системы. Придавая свободным неизвестным различные произвольные значения, получим бесчисленное множество решений, каждое из которых называется частным решением системы.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Скалярное произведение и его свойства
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Матричный метод
  • Экстремум функции

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Метод Крамера – теорема, примеры решений

Метод Крамера часто применяется для систем линейных алгебраических уравнений (СЛАУ). Этот способ решения один из самых простых. Как правило, данный метод применяется только для тех систем, где по количеству неизвестных столько же, сколько и уравнений. Чтобы получилось решить уравнение, главный определитель матрицы не должен равняться нулю.

Габриель Крамер – математик, создатель одноименного метода решения систем линейных уравнений

Габриель Крамер – известный математик, который родился 31 июля 1704 года. Ещё в детстве Габриель поражал своими интеллектуальными способностями, особенно в области математики. Когда Крамеру было 20 лет, он устроился в Женевский университет штатным преподавателем.

Во время путешествия по Европе Габриель познакомился с математиком Иоганном Бернулли, который и стал его наставником. Только благодаря Иоганну, Крамер написал много статей по геометрии, истории математики и философии. А в свободное от работы время изучал математику всё больше и больше.

Наконец-то наступил тот день, когда Крамер нашёл способ, при помощи которого можно было бы легко решать не только лёгкие, но и сложные системы линейных уравнений.

В 1740 году у Крамера были опубликованы несколько работ, где доступно изложено решение квадратных матриц и описан алгоритм, как находить обратную матрицу. Далее математик описывал нахождения линейных уравнений разной сложности, где можно применить его формулы. Поэтому тему так и назвали: «Решение систем линейных уравнений методом Крамера».

Учёный умер в возрасте 48 лет (в 1752 году). У него было ещё много планов, но, к сожалению, он так и не успел их осуществить.

Вывод формулы Крамера

Пусть дана система линейных уравнений такого вида:

где , , – неизвестные переменные, – это числовые коэффициенты, в – свободные члены.

Решением СЛАУ (систем линейных алгебраических уравнение) называются такие неизвестные значения при которых все уравнения данной системы преобразовываются в тождества.

Если записать систему в матричном виде, тогда получается , где

В данной главной матрице находятся элементы, коэффициенты которых при неизвестных переменных,

Это матрица-столбец свободных членов, но есть ещё матрица-столбец неизвестных переменных:

После того, когда найдутся неизвестные переменные, матрица и будет решением системы уравнений, а наше равенство преобразовывается в тождество. . Если умножить , тогда . Получается: .

Если матрица – невырожденная, то есть, её определитель не равняется нулю, тогда у СЛАУ есть только одно единственное решение, которое находится при помощи метода Крамера.

Как правило, для решения систем линейных уравнений методом Крамера, нужно обращать внимания на два свойства, на которых и основан данный метод:

1. Определитель квадратной матрицы равняется сумме произведений элементов любой из строк (столбца) на их алгебраические дополнения:

, здесь – 1, 2, …, n; – 1, 2, 3, …, n.

2. Сумма произведений элементов данной матрицы любой строки или любого столбца на алгебраические дополнения определённых элементов второй строки (столбца) равняется нулю:

,

,

где – 1, 2, …, n; – 1, 2, 3, …, n. .

Итак, теперь можно найти первое неизвестное . Для этого необходимо умножить обе части первого уравнения системы на , части со второго уравнения на , обе части третьего уравнения на и т. д. То есть, каждое уравнение одной системы нужно умножать на определённые алгебраические дополнения первого столбца матрицы :

Теперь прибавим все левые части уравнения, сгруппируем слагаемые, учитывая неизвестные переменные и приравняем эту же сумму к сумме правых частей системы уравнения:

.

Можно обратиться к вышеописанным свойствам определителей и тогда получим:

И предыдущее равенство уже выглядит так:

Откуда и получается .

Аналогично находим . Для этого надо умножить обе части уравнений на алгебраические дополнения, которые находятся во втором столбце матрицы .

Теперь нужно сложить все уравнения системы и сгруппировать слагаемые при неизвестных переменных. Для этого вспомним свойства определителя:

Откуда получается .

Аналогично находятся все остальные неизвестные переменные.

тогда получаются формулы, благодаря которым находятся неизвестные переменные методом Крамера:

, , .

Замечание.

Тривиальное решение при может быть только в том случае, если система уравнений является однородной . И действительно, если все свободные члены нулевые, тогда и определители равняются нулю, так как в них содержится столбец с нулевыми элементами. Конечно же, тогда формулы , , дадут

Нужна помощь в написании работы?

Написание учебной работы за 1 день от 100 рублей. Посмотрите отзывы наших клиентов и узнайте стоимость вашей работы.

Метод Крамера – теоремы

Прежде чем решать уравнение , необходимо знать:

  1. теорему аннулирования;
  2. теорему замещения.

Теорема замещения

Сумма произведений алгебраических дополнений любого столбца (строки) на произвольные числа равняется новому определителю, в котором этими числами заменены соответствующие элементы изначального определителя, что отвечают данным алгебраическим дополнениям.

=

где – алгебраические дополнения элементов первого столбца изначального определителя:

Теорема аннулирования

Сумма произведений элементов одной строки (столбца) на алгебраические дополнения соответствующих элементов другой строки (столбца) равняется нулю.

Алгоритм решения уравнений методом Крамера

Метод Крамера – простой способ решения систем линейных алгебраических уравнений. Такой вариант применяется исключительно к СЛАУ, у которых совпадает количество уравнений с количеством неизвестных, а определитель отличен от нуля.

Итак, когда выучили все этапы, можно переходить к самому алгоритму решения уравнений методом Крамера. Запишем его последовательно:

Шаг 1. Вычисляем главный определитель матрицы

и необходимо убедиться, что определитель отличен от нуля (не равен нулю).

Шаг 2. Находим определители

Это и есть определители матриц, которые получались из матрицы при замене столбцов на свободные члены.

Шаг 3. Вычисляем неизвестные переменные

Теперь вспоминаем формулы Крамера, по которым вычисляем корни (неизвестные переменные):

, , .

Шаг 4. Выполняем проверку

Выполняем проверку решения при помощи подстановки в исходную СЛАУ. Абсолютно все уравнения в системе должны быть превращены в тождества. Также можно высчитать произведение матриц . Если в итоге получилась матрица, которая равняется , тогда система решена правильно. Если же не равняется , скорей всего в одном из уравнений есть ошибка.

Давайте для начала рассмотрим систему двух линейных уравнений, так как она более простая и поможет понять, как правильно использовать правило Крамера. Если вы поймёте простые и короткие уравнения, тогда сможете решить более сложные системы трёх уравнений с тремя неизвестными.

Кроме всего прочего, есть системы уравнений с двумя переменными, которые решаются исключительно благодаря правилу Крамеру.

Итак, дана система двух линейных уравнений:

Для начала вычисляем главный определитель (определитель системы):

Значит, если , тогда у системы или много решений, или система не имеет решений. В этом случае пользоваться правилом Крамера нет смысла, так как решения не получится и нужно вспоминать метод Гаусса, при помощи которого данный пример решается быстро и легко.

В случае, если , тогда у система есть всего одно решение, но для этого необходимо вычислить ещё два определителя и найти корни системы.

Часто на практике определители могут обозначаться не только , но и латинской буквой , что тоже будет правильно.

Корни уравнения найти просто, так как главное, знать формулы:

,

Так как мы смогли решить систему двух линейных уравнений, теперь без проблем решим и систему трёх линейных уравнений, а для этого рассмотрим систему:

Здесь алгебраические дополнения элементов – первый столбец . Во время решения не забывайте о дополнительных элементах. Итак, в системе линейных уравнений нужно найти три неизвестных – при известных других элементах.

