Как найти ординату точек на этой окружности

Как искать ординату центра окружности

Декартовы координаты точек плоскости. Уравнение окружности

Числовая ось

Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Прямоугольная декартова система координат на плоскости

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).

Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Формула для расстояния между двумя точками координатной плоскости

Утверждение 1 . Расстояние между двумя точками координатной плоскости

вычисляется по формуле

Доказательство . Рассмотрим рисунок 6.

| A1A2| 2 =
= ( x2x1) 2 + ( y2y1) 2 .
(1)

что и требовалось доказать.

Уравнение окружности на координатной плоскости

Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A0 (x0 ; y0) .

Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид

Как искать ординату центра окружности

Найдите ординату центра окружности, описанной около прямоугольника ABCD, вершины которого имеют координаты соответственно

Это задание ещё не решено, приводим решение прототипа.

Найдите ординату центра окружности, описанной около прямоугольника ABCD, вершины которого имеют координаты соответственно (−2; −2), (6; −2), (6; 4), (−2; 4).

Диагональ прямоугольника образует два прямоугольных треугольника. Диагональ равна диаметру окружности, описанной около треугольника, следовательно, центр окружности лежит на середине диагонали прямоугольника. Тогда можно легко найти координаты центра окружности.

Материалы к занятию по теме «Параметр в уравнении окружности»

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

Материалы для занятия по теме

«Параметр в уравнении окружности»

1. Уравнение окружности.

(х ‒ х 0 )² + (у ‒ у 0 )² = R ², где А(х 0 ; у 0 ) ‒ центр окружности, R ‒ радиус.

х² + у² = R ² ‒ уравнение окружности с центром в начале координат.

2. Параметр – радиус.

Если а = 0, то (х ‒ х 0 )² + (у‒ у 0 )² = 0, то есть А(х 0 ; у 0 ) – точка.

Если а ˂ 0, то ни окружность, ни точка не существуют.

Если а > 0, то R =, на плоскости – концентрические окружности с центром (х 0 ; у 0 ).

Пример. (х ‒ 2)² + (у + 2)² = а (а > 0)

3. Параметр в одной из координат центра.

Одна координата с параметром: (х ‒ 2а)² + (у + 3)² = 9. У центра окружности меняется абсцисса, ордината постоянна. Значит, центры окружностей зафиксированы на прямой у = ‒3.

Задание : подставляя разные значения параметра а, определите координаты центров нескольких окружностей и выполните построение.

Аналогично: (х‒3)² +(у ‒ 2а)² = 9. У центра окружности меняется ордината, абсцисса постоянна. Центры окружностей зафиксированы на прямой х=3.

Задание: построить несколько окружностей, удовлетворяющих последнему уравнению.

4. Параметр в обеих координатах центра.

(х ‒ а)² + (у ‒ а)² = 1. Обе координаты с параметром.

Центр окружности ‒ точка А (а ; а). Так как абсцисса и ордината равны, то все точки такие находятся на прямой у = х. Тогда данное уравнение задает множество окружностей , центры которых лежат на прямой у = х , а радиус равен 1.

Задание : построить несколько окружностей, удовлетворяющих следующему уравнению (х ‒ а)² + (у + 2а)² = 4.

Подсказка. Найдем координаты центра окружности: (х ‒ а)² + (у ‒ (‒2а))² = 4

А(а;-2а), значит центры окружностей лежат на прямой у = ‒2х, радиус равен 2.

5. Параметр в координатах центра и в радиусе.

( х ‒ а)² + (у‒ 2а ‒1 )² = а². Это окружности с центрами на прямой у = 2а + 1, радиус равен а. При а=0 – точка.

Задания для самостоятельной работы.

№ 1. Указать центр, радиус и построить каждую окружность , заданную уравнением:

а) (х ‒ 3)² + (у + 2)² = 16; б) (х + 1)² + (у ‒ 4)² = 10.

№ 2. Выяснить, какие из данных уравнений являются уравнениями окружности. Найти координаты центра и радиус каждой окружности:

а) х² + у² + 8х ‒ 4у + 40 = 0;

б) х² + у² ‒ 2х + 4у ‒ 20 = 0;

в) х² + у² ‒ 4х ‒ 2у + 1 = 0.

№ 3. Выделить уравнение окружности, указать ее центр и радиус в задачах с параметром. Описать расположение графика уравнения на координатной плоскости. Выполнить построение:

а) х² + у² + 2ах ‒ 4у + а² ‒ 1 = 0;

б) х² + у² ‒ 6х + 4ау + 4а² = 0;

в) х² + у² ‒ 2а( х ‒ у ) = 4 ‒ 2а².

1.Геометрия. 7-9 классы : учебник для общеобразовательных организаций с приложением на электронном носителе / [Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др.]. – 3-е изд.-М. : Просвещение, 2014.-383 с.

2.Шестаков С.А. ЕГЭ 2014. Математика. Задача С5. Задачи с параметром / Под ред. А.Л.Семенова и И.В.Ященко. – М.:МЦМНО. 2014.-240 с.

Дистанционные курсы для педагогов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 927 человек из 80 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 321 человек из 71 региона

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 700 человек из 75 регионов

Ищем педагогов в команду «Инфоурок»

  • Сергеева Татьяна ВладиславовнаНаписать 525 15.02.2020

Номер материала: ДБ-1001835

    15.02.2020 34
    15.02.2020 7
    15.02.2020 39
    15.02.2020 35
    15.02.2020 83
    15.02.2020 33
    15.02.2020 11
    15.02.2020 125

Не нашли то, что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

530 курсов от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Роспотребнадзоре заявили о широком распространении COVID-19 среди детей

Время чтения: 1 минута

Стартовал региональный этап Всероссийской олимпиады школьников

Время чтения: 2 минуты

Проходной балл ЕГЭ для поступления на бюджет снизился впервые за 10 лет

Время чтения: 3 минуты

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В России утвердили новые правила аккредитации образовательных учреждений

Время чтения: 1 минута

В Китае приняли закон о сокращении нагрузки на школьников

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Синус это х или у в окружности

Математика – это очень просто, даже проще, чем мы можем себе представить. Сложной математику делают сами математики.

Страницы

среда, 7 ноября 2012 г.

Тригонометрический круг синус и косинус

Тригонометрический круг представляет значения тригонометрических функций синус (sin) и косинус (cos) в виде координат точек единичной окружности при различных значениях угла альфа в градусах и радианах.

Поскольку я сам вечно путаюсь при переводе координат точек окружности в синусы и косинусы, для простоты все значения косинусов (cos) для углов от 0 до 360 градусов (от 0 пи до 2 пи) подчеркнуты зеленой черточкой. Даже при распечатке этого рисунка тригонометрического круга на черно-белом принтере все значения косинуса будут подчеркнуты, а значения синуса будут без подчеркивания. Если вам интересно, то можете посмотреть отдельные тригонометрические круги для синуса и косинуса.

Напротив указанных углов на окружности расположены точки, а в круглых скобках указаны координаты этих точек. Первой записана координата Х (косинус)

Давайте проведем обзорную экскурсию по этому уголку математического зоопарка. Прежде всего, нужно отметить, что здесь присутствует декартова система координат – одна черная горизонтальная линия с буковкой Х возле стрелочки, вторая – вертикальная линия с буковкой У. На оси Х, которую еще называют ось абсцисс (это умное слово математики придумали специально, что бы запутать блондинок) живут косинусы – cos. На оси У, которую называют ось ординат (еще одно умное слово, которое в устах блондинки может стать убийственным оружием), живут синусы – sin. Если посмотреть на семейную жизнь этих тригонометрических функций, то не трудно заметить, что синусы всегда на кухне у плиты по вертикали, а косинусы – на диване перед телевизором по горизонтали.

В этой системе координат нарисована окружность радиусом, равным единице. Центр окружности находится в начале системы координат – там, где в центе рисунка пересекаются оси абсцисс (ось Х) и ординат (ось У).

Из центра окружности проведены тоненькие черточки, которые показывают углы 30, 45, 60, 120, 135, 150, 210, 225, 240, 300, 315, 330 градусов. В радианной мере углов это пи деленное на 6, пи на 4, пи на 3, 2 пи на 3, 3 пи на 4, 5 пи на 6, 7 пи на 6, 5 пи на 4, 4 пи на 3, 3 пи на 2, 5 пи на 3, 7 пи на 4, 11 пи деленное на 6. С осями координат совпадают такие значения углов: 0, 90, 180, 270 градусов или 0 пи, пи деленное на 2, пи, 3 пи деленное на 2. Пользуясь картинкой, очень просто переводить углы из градусов в радианы и из радиан в градусы. Одинаковые значения в разных системах измерения углов написаны на одной линии, изображающей этот угол.

Линии углов заканчиваются точками на единичной окружности. Возле каждой точки, в круглых скобках, записаны координаты этой точки. Первой записана координата Х, которая соответствует косинусу угла, образовавшего эту точку. Второй записана координата У этой точки, что соответствует значению синуса угла. По картинке довольно легко находить синус и косинус заданного угла и наоборот, по заданному значению синуса или косинуса, можно легко найти значение угла. Главное, не перепутать синус с косинусом.

Обращаю особое внимание на тот факт, что если вы по значению синуса или косинуса ищите угол, обязательно нужно дописывать период угла. Математики очень трепетно относятся к этому аппендициту тригонометрических функций и при его отсутствии могут влепить двойку за, казалось бы, правильный ответ. Что такое период при нахождении угла по значению тригонометрической функции? Это такая штучка, которая придумана математиками специально для того, чтобы запутываться самим и запутывать других. Особенно блондинок. Но об этом мы поговорим как-нибудь в другой раз.

Всё, что собрано в кучку на рисунке тригонометрического круга синуса и косинуса, можно внимательно рассмотреть на отдельных картинках с портретами синуса 0, 30, 45 градусов (ссылки на отдельные странички я буду добавлять по мере увеличения фотогалереи синусов и косинусов).

Синусы и косинусы круг – здесь картинка во всей своей тригонометрической красе.

Угол 120 градусов в радианах – равен 2/3 пи или 2 пи деленное на 3, на картинке очень красиво нарисовано.

Значения синусов косинусов углов в радианах – на картинке есть такие, надеюсь, именно те углы, которые вы ищете.

Значение косинуса угла в 45 градусов – равно корню из двух деленному на два, можете проверить по рисунку.

Тригонометрическая окружность – я не совсем уверен, что представленная на картинке окружность является тригонометрической, но что-то от тригонометрии в этой окружности определенно есть, например, синусы и косинусы на окружности – вылитая тригонометрия.

Тригонометрический круг рисунок – есть здесь такой. Правда, не самый красивый рисунок, можно нарисовать гораздо красивее и понятнее. Мне минус в репутацию – почему я до сих пор не нарисовал его для блондинок? Представляете ситуацию в картинной галерее будущего: экскурсовод объясняет группе школьников “Перед вами всемирно известное полотно “Тригонометрическая мадонна с единичным отрезком на руках” – картина гениального художника эпохи Раннего Математического Возрождения . ” Дальше она называет имя этого самого художника (или художницы). Это имя может быть вашим!

Круг синусов и косинусов – именно такой круг совершенно случайно оказался здесь на картинке.

Угол 9 градусов сколько это в пи – в пи это 1/20 или пи/20.
Решение: для перевода градусов в пи радиан, нужно имеющиеся у нас градусы разделить на 180 градусов (это 1 пи радиан). У нас получается 9/180 = 1/20

Ответ: 9 градусов = 1/20 пи.

Синус это вверх или в сторону – синус – это вверх, в сторону – это косинус.

Комментарии к этой статье запрещены. Из-за огромного их количества мои ответы на ваши вопросы о тригонометрическом круге уже не публикуются. Вопросы можете задавать в комментариях к другим страницам. Постараюсь решить проблему за счет удаления части комментариев, тем самым освобожу место для новых.

Тригонометрия – раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла ( sin α ) – отношение противолежащего этому углу катета к гипотенузе.

Косинус угла ( cos α ) – отношение прилежащего катета к гипотенузе.

Тангенс угла ( t g α ) – отношение противолежащего катета к прилежащему.

Котангенс угла ( c t g α ) – отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса – вся числовая прямая, то есть эти функции могут принимать любые значения.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от – ∞ до + ∞ .

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами ( 1 , 0 ) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 ( x , y ).

Синус (sin) угла поворота

Синус угла поворота α – это ордината точки A 1 ( x , y ). sin α = y

Косинус угла поворота α – это абсцисса точки A 1 ( x , y ). cos α = х

Тангенс угла поворота α – это отношение ординаты точки A 1 ( x , y ) к ее абсциссе. t g α = y x

Котангенс угла поворота α – это отношение абсциссы точки A 1 ( x , y ) к ее ординате. c t g α = x y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой ( 0 , 1 ) и ( 0 , – 1 ). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Синус и косинус определены для любых углов α .

Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z )

Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z )

При решении практических примеров не говорят “синус угла поворота α “. Слова “угол поворота” просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности – точка A c координатами ( 1 , 0 ).

Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t – ордината точки единичной окружности, соответствующей числу t. sin t = y

Косинус числа t – абсцисса точки единичной окружности, соответствующей числу t. cos t = x

Тангенс числа t – отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z ).

Можно сказать, что sin α , cos α , t g α , c t g α – это функции угла альфа, или функции углового аргумента.

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс – основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A ( 1 , 0 ) на угол величиной до 90 градусов и проведем из полученной точки A 1 ( x , y ) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 ( x , y ) . Длина катета, противолежащего углу, равна ординате точки A 1 ( x , y ) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Геометрическое определение синуса и косинуса

α – угол, выраженный в радианах.

Свойства синуса и косинуса

Принятые обозначения

( sin^2 x equiv (sin x)^2; ) ( quad sin^3 x equiv (sin x)^3; ) ( quad sin^n x equiv (sin x)^n ) ( sin^ x equiv arcsin x ) ( (sin x )^ equiv dfrac1 equiv cosec x ) .

( cos^2 x equiv (cos x)^2; ) ( quad cos^3 x equiv (cos x)^3; ) ( quad cos^n x equiv (cos x)^n ) ( cos^ x equiv arccos x ) ( (cos x )^ equiv dfrac1 equiv sec x ) .

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2π.

( sin(x + 2pi) = sin x; quad ) ( cos(x + 2pi) = cos x )

Четность

Функция синус – нечетная. Функция косинус – четная.

( sin( -x ) = – sin x; quad ) ( cos( -x ) = cos x )

Области определения и значений, экстремумы, возрастание, убывание

Основные свойства синуса и косинуса представлены в таблице (n – целое).

