Содержание:
Линзы:
На уроках природоведения вы. наверное, пользовались микроскопом. Кое-кто из ваших друзей (а может, и вы сами) имеет очки. Вероятнее всего, большинство из вас знакомы с биноклем, зрительной тру бой, телескопом. У всех этих приборов есть общее: их основной частью является линза.
Равные виды линз
Линзой (сферической*) называют прозрачное тело, ограниченное с двух сторон сферическими поверхностями (в частности, одна из поверхностей может быть плоскостью). По форме линзы делятся на выпуклые (рис. 3.50) и вогнутые (рис. 3.51).
Если толщина линзы d во много раз меньше радиусов
Обычно выпуклые линзы являются собирающими: параллельные лучи, которые падают на собирающую линзу, пройдя сквозь нее, пересекаются в одной точке (рис. 3.53).
Вогнутые линзы чаще всего бывают рассеивающими: параллельные лучи после прохождения сквозь рассеивающую линзу выходят расходящимся пучком (рис. 3.54).
Линзы также бывают цилиндрическими, но встречаются такие линзы редко.
Характеристики линз
Проведем прямую, которая проходит через центры сферических поверхностей, ограничивающих линзу. Эту прямую называют главной оптической осью линзы. Точку линзы, которая расположена на главной оптической оси и через которую луч света проходит, не изменяя своего направления, называют оптическим центром линзы (рис. 3.55). На рисунках оптический центр линзы обычно обозначают буквой О.
Точку, в которой собираются после преломления лучи, параллельные главной оптической оси собирающей линзы, называют действительным фокусом собирающей линзы (рис. 3.56).
Если пучок лучей, параллельных главной оптической оси, направить на рассеивающую линзу, то после преломления они выйдут расходящимся пучком.
Однако их продолжения соберутся в одной точке на главной оптической оси линзы (рис. 3.57). Эту точку называют мнимым фокусом рассеивающей линзы.
На рисунках фокус линзы обозначают буквой F.
Расстояние от оптического центра линзы до фокуса называют фокусным расстоянием линзы.
Фокусное расстояние обозначается символом F и измеряется в метрах. Фокусное расстояние собирающей линзы договорились считать положительным (F>0), а рассеивающей — отрицательным (F<0).
Очевидно, что чем сильнее преломляющие свойства линзы, тем меньшим будет ее фокусное расстояние (рис. 3.58).
Физическая величина, характеризующая преломляющие свойства линзы и обратная фокусному расстоянию, называется оптической силой линзы.
Оптическая сила линзы обозначается символом D и вычисляется по формуле
где F — фокусное расстояние линзы.
Единицей оптической силы является диоптрия
1 диоптрия (дптр) — это оптическая сила такой линзы, фокусное рас стояние которой равняется 1 м.
Если линза собирающая, то ее оптическая сила положительна. Оптическая сила рассеивающей линзы отрицательна. Например, оптическая сила линз в бабушкиных очках +3 дптр, а в маминых -3 дптр. Это означает, что в бабушкиных очках стоят собирающие линзы, а в маминых — рассеивающие.
Пример №1
Оптическая сила линзы равняется -1,6 дптр. Каково фокусное расстояние этой линзы? Эта линза собирающая или рассеивающая?
Дано:
Анализ физической проблемы
Для определения фокусного расстояния этой линзы воспользуемся формулой для вычисления оптической силы линзы. Поскольку 1)< 0, то линза рассеивающая.
Поиск математической модели, решение:
Определим числовое значение искомой величины:
Ответ: F = -62,5 см, линза рассеивающая.
Итоги:
Прозрачное тело, ограниченное с двух сторон сферическими поверхностями, называют линзой. Линзы бывают собирающими и рассеивающими, а по форме — выпуклыми и вогнутыми.
Линза называется собирающей, если пучок параллельных лучей, падающий на нее, после преломления в линзе пересекается в одной точке. Эту точку называют действительным фокусом линзы.
Линза называется рассеивающей, если параллельные лучи, падающие на нее, после преломления в линзе идут расходящимся пучком, однако продолжения этих преломленных лучей пересекаются в одной точке. Эта точка называется мнимым фокусом линзы.
Физическая величина, характеризующая преломляющие свойства линзы и являющаяся обратной фокусному расстоянию линзы, называется оптической силой линзы = Оптическая сила линзы измеряется в диоптриях (дптр).
Формула тонкой линзы
Сейчас никого не удивляет, что можно увидеть бактерии и другие микроорганизмы, рассмотреть невидимые невооруженным глазом детали рельефа поверхности Луны или полюбоваться портретом, нарисованным на маковом зернышке. Все это стало возможным потому, что с по мощью линзы получают разные по размеру изображения предметов.
Изображение предмета, полученное с помощью линзы
Расположив последовательно зажженную свечу, собирающую линзу и экран, получим на экране четкое изображение пламени свечи (рис. 3.59). Изображение может быть как большим, так и меньшим, чем само пламя, или равным ему — в зависимости от расстояния между свечой и экраном. Чтобы выяснить, при каких условиях с помощью линзы образуется то или иное изображение предмета, рассмотрим приемы его построения.
Строим изображение предмета, которое дает тонкая линза
Любой предмет можно представить как совокупность точек. Каждая точка предмета, который светится собственным или
- — луч, проходящий через оптический центр О линзы (не преломляется и не изменяет своего направления);
- — луч, параллельный главной оптической оси / линзы (после преломления в линзе идет через фокус F);
- — луч, проходящий через фокус F (после преломления в линзе идет параллельно главной оптической оси/линзы)
- отраженным светом, испускает лучи во всех направлениях.
Для построения изображения точки S, получаемого с помощью линзы, достаточно найти точку пересечения , любых двух лучей, выходящих из точки S и проходящих сквозь линзу (точка и будет действительным изображением точки S). Кстати, в точке пересекаются все лучи, выходящие из точки S, однако для построения изображения достаточно двух лучей (любых из трех показанных на рис. 3.60).
Изобразим схематически предмет стрелкой АВ и удалим его от линзы на расстояние, большее, чем 2F (за двойным фокусом) (рис. 3.61, а). Сначала построим изображение точки В. Для этого воспользуемся двумя «удобными* лучами (луч 1 и луч 2). Эти лучи после преломления в линзе пересекутся в точке . Значит, точка является изображением точки В. Для построения изображения точки А из точки опустим перпендикуляр на главную оптическую ось /. Точка пересечения перпендикуляра и оси / и является точкой
Значит, и является изображением предмета АВ, полученное с помощью линзы. Мы видим: если предмет расположен за двойным фокусом собирающей линзы, то его изображение, полученное с помощью линзы, будет уменьшенным, перевернутым, действительным. Такое изображение получается, например, на пленке фотоаппарата (рис. 3.61, б) или сетчатке глаза.
На рис. 3.62, а показано построение изображения предмета АВ, полученного с помощью собирающей линзы, в случае, когда предмет расположен
Изображение предмета в этом случае будет увеличенным, перевернутым, действительным. Такое изображение позволяет получить проекционная аппаратура на экране (рис. 3.62, б).
Если поместить предмет между фокусом и линзой, то изображения на экране мы не увидим. Но, посмотрев на предмет сквозь линзу, увидим изображение предмета — оно будет прямое, увеличенное.
Используя «удобные лучи» (рис. 3.63, а), увидим, что после преломления в линзе реальные лучи, вышедшие из точки В, пойдут расходящимся пучком. Однако их продолжения пересекутся в точке В,. Напоминаем, что в этом случае мы имеем дело с мнимым изображением предмета. То есть если предмет расположен между фокусом и линзой, то его изображение бу дет увеличенным, прямым, мнимым, расположенным с той же стороны от линзы, что и сам предмет. Такое изображение можно получить с помощью лупы (рис. 3.63, б) или микроскопа.
Итак, размеры и вид изображения, полученного с помощью собирающей линзы, зависят от расстояния между предметом и этой линзой.
Внимательно рассмотрите рис. 3.64, на котором показано построение изображения предмета, полученного с помощью рассеивающей линзы. Построение показывает, что рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение предмета, расположенное с той же стороны от линзы, что и сам предмет.
Мы часто сталкиваемся с ситуацией, когда предмет значительно больше, чем линза (рис. 3.65), или когда часть линзы закрыта непрозрачным экраном (например, линза объектива фотоаппарата). Как создается изображение в этих случаях? На рисунке видно, что лучи 2 и 3 при этом не проходят через линзу. Однако мы, как и раньше, можем использовать эти лучи для построения изображения, получаемого с помощью линзы. Поскольку реальные лучи, вышедшие из точки В, после преломления в линзе пересекаются в одной точке — то «удобные лучи*, с помощью которых мы строим изображение, тоже пересеклись бы в точке
Как выглядит формула тонкой линзы
Существует математическая зависимость между расстоянием d от предмета до линзы, расстоянием f от изображения предмета до линзы и фокусным расстоянием F линзы. Эта зависимость называется формулой тонкой линзы и записывается так:
Пользуясь формулой тонкой линзы для решения задач, следует иметь в виду: расстояние f (от изображения предмета до линзы) следует брать со знаком минус, если изображение мнимое, и со знаком плюс, если изображение действительное; фокусное расстояние F собирающей линзы положительное, а рассеивающей — отрицательное.
Пример №2
Рассматривая монету с помощью лупы, оптическая сила которой +5 дптр, мальчик расположил монету на расстоянии 2 см от лупы. Определите, на каком расстоянии от лупы мальчик наблюдал изображение монет
Дано:
d = 2 см = 0,02 м
D = + 5 дптр
f- ?
Анализ физической проблемы, поиск математической модели
Лупу можно считать тонкой линзой, поэтому чтобы найти расстояние от лупы до изображения, воспользуемся
формулой тонкой линзы Фокусное расстояние F неизвестно, но мы знаем, что (2), где
D — оптическая сила линзы, данная в условии задачи.
Решение и анализ результатов
Подставив формулу (2) в формулу (1), получаем
Проверим единицу:
Найдем числовое
Проанализируем результат: знак ♦-* говорит о том, что изображение является мнимым.
Ответ: f = -21 см, изображение мнимое.
Итоги:
В зависимости от вида линзы (собирающая или рассеивающая) и местоположения предмета относительно этой линзы получают разные изображения предмета с помощью линзы (см.таблицу):
Таким образом, по типу изображения можно судить так и о местоположении предмета относительно нее.