Создадим определитель системы из коэффициентов при неизвестных:

Умножим почленно каждое уравнение соответственно на , , – алгебраические дополнения элементов первого столбца (коэффициентов при ) и прибавим все три уравнения. Получаем:

Согласно теореме про раскладывание, коэффициент при равняется . Коэффициенты при и будут равняться нулю по теореме аннулирования. Правая часть равенства по теореме замещения даёт новый определитель, который называется вспомогательным и обозначается

После этого можно записать равенство:

Для нахождения и перемножим каждое из уравнений изначальной системы в первом случае соответственно на , во втором – на и прибавим. Впоследствии преобразований получаем:

,

Если , тогда в результате получаем формулы Крамера:

= , = , =

Порядок решения однородной системы уравнений

Отдельный случай – это однородные системы:

Среди решений однородной системы могут быть, как нулевые решения , так и решения отличны от нуля.

Если определитель однородной системы (3) отличен от нуля , тогда у такой системы может быть только одно решение.

Действительно, вспомогательные определители , как такие у которых есть нулевой столбец и поэтому, за формулами Крамера

Если у однородной системы есть отличное от нуля решение, тогда её определитель равняется нулю

Действительно, пусть одно из неизвестных , например, , отличное от нуля. Согласно с однородностью Равенство (2) запишется: . Откуда выплывает, что

Примеры решения методом Крамера

Рассмотрим на примере решение методом Крамера и вы увидите, что сложного ничего нет, но будьте предельно внимательно, так как частые ошибки в знаках приводят к неверному ответу.

Задача

Решить систему линейных уравнений методом Крамера:

Решение

Первое, что надо сделать – вычислить определитель матрицы:

Как видим, , поэтому по теореме Крамера система имеет единственное решение (система совместна). Далее нужно вычислять вспомогательные определители. Для этого заменяем первый столбец из определителя на столбец свободных коэффициентов. Получается:

Аналогично находим остальные определители:

,

.

Ответ

, .

Задача

Решить систему уравнений методом Крамера:

Решение

Ответ

= = = = = =

Проверка

* = * = =

* = * = =

* = * = =

Уравнение имеет единственное решение.

Ответ

= = =

Задача

Решить систему методом Крамера

Решение

Как вы понимаете, сначала находим главный определитель:

Как мы видим, главный определитель не равняется нулю и поэтому система имеет единственное решение. Теперь можно вычислить остальные определители:

При помощи формул Крамера находим корни уравнения:

, , .

Чтобы убедиться в правильности решения, необходимо сделать проверку:

Как видим, подставив в уравнение решённые корни, у нас ответ получился тот же, что и в начале задачи, что говорит о правильном решении уравнений.

Ответ

Система уравнений имеет единственное решение: , , .

Есть примеры, когда уравнение решений не имеет. Это может быть в том случае, когда определитель системы равен нулю, а определители при неизвестных неравны нулю. В таком случае говорят, что система несовместна, то есть не имеет решений. Посмотрим на следующем примере, как такое может быть.

Задача

Решить систему линейных уравнений методом Крамера:

Решение

Как и в предыдущих примерах находим главный определитель системы:

В этой системе определитель равняется нулю, соответственно, система несовместна и определенна или же несовместна и не имеет решений. Чтобы уточнить, надо найти определители при неизвестных так, как мы делали ранее:

Мы нашли определители при неизвестных и увидели, что все они не равны нулю. Поэтому система несовместна и не имеет решений.

Ответ

Система не имеет решений.

Часто в задачах на системы линейных уравнений встречаются такие уравнения, где есть не одинаковые буквы, то есть, кроме букв, которые обозначают переменные, есть ещё и другие буквы и они обозначают некоторое действительное число. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных – буквы. Давайте и рассмотрим такой пример.

Задача

Решить систему линейных уравнений методом Крамера:

Решение

В этом примере – некоторое вещественное число. Находим главный определитель:

Находим определители при неизвестных:

Используя формулы Крамера, находим:

, .

Ответ

,

.

И наконец, мы перешли к самой сложной системе уравнений с четырьмя неизвестными. Принцип решения такой же, как и в предыдущих примерах, но в связи с большой системой можно запутаться. Поэтому рассмотрим такое уравнение на примере.

Задача

Найти систему линейных уравнений методом Крамера:

Здесь действуют система определителей матрицы высших порядков, поэтому вычисления и формулы рассмотрены в этой теме, а мы сейчас просто посчитаем систему уравнений с четырьмя неизвестными.

Решение

В изначальном определители из элементов второй строки мы отнимали элементы четвёртой строки, а из элементов третьей строки отнимались элементы четвёртой строки, которые умножались на 2. Также отнимали из элементов четвёртой строки элементы первой строки, умноженной на два. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Теперь можно находить определители при неизвестных:

Для преобразований определителя при четвёртом неизвестном из элементов первой строки мы вычитали элементы четвёртой строки.

Теперь по формулам Крамера нужно найти:

,

,

,

.

Ответ

Итак, мы нашли корни системы линейного уравнения:

,

,

,

.

Подведём итоги

При помощи метода Крамера можно решать системы линейных алгебраических уравнений в том случае, если определитель не равен нулю. Такой метод позволяет находить определители матриц такого порядка, как на благодаря формулам Крамера, когда нужно найти неизвестные переменные. Если все свободные члены нулевые, тогда их определители равны нулю, так как в них содержится столбец с нулевыми элементами. И конечно же, если определители равняются нулю, лучше решать систему методом Гаусса, а не Крамера, только тогда ответ будет верный.

Рекомендуем почитать для общего развития

Решение методом Крамера в Excel

Определитель матрицы.

Определителем матрицы n × n будет число:

det(A) = Σ (-1) N( α 1, α 2. αn ) · a α 11· a α 22·. · a αnn
( α 1, α 2. αn )

где ( α 1, α 2. αn ) – перестановка чисел от 1 до n , N( α 1, α 2. αn ) – число инверсий в перестановке, суммирование идёт по всем возможным перестановкам порядка n .

Свойства определителя матрицы

det(A -1 ) = det(A) -1

B = k ·A => det(B) = k n ·det(A)

где A матрица n × n , k – число.

Если каждый элемент в какой-то строке определителя равен сумме двух слагаемых, то исходный определитель равен сумме двух определителей, в которых вместо этой строки стоят первые и вторые слагаемые соответственно, а остальные строки совпадают с исходным определителем:

[spoiler title=”источники:”]

http://nauchniestati.ru/spravka/resheneie-sistem-metodom-kramera/

http://ru.onlinemschool.com/math/library/matrix/determinant/

[/spoiler]

Метод Крамера часто применяется для систем линейных алгебраических уравнений (СЛАУ). Этот способ решения один из самых простых. Как правило, данный метод применяется только для тех систем, где по количеству неизвестных столько же, сколько и уравнений. Чтобы получилось решить уравнение, главный определитель матрицы не должен равняться нулю.

Габриель Крамер - математик, создатель одноименного метода решения систем линейных уравнений

Габриель Крамер – математик, создатель одноименного метода решения систем линейных уравнений

Габриель Крамер – известный математик, который родился 31 июля 1704 года. Ещё в детстве Габриель поражал своими интеллектуальными способностями, особенно в области математики. Когда Крамеру было 20 лет, он устроился в Женевский университет штатным преподавателем.

Во время путешествия по Европе Габриель познакомился с математиком Иоганном Бернулли, который и стал его наставником. Только благодаря Иоганну, Крамер написал много статей по геометрии, истории математики и философии. А в свободное от работы время изучал математику всё больше и больше.

Наконец-то наступил тот день, когда Крамер нашёл способ, при помощи которого можно было бы легко решать не только лёгкие, но и сложные системы линейных уравнений.

В 1740 году у Крамера были опубликованы несколько работ, где доступно изложено решение квадратных матриц и описан алгоритм, как находить обратную матрицу. Далее математик описывал нахождения линейных уравнений разной сложности, где можно применить его формулы. Поэтому тему так и назвали: «Решение систем линейных уравнений методом Крамера».

Учёный умер в возрасте 48 лет (в 1752 году). У него было ещё много планов, но, к сожалению, он так и не успел их осуществить.