( small -dfrac

2 + 2pi n ) ( small ( small dfrac

2 + 2pi n )

( small -pi + 2pi n ) ( small ( small 2pi n )
Убывание ( small dfrac

2 + 2pi n ) ( small ( small dfrac 2 + 2pi n )

( small 2pi n ) ( small ( pi + small 2pi n )
Максимумы, ( small x = ) ( small dfrac

2 + 2pi n )

( small x = 2pi n )
Минимумы, ( small x = ) ( small -dfrac

2 + 2pi n )

( small x = ) ( small pi + 2pi n )
Нули, ( small x = pi n ) ( small x = dfrac

2 + pi n )

Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы, содержащие синус и косинус

Сумма квадратов

( sin^2 x + cos^2 x = 1 )

Формулы синуса и косинуса суммы и разности

( sin(x + y) = sin x cos y + cos x sin y )
( sin(x – y) = sin x cos y – cos x sin y )
( cos(x + y) = cos x cos y – sin x sin y )
( cos(x – y) = cos x cos y + sin x sin y )

( sin( 2x ) = 2 sin x cos x )
( cos( 2x ) = cos^2 x – sin^2 x = ) ( 2 cos^2 x – 1 = 1 – 2 sin^2 x )
( cosleft( dfrac

2 – x
ight) = sin x ) ; ( sinleft( dfrac

2 – x
ight) = cos x )
( cos( x + pi ) = – cos x ) ; ( sin( x + pi ) = – sin x )

Формулы произведения синусов и косинусов

( sin x cos y = ) ( dfrac12 sin( x – y ) + sin( x + y ) )
( sin x sin y = ) ( dfrac12 cos( x – y ) – cos( x + y ) )
( cos x cos y = ) ( dfrac12 cos( x – y ) + cos( x + y ) )

( sin x cos y = dfrac12 sin 2x )
( sin^2 x = dfrac12 1 – cos 2x )
( cos^2 x = dfrac12 1 + cos 2x )

Формулы суммы и разности

( sin x + sin y = 2 , sin dfrac2 , cos dfrac2 )
( sin x – sin y = 2 , sin dfrac2 , cos dfrac2 )
( cos x + cos y = 2 , cos dfrac2 , cos dfrac2 )
( cos x – cos y = 2 , sin dfrac2 , sin dfrac2 )

Выражение синуса через косинус

Далее мы полагаем, что ( n ) – целое число.

Выражение косинуса через синус

Выражение через тангенс

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.
[ img style=”max-w ]

Выражения через комплексные переменные

Формула Эйлера

( e^ = cos z + i sin z )

Выражения через гиперболические функции

( sin iz = i sh z ) ( cos iz = ch z )
( sh iz = i sin z ) ( ch iz = cos z )

Производные

( ( sin x )’ = cos x ) ( ( cos x )’ = – sin x ) . Вывод формул > > >

Производные n-го порядка:
( left( sin x
ight)^ = sinleft( x + ndfrac

2
ight) ) ( left( cos x
ight)^ = cosleft( x + ndfrac

Интегралы

( int sin x , dx = – cos x + C ) ( int cos x , dx = sin x + C )
См. также раздел Таблица неопределенных интегралов >>>

Разложения в ряды

Секанс, косеканс

( sec x = dfrac1 ; ) ( cosec x = dfrac1 )

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус, соответственно.

Арксинус, arcsin

( y = arcsin x ) ( left )
( sin( arcsin x ) = x ) ( )
( arcsin( sin x ) = x ) ( left )

Арккосинус, arccos

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Тригонометрическое определение

С помощью формул, указанных выше, можно найти синус и косинус острого угла. Но нужно научиться вычислять синус и косинус угла произвольной величины. Прямоугольный треугольник не даёт такой возможности (тупого угла, например, в нём быть не может); следовательно, нужно более общее определение синуса и косинуса, содержащее указанные формулы как частный случай.

На помощь приходит тригонометрическая окружность. Пусть дан некоторый угол; ему отвечает одноимённая точка на тригонометрической окружности.

Рис. 2. Тригонометрическое определение синуса и косинуса

Косинус угла – это абсцисса точки. Синус угла – это ордината точки.

На рис. 2 угол взят острым, и легко понять, что данное определение совпадает с общим геометрическим определением. В самом деле, мы видим прямоугольный треугольник с единичной гипотенузой O и острым углом. Прилежащий катет этого треугольника есть cos (сравните с рис. 1) и одновременно абсцисса точки ; противолежащий катет есть sin (как на рис. 1) и одновременно ордината точки.

Но теперь мы уже не стеснены первой четвертью и получаем возможность распространить данное определение на любой угол . На рис. 3 показано, что такое синус и косинус угла во второй, третьей и четвёртой четвертях.

Рис. 3. Синус и косинус во II, III и IV четвертях

Табличные значения синуса и косинуса

Абсцисса точки 0 равна 1 , ордината точки 0 равна 0 . Следовательно,

Как найти координаты точки?

О чем эта статья:

3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Понятие системы координат

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;
  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Определение координат точки

Каждой точке координатной плоскости соответствуют две координаты.

Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.

Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.

Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.

Смотрим на график и фиксируем: A (1; 2) и B (2; 3).

Особые случаи расположения точек

В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:

  1. Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси Ox, то ее ордината равна 0. Например,
    точка F (3, 0).
  3. Начало координат — точка O. Ее координаты равны нулю: O (0,0).
  4. Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
  5. Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
  6. Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
  7. Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).

Способы нахождения точки по её координатам

Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.

Способ первый. Как определить положение точки D по её координатам (-4, 2):

  1. Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
  2. Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
  3. Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.

Способ второй. Как определить положение точки D (-4, 2):

  1. Сместить прямую по оси Ox влево на 4 единицы, так как у нас
    перед 4 стоит знак минус.
  2. Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.

Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:

[spoiler title=”источники:”]

http://pcznatok.ru/kompjutery/sinus-jeto-h-ili-u-v-okruzhnosti.html

http://skysmart.ru/articles/mathematic/kak-najti-koordinaty-tochki

[/spoiler]

и абциссе/ординате этой окружности абциссу или ординату? Например. Цитирую “Дано уравнение окружностиx2+y2=400.

1. Найди ординату точек на этой окружности, абсцисса которых 16.
(запиши обе координаты точек; если второй точки нет, вместо координат пиши координаты первой точки) .

2. Найди абсциссу точек на этой окружности, ордината которых 12.

(запиши обе координаты точек; если второй точки нет, вместо координат пиши координаты первой точки) .



Важно узнать как вы это сделали. Просто ответ не прокатит) ) Решение нужно. Что бы понять и простить.. .
Спасибо за ответ) )

Alexandrro

Александров-Ответ

Ответ:

1) Уравнение окружности имеет вид: (x-x0)^2+(y-y0)^2=R^2, где x0 и y0 – координаты центра окружности, а R – её радиус.

Координаты центра заданной окружности (2; 3).

1. То, что окружность касается оси Ох, значит, что её радиус равен расстоянию от центра окружности до оси абсцисс. На оси Ох ордината равна нулю, а значит, радиус окружности равен 3. Таким образом, уравнение окружности в этом случае: (x-2)^2+(y-3)^2=9

2. То, что окружность касается оси Оy, значит, что её радиус равен расстоянию от центра окружности до оси ординат. На оси Oy абсцисса равна нулю, а значит, радиус окружности равен 2. Таким образом, уравнение окружности в этом случае:  (x-2)^2+(y-3)^2=4.

2)

1.

A(13; 0) и B(13; 0)

Пошаговое объяснение:

Если абсцисса равна 13, то нужно подставить 13 в уравнение вместо x и найти у:

y²+13²=169

y²+169=169

y²=0

y=0

2.

С(5; -12) и D (5; 12)

Пошаговое объяснение:

Если ордината равна -12, то нужно подставить в уравнение -12 вместо y и найти x:

(-12)²+x²=169

144+x²=169

x²=25

x=±5

Система координат

С чего было бы логично начать обсуждение метода координат? Наверное, с понятия системы координат. Вспомни, когда ты с нею впервые столкнулся.

Мне кажется, что в 7 классе, когда ты узнал про существование линейной функции ( y=ax+b), например, ( y=2{x}-3).

Напомню, ты строил ее по точкам. Помнишь?

Ты выбирал произвольное число ( x), подставлял ее в формулу ( y=2{x}-3) и вычислял таким образом ( y).

Например, если ( x=0), то ( y=2cdot 0-3=-3), если же ( x=1), то ( y=2cdot 1-3=-1)и т. д.

Что же ты получал в итоге?

А получал ты точки с координатами: ( Aleft( 0,-3 right)) и ( Bleft( 1,-1 right)).

Далее ты рисовал «крестик» (систему координат ( X0Y)), выбирал на ней масштаб (сколько клеточек у тебя будет единичным отрезком) и отмечал на ней полученные тобою точки, которые затем соединял прямой линией, полученная линия и есть график функции ( y=2{x}-3).

Тут есть несколько моментов, которые стоит объяснить тебе чуть подробнее:

  • Единичный отрезок ты выбираешь из соображений удобства, так, чтобы все красиво и компактно умещалось на рисунке;
  • Принято, что ось ( displaystyle X) идет слева направо, а ось ( displaystyle Y) – cнизу вверх;
  • Они пересекаются под прямым углом, а точка их пересечения называется началом координат. Она обозначается буквой ( displaystyle O);
  • В записи координаты точки, например ( displaystyle Aleft( 0,-3 right)), слева в скобках стоит координата точки по оси ( displaystyle X), а справа, по оси ( displaystyle Y). В частности, ( displaystyle Aleft( 0,-3 right)) просто означает, что у точки ( displaystyle A) ( displaystyle x=0,~y=-3.);
  • Для того, чтобы задать любую точку на координатной оси, требуется указать ее координаты (2 числа);
  • Для любой точки, лежащей на оси ( displaystyle Ox,), ( displaystyle y=0.);
  • Для любой точки, лежащей на оси ( displaystyle Oy), ( displaystyle x=0.);
  • Ось ( displaystyle Ox) называется осью абсцисс;
  • Ось ( displaystyle Oy) называется осью ординат.

Векторы

Теперь давай с тобой сделаем следующий шаг: отметим две точки ( displaystyle Aleft( {{x}_{1}},{{y}_{1}} right)) ( displaystyle Bleft( {{x}_{2}},{{y}_{2}} right)).

Соединим эти две точки отрезком. И поставим стрелочку так, как будто мы проводим отрезок из точки ( displaystyle A) к точке ( displaystyle B):

То есть мы сделаем наш отрезок направленным!

Вспомни, как еще называется направленный отрезок? Верно, он называется вектором!

Вектором называется направленный отрезок, имеющий начало и конец.

Таким образом, если мы соединим точку ( displaystyle A) c точкой ( displaystyle B), причем началом у нас будет точка A, а концом – точка B, то мы получим вектор ( displaystyle overrightarrow{AB}).

Это построение ты тоже делал в 8 классе, помнишь?

Координаты вектора

Оказывается, векторы, как и точки, можно обозначать двумя цифрами: эти цифры называются координатами вектора.

Вопрос: как ты думаешь, достаточно ли нам знать координаты начала и конца вектора, чтобы найти его координаты?

Оказывается, что да! И делается это очень просто:

Координаты вектора = координаты точки конца – координаты точки начала.

Таким образом, так как в векторе ( displaystyle overrightarrow{AB}) точка ( displaystyle Aleft( {{x}_{1}},{{y}_{1}} right)) – начало, а ( displaystyle Bleft( {{x}_{2}},{{y}_{2}} right)) – конец, то вектор ( displaystyle overrightarrow{AB}) имеет следующие координаты:

( displaystyle overrightarrow{AB}left( {{x}_{2}}-{{x}_{1}},{{y}_{2}}-{{y}_{1}} right))

Например, если ( displaystyle Aleft( 2,0 right))( displaystyle Bleft( 1,2 right)), то координаты вектора ( displaystyle overrightarrow{AB})

( displaystyle overrightarrow{AB}left( 1-2,2-0 right)=overrightarrow{AB}left( -1,2 right))

Теперь давай сделаем наоборот, найдем координаты вектора ( displaystyle overrightarrow{BA}).

Что нам для этого нужно поменять? Да, нужно поменять местами начало и конец: теперь начало вектора будет в точке ( displaystyle B), а конец – в точке ( displaystyle A).

Тогда:

( displaystyle overrightarrow{BA}left( 2-1,text{ }!!~!!text{ }0-2 right)=overrightarrow{BA(}1,-2).)

Посмотри внимательно, чем отличаются векторы ( displaystyle overrightarrow{AB}) и ( displaystyle overrightarrow{BA})?

Единственное их отличие – это знаки в координатах. Они противоположны. Этот факт принято записывать вот так:

( displaystyle overrightarrow{AB}=-overrightarrow{BA})

Иногда, если не оговаривается специально, какая точка является началом вектора, а какая – концом, то векторы обозначают не двумя заглавными буквами, а одной строчной, например: ( displaystyle {vec{a}}), ( displaystyle {vec{p}}) и т. д.

Еще больше о векторах и проекциях (эту тему мы непременно затронем) ты можешь прочитать в статье по физике «Большая теория по векторам» 🙂

Действия с векторами

Что еще можно делать с векторами?

Да почти все то же самое, что и с обычными числами:

  • Векторы можно складывать друг с другом;
  • Векторы можно вычитать друг из друга;
  • Векторы можно умножать (или делить) на произвольное ненулевое число;
  • Векторы можно умножать друг на друга.

Что же происходит при выполнении этих действий с координатами векторов?

1. При сложении (вычитании) двух векторов, мы складываем (вычитаем) поэлементно их координаты.

То есть:

( vec{a}left( {{x}_{1}},{{y}_{1}} right)+vec{b}left( {{x}_{2}},{{y}_{2}} right)=vec{c}left( {{x}_{1}}+{{x}_{2}},{{y}_{1}}+{{y}_{2}} right))

( vec{a}left( {{x}_{1}},{{y}_{1}} right)-vec{b}left( {{x}_{2}},{{y}_{2}} right)=vec{c}left( {{x}_{1}}-{{x}_{2}},{{y}_{1}}-{{y}_{2}} right))

2. При умножении (делении) вектора на число, все его координаты умножаются (делятся) на это число:

( kcdot vec{a}left( {{x}_{1}},{{y}_{1}} right)=vec{b}left( k{{x}_{1}},k{{y}_{1}} right))

Например:

Най­ди­те сумму ко­ор­ди­нат век­то­ра ( vec{a}+vec{b}).

Вектор растягивается или сжимается или меняет направление при умножении или делении на число:

Давай вначале найдем координаты каждого из векторов.

Оба они имеют одинаковое начало – точку начала координат. Концы у них разные.

Тогда ( vec{a}left( 2-0,6-0 right)=vec{a}left( 2,6 right)), ( vec{b}left( 8-0,4-0 right)=vec{b}left( 8,4 right)).

Теперь вычислим координаты вектора ( vec{c}=vec{a}+vec{b}=vec{c}left( 2+8,4+6 right)=vec{c}left( 10,10 right))

Тогда сумма координат полученного вектора равна ( 20).