Расстояние d от предмета до линзы, расстояние f от изображения до линзы и фокусное расстояние F связаны формулой тонкой линзы:
Что такое линза
Многие люди носят очки. А задумывались ли вы над вопросами: что собой представляют стекла очков и какова их роль? Стекла очков есть не что иное, как линзы. Ни один оптический прибор (от простой лупы до сложных телескопов) не обходится без линз. Что же такое линза?
Линза представляет собой прозрачное тело, ограниченное криволинейными (чаще всего сферическими) или криволинейной и плоской поверхностями. Материалом для линз обычно служит оптическое или органическое стекло.
На рисунках 261, 262 представлены сечения линз двух типов: двояковыпуклой (см. рис. 261) и двояковогнутой (см. рис. 262). Одна из поверхностей линзы может быть плоской, как, например, на рисунке 263. Такие линзы называются плосковыпуклая (см. рис. 263, а) и плосковогнутая, (см. рис. 263, б).
Прямая, проходящая через центры сферических поверхностей (рис. 264), называется главной оптической осью линзы. Радиусы и есть радиусы кривизны поверхностей линзы (см. рис. 264).
Если толщина линзы мала но сравнению с радиусами кривизны ее поверхностей (см. рис. 264), то линза называется тонкой. Ее часто изображают Всякая тонкая линза имеет точку, проходя через которую, луч не меняет своего направления (лучи 1 и 2 на рисунке 264). Эта точка О называется оптическим центром линзы. В дальнейшем мы будем рассматривать только тонкие линзы, изготовленные из вещества, оптически более плотного, чем среда (воздух), в которой они находятся.
Как линзы меняют направление падающих на них лучей после преломления? Ответ получим с помощью опыта.
Направим на двояковыпуклую линзу (рис. 265, а) параллельно главной оптической оси лучи света. После преломления в линзе они пересекают главную оптическую ось в одной точке F. Значит, двояковыпуклая линза собирает преломленные лучи, поэтому такая линза называется собирающей. Также превращают параллельный пучок в сходящийся линзы 2, 3, изображенные на рисунке 270. При замене линзы на двояковогнутую (рис. 265, б) лучи после преломления в линзе расходятся, а центральный луч, как и в первом случае, не испытывает преломления. Итак, двояковогнутая линза рассеивает параллельный пучок падающих на нее лучей, поэтому такая линза называется рассеивающей. Рассеивают параллельный пучок и линзы 5, 6 (см. рис. 270).
Точка F (см. рис. 265, а, рис. 266, а), в которой пересекаются преломленные линзой лучи, падающие параллельно главной оптической оси, или их продолжения (см. рис. 265, б, рис. 266, б), называется главным фокусом линзы. Так как параллельные лучи можно пустить как с одной, так и с другой стороны линзы, то и главных фокуса у линзы два. Оба фокуса лежат на главной оптической оси симметрично относительно оптического центра линзы (см. рис. 266). А в какой точке собирает линза лучи, идущие под углом к главной оптической оси? Оказывается, в точке которая находится в плоскости (см. рис. 266, а), проходящей через главный фокус перпендикулярно главной оптической оси. Эта плоскость называется фокальной плоскостью, а точка в отличие от главного фокуса, называется фокусом.
Обратите внимание, что у собирающей линзы в фокусе пересекаются сами преломленные лучи, несущие энергию, поэтому фокус называется действительным. У рассеивающей линзы в фокусе пересекаются продолжения преломленных лучей. Такой фокус называют мнимым.
Расстояние от оптического центра до главного фокуса называется фокусным расстоянием. Его тоже принято обозначать буквой F.
Линза, имеющая более выпуклые поверхности, преломляет лучи сильнее. Линза 1 (рис. 267, а) преломляет лучи сильнее, чем линза 2 (рис. 267, 6). Фокусное расстояние у линзы 1 меньше, чем у линзы 2.
Чтобы количественно оценить преломляющую способность линзы, введем величину, обратную фокусному расстоянию, и назовем ее оптической силой линзы (обозначается буквой D):
Оптическая сила измеряется в диоптриях (сокращенно дптр). Очевидно, что D = 1 дптр, если фокусное расстояние линзы F = 1 м.
А как оценивается оптическая сила рассеивающей линзы, у которой фокус мнимый? В этом случае фокусное расстояние считается отрицательным, а следовательно, и оптическая сила — отрицательной величиной.
Например, если F = -0,5 м, то оптическая сила
Теперь для вас не будет загадкой рекомендация врача-окулиста: «Вам нужны очки со стеклами +1,5 диоптрии или -2 диоптрии».
Для любознательных:
Не следует думать, что любая линза с выпуклой поверхностью будет обязательно собирающей, а с вогнутой — рассеивающей. Собирающей является всякая линза, у которой середина толще краев (например, линзы 2, 2, 3 на рисунке 270), а рассеивающей — линза, у которой середина тоньше краев (см. рис. 270, линзы 4, 5, 6). И не забывайте, что все наши рассуждения справедливы, если вещество линзы (стекло) имеет большую оптическую плотность, чем окружающая среда (воздух).
В природе собирающими линзами являются капельки росы, в быту — наполненные водой прозрачные сосуды — кувшин, пластиковая бутылка. Подумайте и ответьте, какие это линзы.
Главные выводы:
- Линзы меняют направление падающих на них лучей после преломления, за исключением тех, которые проходят через оптический центр линзы.
- Собирающая линза после преломления делает параллельный пучок лучей сходящимся, рассеивающая линза — расходящимся.
- Лучи, идущие параллельно главной оптической оси, после преломления в собирающей линзе пересекаются в главном фокусе. В рассеивающей линзе в главном фокусе пересекаются продолжения преломленных лучей.
- Величина, обратная фокусному расстоянию, определяет оптическую силу линзы.
Построение изображений в тонких линзах
Глядя в окуляр микроскопа на уроках биологии, задумывались ли вы, как получается увеличенное изображение клеток? Главными частями микроскопа являются линзы. Именно они позволяют получать увеличенное или уменьшенное (например, в фотоаппарате) изображение предмета.
Какие изображения предмета создает линза?
Проведем опыт. На столе расположим экран, собирающую линзу и зажженную свечу (рис. 271, а), удаленную от линзы на расстояние б/, большее, чем удвоенное фокусное, т. е. d > 2F. Будем передвигать экран до тех пор, пока не увидим на нем четкое изображение пламени свечи. Чем оно отличается от изображения, которое мы увидим в зеркале, поместив перед ним эту же свечу? Во-первых, оно уменьшенное, во-вторых, перевернутое. Ио самое главное, что это изображение, в отличие от мнимого изображения в зеркале, реально существует. На экране концентрируется энергия света. Чувствительный термометр, помещенный в изображение пламени свечи, покажет повышение температуры. Поэтому полученное в линзе изображение называют действительным, в отличие от мнимых изображений, наблюдаемых в плоском зеркале.
Подтвердим сказанное построением (рис. 271, б). Для получения изображения точки А достаточно использовать два луча, ход которых после преломления в линзе известен. Луч 1 идет параллельно главной оптической оси и после преломления в линзе проходит через главный фокус. Луч 2 идет через оптический центр и не меняет своего направления после прохождения сквозь линзу. Точка А’, являющаяся пересечением прошедших линзу лучей и 2′, есть действительное изображение точки А. Заметим, что через точку А пройдет и любой другой преломленный луч идущий от точки А, благодаря чему энергия, излученная точкой А пламени свечи, будет сконцентрирована в точке А’.
Продолжим опыт. Поставим свечу на расстоянии d = 2F. Перемещая экран, мы увидим на нем действительное, перевернутое изображение пламени свечи, но размер его будет равен размеру пламени самой свечи (рис. 272). Сделайте сами построение изображения для этого случая.
Передвигая свечу ближе к линзе (F < d < 2F) и удаляя экран, мы увидим на нем действительное, перевернутое, увеличенное изображение пламени свечи (построение сделайте сами).
Наконец поставим свечу на расстоянии d от линзы, меньше фокусного, т. е. d
А какие изображения предмета дает рассеивающая линза? Пусть параллельно главной оптической оси надает луч 1 (рис. 275). После линзы преломленный луч идет так, что только его продолжение проходит через фокус. Луч 2 не испытывает преломления. Видно, что лучи и 2′ не пересекаются. В точке А’ пересекаются их продолжения. Тогда изображение точки А, а значит, и всего предмета АВ — мнимое. Как все мнимые изображения, оно прямое, но уменьшенное. Даст ли рассеивающая линза действительное изображение, если менять положение предмета? Может ли оно быть увеличенным? Ответьте на эти вопросы сами, сделав соответствующие построения изображений предмета в тетради.
Главные выводы:
- Собирающая линза дает как действительные, так и мнимые изображения, рассеивающая — только мнимые.
- Все мнимые изображения — прямые, все действительные — перевернутые.
- Для нахождения изображения точки наиболее целесообразно использовать луч, идущий параллельно главной оптической оси линзы, и луч, идущий через ее оптический центр.
Пример №3
С помощью стеклянной линзы на экране, удаленном от линзы на расстояние f = 36 см, получено увеличенное в 3 раза изображение предмета. Определите расстояние от предмета до линзы и оптическую силу линзы.
Дано:
Н = Зh
f = 36 см
d — ?
D — ?
Решение
Построим изображение предмета в линзе (рис. 276).
Поскольку изображение есть на экране, то оно действительное. Кроме того, оно увеличенное, значит, предмет находится между фокусом и двойным фокусом, а линза собирающая.
По условию размер предмета АВ в 3 раза меньше размера изображения А’В’. Из подобия треугольников АОВ и А’ОВ’ следует, что таким же будет и соотношение их сторон ВО и OB’, Значит, искомое расстояние d будет в 3 раза меньше заданного расстояния f. Это дает первый ответ: Для ответа на второй вопрос используем подобие другой нары треугольников — CFO и A’FB’. И здесь подобные стороны треугольников различаются в 3 раза.
Так как одна из них — OF равна фокусному расстоянию F линзы, а другая — FB’ равна разности f – F, то их связь можно записать так: 3F = f – F, или 4F = f = 36 см. Вычислив значение фокусного расстояния найдем и искомое значение оптической силы D линзы:
Ответ:
Оптическая сила и фокусное расстояние линзы
Граница разделения двух, прозрачных для света, тел может быть искривленной. Если прозрачное тело ограничить искривленными поверхностями, получим линзу (нем. linse – «чечевица»).
Линза — это прозрачное тело, ограниченное двумя выпуклыми или вво-гнутыми прозрачными поверхностями, преломляющими лучи света.