Вывод формулы Крамера

Пусть дана система линейных уравнений такого вида:

 left{ begin{aligned} a_{11}x + a_{12}y + a_{13}z = b_1\ a_{21}x + a_{22}y + a_{23}z = b_2\ a_{31}x + a_{32}y + a_{33}z = b_3 end{aligned} right

где x, y, z – неизвестные переменные, a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33} – это числовые коэффициенты, в b_{1}, b_{2}, b_{3} – свободные члены.

Решением СЛАУ (систем линейных алгебраических уравнение) называются такие неизвестные значения x, y, z при которых все уравнения данной системы преобразовываются в тождества.

Если записать систему в матричном виде, тогда получается A * X = B, где

A = begin{pmatrix} a_{11}&a_{12}&a_{31}\ a_{12}&a_{22}&a_{32}\ a_{13}&a_{23}&a_{33} end{pmatrix} right

В данной главной матрице находятся элементы, коэффициенты которых при неизвестных переменных,

B = begin{pmatrix} b_{1}\ b_{2}\ b_{3} end{pmatrix} right

Это матрица-столбец свободных членов, но есть ещё матрица-столбец неизвестных переменных:

X = begin{pmatrix} x\ y\ z end{pmatrix} right

После того, когда найдутся неизвестные переменные, матрица X и будет решением системы уравнений, а наше равенство A * X = B преобразовывается в тождество. A * Xeqiv{B}. Если умножить A^{-1}, тогда (A^{-1} * A) * X = A^{-1} * B. Получается: X = A^{-1} * B.

Если матрица A – невырожденная, то есть, её определитель не равняется нулю, тогда у СЛАУ есть только одно единственное решение, которое находится при помощи  метода Крамера.

Как правило, для решения систем линейных уравнений методом Крамера, нужно обращать внимания на два свойства, на которых и основан данный метод:

1. Определитель квадратной матрицы A равняется сумме произведений элементов любой из строк (столбца) на их алгебраические дополнения:

A = begin{pmatrix}  a_{11}&a_{12}&...&a_{n_1}\  a_{12}&a_{22}&...&a_{n_2}\  a_{13}&a_{23}&...&a_{n_3}  end{pmatrix} = a_{q1} * A_{q1} + a_{q2} * A_{q2} + ... + a_{qn} * A_{qn} = a_{1k} * A_{1k} + a_{2k} * A_{2k} + ... + a_{nk} * A_{nk}  right, здесь q – 1, 2, …, n; k – 1, 2, 3, …, n.

2. Сумма произведений элементов данной матрицы любой строки или любого столбца на алгебраические дополнения определённых элементов второй строки (столбца) равняется нулю:

a_{q1} * A_{q1} + a_{q2} * A_{q2} + ... + a_{qn} * A_{qn}  = 0,

a_{1k} * A_{1k} + a_{2k} * A_{2k} + ... + a_{nk} * A_{nk} = 0,

где q – 1, 2, …, n; k – 1, 2, 3, …, n. qneq{k}.

Итак, теперь можно найти первое неизвестное x. Для этого необходимо умножить обе части первого уравнения системы на A_{11}, части со второго уравнения на A_{21}, обе части третьего уравнения на A_{31} и т. д. То есть, каждое уравнение одной системы нужно умножать на определённые алгебраические дополнения первого столбца матрицы A:

 left{ begin{aligned} A_{11}a_{11}x + A_{11}a_{12}y + A_{11}a_{13}z = A_{11}b_1\ A_{21}a_{21}x + A_{21}a_{22}y + A{21}a_{23}z = A_{21}b_2\ A_{31}a_{31}x + A_{31}a_{32}y + A_{31}a_{33}z = A_{31}b_3 end{aligned} right

Теперь прибавим все левые части уравнения, сгруппируем слагаемые, учитывая неизвестные переменные x, y, z и приравняем эту же сумму к сумме правых частей системы уравнения:

x * (A_{11}a_{11} + A_{21}a_{21} + ... + A_{n}a_{n}) + y* (A_{11}a_{12} + A_{21}a_{22} + ... + A_{n}a_{n}) + \ + z * (A_{11}a_{1n} + A_{21}a_{2n} + ... + A_{1n}a_{nn}) = A_{11}b_{1} + A_{21b_{2} + ... + A_{1n}b_{n}.

Можно обратиться к вышеописанным свойствам определителей и тогда получим:

A_{11}a_{11} + A_{21}a_{21} + ... + A_{1n}a_{1n} = |A|\  A_{11}a_{12} + A_{21}a_{22} + ... + A_{1n}a_{2n} = 0\  .......................................................\  A_{11}a_{1n} + A_{21}a_{2n} + ... + A_{1n}a_{nn} = 0\  A_{11}b_{1} + A_{21}b_{2} + ... + A_{1n}b_{n} = begin{vmatrix}  b_{1}&a_{12}&...&a_{1n}\  b_{2}&a_{22}&...&a_{2n}\  vdots&vdots&vdots&vdots\  b_{n}&a_{2n}&...&a_{nn}  end{vmatrix}  right

И предыдущее равенство уже выглядит так:

x * |A| = begin{vmatrix} b_{1}&a_{12}&...&a_{1n}\ b_{2}&a_{22}&...&a_{2n}\ vdots&vdots&vdots&vdots\ b_{n}&a_{2n}&...&a_{nn}\ end{vmatrix} right

Откуда и получается x = |A|.

Аналогично находим y. Для этого надо умножить обе части уравнений на алгебраические дополнения, которые находятся во втором столбце матрицы A.

 left{ begin{aligned} A_{12}a_{11}x + A_{12}a_{12}y + dots + A_{12}a_{1n}z = A_{12}b_1\ A_{22}a_{22}x + A_{22}a_{22}y + dots + A{22}a_{2n}z = A_{22}b_2\ vdots&\ A_{2n}a_{1n}x + A_{2n}a_{2n}y + dots + A_{2n}a_{nn}z = A_{2n}b_n end{aligned} right

Теперь нужно сложить все уравнения системы и сгруппировать слагаемые при неизвестных переменных. Для этого вспомним свойства определителя:

x * (A_{12}a_{11} + A_{22}a_{21} + dots + A_{2n}a_{1n}) + y * (A_{12}a_{12} + A_{22}a_{22} + \ + dots + A_{2n}a_{2n}) + dots +  to{z} * (A_{12}a_{1n} + A_{22}a_{2n} + dots + A_{2n}a_{nn}) = \ = A_{12}b_{1} + A_{22}b_{2} + dots + A_{2n}b_{n}to{x} * 0 + y * |A| + dots + z * 0 = \ = begin{vmatrix}  a_{11}&b_{1}&dots&a_{1n}\  a_{21}&b_{2}&dots&a_{2n}\  vdots&vdots&vdots&vdots\  a_{1n}&b_{n}&dots&a_{nn}  end{vmatrix}to{y}* |A| = begin{vmatrix}  a_{11}&b_{1}&dots&a_{1n}\  a_{21}&b_{2}&dots&a_{2n}\  vdots&vdots&vdots&vdots\  a_{1n}&b_{n}&dots&a_{nn}  end{vmatrix}  right

Откуда получается y = |A|.

Аналогично находятся все остальные неизвестные переменные.

Если обозначить:

Delta = begin{vmatrix} a_{11}&a_{12}&...&a_{1n}\ a_{12}&a_{22}&...&a_{2n}\ vdots&vdots&vdots&vdots\ a_{1n}&a_{2n}&...&a_{nn} end{vmatrix}, right

Delta_{x}= begin{vmatrix} b_{1}&a_{12}&...&a_{1n}\ b_{2}&a_{22}&...&a_{2n}\ vdots&vdots&vdots&vdots\ b_{n}&a_{2n}&...&a_{nn} end{vmatrix}, right

Delta_{y}= begin{vmatrix} a_{11}&b_{1}&...&a_{1n}\ a_{21}&b_{2}&...&a_{2n}\ vdots&vdots&vdots&vdots\ a_{1n}&b_{n}&...&a_{nn} end{vmatrix},

Delta_{z}= begin{vmatrix} a_{11}&a_{12}&...&b_{1}\ a_{21}&a_{22}&...&b_{2}\ vdots&vdots&vdots&vdots\ a_{1n}&a_{2n}&...&b_{n} end{vmatrix} , right

тогда получаются формулы, благодаря которым находятся неизвестные переменные методом Крамера:

{x} = {Delta_{x}over{Delta}}, {y} = {Delta_{y}over{Delta}}, {z} = {Delta_{z}over{Delta}}.