Ответ: ( 20)

Теперь реши сам следующую задачу:

Найти сумму координат вектора ( 3vec{a}-2vec{b})

Проверяем:

  • ( vec{a}=vec{a}left( 4-2,10-4 right)=vec{a}left( 2,6 right));
  • ( vec{b}=vec{b}left( 10-2,6-2 right)=vec{b}left( 8,4 right));
  •  ( vec{c}=3vec{a}-2vec{b}=3vec{a}left( 2,6 right)-2vec{b}left( 8,4 right)=left( 6,18 right)-left( 16,8 right)=vec{c}left( -10,10 right)); 
  • ( -10+10=0).

Ответ: ( 0)

Расстояние между двумя точками на координатной плоскости

Давай рассмотрим теперь следующую задачу: у нас есть две точки на координатной плоскости. Как найти расстояние между ними?

Пусть первая точка будет ( {{P}_{1}}({{x}_{1}},{{y}_{1}})), а вторая ( {{P}_{2}}left( {{x}_{2}},{{y}_{2}} right)).

Обозначим расстояние между ними через ( d). Давай сделаем для наглядности следующий чертеж:

Что я сделал?

Я, во-первых, соединил точки ( {{P}_{1}}left( {{x}_{1}},{{y}_{1}} right)) и ( {{P}_{2}}left( {{x}_{2}},{{y}_{2}} right)).

А также из точки ( {{P}_{1}}) провел линию, параллельную оси ( Ox), а из точки ( {{P}_{2}}) провел линию, параллельную оси ( Oy).

Они пересеклись в точке ( R), образовав при этом замечательную фигуру. Чем она замечательна?

Да мы с тобой почти что все знаем про прямоугольный треугольник. Ну уж теорему Пифагора – точно!

Искомый отрезок – это гипотенуза этого треугольника, а отрезки ( {{P}_{1}}R,~{{P}_{2}}R) – катеты.

Чему равны координаты точки ( R)?

Да, их несложно найти по картинке: ( Rleft( {{x}_{2}},{{y}_{1}} right).~)

Так как отрезки ( {{P}_{1}}R,~{{P}_{2}}R) параллельны осям ( Ox) и ( Oy) соответственно, то их длины легко найти: если обозначить длины отрезков ( {{P}_{1}}R,~{{P}_{2}}R) соответственно через ( left| {{P}_{1}}Rleft| ,~ right|{{P}_{2}}R right|), то

( left| {{P}_{1}}R right|={{x}_{2}}-{{x}_{1}})

( left| {{P}_{2}}R right|={{y}_{2}}-{{y}_{1}})

Теперь воспользуемся теоремой Пифагора. Длины катетов нам известны, гипотенузу мы найдем:

( {{d}^{2}}=text{ }!!~!!text{ }left| {{P}_{1}}{{P}_{2}} right|=text{ }!!~!!text{ }{{left| {{P}_{1}}R right|}^{2}}+{{left| {{P}_{2}}R right|}^{2}}=({{x}_{2}}-{{x}_{1}}){{~}^{2}}+({{y}_{2}}-{{y}_{1}}){{~}^{2}}~)

( d=~sqrt{({{x}_{2}}-{{x}_{1}}){{~}^{2}}+({{y}_{2}}-{{y}_{1}}){{~}^{2}}})

Таким образом, расстояние между двумя точками – это корень из суммы квадратов разностей из координат. 

Или же – расстояние между двумя точками – это длина отрезка, их соединяющего.

Легко заметить, что расстояние между точками не зависит от направления.

Тогда:

( d=left| overrightarrow{{{P}_{1}}{{P}_{2}}} right|=left| overrightarrow{{{P}_{2}}{{P}_{1}}} right|=sqrt{({{x}_{2}}-{{x}_{1}}){{~}^{2}}+({{y}_{2}}-{{y}_{1}}){{~}^{2}}})

Отсюда делаем три вывода:

  • Длина вектора = корень из суммы квадратов его координат;
  • Найти расстояние между двумя точками = найти длину вектора, их соединяющего (в любом направлении);
  • Длины векторов, соединяющих две точки в разном направлении, равны.

Давай немного поупражняемся в вычислении расстояния между двумя точками:

Например, если ( Aleft( 1,2 right),~Bleft( 3,4 right)), то расстояние между ( A) и ( B) равно

( d=sqrt{{{left( 3-1 right)}^{2}}+{{left( 4-2 right)}^{2}}}=sqrt{4+4}=sqrt{8}=2sqrt{2})

Или пойдем по-другому: найдем координаты вектора ( overrightarrow{AB})

( overrightarrow{AB}left( 3-1,4-2 right)=overrightarrow{AB}left( 2,2 right))

И найдем длину вектора:

( left| overrightarrow{AB} right|=sqrt{{{2}^{2}}+{{2}^{2}}}=sqrt{8}=2sqrt{2})

Как видишь, одно и то же!

Теперь немного потренируйся сам:

Задание. Найти расстояние между указанными точками:

  • ( Aleft( 2,sqrt{3} right),~Bleft( 5,2sqrt{3} right));
  • ( Cleft( 2,4 right),~Dleft( 1,-5 right));
  • ( Fleft( sqrt{12},1 right),~Gleft( sqrt{3},-1 right)).

Проверяем:

  • ( d=sqrt{{{left( 5-2 right)}^{2}}+{{left( 2sqrt{3}-sqrt{3} right)}^{2}}}=sqrt{9+3}=sqrt{12}=2sqrt{3});
  • ( displaystyle d=sqrt{{{left( 1-2 right)}^{2}}+{{left( -5-4 right)}^{2}}}=sqrt{1+81}=sqrt{82});
  • ( displaystyle d=sqrt{{{left( sqrt{3}-sqrt{12} right)}^{2}}+{{left( -1-1 right)}^{2}}}=sqrt{left( 3-2sqrt{3}sqrt{12}+12 right)+4}=); ( displaystyle=sqrt{3-2sqrt{36}+12+4}=sqrt{3-12+12+4}=sqrt{7}).

Вот еще пара задачек на ту же формулу, правда звучат они немного по-другому:

1. Най­ди­те квад­рат длины век­то­ра ( vec{a}-vec{b}).

2. Най­ди­те квад­рат длины век­то­ра ( overrightarrow{AB})

Я так думаю, ты с ними без труда справился? Проверяем:

1. А это на внимательность) Мы уже нашли координаты векторов ( displaystyle {vec{a}}) и ( displaystyle {vec{b}}) ранее: ( displaystyle vec{a}left( 2,6 right),~vec{b}left( 8,4 right)). Тогда вектор ( displaystyle vec{a}-vec{b}) имеет координаты ( displaystyle left( 2-8,6-4 right)=left( -6,2 right)). Квадрат его длины будет равен:

( displaystyle {{d}^{2}}={{left( -6 right)}^{2}}+{{2}^{2}}=36+4=40.)

2. Найдем координаты вектора ( displaystyle overrightarrow{AB}=overrightarrow{AB}left( 8-2,6-4 right)=overrightarrow{AB}left( 6,2 right))

Тогда квадрат его длины равен

( displaystyle {{d}^{2}}={{6}^{2}}+{{2}^{2}}=36+4=40.)

Ничего сложного, правда? Обычная арифметика, не более того.

Следующие задачки нельзя однозначно классифицировать, они скорее на общую эрудицию и на умение рисовать простенькие картинки.

Задача 1. Най­ди­те синус угла на­кло­на от­рез­ка, со­еди­ня­ю­ще­го точки ( displaystyle Oleft( 0;~0 right)),( displaystyle Aleft( 6;~8 right)) с осью абсцисс.

Как мы будем поступать здесь?

Нужно найти синус угла между ( displaystyle OA) и осью ( displaystyle Ox).

А где мы умеем искать синус? Верно, в прямоугольном треугольнике.

Так что нам нужно сделать? Построить этот треугольник!

Поскольку координаты точки ( displaystyle A-6) и ( displaystyle 8), то отрезок ( displaystyle OB) равен ( displaystyle 6), а отрезок ( displaystyle AB-8).

Нам нужно найти синус угла ( displaystyle angle AOB).

Напомню тебе, что синус – это отношение противолежащего катета к гипотенузе, тогда

( displaystyle sinangle AOB=frac{AB}{OA})

Что нам осталось сделать?

Найти гипотенузу.

Ты можешь сделать это двумя способами: по теореме Пифагора (катеты-то известны!) или по формуле расстояния между двумя точками (на самом деле одно и то же, что и первый способ!).

Я пойду вторым путем:

( displaystyle OA=sqrt{{{left( 6-0 right)}^{2}}+{{left( 8-0 right)}^{2}}}=10)

Тогда

( displaystyle sinangle AOB=frac{AB}{OA}=frac{8}{10}=0.8)

Ответ: ( displaystyle 0.8)

Следующая задача покажется тебе еще проще. Она – на координаты точки.

Задача 3. В условиях предыдущей задачи найти сумму расстояний от точки ( displaystyle A) до осей координат.

Задача – вообще элементарная, если знать, что такое расстояние от точки до осей.

Ты знаешь?

Я надеюсь, но все же напомню тебе:

Расстояние от точки до осей координат – это длины перпендикуляров, опущенных из точки к осям.

Итак, на моем рисунке, расположенном чуть выше, я уже изобразил один такой перпендикуляр. К какой он оси?

К оси ( displaystyle Ox).

И чему же равна тогда его длина?

Она равна ( displaystyle 8).

Теперь сам проведи перпендикуляр к оси ( displaystyle Oy) и найди его длину. Она будет равна ( displaystyle 6), ведь так?

Тогда их сумма равна ( displaystyle 14).

Ответ: ( displaystyle 14).

Задача 4. В условиях задачи 2, найдите ординату точки, симметричной точке ( displaystyle A) относительно оси абсцисс.

Решение:

Я думаю, тебе интуитивно ясно, что такое симметрия?

Очень многие объекты ею обладают: многие здания, столы, самолеты, многие геометрические фигуры: шар, цилиндр, квадрат, ромб и т. д.

Грубо говоря, симметрию можно понимать вот как: фигура состоит из двух (или более) одинаковых половинок. Такая симметрия называется осевой.

А что тогда такое ось?

Это как раз та линия, по которой фигуру можно, условно говоря, «разрезать» на одинаковые половинки (на данной картинке ось симметрии – прямая ( displaystyle l)):

Теперь давай вернемся к нашей задаче.

Нам известно, что мы ищем точку, симметричную относительно оси ( displaystyle Ox).

Тогда эта ось – ось симметрии.

Значит, нам нужно отметить такую точку ( displaystyle {{A}_{1}}), чтобы ось ( displaystyle Ox) разрезала отрезок ( displaystyle A{{A}_{1}}) на две равные части.

Попробуй сам отметить такую точку. А теперь сравни с моим решением:

У тебя получилось так же?

Хорошо! У найденной точки нас интересует ордината.

Она равна ( displaystyle -8)

Ответ: ( displaystyle -8)

Теперь задачка на параллелограмм:

Задача 5. Точки ( displaystyle Oleft( 0;~0 right),~Aleft( 6;~8 right),~Cleft( 0;~6 right)~) яв­ля­ют­ся вер­ши­на­ми па­рал­ле­ло­грам­ма. Най­ди­те ор­ди­на­ту точки ( displaystyle B).

Можно решать эту задачу двумя способами: логикой и методом координат. 

Я вначале применю метод координат, а потом расскажу тебе, как можно решить иначе.

Совершенно ясно, что абсцисса точки ( displaystyle B) равна ( displaystyle 6). (она лежит на перпендикуляре, проведенной из точки ( displaystyle A) к оси абсцисс).

Нам нужно найти ординату.

Воспользуемся тем, что наша фигура – параллелограмм, это значит, что ( displaystyle CA=OB).

Найдем длину отрезка ( displaystyle CA), используя формулу расстояния между двумя точками:

( d=sqrt{{{left( 6-0 right)}^{2}}+{{left( 8-6 right)}^{2}}}=sqrt{40})

Тогда ( OB=sqrt{40}.~~)

Опускаем перпендикуляр, соединяющий точку ( B) с осью ( Ox).

Точку пересечения обозначу буквой ( D).

Длина отрезка ( OD) равна ( 6). (найди сам задачу, где мы обсуждали этот момент), тогда найдем длину отрезка ( BD) по теореме Пифагора:

( BD=sqrt{40-36}=2)

Длина отрезка – в точности совпадает с его ординатой.

Ответ: ( 2).

Другое решение (я просто приведу рисунок, который его иллюстрирует)

Ход решения:

  • Провести ( CE);
  • Найти координаты точки ( E) и длину ( AE);
  • Доказать, что ( BD=AE).

Еще одна задачка на длину отрезка:

Точки ( Oleft( 0;~0 right),~Aleft( 6;~8 right),~Bleft( 8;~2 right)) яв­ля­ют­ся вер­ши­на­ми тре­уголь­ни­ка. Най­ди­те длину его сред­ней линии ( CD), па­рал­лель­ной ( OA).

Ты помнишь, что такое средняя линия треугольника?

Тогда для тебя эта задача элементарна. Если не помнишь, то я напомню: средняя линия треугольника – это линия, которая соединяет середины противоположных сторон.

Она параллельна основанию и равна его половине.

Основание – это отрезок ( OA).

Его длину нам приходилось искать ранее, оно равно ( 10).

Тогда длина средней линии вдвое меньше и равна ( 5).

Ответ: ( 5).

Комментарий: эту задачу можно решить и другим способом, к которому мы обратимся чуть позже.

А пока – вот тебе несколько задачек, потренируйся на них, они совсем простые, но помогают «набивать руку», на использовании метода координат!

1. Точки ( Oleft( 0;~0 right),~Aleft( 10;~0 right),~Bleft( 8;~6 right),~Cleft( 2;~6 right)) яв­ля­ют­ся вер­ши­на­ми тра­пе­ции. Най­ди­те длину ее сред­ней линии ( DE).

2. Точки ( Oleft( 0;~0 right),~Bleft( 8;~2 right),~Cleft( 2;~6 right)) и ( A) яв­ля­ют­ся вер­ши­на­ми па­рал­ле­ло­грам­ма. Най­ди­те ор­ди­на­ту точки ( A).

3. Най­ди­те длину от­рез­ка, со­еди­ня­ю­ще­го точки ( Aleft( 6 ;~8 right)) и ( Bleft( -2;~2 right).)

4. Най­ди­те пло­щадь за­кра­шен­ной фи­гу­ры на ко­ор­ди­нат­ной плос­ко­сти.

5. Окруж­ность с цен­тром в на­ча­ле ко­ор­ди­нат про­хо­дит через точку ( displaystyle Pleft( 8;text{ }6 right)). Най­ди­те ее ра­ди­ус.

6. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около пря­мо­уголь­ни­ка ( displaystyle ABCD), вер­ши­ны ко­то­ро­го имеют ко­ор­ди­на­ты со­от­вет­ствен­но ( displaystyle left( -2;~-2 right),~left( 6;~-2 right),~left( 6;~4 right),~left( -2;~4 right).)

Решения:

1. Известно, что средняя линия трапеции равна полусумме ее оснований.

Основание ( displaystyle CB) равно ( displaystyle 6), а основание ( displaystyle OA-10).