Одна из поверхностей линз может быть плоской. Линзы изготавливают из какого-либо прозрачного для света вещества: стекла, кварца, разных пластмасс, каменной соли, но чаще всего – из специальных сортов стекла.
Наибольшее распространение получили линзы, ограниченные сферическими поверхностями. В зависимости от взаимного размещения сферических поверхностей, ограничивающих линзу, различают 6 типов линз: двояковыпуклая, плоско-выпуклая, вогнуто-выпуклая (рис. 165, а, б, в); двояковогнутая, плоско-вогнутая, выпукло-ввогнутая (рис. 165, г, д, е).
Любая линза имеет характерные точки и линии. Выясним, какие именно.
1. Прямую, проходящую через центры сферических поверхностей, которые ограничивают линзу, называют ее главной оптической осью (рис. 166).
2. Точку О, которая лежит на главной оптической оси в центре линзы, называют оптическим центром линзы (рис. 166).
Опыт 1. Направим на линзу пучок лучей, параллельных ее главной оптической оси. Проходя через линзу, световые лучи преломляются и пересекаются в одной точке, лежащей на главной оптической оси линзы (рис. 167).
Эту точку называют главным фокусом линзы F.
3. Главный фокус линзы F – точка, в которой сходятся все, параллельные главной оптической оси, лучи после их преломления в линзе.
4. Фокусное расстояние f – расстояние от оптического центра линзы О до главного фокуса F.
Каждая линза имеет два главных фокуса.
Любая тонкая линза характеризуется двумя основными параметрами -фокусным расстоянием и оптической силой. Оптическую силу линзы обозначают большой буквой D и определяют по формуле:
Единицей оптической силы является одна диоптрия (1 дптр), 1 дптр = .
Как видно из опыта, линза преобразует пучок параллельных лучей в сходящийся, то есть собирает его в одну точку. Такую линзу называют собирательной.
Собирательная линза — это линза, которая световые лучи, падающие на нее параллельно ее главной оптической оси, после преломления собирает на этой оси в одну точку.
Опыт 2. Возьмем линзу другого типа и направим на нее параллельный главной оптической оси пучок лучей света. Лучи, преломившись на границе воздух-стекло, выходят из линзы расходящимся пучком, или рассеиваются (рис. 168).
Такую линзу называют рассеивающей.
Рассеивающая линза — это линза, которая световые лучи, падающие на нее параллельно ее главной оптической оси, после преломления отклоняет от этой оси.
Если пучок лучей, выходящий из рассеивающей линзы, продолжить в противоположном направлении, то продолжения лучей пересекутся в точке F, которая лежит на оптической оси с той же стороны, с которой свет падает на линзу. Эту точку F называют мнимым главным фокусом рассеивающей линзы (рис. 169).
Опыт 3. Пропустим световые лучи только через оптические центры линз. В результате опыта убеждаемся (рис. 170), что световые лучи, проходящие через оптический центр линзы, не преломляются, то есть не изменяют своего направления.
С помощью линз можно не только собирать или рассеивать световые лучи, но и строить изображение предметов. Как раз благодаря этому свойству линзы широко используют в практических целях.
Каким же образом строятся изображения предметов с помощью линз?
Изображение предмета — это воссоздание вида, формы и цвета предмета световыми лучами, проходящими через оптическую систему линз, которые имеют одну общую оптическую ось.
Если изображение предмета образовано пересечением самих лучей, то его называют действительным, если их продолжением – мнимым.
Определить ход лучей, отраженных всеми точками поверхности тела, невозможно. Поэтому для построения изображения будем использовать такие лучи, ход которых известен:
- 1. Луч, проходящий через оптический центр линзы, не преломляется (рис. 171, а).
- 2. Луч, параллельный главной оптической оси линзы, после преломления в линзе проходит через главный фокус линзы (рис. 171, б).
- 3. Луч, проходящий через главный фокус линзы, после преломления в ней, проходит параллельно главной оптической оси (рис. 171, в).
Рассмотрим случаи, при которых получается то или другое изображение, и особенности этих изображений.
1. Предмет АВ размещен между линзой и ее фокусом F.
Построим изображение точки А, использовав для этого упомянутые лучи. Луч АС (рис. 172), параллельный главной оси линзы, преломившись в линзе, пройдет через главный фокус, а луч АО не изменит своего направления. Как видно на рисунке, эти лучи расходятся. Чтобы построить изображение точки А, следует продолжить лучи в противоположном направлении до пересечения, это будет точка Это изображение точки есть мнимым. Такое же построение хода лучей можно выполнить для всех точек предмета, находящихся между точками А и В. Изображение этих промежуточных точек будут лежать между. Таким образом, – изображение предмета АВ.
Если предмет находится между линзой и ее фокусом, то получают увеличенное, прямое, мнимое его изображение, размещенное дальше от линзы, чем сам предмет.
Такое изображение получают, когда пользуются лупой – прибором для рассматривания мелких предметов (например, чтения мелкого текста).
2. Предмет размещен в главном фокусе линзы F.
Для построения изображения предмета АВ снова воспользуемся лучами АС и АО (рис. 173). После прохождения лучей сквозь линзу мы увидим, что они параллельны между собой. Следовательно, изображение предмета АВ мы не получим.
Если в главном фокусе разместить источник света, то мы превратим пучок расходящихся лучей на пучок параллельных лучей, который хорошо освещает отдаленные предметы.
Если предмет размещен в главном фокусе линзы F, изображение предмета получить нельзя.
3. Предмет размещен между главным фокусом линзы F и двойным фокусом линзы 2F.
Во время построения изображения (рис. 174) мы видим, что лучи АС и АО после прохождения линзы пересекаются в точке . В этой точке образуется действительное изображение точки А. Изображение предмета АВ также будет действительным.
Если предмет находится между фокусом F и двойным фокусом 2F линзы, то образуется увеличенное, перевернутое и действительное изображение предмета; оно размещено с противоположной относительно предмета стороны линзы на расстоянии, больше двойного фокусного расстояния.
Такое изображение используют в проекционном аппарате, киноаппарате. Чтобы изображение на экране было прямым, диапозитивы или киноленту устанавливают в аппарат в перевернутом виде.
4. Предмет находится в двойном фокусе линзы. 2F.
В этом случае линза дает (рис. 175) перевернутое, действительное изображение предмета такого же размера, как и он сам. Это изображение размещено в ее двойном фокусе 2F с противоположной относительно предмета стороны линзы.
5. Если предмет находится за двойным фокусом линзы 2F (рис. 176), линза дает уменьшенное, перевернутое и действительное изображение предмета, которое размещено между ее главным фокусом F и двойным фокусом 2F с противоположной относительно предмета стороны линзы.
Такое изображение используют в фотоаппарате.
Пример №4
Почему не рекомендуется поливать растения днем, когда они освещены солнечными лучами, особенно те, на листьях которых остаются капельки воды?
Ответ: потому что капельки играют роль линз, фокусирующих солнечные лучи, и растения получают ожоги.
Пример №5
На рисунке 177 показан ход лучей в линзах. Какие это линзы?
Ответ: (слева направо) источник света, собирательная линза, рассеивающая линза.
Простые оптические приборы
Знания законов отражения и преломления света в зеркалах и линзах дали возможность создать ряд оптических приборов, имеющих важное значение для современной науки и техники. Их используют специалисты разных отраслей. Это микроскоп биолога и фотоаппарат журналиста, кинокамера оператора и телескоп астронома, перископ подводника и т. п. Кроме того, оптическими приборами являются очки миллионов людей разного возраста и специальностей.
Самый простой оптический прибор – лупа.
Лупа (франц. loupe – «нарост») – оптический прибор, являющийся собирательной линзой, применяется для рассматривания мелких деталей, плохо заметных невооруженным глазом.
Общий вид луп разного вида представлен на рисунке 181, а.
Чтобы увидеть изображение предмета увеличенным, лупу следует разместить так, чтобы данный предмет был между лупой и ее фокусом (рис. 181, б).
Лучи, падающие на лупу от крайних точек предмета, преломляются в линзе и сходятся.
Каким же образом все это видит наш глаз?
Оказывается, наш глаз не замечает преломления лучей. Лучи, идущие от предмета сквозь линзу, воспринимаются глазом как прямолинейные. Нам кажется, что лучи, идущие от лупы к глазу, продолжаются после лупы, не преломляясь. Благодаря этому мы видим предмет увеличенным по сравнению с его действительными размерами.
Лупа дает увеличение в 10-40 раз.
Значительное увеличение изображения предметов можно получить с помощью двух линз, размещенных в металлической трубе на определенном расстоянии друг от друга. Такой прибор называют микроскопом.
Микроскоп (греч. mikro – «маленький», skopeo – «смотрю») – оптический прибор для рассматривания мелких предметов и их деталей (рис. 182, а).
Ход лучей в микроскопе показан на рисунке 182, б. Линзу, размещенную со стороны глаза, называют окуляром (лат. oculus – «глаз»), а линзу, размещенную со стороны данного предмета, называют объективом (лат. objectivus – «предметный»).
Первое увеличение изображения предмета дает объектив. Предмет в микроскопе размещается немного дальше от фокуса обьектива. В результате этого выходит увеличенное и перевернутое изображение предмета.
Это изображение увеличивается еще раз линзой-окуляром: оно будто служит для окуляра предметом. Окуляр, подобно лупе, размещают на расстоянии (меньше фокусного) от промежуточного изображения. В итоге мы получаем новое, более увеличенное изображение.
Если, например, объектив микроскопа дает изображение предмета, увеличенное в 20 раз, а окуляр увеличивает это изображение в 15 раз, то общее увеличение, которое дает микроскоп, будет уже 20*15 = 300 раз.
Современные электронные микроскопы дают увеличение в десятки тысяч раз. Например, так выглядят под микроскопом бактерии, увеличенные в 25 000 раз (рис. 183).
Посмотрите еще раз на схему микроскопа (рис. 182, б). Объектив микроскопа – линза – имеет меньшее фокусное расстояние, чем окуляр этого прибора. А что будет, если мы возьмем объектив, который имеет большее фокусное расстояние, чем окуляр?
В этом случае мы получим новый прибор, который называют телескопом, или рефрактором (лат. refringo – «преломляю»). Такой телескоп создал еще в 1611 г. немецкий астроном Иоганн Кеплер. А вообще первый телескоп на основе зрительной трубы построил в 1609 г. Галилео Галилей.
Телескоп (греч. tele – «далеко», skopeo – «смотреть») – оптический прибор для астрономических исследований космических объектов (рис. 184).
Прохождение в телескопе лучей от небесного тела показано на рисунке 185.