Замечание.

Тривиальное решение (x = y = dots = z = 0 при Aneq{0}) может быть только в том случае, если система уравнений является однородной (b_1 = b_2 = dots = b_n = 0). И действительно, если все свободные члены нулевые, тогда и определители равняются нулю, так как в них содержится столбец с нулевыми элементами. Конечно же, тогда формулы {x} = {Delta_{x}over{Delta}}, {y} = {Delta_{y}over{Delta}}, {z} = {Delta_{z}over{Delta}} дадут x = y = dots = z = 0

Нужна помощь в написании работы?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена работы

Метод Крамера – теоремы

Прежде чем решать уравнение , необходимо знать:

  1. теорему аннулирования;
  2. теорему замещения.

Теорема замещения

Сумма произведений алгебраических дополнений любого столбца (строки) на произвольные числа b_1, b_2, b_3 равняется новому определителю, в котором этими числами заменены соответствующие элементы изначального определителя, что отвечают данным алгебраическим дополнениям.

Например,

b_1A_{11} + b_2A_{21} + b_3A_{32} =  begin{vmatrix} b_1&a_{12}&a_{13}\ b_2&a_{22}&a_{23}\ b_3&a_{32}&a_{33} end{vmatrix} right

где A_{11}, A_{21}, A_{31} – алгебраические дополнения элементов a_{11}, a_{21}, a_{31} первого столбца изначального определителя:

Delta = begin{vmatrix} a_{11}&a_{12}&a_{13}\ a_{21}&a_{22}&a_{23}\ a_{31}&a_{32}&a_{33} end{vmatrix} right

Теорема аннулирования

Сумма произведений элементов одной строки (столбца) на алгебраические дополнения соответствующих элементов другой строки (столбца) равняется нулю.

Например:

a_{12}A_{11} + a_{22}A_{21} + a_{32}A_{31} = 0.

Алгоритм решения уравнений методом Крамера

Метод Крамера – простой способ решения систем линейных алгебраических уравнений. Такой вариант применяется исключительно к СЛАУ, у которых совпадает количество уравнений с количеством неизвестных, а определитель отличен от нуля.

Итак, когда выучили все этапы, можно переходить к самому алгоритму решения уравнений методом Крамера. Запишем его последовательно:

Шаг 1. Вычисляем главный определитель матрицы

Delta = begin{vmatrix} a_{11}&a_{12}&dots&a_{1n}\ a_{21}&a_{22}&dots&a_{2n}\ vdots&vdots&vdots&vdots\ a_{1n}&a_{2n}&dots&a_{nn} end{vmatrix} right

и необходимо убедиться, что определитель отличен от нуля (не равен нулю).

Шаг 2. Находим определители

Delta_{x} = begin{vmatrix} b_{1}&a_{12}&dots&a_{1n}\ b_{2}&a_{22}&dots&a_{2n}\ vdots&vdots&vdots&vdots\ b_{n}&a_{2n}&dots&a_{nn} end{vmatrix} right

Delta_{y} = begin{vmatrix} a_{11}&b_{1}&dots&a_{1n}\ a_{21}&b_{2}&dots&a_{2n}\ vdots&vdots&vdots&vdots\ a_{1n}&b_{n}&dots&a_{nn} end{vmatrix} rightvdots

Delta_{z} = begin{vmatrix} a_{11}&a_{12}&dots&b_{1}\ a_{21}&a_{22}&dots&b_{2}\ vdots&vdots&vdots&vdots\ a_{1n}&a_{2n}&dots&b_{n} end{vmatrix} right

Это и есть определители матриц, которые получались из матрицы A при замене столбцов на свободные члены.

Шаг 3. Вычисляем неизвестные переменные

Теперь вспоминаем формулы Крамера, по которым вычисляем корни (неизвестные переменные):

{x} = {Delta_{x}over{Delta}}, {y} = {Delta_{y}over{Delta}}, {z} = {Delta_{z}over{Delta}}.

Шаг 4. Выполняем проверку

Выполняем проверку решения при помощи подстановки x, y, z в исходную СЛАУ. Абсолютно все уравнения в системе должны быть превращены в тождества. Также можно высчитать произведение матриц A * X. Если в итоге получилась матрица, которая равняется B, тогда система решена правильно. Если же не равняется B, скорей всего в одном из уравнений есть ошибка.

Давайте для начала рассмотрим систему двух линейных уравнений, так как она более простая и поможет понять, как правильно использовать правило Крамера. Если вы поймёте простые и короткие уравнения, тогда сможете решить более сложные системы трёх уравнений с тремя неизвестными.

Кроме всего прочего, есть системы уравнений с двумя переменными, которые решаются исключительно благодаря правилу Крамеру.

Итак, дана система двух линейных уравнений:

left{ begin{aligned} a_{1}x + b_{1}y = S_1\ a_{2}x + b_{2}y = S_2\ end{aligned}  right

Для начала вычисляем главный определитель (определитель системы):

Delta = begin{vmatrix} a_{1}&b_{1}\ a_{2}&b_{2}\ end{vmatrix} right

Значит, если Delta = 0, тогда у системы или много решений, или система не имеет решений. В этом случае пользоваться правилом Крамера нет смысла, так как решения не получится и нужно вспоминать метод Гаусса, при помощи которого данный пример решается быстро и легко.

В случае, если Deltaneq{0}, тогда у система есть всего одно решение, но для этого необходимо вычислить ещё два определителя и найти корни системы.

Delta_x = begin{vmatrix} S_{1}&b_{1}\ S_{2}&b_{2}\ end{vmatrix} right

и

Delta_y = begin{vmatrix} a_{1}&S_{1}\ a_{2}&S_{2}\ end{vmatrix} right

Часто на практике определители могут обозначаться не только Delta, но и латинской буквой D, что тоже будет правильно.

Корни уравнения найти просто, так как главное, знать формулы:

x = {Delta_{x}over{Delta}}, y =  {Delta_{y}over{Delta}}

Так как мы смогли решить систему двух линейных уравнений, теперь без проблем решим и систему трёх линейных уравнений, а для этого рассмотрим систему:

left{ begin{aligned} a_{11}x + a_{12}y + a_{13}z = b_1\ a_{21}x + a_{22}y + a_{23}z = b_2\ a_{31}x + a_{32}y + a_{33}z = b_3 end{aligned}  right

(1)

Здесь алгебраические дополнения элементов – первый столбец {A_{11}, A_{21}, A_{31}. Во время решения не забывайте о дополнительных элементах. Итак, в системе линейных уравнений нужно найти три неизвестных – x, y, z при известных других элементах.

Создадим определитель системы из коэффициентов при неизвестных:

Delta = begin{vmatrix} a_{11}&a_{12}&a_{13}\ a_{21}&a_{22}&a_{23}\ a_{31}&a_{32}&a_{33} end{vmatrix} right

Умножим почленно каждое уравнение соответственно на A_{11}, A_{21}, A_{31} – алгебраические дополнения элементов первого столбца (коэффициентов при x) и прибавим все три уравнения. Получаем:

x(a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}) + y(a_{12}A_{11} + a_{22}A_{21} + a_{32}A_{31}) + z(a_{13}A_{11} + a_{23}A_{21} + a_{33}A_{31}) = b_1A_{11} + b_2A_2_1 + b_3A_{31}.