Тогда ( displaystyle ED=frac{CB+OA}{2}=frac{16}{2}=8)

Ответ: ( displaystyle 8)

2. Проще всего решить эту задачу так: заметить, что ( displaystyle overrightarrow{OA}=overrightarrow{OC}+overrightarrow{OB}) (правило параллелограмма).

Вычислить координаты векторов ( displaystyle overrightarrow{OC}) и ( displaystyle overrightarrow{OB}) не представляет труда: ( displaystyle overrightarrow{OC}left( 2,6 right),~overrightarrow{OB}left( 8,2 right)).

При сложении векторов координаты складываются.

Тогда ( displaystyle overrightarrow{OA}) имеет координаты ( displaystyle left( 10,8 right)).

Эти же координаты имеет и точка ( displaystyle A), поскольку начало вектора ( displaystyle overrightarrow{OA}) – это точка с координатами ( displaystyle left( 0,0 right)).

Нас интересует ордината. Она равна ( displaystyle 8).

Ответ: ( displaystyle 8)

3. Действуем сразу по формуле расстояния между двумя точками:

( displaystyle d=sqrt{{{left( 6-left( -2 right) right)}^{2}}+{{left( 8-2 right)}^{2}}}=sqrt{64+36}=10)

Ответ: ( displaystyle 10)

4. Посмотри на картинку и скажи, между какими двумя фигурами «зажата» заштрихованная область?

Она зажата между двумя квадратами. Тогда площадь искомой фигуры равна площади большого квадрата минус площадь маленького.

Сторона маленького квадрата – это отрезок, соединяющий точки ( displaystyle left( 0,2 right)) и ( displaystyle left( 2,0 right).) Его длина равна

( displaystyle {{d}_{1}}=sqrt{{{left( 0-2 right)}^{2}}+{{left( 2-0 right)}^{2}}}=sqrt{8})

Тогда площадь маленького квадрата равна

( displaystyle {{S}_{1}}=d_{1}^{2}={{sqrt{8}}^{2}}=8)

Точно так же поступаем и с большим квадратом: его сторона – это отрезок, соединяющий точки ( displaystyle left( 0,4 right)) и ( displaystyle left( 4,0 right).)

Его длина равна

( displaystyle {{d}_{2}}=sqrt{{{left( 0-4 right)}^{2}}+{{left( 4-0 right)}^{2}}}=sqrt{32}).

Тогда площадь большого квадрата равна

( displaystyle {{S}_{2}}=d_{2}^{2}={{sqrt{32}}^{2}}=32)

Площадь искомой фигуры найдем по формуле:

( displaystyle S={{S}_{2}}-{{S}_{1}}=32-8=24)

Ответ: ( displaystyle 24)

5. Если окружность имеет в качестве центра начало координат и проходит через точку ( displaystyle P), то ее радиус ( displaystyle R) будет в точности равен длине отрезка ( displaystyle OP) (сделай рисунок и ты поймешь, почему это очевидно).

Найдем длину этого отрезка:

( displaystyle R=sqrt{{{6}^{2}}+{{8}^{2}}}=10)

Ответ: ( displaystyle 10)

6. Известно, что радиус описанной около прямоугольника окружности равен половине его диагонали.

Найдем длину любой из двух диагоналей (ведь в прямоугольнике они равны!)

( displaystyle left| AC right|=sqrt{{{left( 6-left( -2 right) right)}^{2}}+{{left( 4-left( -2 right) right)}^{2}}}=10)

Тогда

( displaystyle R=frac{1}{2}left| AC right|=5)

Ответ: ( displaystyle 5)

Ну что, ты со всем справился?

Было не очень сложно разобраться, ведь так? Правило здесь одно – уметь сделать наглядную картинку и просто «считать» с нее все данные.

Нам осталось совсем немного. Есть еще буквально два момента, которые бы мне хотелось обсудить:

  • как найти координаты середины отрезка и

Координаты середины отрезка

Давай попробуем решить вот такую нехитрую задачку.

Пусть даны две точки ( displaystyle Aleft( {{x}_{1}},{{x}_{2}} right)~) и ( displaystyle Bleft( {{x}_{2}},{{y}_{2}} right)).

Найти координаты середины отрезка ( displaystyle AB). Решение этой задачки следующее: пусть точка ( displaystyle D) – искомая середина, тогда ( displaystyle D) имеет координаты:

( displaystyle Dleft( frac{{{x}_{1}}+{{x}_{2}}}{2},frac{{{y}_{1}}+{{y}_{2}}}{2} right))

То есть: координаты середины отрезка = среднее арифметическое соответствующих координат концов отрезка.

Это правило очень простое и как правило не вызывает затруднений у учащихся. Давай посмотрим, в каких задачках и как оно употребляется:

1. Най­ди­те ор­ди­на­ту се­ре­ди­ны от­рез­ка, со­еди­ня­ю­ще­го точки ( displaystyle Aleft( 6,~8 right)~) и ( displaystyle Bleft( -2,~2 right).)

2. Точки ( displaystyle Oleft( 0;~0 right),~Aleft( 6;~8 right),~Bleft( 6;~2 right),~Cleft( 0;~6 right)) яв­ля­ют­ся вер­ши­на­ми че­ты­рех­уголь­ни­ка. Най­ди­те ор­ди­на­ту точки ( displaystyle P) пе­ре­се­че­ния его диа­го­на­лей.

3. Най­ди­те абс­цис­су цен­тра окруж­но­сти, опи­сан­ной около пря­мо­уголь­ни­ка ( displaystyle ABCD), вер­ши­ны ко­то­ро­го имеют ко­ор­ди­на­ты со­от­вет­ствен­но ( displaystyle left( -2;~-2 right),~left( 6;~-2 right),~left( 6;~4 right),~left( -2;~4 right)).

Решения:

1. Первая задачка – просто классика. Действуем сразу по определению середины отрезка. Она имеет координаты ( displaystyle left( frac{6-2}{2},~frac{8+2}{2} right)=left( 2,5 right)).

Ордината равна ( displaystyle 5).

Ответ: ( displaystyle 5)

2. Легко видеть, что данный четырехугольник является параллелограммом (даже ромбом!). Ты и сам можешь это доказать, вычислив длины сторон и сравнив их между собой.

Что я знаю про параллелограмм?

Его диагонали точкой пересечения делятся пополам! Ага! Значит точка пересечения диагоналей – это что?

Это середина любой из диагоналей!

Выберу, в частности диагональ ( displaystyle OA). Тогда точка ( displaystyle P) имеет координаты ( displaystyle left( frac{6+0}{2},frac{8+0}{2} right)=left( 3,4 right).)

Ордината точки ( displaystyle P) равна ( displaystyle 4).

Ответ: ( displaystyle 4)

3. С чем совпадает центр описанной около прямоугольника окружности?

Он совпадает с точкой пересечения его диагоналей. А что ты знаешь про диагонали прямоугольника?

Они равны и точкой пересечения делятся пополам. Задача свелась к предыдущей.

Возьму, например, диагональ ( displaystyle AC). Тогда если ( displaystyle P) – центр описанной окружности, то ( displaystyle P) – середина ( displaystyle AC).

Ищу координаты: ( displaystyle Pleft( frac{-2+6}{2},frac{-2+4}{2} right)=Pleft( 2,1 right).) Абсцисса равна ( displaystyle 2).

Ответ: ( displaystyle 2)

Теперь потренируйся немного самостоятельно, я лишь приведу ответы к каждой задачи, чтобы ты мог себя проверить.

1. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка, вер­ши­ны ко­то­ро­го имеют ко­ор­ди­на­ты ( displaystyle left( 8;~0 right),~left( 0;~6 right),~left( 8;~6 right).)

2. Най­ди­те ор­ди­на­ту цен­тра окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка, вер­ши­ны ко­то­ро­го имеют ко­ор­ди­на­ты ( displaystyle left( 8;~0 right),~left( 0;~6 right),~left( 8;~6 right).)

3. Ка­ко­го ра­ди­у­са долж­на быть окруж­ность с цен­тром в точке ( displaystyle Pleft( 8;~6 right),) чтобы она ка­са­лась оси абс­цисс?

4. Най­ди­те ор­ди­на­ту точки пе­ре­се­че­ния оси ( displaystyle Oy) и от­рез­ка, со­еди­ня­ю­ще­го точки ( displaystyle Aleft( 6;text{ }8 right)) и ( displaystyle Bleft( -6;text{ }0 right).)

Ответы:

  • ( displaystyle 5);
  • ( displaystyle 3);
  • ( displaystyle 6);
  • ( displaystyle 4).

Умножение векторов

Все удалось? Очень на это надеюсь! Теперь – последний рывок.

Сейчас будь особенно внимателен. Тот материал, который я сейчас буду объяснять, имеет непосредственное отношение не только к простым задачам на метод координат, но также встречается повсеместно и в задачах повышенной сложности.

Какое из своих обещаний я еще не сдержал?

Вспомни, какие операции над векторами я обещал ввести и какие в конечном счете ввел? Я точно ничего не забыл?

Забыл! Забыл объяснить, что значит умножение векторов.

Есть два способа умножить вектор на вектор. В зависимости от выбранного способа у нас будут получаться объекты разной природы:

  • Скалярное произведение (результат – число);
  • Векторное произведение (результат – вектор).

Векторное произведение выполняется довольно хитро. Как его делать и для чего оно нужно, мы с тобой обсудим чуть позже. А пока мы остановимся на скалярном произведении.

Есть аж два способа, позволяющих нам его вычислить:

  • Через координаты векторов;
  • Через длины векторов и угол между ними.

Как ты догадался, результат должен быть один и тот же! Итак, давай вначале рассмотрим первый способ:

Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров ( displaystyle {vec{a}}) и ( displaystyle {vec{b}})

Справился? Может, и подвох небольшой заметил? Давай проверим:

( displaystyle vec{a}left( 2,6 right)), ( displaystyle vec{b}left( 8,4 right)) – координаты векторов, как в прошлой задаче! Ответ: ( displaystyle 40).

Скалярное произведение через длины векторов и косинус угла между ними

Помимо координатного, есть и другой способ вычислить скалярное произведение, а именно, через длины векторов и косинус угла между ними:

( displaystyle left( vec{a},~vec{b} right)=left| {vec{a}} right|left| {vec{b}} right|coswidehat{vec{a},~vec{b}})

( displaystyle widehat{vec{a},~vec{b}}) – обозначает угол между векторами ( displaystyle {vec{a}}) и ( displaystyle {vec{b}}).

То есть скалярное произведение равно произведению длин векторов на косинус угла между ними.

Зачем же нам эта вторая формула, если у нас есть первая, которая намного проще, в ней по крайней мере нет никаких косинусов?

А нужна она для того, что из первой и второй формулы мы с тобой сможем вывести, как находить угол между векторами!

Пусть ( displaystyle vec{a}left( {{x}_{1}},{{y}_{1}} right),~vec{b}left( {{x}_{2}},{{y}_{2}} right).) Тогда вспоминай формулу для длины вектора!

( displaystyle left| {vec{a}} right|=sqrt{x_{1}^{2}+y_{1}^{2}})

( displaystyle left| {vec{b}} right|=sqrt{x_{2}^{2}+y_{2}^{2}})

Тогда если я подставлю эти данные в формулу скалярного произведения, то я получу:

( displaystyle left( vec{a},~vec{b} right)=sqrt{x_{1}^{2}+y_{1}^{2}}cdot sqrt{x_{2}^{2}+y_{2}^{2}}coswidehat{vec{a},~vec{b}})

Но с другой стороны:

( displaystyle left( vec{a},~vec{b} right)={{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}})

Тогда

( displaystyle {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}=sqrt{x_{1}^{2}+y_{1}^{2}}cdot sqrt{x_{2}^{2}+y_{2}^{2}}coswidehat{vec{a},~vec{b}})

Или

( displaystyle coswidehat{vec{a},~vec{b}}=frac{{{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}}{sqrt{x_{1}^{2}+y_{1}^{2}}cdot sqrt{x_{2}^{2}+y_{2}^{2}}})

Таким образом, что же мы с тобой получили?

У нас теперь есть формула, позволяющая вычислять угол между двумя векторами! Иногда ее для краткости записывают еще и так:

( displaystyle coswidehat{vec{a},~vec{b}}=frac{left( vec{a},~vec{b} right)}{left| {vec{a}} right|left| {vec{b}} right|})

Решение:

1. Эти вектора – наши старые знакомые. Их скалярное произведение мы уже считали и оно было равно ( displaystyle 40).

Координаты у них такие: ( displaystyle vec{a}left( 2,6 right)), ( displaystyle vec{b}left( 8,4 right)). Тогда найдем их длины:

( left| {vec{a}} right|=sqrt{{{2}^{2}}+{{6}^{2}}}=sqrt{40})

( left| {vec{b}} right|=sqrt{{{8}^{2}}+{{4}^{2}}}=sqrt{80})

Тогда ищем косинус между векторами:

( coswidehat{vec{a},~vec{b}}=frac{left( vec{a},~vec{b} right)}{left| {vec{a}} right|left| {vec{b}} right|}=frac{40}{sqrt{40}sqrt{80}}=frac{sqrt{40}sqrt{40}}{sqrt{40}sqrt{80}}=frac{1}{sqrt{2}})

Косинус какого угла равен ( frac{1}{sqrt{2}})? Это угол ( 45{}^circ ).

Ответ: ( 45)

Ну а теперь сам реши вторую задачу, а потом сравним! Я приведу лишь очень краткое решение:

2. ( vec{a}+vec{b}) имеет координаты ( left( 10,10 right)), ( vec{a}-vec{b}) имеет координаты ( left( -6,2 right)).

( left( vec{a}+vec{b},vec{a}-vec{b} right)=-60+20=-40)

( left| vec{a}+vec{b} right|=sqrt{{{10}^{2}}+{{10}^{2}}}=10sqrt{2})

( left| vec{a}-vec{b} right|=sqrt{{{left( -6 right)}^{2}}+{{2}^{2}}}=sqrt{40}).

Пусть ( a) – угол между векторами ( vec{a}+vec{b}) и ( vec{a}-vec{b}), тогда

( cosa=frac{-40}{10sqrt{2}sqrt{40}}=-frac{sqrt{40}}{10sqrt{2}}=-frac{sqrt{20}}{10}=-frac{sqrt{5}}{5})

Ответ: ( -frac{sqrt{5}}{5})

Метод координат (продвинутый уровень)

Мы с тобой продолжаем изучать метод координат. В прошлой части мы вывели ряд важных формул, которые позволяют:

  • Находить координаты вектора;
  • Находить длину вектора (альтернативно: расстояние между двумя точками);
  • Складывать, вычитать векторы. Умножать их на вещественное число;
  • Находить середину отрезка;
  • Вычислять скалярное произведение векторов;
  • Находить угол между векторами.

Конечно, в эти 6 пунктов не укладывается весь координатный метод.

Он лежит в основе такой науки, как аналитическая геометрия, с которой тебе предстоит познакомиться в ВУЗе. Я лишь хочу построить фундамент, который позволит тебе решать задачи ЕГЭ любого уровня сложности!