Как следует из рисунка, изображение небесного тела в телескопе мы видим под большим углом зрения, в отличие от невооруженного глаза. Окуляр телескопа, как и окуляр микроскопа, действует как обычная лупа.
Следует отметить, что, рассматривая с помощью телескопа отдаленные предметы на Земле, мы видим их перевернутыми. Однако для наблюдения за небесными телами это обстоятельство не столь важно.
Самый большой телескоп-рефрактор установлен в Йеркской обсерватории университета в Чикаго (США). Его объектив в диаметре достигает 102 см.
Другой тип – это телескопы-рефлекторы (лат. reflecto – «отображаю»). В таких телескопах, кроме преломления лучей света, используют другое их свойство – способность отражаться от зеркальных поверхностей.
Изображение небесного тела отражается с помощью маленького плоского зеркальца и рассматривается с помощью окуляра (рис. 186), который увеличивает отраженное изображение.
Первый рефлектор с диаметром зеркала 2,5 см и фокусным расстоянием 16,5 см построил в 1668 г. Исаак Ньютон. Сегодня самым большим в мире является зеркальный телескоп HESS II, установленный в Намибии, его площадь достигает 600 . Устройство предназначено для изучения происхождения космических лучей.
Фотоаппарат – это оптический прибор, с помощью которого на цифровом устройстве (англ, digital device – «техническое устройство или приспособление, предназначенное для получения и обработки информации в цифровой форме, используя цифровые технологии»), фотопленке, фотопластинке, фотобумаге получают изображение предмета.
Сегодня существует много различных типов фотоаппаратов (рис. 187, а). Они отличаются формой и размерами, но их строение и основные части одинаковы. Ход лучей в фотоаппарате изображен на рисунке 187, б.
- Заказать решение задач по физике
Подробное объяснение формулы тонкой линзы
Линза называется собирающей, если после преломления в ней параллельный пучок становится сходящимся. Если же после преломления в линзе параллельный пучок становится расходящимся, то линза называется рассеивающей (рис. 58).
Основные типы линз и лучи, используемые для построения изображений в них, даны на рисунках 59, 60.
Величина, обратная фокусному расстоянию линзы, выраженному в метрах, называется ее оптической силой:
Единица оптической силы — диоптрия (1 дптр).
1 дптр соответствует оптической силе линзы с фокусным расстоянием I м: 1 дптр= 1 .
Между фокусным расстоянием F тонкой линзы, расстоянием от предмета до линзы d и расстоянием от линзы до изображения f существует определенная количественная зависимость, называемая формулой линзы.
Выведем формулу тонкой линзы, рассматривая ход характерных лучей (рис. 61).
Пусть расстояние от предмета до линзы d, расстояние от линзы до изображения f, фокусное расстояние линзы F, расстояние от предмета до переднего главного фокуса а, расстояние от заднего главного фокуса до изображения а’.
Из рисунка 61 видно, что следовательно
Из формул (1) и (2) следует формула Ньютона:
С учетом того, что d = а + F, f = а’ + F, получаем формулу тонкой линзы:
Поперечным увеличением Г называется отношение линейного размера изображения h’ к линейному размеру предмета h. Из выражения (3) находим
В 1604 г. в исследовании «Дополнения к Вителло» Кеплер изучал преломление света в линзах различной конфигурации и для малых углов падения пришел к формуле линзы.
Для практического использования формулы тонкой линзы следует запомнить правило знаков:
- для собирающей линзы, действительных источника и изображения величины F, d, f считают положительными;
- для рассеивающей линзы, мнимых источника и изображения величины F, d,f считают отрицательными.
Заметим, что предмет или источник является мнимым только в том случае, если на линзу падает пучок сходящихся лучей.
Таким образом, линза с F>0 является собирающей (положительной), а с F< 0 — рассеивающей (отрицательной).
Оптическая сила линзы зависит от свойств окружающей среды.
В современных оптических приборах используются системы линз для улучшения качества изображений. Оптическая сила D системы тонких линз, сложенных вместе, равна сумме их оптических сил :
Пример №6
Предмет расположен на расстоянии d = 0,15 м от рассеивающей линзы с фокусным расстоянием F=-0,30 м. На каком расстоянии f от линзы получается изображение данного предмета?
Решение
Из формулы тонкой линзы
находим
Отрицательное значение f соответствует мнимому изображению предмета.
Ответ: f =-0,10 м, изображение мнимое.
Пример №7
На каком расстоянии d от рассеивающей линзы с оптической силой D = -4 дптр надо поместить предмет, чтобы его мнимое изображение получилось в k = b раз меньше (Г = ) самого предмета?
Решение
Из формулы для увеличения
находим
Из формулы линзы
с учетом выражения для f получаем
Ответ: d= 1 м.
Пример №8
Определите фокусное расстояние F собирающей линзы, дающей мнимое изображение предмета, помещенного перед ней на расстоянии d- 0,4 м, если расстояние от линзы до изображения f =-1,2 м.
Решение
Из формулы тонкой линзы
находим
Ответ: F= 0,6 м.
Разбираем формулу тонкой линзы
Линза называется собирающей, если после преломления в ней параллельный пучок становится сходящимся. Если же после преломления в линзе параллельный пучок становится расходящимся, то линза называется рассеивающей (рис. 80).
Величина, обратная фокусному расстоянию линзы, выраженному в метрах, называется ее оптической силой:
Единица оптической силы — 1 диоптрия (1 дптр).
1 дптр соответствует оптической силе линзы с фокусным расстоянием
Линзы можно представить в виде совокупности частей трехгранных призм. На рисунке 81, а изображена модель двояковыпуклой линзы, собранной из частей призм, повернутых основаниями к центру линзы. Соответственно, модель двояковогнутой линзы будет представлена частями призм, повернутых основаниями от центра линзы (рис. 81, б).
Преломляющие углы этих призм можно подобрать таким образом, чтобы падающие на нее параллельные лучи после преломления в призмах собрались в одной точке
Линза считается тонкой, если ее толщина в центре намного меньше радиусов ограничивающих ее поверхностей. Тонкая линза дает неискаженное изображение только в том случае, если свет монохроматический и предмет достаточно мал, следовательно, лучи распространяются вблизи главной оптической оси. Такие лучи получили название параксиальных.
Отметим условия, при одновременном выполнении которых линза является собирающей:
- толщина в центре больше толщины у краев,
- ее показатель преломления больше показателя преломления окружающей среды.
При невыполнении (или выполнении) только одного из этих условий линза является рассеивающей.
Между фокусным расстоянием тонкой линзы, расстоянием от предмета до линзы и от линзы до изображения существует определенная количественная зависимость, называемая формулой линзы.
Выведем формулу тонкой линзы из геометрических соображений, рассматривая ход характерных лучей. Обратим внимание на луч, идущий через оптический центр линзы, луч, параллельный главной оптической оси линзы, и луч, проходящий через главный фокус линзы.
Построим изображение предмета в тонкой собирающей линзе (рис. 82). Пусть расстояние от предмета до линзы расстояние от линзы до изображения фокусное расстояние линзы расстояние от предмета до переднего главного фокуса расстояние от заднего главного фокуса до изображения высота предмета высота его изображения
Из рисунка 82 видно, что Из подобия треугольников следует:
Используя соотношения (1) и (2), получим:
Соотношение называется формулой Ньютона.
С учетом того, что (см. рис. 82), находим: и подставляем в формулу (4):
Разделив обе части последнего выражения на получаем формулу тонкой линзы:
Линейным (поперечным) увеличением Г называется отношение линейного размера изображения к линейному размеру предмета Из соотношения (3) находим линейное увеличение тонкой линзы:
В 1604 г. в исследовании «Дополнения к Вителло» И. Кеплер изучал преломление света в линзах различной конфигурации и для малых углов падения пришел к формуле линзы.
Для практического использования формулы линзы следует твердо запомнить правило знаков:
Заметим, что предмет или источник является мнимым, только в том случае, если на линзу падает пучок сходящихся лучей.
Таким образом, линза с является собирающей (положительной), а с — рассеивающей (отрицательной).
Оптическая сила линзы зависит от свойств окружающей среды (вспомните, как плохо мы видим под водой без плавательных очков).
В современных оптических приборах для улучшения качества изображений используются системы линз. Оптическая сила системы тонких линз, сложенных вместе, равна сумме их оптических сил
Пример №9
На каком расстоянии от рассеивающей линзы с оптической силой дптр надо поместить предмет, чтобы его мнимое изображение получилось в раз меньше самого предмета? Постройте изображение предмета.
Дано:
Решение
Из формулы для линейного увеличения
находим:
По формуле тонкой линзы ( рис. 83) с учетом правила знаков:
и с учетом выражения для получаем:
Ответ:
Изучаем линзы
Скорее всего, вы пользовались фотоаппаратом, знакомы с биноклем, подзорной трубой, телескопом, на уроках биологии работали с микроскопом. Некоторые из вас носят очки. Все эти устройства имеют общее — их основной частью является линза. О том, какое значение имеют данные устройства в жизни человека, вы можете рассказать и сами, а вот о том, что такое линза, какие существуют виды линз и каковы их свойства, вы узнаете из этого параграфа.
Линза — прозрачное тело, ограниченное с двух сторон сферическими поверхностями*.
Одна из поверхностей линзы может быть плоскостью, поскольку плоскость можно рассматривать как сферу бесконечного радиуса. Линзы также бывают цилиндрическими, но встречаются такие линзы редко.
По форме линзы делят на выпуклые (рис. 14.1) и вогнутые (рис. 14.2).
Рис. 14.1. Толщина выпуклой линзы посредине больше, чем у краев: а — вид; б — разные выпуклые линзы в разрезе
Рис. 14.2. Толщина вогнутой линзы посредине меньше, чем у краев: а — вид; б — разные вогнутые линзы в разрезе
Если толщина линзы во много раз меньше радиусов сферических поверхностей, ограничивающих линзу, такую линзу называют тонкой. Далее мы будем рассматривать только тонкие линзы. Прямую, которая проходит через центры сферических поверхностей, ограничивающих линзу, называют главной оптической осью линзы (рис. 14.3).
Рис. 14.3. Тонкая сферическая линза: — главная оптическая ось линзы; — толщина линзы; — радиусы сферических поверхностей, ограничивающих линзу; — оптический центр линзы
Если на линзу направить пучок световых лучей, они преломятся на ее поверхностях и изменят свое направление. В то же время на главной оптической оси линзы есть точка, которую луч света проходит практически не изменяя своего направления. Эту точку называют оптическим центром линзы (см. рис. 14.3).