Согласно теореме про раскладывание, коэффициент при x равняется Delta. Коэффициенты при y и z будут равняться нулю по теореме аннулирования. Правая часть равенства по теореме замещения даёт новый определитель, который называется вспомогательным и обозначается

Delta_x = begin{vmatrix} b_1&a_{12}&a_{13}\ b_2&a_{22}&a_{23}\ b_3&a_{32}&a_{33} end{vmatrix} right

После этого можно записать равенство:

x * Delta + y * 0 + z * 0 = Delta_x

(2)

Для нахождения y и z перемножим каждое из уравнений изначальной системы в первом случае соответственно на A_{12}, A_{22}, A_{32},, во втором – на A_{13}, A_{23}, A_{33} и прибавим. Впоследствии преобразований получаем:

y *  Delta =  Delta_y, z *  Delta =  Delta_z

 где

Delta_y= begin{vmatrix} a_{11}&b_1&a_{13}\ a_{21}&b_2&a_{23}\ a_{31}&b_3&a_{33} end{vmatrix},

Delta_z = begin{vmatrix} a_{11}&a_{12}&b_1\ a_{21}&a_{22}&b_2\ a_{31}&a_{32}&b_3 end{vmatrix}. right

Если  Deltaneq0, тогда в результате получаем формулы Крамера:

x= Delta_xover{Delta}, y = Delta_yover{Delta}, z = Delta_zover{Delta}

Порядок решения однородной системы уравнений

Отдельный случай – это однородные системы:

left{ begin{aligned} a_{11}x + a_{12}y + a_{13}z = 0,\ a_{21}x + a_{22}y + a_{23}z = 0,\ a_{31}x + a_{32}y + a_{33}z = 0. end{aligned} right

(3)

Среди решений однородной системы могут быть, как нулевые решения (x = y = z = 0), так и решения отличны от нуля.

Если определительDelta однородной системы (3) отличен от нуля (Deltaneq0), тогда у такой системы может быть только одно решение.

Действительно, вспомогательные определители Delta_x = Delta_y = Delta_z = 0, как такие у которых есть нулевой столбец и поэтому, за формулами Крамера (x = y = z = 0).

Если у однородной системы есть отличное от нуля решение, тогда её определитель Delta равняется нулю (Delta = 0).

Действительно, пусть одно из неизвестных , например, x, отличное от нуля. Согласно с однородностью Delta_x = 0. Равенство (2) запишется: Delta * x = 0. Откуда выплывает, что Delta = 0 (xneq0).

Примеры решения методом Крамера

Рассмотрим на примере решение методом Крамера и вы увидите, что сложного ничего нет, но будьте предельно внимательно, так как частые ошибки в знаках приводят к неверному ответу.

Задача

Решить систему линейных уравнений методом Крамера:

left{ begin{aligned} 5x_{1} + 2x_{2} = 7\ 2x_{1} + 2x_{2} = 9 end{aligned} right

Решение

Первое, что надо сделать – вычислить определитель матрицы:

Delta = begin{vmatrix}  5&2\  2&2  end{vmatrix} = 5 * 2 - 2 * 2 = 6neq{0}  right

Как видим, Deltaneq{0}, поэтому по теореме Крамера система имеет единственное решение (система совместна). Далее нужно вычислять вспомогательные определители. Для этого заменяем первый столбец из определителя Delta на столбец свободных коэффициентов. Получается:

Delta_{1} = begin{vmatrix}  7&2\  9&2  end{vmatrix} = 14 - 18 = -4.  right

Аналогично находим остальные определители:

Delta_{2} = begin{vmatrix}  5&7\  2&9  end{vmatrix} = 45 - 14 = 31.  right

И проверяем:

x_{1} = {Delta_{1}over{Delta}} =   {- 4over{6}} = -0.7,

x_{2} =  {Delta_{2}over{Delta}} = {31over{6}} = 5.1.

Ответ

x_{1} = -0.7, x_{2} = 5.1.

Задача

Решить систему уравнений методом Крамера:

left{ begin{aligned} 3x - 4y + 2z = 5\ 2x + y + 4z = 9\ 5x - 2y - z = 3 end{aligned}  right

Решение

Находим определители:

Delta= begin{vmatrix} 3&-4&2\ 2&1&4\ 5&-2&-1 end{vmatrix}= 3 * 7 - (-4) * (-22) + 2 * (-9) = -85,  right

Delta_x = begin{vmatrix} 5&-4&2\ 9&1&4\ 3&-2&-1 end{vmatrix}= 5 * 7 - 9 * 8 + 3 * (-18) = -91,  right

Delta_y = begin{vmatrix} 3&5&2\ 2&9&4\ 5&3&-1 end{vmatrix}= 3 * (-21) - 5 * (-22) + 2 * (-39) = -31,  right

Delta_z= begin{vmatrix} 3&-4&5\ 2&1&9\ 5&-2&3 end{vmatrix}= 9- 180 - 20 - 25 + 54 + 24 = - 138;  right

Ответ

x = Delta_xover{Delta} = 91over{85},   y = Delta_yover{Delta} = 31over{85},   z= Delta_zover{Delta} = 138over{85}

Проверка

1over{85}*(3*91 - 4 * 31 + 2 * 138) = 1over{85} * (273 - 124 + 276) = 425over{85} = 5,

1over{85}*(2*91 + 31 + 4 * 138) = 1over{85} * (182 + 31 + 552) = 765over{85} = 9,

1over{85}*(5*91 - 2 * 31 - 138) = 1over{85} * (455 - 62 - 138) = 245over{85} = 3,

Уравнение имеет единственное решение.

Ответ

x = 91over{85},   y = 31over{85},   z = 138over{85}

Задача

Решить систему методом Крамера

 left{ begin{aligned} 3x - y = 5\ - 2x + y + z = 0\ 2x - y + 4z = 15 end{aligned}  right

Решение

Как вы понимаете, сначала находим главный определитель:

 Delta = begin{vmatrix} 3&-1&0\ -2&1&1\ 2&-1&4 end{vmatrix}= 3 * 1 * 4 + (-2) * (-1) * 0 + (-1) * 1 * 2 - 0 * 1 * 2 - \ - 1 * (-1) * 3 - (-1) * (-2) * 4 = 12 - 2 + 3 - 8 = 5.  right

Как мы видим, главный определитель не равняется нулю и поэтому система имеет единственное решение. Теперь можно вычислить остальные определители:

Delta_x = begin{vmatrix} 5&-1&0\ 0&1&1\ 15&-1&4 end{vmatrix}= 5 * 1 * 4 + (-1) * 1 * 15 + 0 * (-1) * 0 - 0 * 1 * 15 - \ - 1 * (-1) * 5 - (-1) * 0 * 4 = 20 - 15 + 5 = 10.  right

Delta_y = begin{vmatrix} 3&5&0\ -2&0&1\ 2&15&4 end{vmatrix}= 3 * 0 * 4 + 5 * 1 * 2 + (-1) * 15 * 0 - 0 * 0 * 2 - 1 * \ * 15 * 3 - 5 * (-2) * 4 = 15 - 45 + 40 = 5.  right

Delta_z = begin{vmatrix} 3&-1&5\ -2&1&0\ 2&-1&15 end{vmatrix}= 3 * 1 * 15 + (-1) * 0 * 2 + (-2) * (-1) * 5 - 5 * 1 * 2 - 0 * (-1) * 3 - (-1) * *(-2) * 15 = 45 + 10 - 10 - 30 = 15.  right

При помощи формул Крамера находим корни уравнения:

x = {Delta_{x}over{Delta}} = {10over{5}} = 2y =  {Delta_{y}over{Delta}} = {5over{5}} = 1, z =  {Delta_{z}over{Delta}} = {15over{5}} = 3.

Чтобы убедиться в правильности решения, необходимо сделать проверку:

left{ begin{aligned} 3 * 2 - 1 = 5\ - 2 * 2 + 1 + 3 = 0\ 2 * 2 - 1 + 4* 3 = 15 end{aligned} right

Как видим, подставив в уравнение решённые корни, у нас ответ получился тот же, что и в начале задачи, что говорит о правильном решении уравнений.