Этот раздел будет посвящен методу решения тех задач, в которых будет разумно перейти к методу координат. Эта разумность определяется тем, что в задаче требуется найти, и какая фигура дана.

Когда стоит применять метод координат

Итак, я бы стал применять метод координат, если ставятся вопросы:

  • Найти угол между двумя плоскостями;
  • Найти угол между прямой и плоскостью;
  • Найти угол между двумя прямыми;
  • Найти расстояние от точки до плоскости;
  • Найти расстояние от точки до прямой;
  • Найти расстояние от прямой до плоскости;
  • Найти расстояние между двумя прямыми.

Подходящими фигурами для метода координат являются:

  • Куб;
  • Прямоугольный параллелепипед;
  • Прямая призма (треугольная, шестиугольная…);
  • Пирамида (треугольная, четырехугольная, шестиугольная);
  • Тетраэдр (одно и то же, что и треугольная пирамида).

Неподходящими фигурами для метода координат являются тела вращения:

  • шар;
  • цилиндр;
  • конус

По моему опыту, нецелесообразно использовать метод координат для:

  • Нахождения площадей сечений;
  • Вычисления объемов тел.

Однако следует сразу отметить, что три «невыгодные» для метода координат ситуации на практике достаточно редки.

В большинстве же задач он может стать твоим спасителем, особенно если ты не очень силен в трехмерных построениях (которые порою бывают довольно замысловатыми).

Как применять метод координат

Какими являются все перечисленные мною выше фигуры?

Они уже не плоские, как, например, квадрат, треугольник, окружность, а объемные! Соответственно, нам нужно рассматривать уже не двухмерную, а трехмерную систему координат.

Строится она достаточно легко: просто помимо оси абсцисс и ординат, мы введем еще одну ось, ось аппликат. На рисунке схематично изображено их взаимное расположение:

Все они являются взаимно перпендикулярными, пересекаются в одной точке ( displaystyle O), которую мы будем называть началом координат.

Ось абсцисс, как и прежде, будем обозначать ( Ox), ось ординат – ( Oy), а введенную ось аппликат – ( Oz).

Если раньше каждая точка на плоскости характеризовалась двумя числами – абсциссой и ординатой, то каждая точка в пространстве уже описывается тремя числами – абсциссой, ординатой, аппликатой.

Например:

Соответственно абсцисса точки ( displaystyle P) равна ( displaystyle 1), ордината – ( displaystyle 2), а аппликата – ( displaystyle 3).

Иногда абсциссу точки еще называют проекцией точки на ось абсцисс, ординату – проекцией точки на ось ординат, а аппликату – проекцией точки на ось аппликат. Соответственно, если задана точка ( Aleft( x,y,z right)) то, точку с координатами:

( Aleft( x,y,0 right)) называют проекцией точки ( Aleft( x,y,z right)) на плоскость ( Oxy)

( Aleft( x,0,z right)) называют проекцией точки ( Aleft( x,y,z right)) на плоскость ( Oxz)

( Aleft( 0,y,z right)) называют проекцией точки ( Aleft( x,y,z right)) на плоскость ( Oyz)

Встает естественный вопрос: справедливы ли все формулы, выведенные для двухмерного случая, в пространстве?

Ответ утвердительный, они справедливы и имеют тот же самый вид. За маленькой деталью. Я думаю, ты уже сам догадался, за какой именно.

Во все формулы мы должны будем добавить еще один член, отвечающий за ось аппликат.

Формулы метода координат для трехмерных фигур

1. Если заданы две точки: ( Aleft( {{x}_{1}},{{y}_{1}},{{z}_{1}} right)), ( Aleft( {{x}_{2}},{{y}_{2}},{{z}_{2}} right)), то:

  • Координаты вектора ( overrightarrow{AB}): ( overrightarrow{AB}left( {{x}_{2}}-{{x}_{1}},{{y}_{2}}-{{y}_{1}},{{z}_{2}}-{{z}_{1}} right));
  • Расстояние между двумя точками (или длина вектора ( overrightarrow{AB})) ( d=left| overrightarrow{AB} right|=sqrt{{{left( {{x}_{2}}-{{x}_{1}} right)}^{2}}+{{left( {{y}_{2}}-{{y}_{1}} right)}^{2}}+{{left( {{z}_{2}}-{{z}_{1}} right)}^{2}}});
  • Середина ( D) отрезка ( AB) имеет координаты
  • ( Dleft( frac{{{x}_{1}}+{{x}_{2}}}{2},frac{{{y}_{1}}+{{y}_{2}}}{2},frac{{{z}_{1}}+{{z}_{2}}}{2} right)).

2. Если дано два вектора: ( vec{a}left( {{x}_{1}},{{y}_{1}},{{z}_{1}} right)) и ( vec{b}left( {{x}_{2}},{{y}_{2}},{{z}_{2}} right)), то:

  • Их скалярное произведение равно: ( left( vec{a},~vec{b} right)=left| {vec{a}} right|left| {vec{b}} right|cosoverset{}{widehat{vec{a},~vec{b}}},) или ( left( vec{a},~vec{b} right)={{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}+{{z}_{1}}{{z}_{2}});
  • Косинус угла между векторами равен:
  • ( cosoverset{}{widehat{vec{a},~vec{b}}},=frac{left( vec{a},~vec{b} right)}{left| {vec{a}} right|left| {vec{b}} right|}=frac{{{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}+{{z}_{1}}{{z}_{2}}}{sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}}cdot sqrt{x_{2}^{2}+y_{2}^{2}+z_{2}^{2}}}).

Плоскость — как «обобщение» прямой

Однако с пространством не все так просто.

Как ты понимаешь, добавление еще одной координаты вносит существенное разнообразие в спектр фигур, «живущих» в этом пространстве. И для дальнейшего повествования мне потребуется ввести некоторое, грубо говоря, «обобщение» прямой.

Этим «обобщением» будет плоскость. Что ты знаешь про плоскость? Попробуй ответить на вопрос, а что такое плоскость? Очень сложно сказать.

Однако мы все интуитивно представляем, как она выглядит:

Грубо говоря, это некий бесконечный «лист», засунутый в пространство. «Бесконечность» следует понимать, что плоскость распространяется во все стороны, то есть ее площадь равна бесконечности.

Однако, это объяснение «на пальцах» не дает ни малейшего представления о структуре плоскости. А нас будет интересовать именно она.

Давай вспомним одну из основных аксиом геометрии: через две различные точки на плоскости проходит прямая, притом только одна.

Или ее аналог в пространстве: через три точки, не лежащие на одной прямой, проходит плоскость, притом только одна.

Уравнение прямой в плоскости и пространстве

Конечно, ты помнишь, как по двум заданным точкам вывести уравнение прямой, это совсем нетрудно: если первая точка имеет координаты: ( Aleft( {{x}_{0}},{{y}_{0}} right)) а вторая ( Bleft( {{x}_{1}},{{y}_{1}} right)), то уравнение прямой будет следующим:

( frac{x-{{x}_{0}}}{{{x}_{1}}-{{x}_{0}}}=frac{y-{{y}_{0}}}{{{y}_{1}}-{{y}_{0}}})

( left( x-{{x}_{0}} right)left( {{y}_{1}}-{{y}_{0}} right)=left( y-{{y}_{0}} right)left( {{x}_{1}}-{{x}_{0}} right))

Это ты проходил еще в 7 классе.

В пространстве уравнение прямой выглядит вот так: пусть у нас даны две точки с координатами: ( Aleft( {{x}_{0}},{{y}_{0}},{{z}_{0}} right)), ( Bleft( {{x}_{1}},{{y}_{1}},{{z}_{1}} right)), то уравнение прямой, через них проходящей, имеет вид:

( frac{x-{{x}_{0}}}{{{x}_{1}}-{{x}_{0}}}=frac{y-{{y}_{0}}}{{{y}_{1}}-{{y}_{0}}}=frac{z-{{z}_{0}}}{{{z}_{1}}-{{z}_{0}}})

Например, через точки ( Aleft( 1,2,3 right)), ( Bleft( 4,5,6 right)) проходит прямая:

( frac{x-1}{4-1}=frac{y-2}{5-2}=frac{z-3}{6-3})

( frac{x-1}{3}=frac{y-2}{3}=frac{z-3}{3})

( x-1=y-2=z-3)

Как это следует понимать?

Это следует понимать вот как: точка ( Dleft( x,y,z right)) лежит на прямой, если ее координаты удовлетворяют следующей системе:

( displaystyle left{ begin{array}{l}x-1=y-2\x-1=z-3end{array} right.)

Нас не очень будет интересовать уравнение прямой, но нам нужно обратить внимание на очень важное понятие направляющего вектора прямой.

Направляющий вектор прямой

Направляющий вектор прямой – любой ненулевой вектор, лежащий на данной прямой или параллельный ей.

Например, оба вектора ( overrightarrow{{{M}_{0}}{{M}_{1}}}), ( vec{s}) являются направляющими векторами прямой ( l). Пусть ( Mleft( {{x}_{0}},{{y}_{0}},{{z}_{0}} right)) – точка, лежащая на прямой, а ( vec{p}left( m,n,q right)) – ее направляющий вектор.

Тогда уравнение прямой можно записать в следующем виде:

( frac{x-{{x}_{0}}}{m}=frac{y-{{y}_{0}}}{n}=frac{z-{{z}_{0}}}{p})

Еще раз повторюсь, мне не очень будет интересно уравнение прямой, но мне очень нужно, чтобы ты запомнил, что такое направляющий вектор!

Еще раз: это ЛЮБОЙ ненулевой вектор, лежащий на прямой, или параллельный ей.

Уравнение плоскости

Вывести уравнение плоскости по трем заданным точкам уже не так тривиально, и обычно этот вопрос не рассматривается в курсе средней школы.

А зря!

Этот прием жизненно необходим, когда мы прибегаем к методу координат для решения сложных задач. Однако, я предполагаю, что ты полон желания научиться чему-то новому?

Более того, ты сможешь поразить своего преподавателя в ВУЗе, когда выяснится, что ты уже умеешь с методикой, которую обычно изучают в курсе аналитической геометрии. Итак, приступим.

Уравнение плоскости не слишком отличается от уравнения прямой на плоскости, а именно оно имеет вид:

( Ax+By+Cz+D=0)

( A,B,C,D-) некоторые числа (не все равные нулю), а ( x,y,z-~) переменные, например: ( 3x+2y-z+1=0,~0.5x-2z-2=0,~x+y=0) и т.д.

Как видишь, уравнение плоскости не очень отличается от уравнения прямой (линейной функции). Однако, вспомни, что мы с тобой утверждали? Мы говорили, что если у нас есть три точки ( Aleft( {{x}_{0}},{{y}_{0}},{{z}_{0}} right),~Bleft( {{x}_{1}},{{y}_{1}},{{z}_{1}} right),~Cleft( {{x}_{2}},{{y}_{2}},{{z}_{2}} right)), не лежащие на одной прямой, то уравнение плоскости однозначно по ним восстанавливается.

Но как? Попробую тебе объяснить.

Поскольку уравнение плоскости имеет вид:

( Ax+By+Cz+D=0)

А точки ( Aleft( {{x}_{0}},{{y}_{0}},{{z}_{0}} right),~Bleft( {{x}_{1}},{{y}_{1}},{{z}_{1}} right),~Cleft( {{x}_{2}},{{y}_{2}},{{z}_{2}} right)) принадлежат этой плоскости, то при подстановке координат каждой точки в уравнение плоскости мы должны получать верное тождество:

( A{{x}_{0}}+B{{y}_{0}}+C{{z}_{0}}+D=0)

( A{{x}_{1}}+B{{y}_{1}}+C{{z}_{1}}+D=0)

( A{{x}_{2}}+B{{y}_{2}}+C{{z}_{2}}+D=0)

Таким образом, встает необходимость решать три уравнения аж с ( displaystyle 4) неизвестными!

Дилемма! Однако всегда можно предполагать, что ( D=1) (для этого нужно разделить ( ~Ax+By+Cz+D=0) на ( D)).

Таким образом, мы получим три уравнения с тремя неизвестными ( displaystyle A,B,C):

( A{{x}_{0}}+B{{y}_{0}}+C{{z}_{0}}+1=0)

( A{{x}_{1}}+B{{y}_{1}}+C{{z}_{1}}+1=0)

( A{{x}_{2}}+B{{y}_{2}}+C{{z}_{2}}+1=0)

Однако мы не будем решать такую систему, а выпишем загадочное выражение, которое из него следует:

Уравнение плоскости, проходящей через три заданные точки

(left| {begin{array}{*{20}{c}}{x — {x_0}}&{{x_1} — {x_0}}&{{x_2} — {x_0}}\{y — {y_0}}&{{y_1} — {y_0}}&{{y_2} — {y_0}}\{z — {z_0}}&{{z_1} — {z_0}}&{{z_2} — {z_0}}end{array}} right| = 0)

Стоп! Это еще что такое? Какой-то очень необычный модуль!

Однако объект, который ты видишь перед собой не имеет ничего общего с модулем. Этот объект называется определителем третьего порядка.

Определитель третьего порядка

Отныне и впредь, когда ты будешь иметь дело с методом координат на плоскости, тебе очень часто будут встречаться эти самые определители.

Что же такое определитель третьего порядка? Как ни странно, это всего-навсего число. Осталось понять, какое конкретно число мы будем сопоставлять с определителем.

Давай вначале запишем определитель третьего порядка в более общем виде:

( left| {begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}end{array}} right|),

Где ( {{a}_{ij}}) – некоторые числа.

Причем под первым индеком ( displaystyle i) мы понимаем номер строки, а под индеком ( displaystyle j) – номер столбца.

Например, ( {{a}_{23}}) означает, что данное число стоит на пересечении второй строки и третьего столбца.

Давай поставим следующий вопрос: каким именно образом мы будем вычислять такой определитель?

То есть, какое конкретно число мы будем ему сопоставлять?

Для определителя именно третьего порядка есть эвристическое (наглядное) правило треугольника оно выглядит следующим образом:

Как его читать? А понимать его надо следующим образом: мы составляем два выражения:

  • Произведение элементов главной диагонали (с верхнего левого угла до нижнего правого) ( displaystyle +) произведение элементов, образующих первый треугольник «перпендикулярный» главной диагонали ( displaystyle +) произведение элементов, образующих второй треугольник «перпендикулярный» главной диагонали;
  • Произведение элементов побочной диагонали (с верхнего правого угла до нижнего левого) ( displaystyle +) произведение элементов, образующих первый треугольник «перпендикулярный» побочной диагонали ( displaystyle +) произведение элементов, образующих второй треугольник «перпендикулярный» побочной диагонали;
  • Тогда определитель равен разности значений, полученных на шаге ( displaystyle 1) и ( displaystyle 2).