Направим на линзу пучок лучей, параллельных ее главной оптической оси. Если лучи, пройдя сквозь линзу, идут сходящимся пучком, такая линза — собирающая. Точка F, в которой пересекаются преломленные лучи, — действительный главный фокус линзы (рис. 14.4).
Рис. 14.4. Ход лучей после преломления в собирающей линзе. Точка F — действительный главный фокус линзы
Линза является рассеивающей, если лучи, параллельные ее главной оптической оси, пройдя сквозь линзу, идут расходящимся пучком. Точку F, в которой пересекаются продолжения преломленных лучей, называют мнимым главным фокусом линзы (рис. 14.5).
Рис. 14.5. Ход лучей после преломления в рассеивающей линзе. Точка F — мнимый главный фокус линзы
Обратите внимание: любой пучок параллельных лучей, даже если эти лучи не параллельны главной оптической оси, после преломления в собирающей линзе всегда пересекаются в одной точке (рис. 14.6) (если линза рассеивающая, в одной точке пересекаются продолжения преломленных лучей).
Рис. 14.6. Ход параллельных лучей после преломления в собирающей линзе
Если оптическая плотность материала, из которого изготовлена линза, больше оптической плотности среды то выпуклая линза будет собирать лучи (будет собирающей), а вогнутая линза будет рассеивать лучи (будет рассеивающей) (см. рис. 14.4, 14.5).
Если оптическая плотность материала, из которого изготовлена линза, меньше оптической плотности среды то выпуклая линза будет рассеивающей (рис. 14.7, а), а вогнутая линза — собирающей (рис. 14.7, б).
Рис. 14.7. Выпуклая (а) и вогнутая (б) воздушные линзы в воде
Определение оптической силы линзы
Любая линза имеет два главных фокуса*, расположенных на одинаковом расстоянии от оптического центра линзы (см. рис. 14.8).
Далее главный фокус линзы, как правило, будем называть фокусом линзы.
Рис. 14.8. Чем меньше радиусы R сферических поверхностей, ограничивающих линзу, тем сильнее эта линза преломляет свет, а значит, тем меньше ее фокусное расстояние F
Расстояние от оптического центра линзы до главного фокуса называют фокусным расстоянием линзы.
Фокусное расстояние, как и фокус, обозначают символом F. Единица фокусного расстояния в СИ — метр:
Фокусное расстояние собирающей линзы договорились считать положительным, а рассеивающей — отрицательным. Очевидно, что чем сильнее преломляющие свойства линзы, тем меньше по модулю ее фокусное расстояние (рис. 14.8).
Физическую величину, которая характеризует линзу и является обратной фокусному расстоянию линзы, называют оптической силой линзы.
Оптическую силу линзы обозначают символом D и вычисляют по формуле:
Единица оптической силы — диоптрия:
1 диоптрия — это оптическая сила линзы, фокусное расстояние которой равно 1 м. Оптическая сила собирающей линзы положительна, а рассеивающей линзы — отрицательна.
Подводим итоги:
Прозрачное тело, ограниченное с двух сторон сферическими поверхностями, называют линзой. Линза является собирающей, если пучок параллельных лучей, падающий на нее, после преломления в линзе пересекается в одной точке (эта точка — действительный фокус линзы). Линза является рассеивающей, если параллельные лучи, падающие на нее, после преломления идут расходящимся пучком, а продолжения преломленных лучей пересекаются в одной точке (эта точка — мнимый фокус линзы).
Физическую величину, которая характеризует преломляющие свойства линзы и обратна ее фокусному расстоянию, называют оптической силой линзы: Единица оптической силы линзы — диоптрия
Построение изображений в линзах
Основное свойство линз заключается в том, что линзы дают изображение точки, а соответственно, и предмета (как совокупности точек) (рис. 15.1). В зависимости от расстояния между предметом и линзой изображение предмета может быть больше или меньше, чем сам предмет, мнимым или действительным. Выясним, при каких условиях с помощью линзы образуются те или иные изображения, и рассмотрим приемы их построения.
Рис. 15.1. Получение изображения пламени свечи с помощью собирающей линзы
Любой предмет можно представить как совокупность точек. Каждая точка предмета излучает (или отражает) свет во всех направлениях. В создании изображения участвует множество лучей, однако для построения изображения некоторой точки S достаточно найти точку пересечения любых двух лучей, выходящих из точки S и проходящих через линзу. Обычно для этого выбирают два из трех «удобных лучей» (рис. 15.2).
Точка S1 будет действительным изображением точки S, если в точке пересекаются сами преломленные лучи (рис. 15.2, а). Точка будет мнимым изображением точки S, если в точке пересекаются продолжения преломленных лучей (рис. 15.2, б).
Рис. 15.2. Три самых простых в построении луча («удобные лучи»):
- луч, проходящий через оптический центр О линзы, не преломляется и не изменяет своего направления;
- луч, параллельный главной оптической оси линзы, после преломления в линзе идет через фокус или через фокус идет его продолжение (б);
- луч, проходящий через фокус после преломления в линзе идет параллельно главной оптической оси линзы (а, б)
Рис. 15.3. а — построение изображения предмета в собирающей линзе: предмет расположен за двойным фокусом линзы; б — ход лучей в фотоаппарате
Строим изображение предмета, которое даёт линза:
Рассмотрим все возможные случаи расположения предмета АВ относительно собирающей линзы и докажем, что размеры и вид изображения зависят от расстояния между предметом и линзой.
1. Предмет расположен за двойным фокусом собирающей линзы (рис. 15.3, а). Сначала построим изображение точки Для этого воспользуемся двумя лучами — 1 и 2. После преломления в линзе они пересекутся в точке Значит, точка является действительным изображением точки Для построения изображения точки опустим из точки перпендикуляр на главную оптическую ось Точка пересечения перпендикуляра и оси I является изображением точки
Итак, — изображение предмета Это изображение действительное, уменьшенное, перевернутое. Такое изображение получается, например, на сетчатке глаза или пленке фотоаппарата (рис. 15.3, б).
2. Предмет расположен между фокусом и двойным фокусом собирающей линзы (рис. 15.4, а). Изображение предмета действительное, увеличенное, перевернутое. Такое изображение позволяет получить на экране проекционная аппаратура (рис. 15.4, б).
Рис. 15.4. а — построение изображения предмета в собирающей линзе: предмет расположен между фокусом и двойным фокусом линзы; б — ход лучей в проекционном аппарате
3. Предмет расположен между фокусом и собирающей линзой (рис. 15.5, а). Лучи, вышедшие из точки после преломления в линзе идут расходящимся пучком. Однако их продолжения пересекаются в точке
В данном случае изображение предмета является мнимым, увеличенным, прямым. Изображение расположено по ту же сторону от линзы, что и предмет, поэтому мы не можем увидеть изображение предмета на экране, но видим его, когда смотрим на предмет через линзу. Именно такое изображение дает короткофокусная собирающая линза — лупа (рис. 15.5, б).
Рис. 15.5. а – построение изображения предмета в собирающей линзе: предмет расположен между линзой и ее фокусом; б – с помощью
4. Предмет расположен на фокусном расстоянии от собирающей линзы. После преломления все лучи идут параллельным пучком (рис. 15.6), следовательно, в данном случае ни действительного, ни мнимого изображения мы не получим.
Рис. 15.6. Если предмет расположен в фокусе собирающей линзы, мы не получим его изображения
Внимательно рассмотрите рис. 15.7, на котором показано построение изображений предмета, полученных с помощью рассеивающей линзы. Видим, что рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение, расположенное по ту же сторону от линзы, что и сам предмет.
Рис. 15.7. Рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение
Чаще всего предмет больше, чем линза, или часть линзы закрыта непрозрачным экраном (как, например, линза в объективе фотоаппарата). Изменяется ли при этом внешний вид изображения? Конечно же нет. Ведь от каждой точки предмета на линзу падает множество лучей, и все они собираются в соответствующей точке изображения. Если закрыть часть линзы, это приведет лишь к тому, что энергия, попадающая в каждую точку изображения, уменьшится. Изображение будет менее ярким, однако ни его вид, ни месторасположение не изменятся. Именно поэтому, строя изображение, мы можем использовать все «удобные лучи», даже те, которые не проходят через линзу (рис. 15.8).
Формула тонкой линзы:
Построим изображение предмета в собирающей линзе (рис. 15.9).
Рассмотрим прямоугольные треугольники и Эти треугольники подобны поэтому или
поэтому или
Приравняв правые части равенств (1) и (2), имеем то есть или Разделив обе части последнего равенства на получим формулу тонкой линзы:
или
где – оптическая сила линзы.
При решении задач следует иметь в виду:
Рис. 15.8. Построение изображения предмета в случае, когда предмет значительно больше линзы
Рис. 15.9. К выведению формулы тонкой линзы: h — высота предмета; Н — высота изображения; d — расстояние от предмета до линзы; f — расстояние от линзы до изображения; F — фокусное расстояние
Пример №10
Рассматривая монету с помощью лупы, оптическая сила которой +10 дптр, мальчик расположил монету на расстоянии 6 см от лупы. Определите: 1) фокусное расстояние линзы; 2) на каком расстоянии от лупы находится изображение монеты; 3) какое изображение дает лупа — действительное или мнимое; 4) какое увеличение дает лупа.
Анализ физической проблемы. Лупу можно считать тонкой линзой, поэтому воспользуемся формулой тонкой линзы. Фокусное расстояние найдем, воспользовавшись определением оптической силы линзы.
Дано:
Найти:
Поиск математической модели, решение
По определению
По формуле тонкой линзы: или Следовательно,
Зная расстояние определим увеличение
Найдем значения искомых величин:
Знак «-» перед значением говорит о том, что изображение мнимое.
Ответ: изображение мнимое;
Подводим итоги:
В зависимости от типа линзы (собирающая или рассеивающая) и месторасположения предмета относительно данной линзы получают разные изображения предмета:
Расположение предмета | Характеристика изображения в линзе | |
собирающей | рассеивающей | |
За двойным фокусом линзы | действительное, уменьшенное, перевернутое | мнимое, уменьшенное, прямое |
В двойном фокусе линзы | действительное, равное, перевернутое | |
Между фокусом и двойным фокусом линзы | действительное, увеличенное, перевернутое | |
В фокусе линзы | изображения нет | |
Между линзой и фокусом | мнимое, увеличенное, прямое |
Расстояние от предмета до линзы, расстояние от линзы до изображения и фокусное расстояние связаны формулой тонкой линзы:
- Глаз как оптическая система
- Звук в физике и его характеристики
- Звуковые и ультразвуковые колебания
- Инерция в физике
- Дифракция света
- Принцип Гюйгенса — Френеля
- Прохождение света через плоскопараллельные пластинки и призмы
- Поляризация света
Решение задач,
1 Определить
оптическую силу стеклянной линзы, находящейся в воздухе, если линза: 1)
двояковыпуклая с радиусом кривизны поверхностей R1 = 50 см; R2 = 30 см; 2) выпукло-вогнутая
с радиусом кривизны поверхностей R1 = 25 см; R2 = 40 см.