Ответ

Система уравнений имеет единственное решение: x = 2, y = 1, z = 3.

Есть примеры, когда уравнение решений не имеет. Это может быть в том случае, когда определитель системы равен нулю, а определители при неизвестных неравны нулю. В таком случае говорят, что система несовместна, то есть не имеет решений. Посмотрим на следующем примере, как такое может быть.

Задача

Решить систему линейных уравнений методом Крамера:

 left{ begin{aligned} 2x - y + 3z = 9\ 3x - 5y + z = -4\ 4x - 7y + z = 5 end{aligned}  right

Решение

Как и в предыдущих примерах находим главный определитель системы:

Delta = begin{vmatrix}  2&-1&3\  3&-5&1\  4&-7&1  end{vmatrix}= -10 - 4 - 63 + 60 + 14 + 3 = 0.  right

В этой системе определитель равняется нулю, соответственно, система несовместна и определенна или же несовместна и не имеет решений. Чтобы уточнить, надо найти определители при неизвестных так, как мы делали ранее:

Delta_x = begin{vmatrix}  9&-1&3\  -4&-5&1\  5&-7&1  end{vmatrix}= -45 - 5 + 84 + 75 - 4 63 = 168.  right

Delta_y = begin{vmatrix}  2&9&3\  3&-4&1\  4&5&1  end{vmatrix}= -8 + 36 + 45 + 48 - 27 - 10 = 84.  right

Delta_z = begin{vmatrix}  2&-1&9\  3&-5&-4\  4&-7&5  end{vmatrix}= -50 + 16 - 189 + 180 - 56 + 15 = - 84.  right

Мы нашли определители при неизвестных и увидели, что все они не равны нулю. Поэтому система несовместна и не имеет решений.

Ответ

Система не имеет решений.

Часто в задачах на системы линейных уравнений встречаются такие уравнения, где есть не одинаковые буквы, то есть, кроме букв, которые обозначают переменные, есть ещё и другие буквы и они обозначают некоторое действительное число. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных – буквы. Давайте и рассмотрим такой пример.

Задача

Решить систему линейных уравнений методом Крамера:

 left{ begin{aligned} ax - 3y = 1\ 2x + ay = 2 end{aligned} right

Решение

В этом примере a – некоторое вещественное число. Находим главный определитель:

Delta = begin{vmatrix}  a&-3\  2&a  end{vmatrix}= a^2 + 6.  right

Находим определители при неизвестных:

Delta_x = begin{vmatrix}  1&-3\  2&a  end{vmatrix}= a + 6.  right

Delta_y = begin{vmatrix}  a&1\  2&2  end{vmatrix} = 2a - 2 = 2(a - 2).  right

Используя формулы Крамера, находим:

{x} = {a + 6over{a^2 + 6}}, {y} = {2(a - 1)over{a^2 + 6}}.

Ответ

{x} = {a + 6over{a^2 + 6}},

{y} = {2(a - 1)over{a^2 + 6}}.

И наконец, мы перешли к самой сложной системе уравнений с четырьмя неизвестными. Принцип решения такой же, как и в предыдущих примерах, но в связи с большой системой можно запутаться. Поэтому рассмотрим такое уравнение на примере.

Задача

Найти систему линейных уравнений методом Крамера:

 left{ begin{aligned} 2x_{1} + 2x_{2} - x_{3} + x_{4} = 4\ 4x_{1} + 3x_{2} - x_{3} + 2x_{4} = 6\ 8x_{1} + 5x_{2} - 3x_{3} + 4x_{4} = 12\ 3x_{1} + 3x_{2} - 2x_{3} + 2x_{4} = 6 end{aligned} right

Здесь действуют система определителей матрицы высших порядков, поэтому вычисления и формулы рассмотрены в этой теме, а мы сейчас просто посчитаем систему уравнений с четырьмя неизвестными.

Решение

Delta = begin{vmatrix}  2&2&-1&1\  4&3&-1&2\  8&5&-3&4\  3&3&-2&2  end{vmatrix} = begin{vmatrix}  2&2&-1&1\  1&0&1&0\  2&-1&1&0\  -1&-1&0&0  end{vmatrix} = 1* begin{vmatrix}  1&0&1\  2&-1&1\  -1&-1&0  end{vmatrix} = \  = 0 + 0 - 2 - 1 - 0 + 1 = - 2  right

В изначальном определители из элементов второй строки мы отнимали элементы четвёртой строки, а из элементов третьей строки отнимались элементы четвёртой строки, которые умножались на 2. Также отнимали из элементов четвёртой строки элементы первой строки, умноженной на два. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Теперь можно находить определители при неизвестных:

Delta {x}_{1} = begin{vmatrix}  4&2&-1&1\  6&3&-1&2\  12&5&-3&4\  6&3&-2&2  end{vmatrix} = begin{vmatrix}  4&2&-1&1\  0&0&1&0\  0&-1&1&0\  -2&-1&0&0  end{vmatrix} = 1 * begin{vmatrix}  0&0&1\  0&-1&1\  -2&-1&0  end{vmatrix} = 1 * 1 * \ * begin{vmatrix}  0&-1\  -2&-1  end{vmatrix} = 0 - 2 = -2  right

Delta {x}_{2} = begin{vmatrix}  2&4&-1&1\  4&6&-1&2\  8&12&-3&4\  3&6&-2&2  end{vmatrix} = begin{vmatrix}  2&4&-1&1\  1&0&1&0\  2&0&1&0\  -1&-2&0&0  end{vmatrix} = 1 * \ * begin{vmatrix}  1&0&1\  2&0&1\  -1&-2&0  end{vmatrix} = 1 * begin{vmatrix}  1&0&1\  1&0&0\  -1&-2&0  end{vmatrix} = 1 * 1 * begin{vmatrix}  1&0\  -1&-2  end{vmatrix} = -2  right

Delta {x}_{3} = begin{vmatrix}  2&2&4&1\  4&3&6&2\  8&5&12&4\  3&3&6&2  end{vmatrix} = begin{vmatrix}  2&2&4&1\  1&0&0&0\  2&-1&0&0\  -1&-1&-2&0  end{vmatrix} = 1 * begin{vmatrix}  2&2&4\  2&0&1\  -1&-2&0  end{vmatrix} = 1 * \ * begin{vmatrix}  1&0&0\  2&-1&0\  -1&-1&-2  end{vmatrix} = 1 * 1 * begin{vmatrix}  -1&0\  -1&-2  end{vmatrix} = 2  right

Delta {x}_{4} = begin{vmatrix}  2&2&-1&4\  4&3&-1&6\  8&5&-3&12\  3&3&-2&6  end{vmatrix} = begin{vmatrix}  2&2&-1&4\  1&0&1&0\  8&5&-3&12\  3&3&-2&6  end{vmatrix} = 1 * begin{vmatrix}  2&-1&4\  5&-3&12\  3&-2&6  end{vmatrix} + 1 * begin{vmatrix}  2&2&4\  8&5&12\  3&3&6  end{vmatrix} = \ = 1 * (-36 - 36 - 40 + 36 + 30 + 48) + 1 * (60 + 72 + 96 - 60 - 96 - 72) = 78 - 76 = 2.  right

Для преобразований определителя при четвёртом неизвестном из элементов первой строки мы вычитали элементы четвёртой строки.

Теперь по формулам Крамера нужно найти:

x_{1} = {-2over{-2}} = {1},

x_{2} = {-2over{-2}} = {1},

x_{3} = {2over{-2}} = {- 1},

x_{4} = {2over{-2}} = {- 1}.

Ответ

Итак, мы нашли корни системы линейного уравнения:

x_{1} = {-2over{-2}} = {1},

x_{2} = {-2over{-2}} = {1},

x_{3} = {2over{-2}} = {- 1},

x_{4} = {2over{-2}} = {- 1}.