Если записать все это цифрами, то мы получим следующее выражение:

( left| {begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}end{array}} right| = )

( = {a_{11}}{a_{22}}{a_{33}} + {a_{12}}{a_{23}}{a_{31}} + {a_{21}}{a_{32}}{a_{13}} — left( {{a_{13}}{a_{22}}{a_{31}} + {a_{23}}{a_{32}}{a_{11}} + {a_{21}}{a_{12}}{a_{33}}} right))

Тем не менее, запоминать способ вычисления в таком виде не нужно, достаточно в голове просто держать треугольники и саму идею, что с чем складывается и что из чего затем вычитается).

Давай проиллюстрируем метод треугольников на примере:

Метод треугольников на примере

1. Вычислить определитель: ( left| {begin{array}{*{20}{c}}2&3&{ — 1}\{11}&{21}&{ — 5}\4&6&9end{array}} right|)

Давай разбираться, что мы складываем, а что – вычитаем.

Слагаемые, которые идут с «плюсом»:

Это главная диагональ: произведение элементов равно 

( 2cdot 21cdot 9=378)

Первый треугольник, «перпендикулярный главной диагонали: произведение элементов равно 

( 3cdot left( -5 right)cdot 4=-60)

Второй треугольник, «перпендикулярный главной диагонали: произведение элементов равно 

( 11cdot 6cdot left( -1 right)=-66)

Складываем три числа: ( 378-60-66=252)

Слагаемые, которые идут с «минусом»:

Это побочная диагональ: произведение элементов равно 

( left( -1 right)cdot 21cdot 4=-84)

Первый треугольник, «перпендикулярный побочной диагонали: произведение элементов равно 

( 3cdot 11cdot 9=297)

Второй треугольник, «перпендикулярный побочной диагонали: произведение элементов равно 

( 6cdot left( -5 right)cdot 2=-60)

Складываем три числа:

( -84+297-60=153)

Все, что осталось сделать – это вычесть из суммы слагаемых «с плюсом» сумму слагаемых «с минусом»:

( 252-153=99)

Таким образом,

( left| {begin{array}{*{20}{c}}2&3&{ — 1}\{11}&{21}&{ — 5}\4&6&9end{array}} right| = 99)

Как видишь, ничего сложного и сверхъестественного в вычислении определителей третьего порядка нет. Просто важно помнить про треугольники и не допускать арифметических ошибок. 

Теперь попробуй самостоятельно вычислить:

( left| {begin{array}{*{20}{c}}2&{ — 2}&4\3&2&5\1&2&2end{array}} right|)

Проверяем:

  • Главная диагональ: ( 2cdot 2cdot 2=8);
  • Первый треугольник, перпендикулярный главной диагонали: ( left( -2 right)cdot 5cdot 1=-10);
  • Второй треугольник, перпендикулярный главной диагонали: ( 3cdot 2cdot 4=24);
  • Сумма слагаемых с плюсом: ( 8-10+24=22);
  • Побочная диагональ: ( 1cdot 2cdot 4=8);
  • Первый треугольник, перпендикулярный побочной диагонали: ( 2cdot 5cdot 2=20);
  • Второй треугольник, перпендикулярный побочной диагонали: ( left( -2 right)cdot 3cdot 2=-12);
  • Сумма слагаемых с минусом: ( 8+20-12=16);
  • Сумма слагаемых с плюсом минус сумма слагаемых с минусом: ( 22-16=6).

Вывод:

( left| {begin{array}{*{20}{c}}2&{ — 2}&4\3&2&5\1&2&2end{array}} right| = 6)

Вот тебе еще пара определителей, вычисли их значения самостоятельно и сравни с ответами:

  • ( left| {begin{array}{*{20}{c}}1&3&{ — 1}\0&4&2\{ — 3}&2&0end{array}} right|);
  • ( left| {begin{array}{*{20}{c}}3&1&7\6&2&{14}\{ — 1}&0&8end{array}} right|).

Ответы:

  • ( displaystyle -34);
  • ( displaystyle 0).

Ну что, все совпало?

Отлично, тогда можно двигаться дальше! Если же есть затрудения, то совет мой таков: в интернете есть куча программ вычисления определителя онлайн.

Все, что тебе нужно – придумать свой определитель, вычислить его самостоятельно, а потом сравнить с тем, что посчитает программа.

И так до тех пор, пока результаты не начнут совпадать. Уверен, этот момент не заставит себя долго ждать!

Теперь давай вернемся к тому определителю, который я выписал, когда говорил про уравнение плоскости, проходящей через три заданные точки:

( left| {begin{array}{*{20}{c}}{x — {x_0}}&{{x_1} — {x_0}}&{{x_2} — {x_0}}\{y — {y_0}}&{{y_1} — {y_0}}&{{y_2} — {y_0}}\{z — {z_0}}&{{z_1} — {z_0}}&{{z_2} — {z_0}}end{array}} right| = 0)

Все, что тебе нужно – это вычислить его значение непосредственно (методом треугольников) и приравнять результат к нулю.

Естественно, поскольку ( displaystyle x,y,z) – переменные, то ты получишь некоторое выражение, от них зависящее.

Именно это выражение и будет уравнением плоскости, проходящей через три заданные точки, не лежащие на одной прямой!

( Ax+By+Cz+D=0)

Давай проиллюстрируем сказанное на простом примере:

1. Построить уравнение плоскости, проходящей через точки

( displaystyle {{M}_{1}}left( -3,2,-1 right), {{M}_{2}}left( -1,2,4 right), {{M}_{3}}left( 3,3,-1 right))

Cоставляем для этих трех точек определитель:

( left| {begin{array}{*{20}{c}}{x — left( { — 3} right)}&{ — 1 — left( { — 3} right)}&{3 — left( { — 3} right)}\{y — 2}&{2 — 2}&{3 — 2}\{z — left( { — 1} right)}&{4 — left( { — 1} right)}&{ — 1 — left( { — 1} right)}end{array}} right|).

Упрощаем:

( left| {begin{array}{*{20}{c}}{x + 3}&2&6\{y — 2}&0&1\{z + 1}&5&0end{array}} right|)

Теперь вычисляем его непосредственно по правилу треугольников:

[{left| {begin{array}{*{20}{c}}{x + 3}&2&6\{y — 2}&0&1\{z + 1}&5&0end{array}} right| = left( {x + 3} right) cdot 0 cdot 0 + 2 cdot 1 cdot left( {z + 1} right) + left( {y — 2} right) cdot 5 cdot 6 — }]

( displaystyle -left( left( z+1 right)cdot 6cdot 0+left( x+3 right)cdot 5cdot 1+left( y-2 right)cdot 2cdot 0 right)=)

( displaystyle=2left( z-1 right)+30left( y-2 right)-5left( x+3 right)=-5x+30y+2z-73)

Таким образом, уравнение плоскости, проходящей через точки ( displaystyle {{M}_{1}}left( -3,2,-1 right), {{M}_{2}}left( -1,2,4 right), {{M}_{3}}left( 3,3,-1 right)), имеет вид:

( -5x+30y+2z-73=0)

То есть ( A=-5,~B=30,~C=2,~D=-73)

Теперь попробуй решить одну задачку самостоятельно, а потом мы ее обсудим:

2. Найти уравнение плоскости, проходящей через точки

( {{M}_{1}}left( 1,2,-1 right),~{{M}_{2}}left( -1,0,4 right),~{{M}_{3}}left( -2,-1,1 right))

Ну что, давай теперь обсудим решение:

Составляем определитель:

( left| {begin{array}{*{20}{c}}{x — 1}&{ — 2}&{ — 3}\{y — 2}&{ — 2}&{ — 3}\{z + 1}&5&2end{array}} right|)

И вычисляем его значение:

( begin{array}{l}left| {begin{array}{*{20}{c}}{x — 1}&{ — 2}&{ — 3}\{y — 2}&{ — 2}&{ — 3}\{z + 1}&5&2end{array}} right| = \ = — 4left( {x — 1} right) — 15left( {y — 2} right) + 6left( {z + 1} right) + 15left( {x — 1} right) + 4left( {y — 2} right) — 6left( {z + 1} right) = \ = 11x — 11y + 11end{array})

Тогда уравнение плоскости имеет вид:

( 11x-11y+11=0)

Или же, сократив на ( 11), получим:

( x-y+1=0)

То есть, ( A=1,B=-1,C=0,D=1.)

Теперь две задачи для самоконтроля:

  • Построить уравнение плоскости, проходящей через три точки: ( Kleft( 2,3,4 right),~Lleft( 6,-3,4 right),~Mleft( -4,6,-4 right).);
  • Построить уравнение плоскости, проходящей через три точки:
  • ( Aleft( 5,-1,3 right),~Bleft( 2,2,0 right),~Cleft( -1,1,1 right).).

Проверим:

  • ( 6x+4y-3z-12=0);
  • ( y+z-2=0).

Все совпало?

Опять-таки, если есть определенные затруднения, то мой совет таков: берешь из головы три точки (с большой степенью вероятности они не будут лежать на одной прямой), строишь по ним плоскость.

А потом проверяешь себя онлайн. Например, на сайте:

http://www.webmath.ru/web/prog9_1.php

Однако при помощи определителей мы будем строить не только уравнение плоскости. 

Вспомни, я говорил тебе, что для векторов определено не только скалярное произведение. Есть еще векторное, а также смешанное произведение.

Векторное произведение векторов

И если скалярным произведением двух векторов и будет число, то векторным произведением двух векторов ( vec{a}) и ( vec{b}) будет вектор ( ~vec{c}=vec{a}cdot vec{b}), причем данный вектор будет перпендикулярен к заданным:

Причем его модуль будет равен площади параллелограмма, построенного на векторах ( vec{a}) и ( vec{b}).

Данный вектор понадобится нам для вычисления расстояния от точки до прямой. Как же нам считать векторное произведение векторов ( vec{a}) и ( vec{b}), если их координаты заданы?

На помощь к нам опять приходит определитель третьего порядка.

Однако, прежде чем я перейду к алгоритму вычисления векторного произведения, я вынужден сделать небольшое лирическое отступление.

Данное отступление касается базисных векторов.

Базисными векторами в трехмерном пространстве называются три вектора:

( vec{i}left( 1,0,0 right),~vec{j}left( 0,1,0 right),~vec{k}left( 0,0,1 right))

Схематично они изображены на рисунке:

Как ты думаешь, а почему они называется базисными? Дело в том, что любой вектор в трехмерном пространстве можно представить через сумму трех базисных векторов:

( vec aleft( {x,y,z} right) = x cdot vec i + y cdot vec j + z cdot vec k.)

Или на картинке:

Справедливость этой формулы очевидна, ведь:

( begin{array}{l}xcdot vec{i}=left( x,0,0 right)\ycdot vec{j}=left( 0,y,0 right)\zcdot vec{k}=left( 0,0,z right)end{array})

Тогда

( vec{a}left( x,y,z right)=xcdot vec{i}+ycdot vec{j}+zcdot vec{k}=left( x,0,0 right)+left( 0,y,0 right)+left( 0,0,z right)=left( x,y,z right)=vec{a}.)

Смешанное произведение трех векторов

Последняя конструкция, которая мне понадобится – это смешанное произведение трех векторов. 

Оно, как и скалярное, является числом. Есть два способа его вычисления. ( displaystyle 1) – через определитель, ( displaystyle 2) – через смешанное произведение.

А именно, пусть у нас даны три вектора:

( vec{a}left( {{x}_{1}},{{y}_{1}},{{z}_{1}} right),~vec{b}left( {{x}_{2}},{{y}_{2}},{{z}_{2}} right),~vec{c}left( {{x}_{3}},{{y}_{3}},{{z}_{3}} right)), тогда смешанное произведение трех векторов, обозначаемое через ( (vec{a},vec{b},vec{c})) можно вычислить как:

1. ( left( vec{a},vec{b},vec{c} right)=left( vec{a},vec{b}cdot vec{c} right)) – то есть смешанное произведение – это скалярное произведения вектора на векторное произведение двух других векторов

2. ( left( {vec a,vec b,vec c} right) = left| {begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&{{z_1}}\{{x_2}}&{{y_2}}&{{z_2}}\{{x_3}}&{{y_3}}&{{z_3}}end{array}} right|)

Например, смешанное произведение трех векторов ( vec{a}left( 2,3,5 right),~vec{b}left( 1,4,4 right),~vec{c}left( 3,5,7 right)) равно:

( left( {vec a,vec b,vec c} right) = left| {begin{array}{*{20}{c}}2&3&5\1&4&4\3&5&7end{array}} right| = — 4)

Самостоятельно попробуй вычислить его через векторное произведение и убедись, что результаты совпадут!

И опять – два примера для самостоятельного решения:

  • ( vec{a}left( 1,2,3 right),~vec{b}left( 1,1,1 right),~vec{c}left( 1,2,1 right));
  • ( vec{a}left( 1,2,3 right),~vec{b}left( 1,-1,1 right),~vec{c}left( 2,0,-1 right)).

Ответы:

  • ( displaystyle 2);
  • ( displaystyle 1).

Выбор системы координат

Ну вот, теперь у нас есть весь необходимый фундамент знаний, чтобы решать сложные стереометрические задачи по геометрии.

Однако прежде чем приступать непосредственно к примерам и алгоритмам их решения, я считаю, что будет полезно остановиться еще вот на каком вопросе: как именно выбирать систему координат для той или иной фигуры.

Ведь именно выбор взаимного расположения системы координат и фигуры в пространстве в конечном счете определит, насколько громоздкими будут вычисления.

Я напомню, что в этом разделе мы рассматриваем следующие фигуры:

  • куб;
  • Прямоугольный параллелепипед;
  • Прямая призма (треугольная, шестиугольная…);
  • Пирамида (треугольная, четырехугольная);
  • Тетраэдр (одно и то же, что и треугольная пирамида).

Для каждой из фигур я дам практические рекомендации, как выбирать систему координат.

Я неслучайно расположил задачи в таком порядке. Пока ты еще не успел начать ориентироваться в методе координат, я сам разберу наиболее «проблемные» фигуры, а тебе предоставлю разобраться с простейшим кубом!

Постепенно тебе предстоит научиться работать со всеми фигурами, сложность задач я буду увеличивать от теме к теме.

Приступаем к решению задач:

1. Рисуем тетраэдр, помещаем его в систему координат так, как я предлагал ранее. Поскольку тетраэд правильный – то все его грани (включая основание) – правильные треугольники.

Поскольку нам не дана длина стороны, то я могу принять ее равной ( 1). Я думаю, ты понимаешь, что угол на самом деле не будет зависеть от того, насколько наш тетраэдр будет «растянут»?

Также проведу в тетраэдре высоту и медиану ( displaystyle BM).

Попутно я нарисую его основание (оно нам тоже пригодится).

Мне нужно найти угол между ( displaystyle DH) и ( displaystyle BM). Что нам известно?

Нам известна только координата точки ( displaystyle B). Значит, надо найти еще координаты точек ( displaystyle D,H,M).

Теперь думаем: точка ( displaystyle H) – это точка пересечения высот (или биссектрисс или медиан) треугольника ( displaystyle ABC).