а)
Дано: nл= 1,6 nср= 1 R1 = 25 см R2 = 40 см. |
Решение: Во всех
Значения Линза |
D – ? |
б)
Дано: nл= 1,6 nср= 1 R1 = 0,25 м R2 = – 0,4 м. |
Решение:
Линза |
D – ? |
2 При помощи
линзы, фокусное расстояние которой 20 см, получено изображение предмета на
экране, удаленном от линзы на 1 м. На каком расстоянии от линзы находится
предмет? Каким будет изображение?
Дано: F = 20 cм = 0,2м f = 1м |
Решение: 1/d + 1/f = 1/F Все величины (d, f, F) взяты с положительным |
d – ? |
Найдем
увеличение линзы:
3 Рассматривая
предмет в собирающую линзу и располагая его на расстоянии 4 см от нее, получают
его мнимое изображение, в 5 раз большее самого предмета. Какова оптическая сила
линзы?
Дано: d = 4 см = 0,04 м. Г = 5 |
Решение:
Значение
|
D – ? |
4 В трубку
вставлены две собирающие линзы на расстоянии 20 см одна от другой. Фокусное
расстояние первой линзы 10 см; второй – 4 см. Предмет находится на расстоянии
30 см от первой ■ линзы. На каком расстоянии от второй линзы получится действительное
изображение?
Дано: а = 20 см = 0,2 м F1 = 10 см = 0,1 л F2 d1 |
Определим расстояние f
|
f2 – ? |
Тогда расстояние d2 от изображения, даваемого первой линзой, до
второй линзы равно: d2 = а – f1, где а – расстояние между линзами, d2 = 0,2 м – 0,15 м = 0,05 м.
Действительное изображение, построенное первой линзой,
является действительным предметом для второй собирающей линзы:
Решите самостоятельно:
1 Определить оптическую силу стеклянной линзы, находящейся
в воздухе, если линза:
1) двояковогнутая с радиусами кривизны R = 20
см; R2 = 40 см;
2) плосковыпуклая с радиусом кривизны выпуклой
поверхности R = 60 см;
3) вогнутовыпуклая с радиусами кривизны поверхностей
Л, = 20 см; R2 = 35 см.
2 Свеча находится на расстоянии 12,5 см от собирающей
линзы, оптическая сила которой равна 10 дптр. На каком расстоянии от линзы
получится изображение и каким оно будет?
3 Человек, сняв очки, читает книгу, держа ее на
расстоянии 16 см от глаз. Какой оптической силы у него очки?
Мы уже познакомились с явлением преломления света на границе двух плоских сред. Но на практике особый интерес представляет явление преломления света на сферических поверхностях линз.
Определение
Линза — прозрачное тело, ограниченное сферическими поверхностями.
Какими бывают линзы?
По форме различают следующие виды линз:
- Выпуклые — линзы, которые посередине толще, чем у краев.
- Вогнутые — линзы, которые посередине тоньше, чем у краев.
Выпуклые линзы тоже имеют разновидности:
- Двояковыпуклая — линза, ограниченная с обеих сторон выпуклыми сферическими поверхностями (СП). Такая линза изображена ниже на рисунке 1.
- Плосковыпуклая — линза, ограниченная выпуклой СП с одной стороны и плоской поверхностью с другой (рис. 2)
- Вогнуто-выпуклая — линза, ограниченной с одной стороны вогнутой СП, а с другой — выпуклой СП (рис. 3).
Разновидности вогнутых линз:
- Двояковогнутая — линза, ограниченная с обеих сторон вогнутыми СП (рис. 4).
- Плосковогнутая — линза, ограниченная вогнутой СП с одной стороны и плоской поверхностью с другой (рис. 5)
- Выпукло-вогнутая — линза, ограниченной с одной стороны выпуклой СП, а с другой — вогнутой СП (рис. 6).
Тонкая линза
Мы будем говорить о линзах, у которых толщина l = AB намного меньше радиусов сферических поверхностей этой линзы R1 и R2. Такие линзы называют тонкими.
Определение
Тонкая линза — линза, толщина которой пренебрежимо мала по сравнению с радиусами сферических поверхностей, которыми она ограничена.
Главная оптическая ось тонкой — прямая, проходящая через центры сферических поверхностей линзы (на рисунке она соответствует прямой O1O2).
Оптический центр линзы – точка, расположенная в центре линзы на ее главной оптической оси (на рисунке ей соответствует точка О). При прохождении через оптический центр линзы лучи света не преломляются.
Побочная оптическая ось — любая другая прямая, проходящая через оптический центр линзы.
Изображение в линзе
Подобно плоскому зеркалу, линза создает изображения источников света. Это значит, что свет, исходящий из какой-либо точки предмета (источника), после преломления в линзе снова собирается в точку (изображение) независимо от того, какую часть линзы прошли лучи.
Определение
Оптическое изображение — картина, получаемая в результате действия оптической системы на лучи, испускаемые объектом, и воспроизводящая контуры и детали объекта.
Практическое использование изображений часто связано с изменением масштаба изображений предметов и их проектированием на поверхность (киноэкран, фотоплёнку, фотокатод и т. д.). Основой зрительного восприятия предмета является его изображение, спроектированное на сетчатку глаза.
Изображения разделяют на действительные и мнимые. Действительные изображения создаются сходящимися пучками лучей в точках их пересечения (см. рисунок а). Поместив в плоскости пересечения лучей экран или фотоплёнку, можно наблюдать на них действительное изображение.
Если лучи, выходящие из оптической системы, расходятся, но если их мысленно продолжить в противоположную сторону, они пересекутся в одной точке (см. рисунок б). Эту точку называют мнимым изображением точки-объекта. Она не соответствует пересечению реальных лучей, поэтому мнимое изображение невозможно получить на экране или зафиксировать на фотоплёнке. Однако мнимое изображение способно играть роль объекта по отношению к другой оптической системе (например, глазу или собирающей линзе), которая преобразует его в действительное.
Собирающая линза
Обычно линзы изготавливают из стекла. Все выпуклые линзы являются собирающими, поскольку они собирают лучи в одной точке. Любую из таких линз условно можно принять за совокупность стеклянных призм. В воздухе каждая призма отклоняет лучи к основанию. Все лучи, идущие через линзу, отклоняются в сторону ее главной оптической оси.
Если на линзу падают световые лучи, параллельные главной оптической оси, то при прохождении через нее они собираются на одной точке, лежащей на оптической оси. Ее называют главным фокусом линзы. У выпуклой линзы их два — второй главный фокус находится с противоположной стороны линзы. В нем будут собираться лучи, которые будут падать с обратной стороны линзы.
Главный фокус линзы обозначают буквой F.
Определение
Фокусное расстояние — расстояние от главного фокуса линзы до их оптического центра. Оно обозначается такой же букой F и измеряется в метрах (м).
В однородных средах главные фокусы собирающих линз находятся на одинаковом расстоянии от оптического центра.
Пример №1. Что произойдет с фокусным расстоянием линзы, если ее поместить в воду?
Вода — оптически более плотная среда, поэтому преломленные лучи будут располагаться ближе к перпендикуляру, восстановленному к разделу двух сред. Следовательно, фокусное расстояние увеличится. На рисунке лучам, выходящим из линзы в воздухе, соответствуют красные линии. Лучам, выходящим из линзы в воде — зеленые. Видно, что зеленые линии больше приближены к перпендикуляру, восстановленному к разделу двух сред, что соответствует закону преломления света.
Направим три узких параллельных пучка лучей от осветителя под углом к главной оптической оси собирающей линзы. Мы увидим, что пересечение лучей произойдет не в главном фокусе, а в другой точке (рисунок а). Но точки пересечения независимо от углов, образуемых этими пучками с главной оптической осью, будут располагаются в плоскости, перпендикулярной главной оптической оси линзы и проходящей через главный фокус (рисунок б). Эту плоскость называют фокальной плоскостью.
Поместив светящуюся точку в фокусе линзы (или в любой точке ее фокальной плоскости), получим после преломления параллельные лучи.
Если сместить источник дальше от фокуса линзы, лучи за линзой становятся сходящимися и дают действительное изображение.
Когда же источник света находится ближе фокуса, преломленные лучи расходятся и изображение получается мнимым.
Рассеивающая линза
Вогнутые линзы обычно являются рассеивающими (лучи, выходя из них, не собираются, а рассеиваются). Это бывает если, поместить вогнутую линзу в оптически менее плотную среду по сравнению с материалом, из которого изготовлена линза. Так, стеклянная линза в воздухе является рассеивающей.
Если направить на вогнутую линзы световые лучи, являющиеся параллельными главной оптической оси, то образуется расходящийся пучок лучей. Если провести их продолжения, то они пересекутся в главном фокусе линзы. В этом случае фокус (и изображение в нем) является мнимым. Этот фокус располагается на фокусном расстоянии, равном F.
Другой мнимый фокус находится по другую сторону линзы на таком же расстоянии при условии, что среда по обе стороны линзы одинаковая.
Оптическая сила линзы
Оптическая сила линзы — величина, характеризующая преломляющую способность симметричных относительно оси линз и центрированных оптических систем, состоящих из таких линз.
Обозначается оптическая сила линзы буквой D. Единица измерения — диоптрий (дптр). Оптической силой в 1 дптр обладает линза с фокусным расстоянием 1 м.
Оптическая сила линзы равна величине, обратной ее фокусному расстоянию:
D=±1|F|
D > 0, если линза собирающая, D < 0, если линза рассеивающая. Чем ближе к линзе ее фокусы, тем сильнее линза преломляет лучи, собирая или рассеивая их, и тем больше оптическая сила линзы.
Пример №2. Найти фокусное расстояние линзы, если ее оптическая сила равна –5 дптр.
Так как оптическая силы линзы отрицательная, речь идет о рассеивающей линзе. Следовательно, будем использовать формулу:
D=−1|F|
Отсюда:
|F|=−1D=−1−5=0,2 (м)
Задание EF18041
На рисунке показан ход двух лучей от точечного источника света А через тонкую линзу. Какова приблизительно оптическая сила этой линзы?