Подведём итоги

При помощи метода Крамера можно решать системы линейных алгебраических уравнений в том случае, если определитель не равен нулю. Такой метод позволяет находить определители матриц такого порядка, как n на n благодаря формулам Крамера, когда нужно найти неизвестные переменные. Если все свободные члены нулевые, тогда их определители равны нулю, так как в них содержится столбец с нулевыми элементами. И конечно же, если определители равняются нулю, лучше решать систему методом Гаусса, а не Крамера, только тогда ответ будет верный.

Рекомендуем почитать для общего развития

pdf Анкилов А. В. Высшая математика, ч. 1: учеб. Пособие/П. А. Вельмисов, Ю. А. Решетников – Ульяновск – 2011 – 252 с.

pdf Письменный Д. – Конспект лекций по высшей математике: учеб. для вузов/Письменный Д. – М. 2006 – 602 с.

Решение методом Крамера в Excel

pdf Метод Крамера в Excel 2003 (XLS)

pdf Метод Крамера в Excel от 2007 (XLSX)

Автор статьи

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Метод Крамера или так называемое правило Крамера – это способ поиска неизвестных величин из систем уравнений. Его можно использовать только если число искомых значений эквивалентно количеству алгебраических уравнений в системе, то есть образуемая из системы основная матрица должна быть квадратной и не содержать нулевых строчек, а также если её детерминант не должен являться нулевым.

Теорема 1

Теорема Крамера
Если главный определитель $D$ основной матрицы, составленной на основе коэффициентов уравнений, не равен нулю, то система уравнений совместна, причём решение у неё существует единственное. Решение такой системы вычисляется через так называемые формулы Крамера для решения систем линейных уравнений:
$x_i = frac{D_i}{D}$

Логотип iqutor

Сделаем домашку
с вашим ребенком за 380 ₽

Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online

Бесплатное пробное занятие

*количество мест ограничено

В чем заключается метод Крамера

Суть метода Крамера в следующем:

  1. Чтобы найти решение системы методом Крамера, первым делом вычисляем главный определитель матрицы $D$. Когда вычисленный детерминант основной матрицы при подсчёте методом Крамера оказался равен нулю, то система не имеет ни одного решения или имеет нескончаемое количество решений. В этом случае для нахождения общего или какого-либо базисного ответа для системы рекомендуется применить метод Гаусса.
  2. Затем нужно заменить крайний столбец главной матрицы на столбец свободных членов и высчитать определитель $D_1$.
  3. Повторить то же самое для всех столбцов, получив определители от $D_1$ до $D_n$, где $n$ – номер крайнего справа столбца.
  4. После того как найдены все детерминанты $D_1$…$D_n$, можно высчитать неизвестные переменные по формуле $x_i = frac{D_i}{D}$.

Приёмы для вычисления определителя матрицы

Для вычисления определителя матрицы с размерностью больше чем 2 на 2, можно использовать несколько способов:

  • Правило треугольников, или правило Саррюса, напоминающее это же правило. Суть метода треугольников в том, что при вычислении определителя произведения всех чисел, соединённых на рисунке красной линией справа, записываются со знаком плюс, а все числа, соединённые аналогичным образом на рисунке слева – со знаком минус. B то, и другое правило подходит для матриц размером 3 х 3. В случае же правила Саррюса сначала переписывается сама матрица, а рядом с ней рядом переписываются ещё раз её первый и второй столбец. Через матрицу и эти дополнительные столбцы проводятся диагонали, члены матрицы, лежащие на главной диагонали или на параллельной ей записываются со знаком плюс, а элементы, лежащие на побочной диагонали или параллельно ей – со знаком минус.

«Метод Крамера» 👇

Правило треугольников для вычисления определителя для метода Крамера

Рисунок 1. Правило треугольников для вычисления определителя для метода Крамера

  • С помощью метода, известного как метод Гаусса, также иногда этот метод называют понижением порядка определителя. В этом случае матрица преобразуется и приводится к треугольному виду, а затем перемножаются все числа, стоящие на главной диагонали. Следует помнить, что при таком поиске определителя нельзя домножать или делить строчки или столбцы на числа без вынесения их как множителя или делителя. В случае поиска определителя возможно только вычитать и складывать строки и столбы между собой, предварительно помножив вычитаемую строку на ненулевой множитель. Также при каждой перестановке строчек или столбцов матрицы местами следует помнить о необходимости смены конечного знака у матрицы.
  • При решении методом Крамера СЛАУ с 4 неизвестными, лучше всего будет применять именно метод Гаусса для поиска и нахождения определителей или опредлять детерминант через поиск миноров.

Решение систем уравнений методом Крамера

Применим метод Крамера для системы из 2 уравнений и двумя искомыми величинами:

$begin{cases} a_1x_1 + a_2x_2 = b_1 \ a_3x_1 + a_4x_2 = b_2 \ end{cases}$

Отобразим её в расширенной форме для удобства:

$A = begin{array}{cc|c} a_1 & a_2 & b_1 \ a_3 & a_4 & b_1 \ end{array}$

Найдём определитель основной матрицы, также называемый главным определителем системы:

$D = begin{array}{|cc|} a_1 & a_2 \ a_3 & a_4 \ end{array} = a_1 cdot a_4 – a_3 cdot a_2$

Если главный определитель не равен нулю, то для решения слау методом Крамера необходимо высчитать ещё парочку определителей от двух матриц с заменёнными столбцами основной матрицы на строчку свободных членов:

$D_1 = begin{array}{|cc|} b_1 & a_2 \ b_2 & a_4 \ end{array} = b_1 cdot a_4 – b_2 cdot a_4$

$D_2 = begin{array}{|cc|} a_1 & b_1 \ a_3 & b_2 \ end{array} = a_1 cdot b_2 – a_3 cdot b_1$

Теперь найдём неизвестные $x_1$ и $x_2$:

$x_1 = frac {D_1}{D}$

$x_2 = frac {D_2}{D}$

Пример 1

Метод Крамера для решения СЛАУ с основной матрицей 3 порядка (3 x 3) и тремя искомыми.

Решите систему уравнений:

$begin{cases} 3x_1 – 2x_2 + 4x_3 = 21 \ 3x_1 +4x_2 + 2x_3 = 9\ 2x_1 – x_2 – x_3 = 10 \ end{cases}$

Сосчитаем главный детерминант матрицы пользуясь вышеизложенным под пунктом номер 1 правилом:

$D = begin{array}{|ccc|} 3 & -2 & 4 \3 & 4 & -2 \ 2 & -1 & 1 \ end{array} = 3 cdot 4 cdot (-1) + 2 cdot (-2) cdot 2 + 4 cdot 3 cdot (-1) – 4 cdot 4 cdot 2 – 3 cdot (-2) cdot (-1) – (-1) cdot 2 cdot 3 = – 12 – 8 -12 -32 – 6 + 6 = – 64$

А теперь три других детерминанта:

$D_1 = begin{array}{|ccc|} 21 & 2 & 4 \ 9 & 4 & 2 \ 10 & 1 & 1 \ end{array} = 21 cdot 4 cdot 1 + (-2) cdot 2 cdot 10 + 9 cdot (-1) cdot 4 – 4 cdot 4 cdot 10 – 9 cdot (-2) cdot (-1) – (-1) cdot 2 cdot 21 = – 84 – 40 – 36 – 160 – 18 + 42 = – 296$

$D_2 = begin{array}{|ccc|} 3 & 21 & 4 \3 & 9 & 2 \ 2 & 10 & 1 \ end{array} = 3 cdot 9 cdot (- 1) + 3 cdot 10 cdot 4 + 21 cdot 2 cdot 2 – 4 cdot 9 cdot 2 – 21 cdot 3 cdot (-1) – 2 cdot 10 cdot 3 = – 27 + 120 + 84 – 72 + 63 – 60 = 108$

$D_3 = begin{array}{|ccc|} 3 & -2 & 21 \ 3 & 4 & 9 \ 2 & 1 & 10 \ end{array} = 3 cdot 4 cdot 10 + 3 cdot (-1) cdot 21 + (-2) cdot 9 cdot 2 – 21 cdot 4 cdot 2 – (-2) cdot 3 cdot 10 – (-1) cdot 9 cdot 3 = 120 – 63 – 36 – 168 + 60 + 27 = – 60$

Найдём искомые величины:

$x_1 = frac{D_1} {D} = frac{- 296}{-64} = 4 frac{5}{8}$

$x_2 = frac{D_1} {D} = frac{108} {-64} = – 1 frac {11} {16}$

$x_3 = frac{D_1} {D} = frac{-60} {-64} = frac {15} {16}$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

В данной статье мы разберем, как найти неизвестные переменные по методу Крамера и опишем решение систем линейных уравнений.