А точка ( displaystyle D) – это приподнятая точка ( displaystyle H).

Точка же ( displaystyle M) – это середина отрезка ( displaystyle AD).

Тогда окончательно нам надо найти: координаты точек: ( displaystyle A,D,H,M).

Начнем с самого простого: координаты точки ( displaystyle A).

Смотри на рисунок: Ясно, что аппликата точки ( displaystyle A) равна нулю (точка лежит на плоскости ( displaystyle Oxy)).

Её ордината равна ( displaystyle 0,5) (так как ( displaystyle AK) – медиана).

Сложнее найти ее абсциссу. Однако это легко делается на основании теоремы Пифагора: Рассмотрим треугольник ( displaystyle BAS). Его гипотенуза ( displaystyle BA) равна ( displaystyle 1), а один из катетов ( displaystyle AS) равен ( displaystyle 0,5)

Тогда:

( BS=sqrt{B{{A}^{2}}-A{{S}^{2}}}=sqrt{1-frac{1}{4}}=frac{sqrt{3}}{2})

Окончательно имеем: ( Aleft( frac{sqrt{3}}{2},frac{1}{2},0 right)).

Теперь найдем координаты точки ( displaystyle H).

Ясно, что ее аппликата опять равна нулю, а ее ордината такая же, как у точки ( displaystyle A), то есть ( 0,5).

Найдем ее абсциссу. Это делается достаточно тривиально, если помнить, что высоты равностороннего треугольника точкой пересечения делятся в пропорции ( displaystyle mathbf{2}:mathbf{1}), считая от вершины. Так как: ( AK=BS=frac{sqrt{3}}{2}), то искомая абсцисса точки, равная длине отрезка ( displaystyle KH), равна: ( KH=frac{AK}{3}=frac{sqrt{3}}{6}). Т

аким образом, координаты точки ( displaystyle H) равны:

( Hleft( frac{sqrt{3}}{6},frac{1}{2},0 right).)

Найдем координаты точки ( displaystyle D).

Ясно, что ее абсцисса и ордината совпадают с абсциссой и ординатой точки ( displaystyle H). А аппликата равна длине отрезка ( displaystyle DH). ( displaystyle DH) – это один из катетов треугольника ( displaystyle DAH). Гипотенуза треугольника ( displaystyle DAH) – это отрезок ( AD=AB=1.) ( displaystyle AH) – катет.

Он ищется из соображений, которые я выделил жирным шрифтом:

( AH=frac{2}{3}cdot frac{sqrt{3}}{2}=frac{sqrt{3}}{3})

Тогда:

( DH=sqrt{1-{{left( frac{sqrt{3}}{3} right)}^{2}}}=sqrt{frac{2}{3}})

Отсюда:

( Dleft( frac{sqrt{3}}{6},frac{1}{2},sqrt{frac{2}{3}} right).)

Точка ( M) – это середина отрезка ( AD). Тогда нам нужно вспомнить формулу координат середины отрезка:

( Mleft( frac{frac{sqrt{3}}{2}+frac{sqrt{3}}{6}}{2},~frac{frac{1}{2}+frac{1}{2}}{2},frac{0+sqrt{frac{2}{3}}}{2} right)=Mleft( frac{sqrt{3}}{3},frac{1}{2},frac{1}{sqrt{6}} right).~)

Ну все, теперь мы можем искать координаты направляющих векторов:

( overrightarrow{BM}left( frac{sqrt{3}}{3},frac{1}{2},frac{1}{sqrt{6}} right))

( overrightarrow{DH}left( 0,0,-sqrt{frac{2}{3}} right))

Ну что, все готово: подставляем все данные в формулу:

( displaystyle cosvarphi =frac{left| frac{1}{sqrt{6}}cdot left( -sqrt{frac{2}{3}} right) right|}{sqrt{{{left( frac{sqrt{3}}{3} right)}^{2}}+{{left( frac{1}{2} right)}^{2}}+{{left( frac{1}{sqrt{6}} right)}^{2}}}cdot sqrt{{{left( -sqrt{frac{2}{3}} right)}^{2}}}}=frac{frac{1}{3}}{sqrt{frac{19}{36}}cdot sqrt{frac{2}{3}}}=frac{frac{1}{3}}{sqrt{frac{19}{54}}}=frac{sqrt{54}}{3sqrt{19}}=sqrt{frac{6}{19}})

Таким образом, ( varphi =arccossqrt{frac{6}{19}}.)

Ответ: ( varphi =arccossqrt{frac{6}{19}}.)

Тебя не должны пугать такие «страшные» ответы: для задач С2 это обычная практика. Я бы скорее удивился «красивому» ответу в этой части. Также, как ты заметил, я практически не прибегал ни к чему, кроме как к теореме Пифагора и свойству высот равностороннего треугольника. То есть для решения стереометрической задачи я использовал самый минимум стереометрии. Выигрыш в этом частично «гасится» достаточно громоздкими вычислениями. Зато они достаточно алгоритмичны!

2. Изобразим правильную шестиугольную пирамиду вместе с системой координат, а также ее основание:

Нам нужно найти угол между прямыми ( displaystyle SB) и ( displaystyle CD).

Таким образом, наша задача сводится к поиску координат точек: ( displaystyle S,B,C,D).

Координаты последних трех мы найдем по маленькому рисунку, а коодинату вершины ( displaystyle S) найдем через координату точки ( displaystyle O).

Работы навалом, но надо к ней приступать!

a) Координата ( displaystyle D): ясно, что ее аппликата и ордината равны нулю.

Найдем абсциссу. Для этого рассмотрим прямоугольный треугольник ( displaystyle EDP). Увы, в нем нам известна только гипотенуза, которая равна ( displaystyle 1). Катет ( displaystyle DP) мы будем стараться отыскать (ибо ясно, что удвоенная длина катета ( displaystyle DP) даст нам абсциссу точки ( displaystyle D)).

Как же нам ее искать?

Давай вспомним, что за фигура у нас лежит в основании пирамиды? Это правильный шестиугольник.

А что это значит? Это значит, что у него все стороны и все углы равны. Надо бы найти один такой угол. Есть идеи?

Идей масса, но есть формула:

Сумма углов правильного n-угольника равна ( left( n-2 right)cdot 180{}^circ ).

Таким образом, сумма углов правильного шестиугольника равна ( displaystyle 720) градусов. Тогда каждый из углов равен:

( frac{720{}^circ }{6}=120{}^circ )

Вновь смотрим на картинку.

Ясно, что отрезок ( displaystyle EB) – биссектрисса угла ( displaystyle DEF). Тогда угол ( displaystyle DEP) равен ( displaystyle 60) градусам.

Тогда:

( sin60{}^circ =frac{sqrt{3}}{2}=frac{DP}{ED}=frac{DP}{1}=DP)

Тогда ( DP=frac{sqrt{3}}{2}), откуда ( DF=2DP=sqrt{3}).

Таким образом, ( displaystyle D) имеет координаты ( Dleft( sqrt{3},0,0 right))

b) Теперь легко найдем координату точки ( C): ( Cleft( sqrt{3},1,0 right)).

c) Найдем координаты точки ( displaystyle B).

Так как ее абсцисса совпадает с длиной отрезка ( FP) то она равна ( frac{sqrt{3}}{2}).

Найти ординату тоже не очень сложно: если мы соединим точки ( displaystyle C) и ( displaystyle A) а точку пересечения прямой ( displaystyle AC) обозначим, скажем за ( displaystyle M). (сделай сам несложное построение). Тогда ( BM=EP.)

Таким образом, ордината точки B равна сумме длин отрезков ( PM+MB). Вновь обратимся к треугольнику ( displaystyle DEP).

Тогда

( frac{1}{2}=cos60{}^circ =frac{EP}{ED}=EP)

Тогда так как ( PM=DC=1,~mo~PB=1+frac{1}{2}=frac{3}{2}.) Тогда точка ( B) имеет координаты ( Bleft( frac{sqrt{3}}{2},frac{3}{2},0 right).)

d) Теперь найдем координаты точки ( displaystyle O).

Рассмотри прямоугольник ( displaystyle ACDF) и докажи, что ( PO=frac{1}{2}.)

Таким образом, координаты точки ( displaystyle O): ( Oleft( frac{sqrt{3}}{2},frac{1}{2},0 right).)

e) Осталось найти координаты вершины ( S). Ясно, что ее абсцисса и ордината совпадает с абсциссой и ординатой точки ( O).

Найдем аппликату. Так как ( FC=EB=2), то ( OF=1). Рассмотрим прямоугольный треугольник ( displaystyle OFS). По условию задачи боковое ребро ( FS=2). Это гипотенуза моего треугольника.

Тогда высота пирамиды ( displaystyle OS) – катет.

( OS=sqrt{F{{S}^{2}}-O{{F}^{2}}}=sqrt{4-1}=sqrt{3})

Тогда точка ( S) имеет координаты: ( Sleft( frac{sqrt{3}}{2},frac{1}{2},sqrt{3} right).)

Ну все, у меня есть координаты всех интересующих меня точек. Ищу координаты направляющих векторов прямых:

( overrightarrow{SB}left( frac{sqrt{3}}{2}-frac{sqrt{3}}{2},frac{1}{2}-frac{3}{2},sqrt{3}-0 right)=overrightarrow{SB}left( 0,-1,sqrt{3} right).)

( overrightarrow{CD}left( sqrt{3}-sqrt{3},0-1,0 right)=overrightarrow{CD}left( 0,-1,0 right).)

Ищем угол между этими векторами:

( cosvarphi =frac{left| 0+left( -1 right)cdot left( -1 right)+sqrt{3}cdot 0 right|}{sqrt{{{left( -1 right)}^{2}}+{{left( sqrt{3} right)}^{2}}}cdot sqrt{{{left( -1 right)}^{2}}}}=frac{1}{2})

Тогда ( varphi =arccos left( frac{1}{2} right)=60{}^circ )

Ответ: ( 60{}^circ )

Опять-таки, при решении этой задачи я не использовал никаких изошренных приемов, кроме формулы суммы углов правильного n-угольника, а также определения косинуса и синуса прямоугольного треугольника.

3. Поскольку нам опять не даны длины ребер в пирамиде, то я буду считать их равными единице. 

Таким образом, поскольку ВСЕ ребра, а не только боковые, равны между собой, то в основании пирамиды и меня лежит квадрат, а боковые грани – правильные треугольники.

Изобразим такую пирамиду, а также ее основание на плоскости, отметив все данные, приведенные в тексте задачи:

Ищем угол между ( displaystyle BM) и ( displaystyle PH).

Я буду делать очень краткие выкладки, когда буду заниматься поиском координат точек. Тебе необходимо будет «расшифровать» их:

a) ( Bleft( 0,1,0 right))

b) ( displaystyle H) – середина отрезка ( displaystyle AC). Её координаты:

( Hleft( frac{1}{2},frac{1}{2},0 right))

c) Длину отрезка ( displaystyle AH) я найду по теореме Пифагора в треугольнике ( displaystyle AHD). ( AH=frac{sqrt{2}}{2}.) Найду ( displaystyle PH) по теореме Пифагора в треугольнике ( displaystyle AHP).

( PH=sqrt{1-frac{1}{2}}=frac{1}{sqrt{2}})

Координаты ( P): ( Pleft( frac{1}{2},frac{1}{2},frac{1}{sqrt{2}} right).)

d) ( M) – середина отрезка ( AP). Ее координаты равны ( Mleft( frac{1}{4},frac{1}{4},frac{1}{2sqrt{2}} right).)

e) Координаты вектора ( overrightarrow{PH}:~overrightarrow{PH}left( 0,0,-frac{1}{sqrt{2}} right).~)

f) Координаты вектора ( overrightarrow{BM}:~overrightarrow{BM}left( frac{1}{4},-frac{3}{4},frac{1}{2sqrt{2}} right).)

g) Ищем угол: ( cosvarphi =frac{frac{1}{4}}{frac{1}{sqrt{2}}cdot frac{sqrt{3}}{2}}=frac{1}{sqrt{6}})

h) Ответ: ( arccosfrac{1}{sqrt{6}})

Куб – простейшая фигура. Я уверен, что с ней ты разберешься самостоятельно. Ответы к задачам 4 и 5 следующие:

4. ( arccosfrac{4}{sqrt{30}})

5. ( arccosfrac{1}{sqrt{15}})

Нахождение угла между прямой и плоскостью

Ну что, время простых задачек окончено!

Теперь примеры будут еще сложнее. Для отыскания угла между прямой и плоскостью мы будем поступать следующим образом:

  • По трем точкам строим уравнение плоскости: ( Ax+By+Cz+D=0), используя определитель третьего порядка;
  • По двум точкам ищем координаты направляющего вектора прямой: ( vec{s}left( l,m,n right));
  • Применяем формулу для вычисления угла между прямой и плоскостью: ( sinvarphi =frac{left| Al+Bm+Cn right|}{sqrt{{{A}^{2}}+{{B}^{2}}+{{C}^{2}}~}cdot sqrt{{{l}^{2}}+{{m}^{2}}+{{n}^{2}}}})

Как видишь, эта формула очень похожа на ту, что мы применяли для поиска углов между двумя прямыми.

Структура правой части просто одинакова, а слева мы теперь ищем синус, а не косинус, как раньше. Ну и добавилось одно противное действие – поиск уравнения плоскости.

Опять я решу первые две задачи подробно, третью – кратко, а последние две оставляю тебе для самостоятельного решения.

К тому же тебе уже приходилось иметь дело с треугольной и четырехугольной пирамидами, а вот с призмами – пока что нет.

Решения:

1. Изобразим призму, а также ее основание. Совместим ее с системой координат и отметим все данные, которые даны в условии задачи:

Извиняюсь за некоторое несоблюдение пропорций, но для решения задачи это, по сути, не так важно. Плоскость ( BC{{C}_{1}}) – это просто «задняя стенка» моей призмы. Достаточно просто догадаться, что уравнение такой плоскости имеет вид:

( x=0)

Однако, это можно показать и непосредственно:

Выберем произвольные три точки на этой плоскости: например, ( Bleft( 0,0,0 right),~Cleft( 0,8,0 right),~{{B}_{1}}left( 0,0,3 right)).

Составим уравнение плоскости:

( left| {begin{array}{*{20}{c}}x&0&0\y&8&0\z&0&3end{array}} right| = 0)

Упражнение тебе: самостоятельно вычислить этот определитель. У тебя получилось ( 24x)? Тогда уравение плоскости имеет вид:

( 24x=0)

Или просто

( x=0)

Таким образом, ( A=1,B=0,C=0,D=0.)

Для решения примера мне нужно найти координаты направляющего вектора прямой ( B{{A}_{1}}).

Так как точка ( B) cовпала с началом координат, то координаты вектора (overrightarrow{B{{A}_{1}}}) просто совпадут с координатами точки ( {{A}_{1}}.)

Для этого найдем вначале координаты точки ( displaystyle A).

Для этого рассмотрим треугольник ( displaystyle ABC).