Ответ:
а) 14 дптр
б) 20 дптр
в) 17 дптр
г) 33 дптр
Алгоритм решения
1.Записать формулу для нахождения оптической силы линзы.
3.Найти точку на главной оптической оси точку главного фокуса линзы.
4.Вычислить фокусное расстояние и перевести его в СИ.
5.Вычислить оптическую силу линзы.
Решение
Оптическая сила линзы определяется формулой:
D=1F
На рисунке видно, что 5 клеток = 5 см. Следовательно, 1 клетка = 1 см. После прохождения сквозь линзу лучи света, параллельные главной оптической оси, фокусируются в главном фокусе, который лежит на этой оси. Значит, фокус находится в точке пересечения этой оси и луча. От него до линзы 3 клетки. Следовательно, фокусное расстояние равно 3 см, или 0,03 м.
Отсюда:
D=10,03≈33 (дптр)
Ответ: г
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17706
Стеклянную линзу (показатель преломления стекла nстекла = 1,54), показанную на рисунке, перенесли из воздуха (nвоздуха = 1) в воду (nводы = 1,33). Как изменились при этом фокусное расстояние и оптическая сила линзы?
Ответ:
а) Фокусное расстояние уменьшилось, оптическая сила увеличилась.
б) Фокусное расстояние увеличилось, оптическая сила уменьшилась.
в) Фокусное расстояние и оптическая сила увеличились.
г) Фокусное расстояние и оптическая сила уменьшились.
Алгоритм решения
1.Установить характер преломления лучей линзой при ее перемещении из воздуха в воду.
2.Выяснить, как от этого зависят фокусное расстояние и оптическая сила линзы.
Решение
Чтобы узнать, что произойдет с лучами света при прохождении их сквозь линзу, погруженную воду, найдем относительные показатели преломления:
nвоздух−стекло=nстеклоnвоздух=1,541=1,54
nвода−стекло=nстеклоnвода=1,541,33≈1,16
Видно, что относительный показатель преломления уменьшился. Значит, преломленный линзой луч будет менее отклоняться от нормали, проведенной в точке падения на линзу. Следовательно, чтобы достигнуть главной оптической оси, ему придется пройти большее расстояние. Это говорит о том, что фокусное расстояние линзы увеличится.
Оптическая сила линзы — величина, обратная ее фокусному расстоянию. Если оно увеличится, то оптическая сила уменьшится.
Ответ: б
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18076
На рисунке показан ход лучей от точечного источника света А через тонкую линзу.
Какова приблизительно оптическая сила этой линзы?
Ответ:
а) –33,3 дптр
б) 7,7 дптр
в) 25,0 дптр
г) 33,3 дптр
Алгоритм решения
1.Записать формулу для нахождения оптической силы линзы.
2.Рассчитать длину 1 клетки.
3.Найти точку на главной оптической оси точку главного фокуса линзы.
4.Вычислить фокусное расстояние и перевести его в СИ.
5.Вычислить оптическую силу линзы.
Решение
Оптическая сила линзы находится по формуле:
D=1F
На рисунке видно, что 5 соответствуют 5 см. Следовательно, 1 клетка равна 1 см. После прохождения сквозь линзу лучи света, параллельные главной оптической оси, фокусируются в фокусе, который лежит на этой оси. Из рисунка видно, фокус находится в точке пересечения этой оси и луча, параллельного ей. Эту точку и линзу разделяют 3 клетки. Следовательно, фокусное расстояние равно 3 см, или 0,03 м.
Отсюда:
D=10,03≈33,3 (дптр)
Ответ: г
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 15.6k
Линза. Виды линз
Как вы уже знаете, законы преломления и отражения определяют поведение луча при его падении на границу раздела двух прозрачных сред. При этом граница раздела считалась плоской. Однако в жизни нам чаще приходится сталкиваться с криволинейными поверхностями. Одним из представителей таких границ является сфера.
Такой поверхностью, даже двумя, обладает линза. Она представляет собой один из самых важных оптических приборов.
Линзу можно представить как фигуру, образованную пересечением двух сфер. У некоторых линз одна из боковых поверхностей плоская. Эту поверхность можно представить как сферу с бесконечно большим радиусом. Конечно же, две сферы могут пересекаться различным способом (рис. 1).
Рис. 1. Способы пересечения двух сфер.
Пересекая две сферы, можно вывести все виды линз (рис. 2).
Рис. 2. Виды линз. Собирающие: 1. Двояковыпуклая; 2. Плоско-выпуклая; 3. Вогнуто-выпуклая. Рассеивающие: 4. Двояковогнутая; 5. Плоско-вогнутая; 6. Выпукло-вогнутая.
Двояковыпуклая линза
Для первоначального изучения особенности прохождения света через линзы нам будет достаточно рассмотреть первый тип. Рассмотрим двояковыпуклую линзу, ограниченную двумя сферическими преломляющими поверхностями. Эти поверхности обозначим, как и . Центр первой сферы лежит в точке , второй – в точке (рис. 3).
На рисунке для ясности изображена линза с видимой толщиной. В действительности мы будем предполагать, что все рассматриваемые линзы очень тонкие.
Рис. 3-4. Двояковыпуклая линза
В таком случае точки и можно считать практически совпадающими и обозначить одной точкой . Точка называется оптическим центром линзы. Всякая прямая, проходящая через оптический центр линзы, называется оптической осью линзы. Та из осей, которая проходит через центры обеих преломляющих поверхностей, называется главной оптической осью. Все остальные – побочные оптические оси.
Луч, идущий по какой-либо из оптических осей, проходя через линзу, практически не меняет своего направления. Действительно, для лучей, идущих вдоль оптической оси, участки обеих поверхностей линзы можно считать параллельными, ведь толщину линзы мы считаем малой (рис. 5).
Рис. 5. Элементы линзы
Преломления светового луча
При прохождении луча через плоскопараллельную пластинку световой луч претерпевает лишь параллельное смещение. Но смещением луча в очень тонкой пластинке можно пренебречь.
Если на линзу падает луч, не совпадающий ни с одной оптической осью, то он испытывает двойное преломление. Сначала на первой поверхности, ограничивающей линзу, а затем на второй, при этом луч отклоняется от своего первоначального направления.
Если через линзу пропустить пучок лучей, параллельных главной оптической оси и находящихся от нее на малом расстоянии, то после преломления все лучи пучка соберутся в одной точке, ее называют главным фокусом линзы (рис. 6).
Рис. 6. Главный фокус линзы
Благодаря описанному свойству двояковыпуклую линзу, если она изготовлена из материала с относительным показателем преломления большим единицы, называют собирающей.
Таким образом, мы можем выделить два утверждения касательно собирающей линзы.
- Луч, идущий вдоль одной из оптических осей собирающей линзы, при прохождении через нее не меняет своего направления.
- Луч, который идет параллельно главной оптической оси и на небольшом расстоянии от нее, после преломления проходит через главный фокус линзы.
Теперь сделанные утверждения нужно дополнить выводом о том, как будет вести себя луч, который не проходит через оптический центр и не параллелен главной оптической оси. Для этого введем следующее определение.
Фокальная плоскость линзы: побочные фокусы линзы
Фокальной плоскостью линзы называется плоскость, которая проходит через главный фокус и перпендикулярна главной оптической оси линзы. Все точки этой плоскости, за исключением главного фокуса, называют побочными фокусами линзы.
Для чего нам нужна данная плоскость? Оказывается, если на линзу падает пучок света параллельный побочной оси, то после преломления в линзе этот лучок соберется в одном из побочных фокусов линзы.
Фокусы линзы, фокусные расстояния линзы, его зависимость от свойств линзы, формула шлифовщика
Тогда возникает вопрос: как же найти побочный фокус, в котором соберется этот пучок (рис. 7)?
Рис. 7. Нахождение побочного фокуса
На рисунке показан этот побочный фокус, он является пересечением побочной оптической оси, параллельной лучам пучка, с фокальной плоскостью. Попробуем обосновать, почему именно таким способом лучи преломляются в линзе (конкретно в двояковыпуклой).
Данную линзу можно представить как совокупность призм, склеенных в одно целое. Мы знаем, что всякая прима, относительный показатель преломления которой больше единицы, отклоняет луч в сторону своего основания. Поскольку мы имеем дело с набором линз, преломляющие углы которых монотонно уменьшаются при удалении от главной оптической оси, то и углы, на которые эти призмы преломляют лучи параллельного пучка, будут различными.
Чем дальше луч расположен от главной оптической оси, тем больше угол его отклонения. В конечном итоге все лучи попадают в фокус (рис. 8).
Рис. 8. Преломление пучка света
Мы предполагали, что пучок лучей падает на линзу слева направо, но ничего не изменится, если на линзу направить идентичный пучок лучей справа налево. Этот пучок лучей, направленный параллельно главной оптической оси, вновь соберется в одной точке во втором фокусе линзы, на некотором расстоянии от ее оптического центра.
Фокус обычно называют передним фокусом, а – задним фокусом линзы. Соответственно, расстояние до называют передним фокусным расстоянием, а до – задним фокусным расстоянием.
Рассмотрим, от чего может зависеть фокусное расстояние линзы. Совершенно ясно, что если любой луч, идущий параллельно главной оптической оси, попадает в главный фокус, то фокусное расстояние не зависит от параметров луча. Более общим утверждением будет такое: фокусное расстояние вообще не зависит от параметров источника света, но с той оговоркой, что мы рассматриваем лучи, близкие к главной оптической оси. От чего же тогда может зависеть фокусное расстояние? Во-первых, от материала, из которого изготовлена линза, во-вторых, оно зависит от кривизны поверхностей, ограничивающих линзу. Выражение, определяющее такую зависимость, называется формулой шлифовщика:
– относительный показатель преломления
, – радиусы боковых поверхностей линзы
Еще одной важной характеристикой линзы является ее оптическая сила .
= дптр =
Понятно, что чем больше фокусное расстояние, тем оптическая сила меньше.
Построение изображения, даваемого двояковыпуклой линзой
Теперь рассмотрим вопрос практического использования линзы. В первую очередь, для этого нам нужно изобрести алгоритмы, которые позволяют нам строить изображения, даваемые двояковыпуклой линзой.