Определение 1

Метод Крамера предназначен для того, чтобы решать системы линейных алгебраических уравнений (СЛАУ), в которых число неизвестных переменных равняется числу уравнений, а определитель основной матрицы не равен нулю.

Метод Крамера — вывод формул

Пример 1

Найти решение системы линейных уравнений вида:

a11x1+a12x2+…+a1nxn=b1a21x1+a22x2+…+a2nxn=b2⋮an1x1+an2x2+…+annxn=bn

В этой системе x1, x2, …, xn – неизвестные переменные,

aij, i=1, 2, …, n; j= 1, 2, …, n – числовые коэффициенты,

b1, b2, …, bn – свободные члены. 

Решение такой системы линейных алгебраических уравнений — набор значений x1, x2, …, xn, при которых все уравнения системы становятся тождественными.

Матричный вид записи такой системы линейных уравнений:

AX=B, где A=a11a12⋯a1na21a22⋯a2n⋮⋮⋮⋮an1an2⋯ann— основная матрица системы, в которой ее элементы — это коэффициенты при неизвестных переменных;

B=b1b2⋮bn — матрица-столбец свободных членов;

X=x1x2⋮xn— матрица-столбец неизвестных переменных.

После того как мы найдем неизвестные переменные x1, x2, …, xn, матрица X=x1x2⋮xn становится решением системы уравнений, а равенство AX=B обращается в тождество.

Метод Крамера основан на 2-х свойствах определителя матрицы:

  • Определитель квадратной матрицы A=aij, i=1, 2, …, n; j=1, 2, …, n равняется сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения:

a11a12⋯a1na21a22⋯a2n⋮⋮⋮⋮an1an2⋯ann=ap1×Ap1+ ap2×Ap2+…+apn×Apn=a1q×A1q+ a2q×A2q+…+anq×Anq

  • Сумма произведений какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующие элементы другой матрицы равняется нулю:

ap1×Ap1+ ap2×Ap2+…+apn×Apn=0a1q×A1q+ a2q×A2q+…+anq×Anq=0

p=1, 2, …, n, q=1, 2, …, n p не равно q

Приступаем к нахождению неизвестной переменной x1:

  • Умножаем обе части первого уравнения системы на А11, обе части второго уравнения на А21и т.д. Таким образом, мы умножаем уравнения системы на соответствующие алгебраические дополнения 1-го столбца матрицы А:

A11a11x1+A11a12x2+…+A11a1nxn=A11b1A21a21x1+A21a22x2+…+A21x2nxn=A21b2⋯An1an1x1+An1an2x2+…+An1annxn=An1bn

  • Складываем все левые части уравнения системы, сгруппировав слагаемые при неизвестных переменных  , и приравниваем получившуюся сумму к сумме всех правых частей уравнения:

x1(A11a11+A21a21+…+An1an1)++x2(A11a12+A21a22+…+An1an2)++…++xn(A11a1n+A21a2n+…+An1ann)==A11b1+A21b2+…+An1bn

Если воспользоваться свойствами определителя, то получится:

А11а11+А21а21+…+Аn1an1=АА11а12+А21а22+…+Аn1аn2=0⋮A11a1n+A21a2n+…+An1ann=0

A11b1+A21b2+…+An1bn=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann

Предыдущее равенство будет иметь следующий вид:

x1A=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann.

Откуда

x1=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯annA

Таким же образом находим все оставшиеся неизвестные переменные.

Если обозначить

∆=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann, ∆x1=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann,

∆x2=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann, … ∆xn=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann.

то получаются формулы для нахождения неизвестных переменных по методу Крамера:

x1=∆x1∆, x2=∆x2∆, …, xn=∆xn∆.

Алгоритм решения СЛАУ методом Крамера

  • Необходимо вычислить определитель матрицы системы и убедиться, что он не равен нулю.
  • Найти определители

∆x1=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann

∆x2=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann

∆xn=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann

Эти определители являются определителями матриц, которые получены из матрицы А путем замены k-столбца на столбец свободных членов.

  • Вычислить неизвестные переменные при помощи формул:

x1=∆x1∆, x2=∆x2∆, …, xn=∆xn∆.

  • Выполнить проверку результатов: если все определители являются тождествами, то решение найдено верно.

Примеры решения СЛАУ методом Крамера

Пример 2

Найти решение неоднородной системы линейных уравнений методом Крамера:

3×1-2×2=562×1+3×2=2

Как решать?

Основная матрица представлена в виде 3-223.

Мы можем вычислить ее определитель по формуле: 

a11a12a21a22=a11×a22-a12×a21: ∆=3-223=3×3-(-2)×2=9+4=13

Записываем определители ∆x1 и ∆x2. Заменяем 1-ый столбец основной матрицы на столбец свободных членов и получаем определитель ∆x1=56-223

По аналогии заменяем второй столбец основной матрицы на столбец свободных членов и получаем определитель:

∆x2=35622

Находим эти определители:

∆x1=56-223=56×3-2(-2)=52+4=132

∆x2=35622=3×2-56×2=6-53=133

Находим неизвестные переменные по следующим формулам 

x1=∆x1∆, x2=∆x2∆

x1=∆x1∆=13213=12

x2=∆x2∆=313=13

Выполняем проверку — подставляем полученные значения переменных в в исходную систему уравнений:

312-213=56212+313=2⇔56=562=2

Оба уравнения превращаются в тождества, поэтому решение верное.

Ответ: x1=12, x2=13

Поскольку некоторые элементы системы линейных уравнений могут равняться нулю, то в системе не будет соответствующих неизвестных переменных.

Пример 3

Найти решение 3-х нелинейных уравнений методом Крамера с 3-мя неизвестными:

2y+x+z=-1-z-y+3x=-1-2x+3z+2y=5

За основную матрицу нельзя брать 211-1-1-3-232.

Необходимо привести к общему порядку все неизвестные переменные во всех уравнениях системы:

x+2y+z=-13x-y-z=-1-2x+2y+3z=5

С этого момента основную матрицу хорошо видно:

1213-1-1-223

Вычисляем ее определитель:

∆=1213-1-1-223=1×(-1)×3+2×(-1)(-2)+1×2×3-1(-1)(-2)-2×3×3–1(-1)×2=-11

Записываем определители и вычисляем их:

∆x=-121-1-1-1523=(-1)(-1)×3+2(-1)×5+1(-1)×2-1(-1)×5-2(-1)×3–1(-1)×2=0

∆y=1-113-1-1-253=1(-1)×3+(-1)(-1)(-2)+1×3×5-1(-1)(-2)-(-1)–1(-1)×2=22

∆z=12-13-1-1-225=1(-1)×5+2(-1)(-2)+(-1)×3×2-(-1)(-1)(-2)-2×3×5–1(-1)×2=-33

Находим неизвестные переменные по формулам:

x=∆x∆, y=∆y∆, z=∆z∆.

x=∆x∆=0-11=0

y=∆y∆=22-11=-2

z=∆z∆=-33-11=3

Выполняем проверку — умножаем основную матрицу на полученное решение 0-23:

1213-1-1-223×0-23=1×0+2(-2)+1×33×0+(-1)(-2)+(-1)×3(-2)×0+2(-2)+3×3=-1-15

Результатом являются столбцы свободных членов исходной системы уравнений, следовательно, решение верное.

Ответ: x=0, y=-2, z=3

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Добавить комментарий