Для начала введем обозначения, тонкую двояко-выпуклую линзу будем изображать отрезком со стрелочками, главная оптическая ось перпендикулярна линзе и проходит через ее оптический центр , главные фокусы линзы находятся на одинаковом расстоянии от оптического центра, по обе стороны. Фокусное расстояние, как и саму точку фокуса, обозначим . Предмет, изображение которого нам нужно получить, обозначим стрелочкой. (Пока рассмотрим случай, когда предмет расположен перпендикулярно главной оптической оси.)
Для получения изображения предмета нам достаточно построить изображения концов отрезка, более того, если один из концов отрезка лежит на главной оптической оси, то достаточно построить лишь изображение второго конца отрезка, который не принадлежит оси, затем опустить перпендикуляр на главную оптическую ось и получить изображение всего предмета.
Для этого, как уже говорилось, проведем два луча из верхнего конца предмета, найдем точку пересечения этих лучей после преломления в линзе. В качестве первого луча возьмем тот, что проходит через оптический центр, он не преломляется, а в качестве второго – луч, идущий параллельно главной оптической оси. Второй луч после преломления идет в фокус.
Получаем изображение точки, опускаем перпендикуляр на ось, соединяем полученные точки и получаем изображение предмета (рис. 9).
Рис. 9. Построение изображения предмета
Формула тонкой линзы
Обозначим через расстояние от предмета до линзы и от изображения до линзы. Отношение высоты изображения () к высоте предмета (), назовем увеличением линзы и обозначим через гамма. Тогда можно вывести такую формулу:
Предмет обозначим , изображение – . Рассмотрим две пары подобных треугольников (рис. 10), и из этого можно вывести еще одну формулу:
Рис. 10. Геометрическая задача по нахождению изображения
Также из подобия треугольников и следует, что:
Теперь мы можем приравнять полученные равенства, производим несложные арифметические вычисления и получаем конечную формулу:
Двояковогнутая линза
Двояковогнутую линзу, изготовленную из материала с коэффициентом преломления большим 1, называют рассеивающей. Такое название обусловлено тем, что лучи, идущие до преломления в линзе параллельно ее главной оптической оси, после преломления отклоняются от своего направлению в сторону от главной оптической оси, в отличие от собирающей линзы. Все утверждения о ходе лучей в рассевающей линзе являются аналогами для соответствующих утверждений в собирательной линзе с той лишь разницей, что теперь говорить стоит не о ходе самих лучей, а об их продолжениях (рис. 11).
Рис. 11.
1. Луч, проходящий через оптический центр, не преломляется
2. Луч, параллельный главной оптической оси, после преломления идет так, что его продолжение проходит через главный фокус
Луч, параллельный побочной оптической оси, после преломления идет так, что его продолжение проходит через побочный фокус, который является точкой пересечения побочной оптической оси параллельной лучу с фокальной плоскостью (рис. 12).
Рис. 12. Преломление луча, идущего параллельно побочной оси
Формула тонкой рассевающей линзы будет иметь вид:
Полученная формула является формулой тонкой линзы, как мы видим, она связывает три величины: расстояние от предмета до линзы, расстояние от изображения до линзы и фокусное расстояние линзы. Зная два из выше приведенных параметров, мы с легкостью можем найти третий.
Важно отметить, что в задачах лишь два из этих параметров могут менять свое значение, а именно расстояние от предмета до линзы и расстояние до изображения.
Пример решения задачи
Задача № 1: определить увеличение, даваемое линзой, фокусное расстояние которой равно 0,26 м, если предмет отстоит от нее на расстоянии 30 см.
Решение: используем выведенные формулы.
, ,
Таким образом, нам не хватает лишь расстояния до предмета. Воспользовавшись формулой тонкой линзы, найдем это расстояние:
Ответ: 6,5.
Фокусное расстояние линзы, как мы знаем, не зависит от положения предмета и от положения изображения, а определяется только лишь параметрами самой линзы. Об этом мы уже говорили, когда ознакомились с формулой шлифовщика.
Также важно отметить, что в формулу не входит размер предмета и размер изображения. И тут важно сделать еще один вывод: вышеприведенная картинка не изменится, если изображение и предмет поменять местами. Это обусловлено принципом обратимости световых лучей, о котором говорилось на прошлых уроках.
Опыт Ньютона
До второй половины XVII века не было полной ясности, что же такое цвет. Некоторые ученые говорили, что это свойство самого тела, некоторые заявляли, что это различные сочетания светлого и темного, тем самым путая понятия цвета и освещенности. Такой цветовой хаос царил до того времени, пока Исаак Ньютон не провел опыт по пропусканию света сквозь призму (рис. 1).
Рис. 1. Ход лучей в призме (Источник)
Вспомним, что луч, проходящий через призму, терпит преломление при переходе из воздуха в стекло и потом еще одно преломление – из стекла в воздух. Траектория луча описывается законом преломления, а степень отклонения характеризуется показателем преломления. Формулы, описывающие эти явления:
= n; ; =
Рис. 2. Опыт Ньютона (Источник)
В темной комнате сквозь ставни проникает узкий пучок солнечного света, на его пути Ньютон разместил стеклянную трехгранную призму. Пучок света, проходя через призму, преломлялся в ней, и на экране, стоявшем за призмой, появлялась разноцветная полоса, которую Ньютон назвал спектром (от латинского «spectrum» – «видение»). Белый цвет превратился сразу во все цвета (рис. 2). Какие же выводы сделал Ньютон?
- Свет имеет сложную структуру (говоря современным языком – белый свет содержит электромагнитные волны разных частот).
- Свет различного цвета отличается степенью преломляемости (характеризуется разными показателями преломления в данной среде).
- Скорость света зависит от среды.
Эти выводы Ньютон изложил в своем знаменитом трактате «Оптика». Какова же причина такого разложения света в спектр?
Дисперсия света
Как показывал опыт Ньютона, слабее всего преломлялся красный цвет, а сильнее всего – фиолетовый. Вспомним, что степень преломления световых лучей характеризует показатель преломления n. Красный цвет от фиолетового отличается частотой, у красного частота меньше, чем у фиолетового. Раз показатель преломления становится все больше при переходе от красного конца спектра к фиолетовому, можно сделать вывод: показатель преломления стекла увеличивается с возрастанием частоты света. В этом и состоит суть явления дисперсии.
Вспомним, как показатель преломления связан со скоростью света:
n = => n ~
n ~ ν; V ~ => ν =
n – показатель преломления
С – скорость света в вакууме
V – скорость света в среде
ν – частота света
Значит, чем больше частота света, тем с меньшей скоростью свет распространяется в стекле, таким образом, наибольшую скорость внутри стеклянной призмы имеет красный цвет, а наименьшую скорость – фиолетовый.
Различие скоростей света для разных цветов осуществляется только при наличии среды, естественно, в вакууме любой луч света любого цвета распространяется с одной и той же скоростью м/с. Таким образом мы выяснили, что причиной разложения белого цвета в спектр является явление дисперсии.
Дисперсия – зависимость скорости распространения света в среде от его частоты.
Открытое и исследованное Ньютоном явление дисперсии ждало своего объяснения более 200 лет, лишь в XIX веке голландским ученым Лоренсом была предложена классическая теория дисперсии.
Причина этого явления – во взаимодействии внешнего электромагнитного излучения, то есть света со средой: чем больше частота этого излучения, тем сильнее взаимодействие, а значит, тем сильнее будет отклоняться луч.
Дисперсия, о которой мы говорили, называется нормальной, то есть показатель частоты растет, если частота электромагнитного излучения растет.
В некоторых редко встречающихся средах возможна аномальная дисперсия, то есть показатель преломления среды растет, если частота падает.
Цвет
Мы увидели, что каждому цвету соответствует определенная длина волны и частота. Волна, соответствующая одному и тому же цвету, в разных средах имеет одну и ту же частоту, но разные длины волн. Чаще всего, говоря о длине волны, соответствующей определенному цвету, имеют в виду длину волны в вакууме или воздухе. Свет, соответствующий каждому цвету, является монохроматическим. «Моно» – один, «хромос» – цвет.
Рис. 3. Расположение цветов в спектре по длинам волн в воздухе (Источник)
Самый длинноволновый – это красный цвет (длина волны – от 620 до 760 нм), самый коротковолновый – фиолетовый (от 380 до 450 нм) и соответствующие частоты (рис. 3). Как видите, белого цвета в таблице нет, белый цвет – это совокупность всех цветов, этому цвету не соответствует какая-то строго определенная длина волны.
Чем же объясняются цвета тел, которые нас окружают? Объясняются они способностью тела отражать, то есть рассеивать падающее на него излучение. Например, на какое-то тело падает белый цвет, который является совокупностью всех цветов, но это тело лучше всего отражает красный цвет, а остальные цвета поглощает, то оно нам будет казаться именно красного цвета. Тело, которое лучше всего отражает синий цвет, будет казаться синего цвета и так далее. Если же тело отражает все цвета, оно в итоге будет казаться белым.
Именно дисперсией света, то есть зависимостью показателя преломления от частоты волны, объясняется прекрасное явление природы – радуга (рис. 4).
Рис. 4. Явление радуги (Источник)
Радуга возникает из-за того, что солнечный свет преломляется и отражается капельками воды, дождя или тумана, парящими в атмосфере. Эти капельки по-разному отклоняют свет разных цветов, в результате белый цвет разлагается в спектр, то есть происходит дисперсия, наблюдатель, который стоит спиной к источнику света, видит разноцветное свечение, которое исходит из пространства по концентрическим дугам.
Также дисперсией объясняется и замечательная игра цвета на гранях драгоценных камней.
Итоги
- Явление дисперсии – это разложение света в спектр, обусловленное зависимостью показателя преломления от частоты электромагнитного излучения, то есть частоты света.
- Цвет тела определяется способностью тела отражать или рассеивать ту или иную частоту электромагнитного излучения.
Пройдите тест
Найдите оптическую силу, фокусное расстояние и увеличение двояковыпуклой линзы, если изображение предмета поставленного на расстоянии 15 см от нее получается 30 см от нее.
На странице вопроса Найдите оптическую силу, фокусное расстояние и увеличение двояковыпуклой линзы, если изображение предмета поставленного на расстоянии 15 см от нее получается 30 см от нее? из категории Физика вы найдете
ответ для уровня учащихся 10 – 11 классов. Если полученный ответ не
устраивает и нужно расшить круг поиска, используйте удобную поисковую
систему сайта. Можно также ознакомиться с похожими вопросами и ответами
других пользователей в этой же категории или создать новый вопрос. Возможно,
вам будет полезной информация, оставленная пользователями в комментариях, где
можно обсудить тему с помощью обратной связи.