Проведем высоту (она же – медиана и биссектрисса) из вершины ( displaystyle A).

Так как ( BC=8), то ордината точки ( displaystyle A) равна ( displaystyle 4).

Для того, чтобы найти абсциссу этой точки, нам нужно вычислить длину отрезка ( displaystyle AT).

По теореме Пифагора имеем:

( AT=sqrt{A{{B}^{2}}-B{{T}^{2}}}=sqrt{25-16}=3.)

Тогда точка ( displaystyle A) имеет координаты:

( Aleft( 3,4,0 right))

Точка ( {{A}_{1}})– это «приподнятая» на ( displaystyle 3) точка ( displaystyle A):

( {{A}_{1}}left( 3,4,3 right))

Тогда координаты вектора ( overrightarrow{B{{A}_{1}}}):

( overrightarrow{B{{A}_{1}}}left( 3,4,3 right).)

( sinvarphi =frac{left| 3cdot 1+4cdot 0+3cdot 0 right|}{sqrt{{{1}^{2}}+{{0}^{2}}+{{0}^{2}}}cdot sqrt{{{3}^{2}}+{{4}^{2}}+{{3}^{2}}}}=frac{3}{sqrt{34}}.)

( varphi =arcsinfrac{3}{sqrt{34}}.)

Ответ: ( arcsinfrac{3}{sqrt{34}}.)

Как видишь, ничего принципиально сложного при решении таких задач нет. На самом деле процесс еще немного упрощает «прямота» такой фигуры, как призма.

Теперь давай перейдем к следующему примеру:

2. Рисуем параллелепипед, проводим в нем плоскость и прямую, а также отдельно вычерчиваем его нижнее основание:

Вначале найдем уравнение плоскости: Координаты трех точек, лежащих в ней:

( Aleft( 0,0,0 right),~Bleft( 0,2,0 right),{{C}_{1}}left( 1,2,1 right)) (первые две координаты получены очевидным способом, а последнюю координату ты легко найдешь по картинке из точки ( C)). Тогда составляем уравнение плоскости:

( left| {begin{array}{*{20}{c}}x&0&1\y&2&2\z&0&1end{array}} right| = 0)

Вычисляем:

( 2x-2z=0,~x-z=0)

Тогда ( A=1,B=0,C=-1,D=0.)

Ищем координаты направляющего вектора ( overrightarrow{A{{B}_{1}}}): Ясно, что его координаты совпадают с координатами точки ( {{B}_{1}}), не правда ли?

Как найти координаты ( {{B}_{1}})?

Это же координаты точки ( B), приподнятые по оси аппликат на единицу! ( {{B}_{1}}left( 0,2,1 right)). Тогда ( overrightarrow{A{{B}_{1}}}left( 0,2,1 right).)

Ищем искомый угол:

( sinvarphi =frac{left| 1cdot 0+0cdot 2+left( -1 right)cdot 1 right|}{sqrt{{{1}^{2}}+{{left( -1 right)}^{2}}+{{0}^{2}}~}cdot sqrt{0+{{2}^{2}}+{{1}^{2}}}}=frac{1}{sqrt{10}}.)

( ~varphi =arcsinfrac{1}{sqrt{10}}.)

Ответ: ( arcsinfrac{1}{sqrt{10}}.)

3. Рисуем правильную шестиугольную призму, а затем проводим в ней плоскость и прямую.

Тут даже плоскость нарисовать проблемно, не говоря уже о решении этой задачи, однако методу координат все равно! Именно в его универсальности и заключается его основное преимущество!

Плоскость проходит через три точки: ( A,C,{{D}_{1}}). Ищем их координаты:

1) ( Aleft( 0,0,0 right),~left( frac{sqrt{3}}{2},frac{3}{2},0 right), {{D}_{1}}left( sqrt{3},1,1 right)). Сам выведи координаты для последних двух точек. Тебе пригодится для этого решение задачи с шестиугольной пирамидой!

2) Строим уравнение плоскости:

( left| {begin{array}{*{20}{c}}x&{frac{{sqrt 3 }}{2}}&{sqrt 3 }\y&{frac{3}{2}}&1\z&0&1end{array}} right| = 0)

( -sqrt{3}x+y+2z=0)

( A=-sqrt{3},B=1,C=2,D=0.)

Ищем координаты вектора ( overrightarrow{A{{C}_{1}}}): ( text{ }!!~!!text{ }overrightarrow{A{{C}_{1}}}left( frac{sqrt{3}}{2},frac{3}{2},1 right)). (снова смотри задачу с треугольной пирамидой!)

3) Ищем угол:

( sinvarphi =frac{left| -sqrt{3}cdot frac{sqrt{3}}{2}+frac{3}{2}+2 right|}{sqrt{{{left( frac{sqrt{3}}{2} right)}^{2}}+{{left( frac{3}{2} right)}^{2}}+{{1}^{2}}~}cdot sqrt{{{left( -sqrt{3} right)}^{2}}+{{1}^{2}}+{{2}^{2}}}}=frac{2}{2sqrt{8}}=frac{1}{2sqrt{2}}.)

Ответ: ( arcsinfrac{1}{2sqrt{2}}.)

Как видишь, ничего сверхъестественно сложного в этих задачах нет. Нужно лишь быть очень внимательным с корнями. К последним двум задачам я дам лишь ответы:

4. ( text{arcsin}frac{12}{sqrt{193}}~)

5. ( text{arcsin}frac{1}{sqrt{6}}~)

Как ты мог убедиться, техника решения задач везде одинаковая: основная задача найти координаты вершин и подставить их в некие формулы. Нам осталось рассмотреть еще один класс задач на вычисление углов, а именно: вычисление углов между двумя плоскостями.

Решения задач:

1. Сто­ро­на ос­но­ва­ния пра­виль­ной тре­уголь­ной приз­мы ( ABC{{A}_{1}}{{B}_{1}}{{C}_{1}}) равна ( 2), а диа­го­наль бо­ко­вой грани равна ( sqrt{5}). Най­ди­те угол между плос­ко­стью ( {{A}_{1}}BC) и плос­ко­стью ос­но­ва­ния приз­мы.

Рисую правильную (в основании – равносторонний треугольник) треугольную призму и отмечаю на ней плоскости, которые фигурируют в условии задачи:

Нам нужно найти уравнения двух плоскостей: ( ABC~и~BC{{A}_{1}}.) Уравнение основания получается тривиально: ты можешь составить соответствующий определитель по трем точкам, я же составлю уравнение сразу:

( z=0.)

То есть:

( {{A}_{1}}=0, {{B}_{1}}=0, {{C}_{1}}=1, {{D}_{1}}=0.)

Теперь найдем уравнение ( BC{{A}_{1}}.) Точка ( B) имеет координаты ( Bleft( 0,0,0 right).) Точка ( C) – ( Cleft( 0,1,0 right).)

Так как ( AO) – медиана и высота треугольника ( ABC), то ( BO=OC=1.) ( AO) легко находится по теореме Пифагора в треугольнике ( BAO:) ( AO=sqrt{4-1}=sqrt{3}).

Тогда точка ( A) имеет координаты: ( Aleft( sqrt{3},1,0 right).)

Найдем аппликату точки ( {{A}_{1}}.) Для этого рассмотрим прямоугольный треугольник ( {{A}_{1}}AC.~)

( A{{A}_{1}}=sqrt{{{A}_{1}}{{C}^{2}}-A{{C}^{2}}}=1.)

Тогда получаем вот такие координаты: ( {{A}_{1}}left( sqrt{3},1,1 right).) Cоставляем уравнение плоскости ( BC{{A}_{1}}).

( left| {begin{array}{*{20}{c}}x&0&{sqrt 3 }\y&1&1\z&0&1end{array}} right| = 0.)

( x+sqrt{3}z-sqrt{3}z-sqrt{3}y=0)

( x-sqrt{3}z=0)

Тогда

( {{A}_{2}}=1, {{B}_{2}}=0, {{C}_{2}}=-sqrt{3}, {{D}_{2}}=0.)

Вычисляем угол между плоскостями:

( cosvarphi =frac{left| -sqrt{3} right|}{sqrt{1+{{left( -sqrt{3} right)}^{2}}}}=frac{sqrt{3}}{2}.)

Отсюда

( varphi =30{}^circ .)

Ответ: ( 30{}^circ .)

2. В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де ( displaystyle SABCD), все ребра ко­то­рой равны ( displaystyle 1), най­ди­те синус угла между плос­ко­стью ( displaystyle SAD) и плос­ко­стью, про­хо­дя­щей через точку ( displaystyle A) пер­пен­ди­ку­ляр­но пря­мой ( displaystyle BD).

Делаем рисунок:

Самое сложное – это понять, что это такая за таинственная плоскость, проходящая через точку ( A) перпендикулярно ( DB).

Ну что же, главное, это что? Главное – это внимательность! В самом деле, прямая ( AC) перпендикулярна ( BD). Прямая ( OS) также перпендикулярна ( BD).

Тогда плоскость, проходящая через эти две прямые, будет перпендикулярна прямой ( BD), и, кстати, проходить через точку ( A). Эта плоскость также проходит через вершину пирамиды.

Тогда искомая плоскость – ( SAC.) А плоскость ( SAD) нам уже дана. Ищем координаты точек ( displaystyle S,A,C,D).

  • ( displaystyle Aleft( 0,1,0 right))
  • ( displaystyle Cleft( 1,0,0 right))
  • ( displaystyle Dleft( 0,0,0 right))

Координату точки ( S) найдем через точку ( O). Из маленького рисунка легко вывести, что координаты у точки ( O) будут такие: ( Oleft( frac{1}{2},frac{1}{2},0 right).~)

Что теперь осталось найти, чтобы найти координаты вершины пирамиды?

Еще нужно вычислить ее высоту.

Это делается при помощи все той же теоремы Пифагора: вначале докажи, что ( OB=frac{sqrt{2}}{2}) (тривиально из маленьких треугольничков, образующих квадрат в основании).

Так как по условию ( SB=1), то имеем:

( OS=sqrt{1-{{left( frac{sqrt{2}}{2} right)}^{2}}}=frac{1}{sqrt{2}}.)

Теперь все готово: координаты вершины:

( Sleft( frac{1}{2},frac{1}{2},frac{1}{sqrt{2}} right).~)

Составляем уравнение плоскости ( displaystyle DAS):

( left| {begin{array}{*{20}{c}}x&0&{frac{1}{2}}\y&1&{frac{1}{2}}\z&0&{frac{1}{{sqrt 2 }}}end{array}} right| = 0)

Ты уже спец в вычислении определителей. Без труда ты получишь:

( frac{1}{sqrt{2}}x-frac{1}{2}z=0)

Или иначе (если домножим обе части на корень из двух)

( x-frac{1}{sqrt{2}}z=0.)

Теперь найдем уравнение плоскости ( displaystyle SAC):

( left| {begin{array}{*{20}{c}}{x — 1}&{ — 1}&{ — frac{1}{2}}\y&1&{frac{1}{2}}\z&0&{frac{1}{{sqrt 2 }}}end{array}} right| = 0)

(ты ведь не забыл, как мы получаем уравнение плоскости, правда?

Если ты не понял, откуда взялась эта минус единица, то вернись к определению уравнения плоскости! Просто всегда до этого оказывалось так, что моей плоскости принадлежало начало координат!)

Вычисляем определитель:

( begin{array}{l}frac{x-1}{sqrt{2}}-frac{1}{2}z+frac{1}{2}z+frac{y}{sqrt{2}}=0\frac{x-1}{sqrt{2}}+frac{y}{sqrt{2}}=0\x+y-1=0end{array}).

(Ты можешь заметить, что уравнение плоскости совпало с уравнением прямой, проходящей через точки ( displaystyle A) и ( displaystyle C)! Подумай, почему!)

Теперь вычисляем угол:

( cosvarphi =frac{left| 1+1cdot 0-frac{1}{sqrt{2}}cdot 0 right|}{sqrt{1+{{left( -frac{1}{sqrt{2}} right)}^{2}}}cdot sqrt{{{1}^{2}}+{{1}^{2}}}~~}=frac{1}{sqrt{3}}.)

Нам же нужно найти синус:

( sinvarphi =sqrt{1-{{cos }^{2}}varphi }=sqrt{1-frac{1}{3}}=sqrt{frac{2}{3}}).

Ответ: ( sqrt{frac{2}{3}}.)

3. В правильной че­ты­рех­уголь­ной призме ( ABCD{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}) сто­ро­ны ос­но­ва­ния равны ( displaystyle 1), а бо­ко­вые ребра равны ( displaystyle 5). На ребре ( A{{A}_{1}}) от­ме­че­на точка ( displaystyle E) так, что ( AE:E{{A}_{1}}=2:3). Найдите угол между плос­ко­стя­ми ( ABC) и ( BE{{D}_{1}}.)

Каверзный вопрос: а что такое прямоугольная призма, как ты думаешь? Это же всего-то навсего хорошо известный тебе параллелепипед! Сразу же делаем чертеж! Можно даже отдельно не изображать основание, пользы от него здесь немного:

Плоскость ( ABC), как мы уже раньше заметили, записывается в виде уравнения:

( z=0.)

Теперь составляем плоскость ( BE{{D}_{1}}.)

( Bleft( 0,0,0 right),~Eleft( 1,0,2 right),~{{D}_{1}}left( 1,1,5 right).)

Cразу же составляем уравнение плоскости:

( left| {begin{array}{*{20}{c}}x&1&1\y&0&1\z&2&5end{array}} right| = 0)

( begin{array}{l}2y+z-2x-5y=0\-2x-3y+z=0\2x+3y-z=0end{array})

Ищем угол:

( cosvarphi =frac{1}{sqrt{4+9+1}}=frac{1}{sqrt{14}})

Ответ: ( arccos frac{1}{sqrt{14}}~~)

Теперь ответы к последним двум задачам:

4. ( arccosfrac{2}{3})

5. ( sqrt{frac{2}{3}})

Ну что же, теперь самое время немного передохнуть, ведь мы с тобой молодцы и проделали огромную работу!

Вычисление расстояния от точки до плоскости

Что нам потребуется для решения этой задачи?

  • Координаты точки ( Mleft( {{x}_{0}},{{y}_{0}},{{z}_{0}} right).)
  • Уравнение плоскости ( Ax+By+Cz+D=0.)

Итак, как только мы получим все необходимые данные, то применяем формулу:

( d=frac{left| A{{x}_{0}}+B{{y}_{0}}+C{{z}_{0}}+D right|}{sqrt{{{A}^{2}}+{{B}^{2}}+{{C}^{2}}}})

Как мы строим уравнение плоскости тебе уже должно быть известно из предыдущих задач, которые я разбирал в прошлой части. Давай сразу приступим к задачам.

Схема следующая: 1, 2 –я помогаю тебе решать, причем довольно подробно, 3, 4 – только ответ, решение ты проводишь сам и сравниваешь. Начали!

Решения:

1. Рисуем кубик с единичными ребрами, строим отрезок и плоскость, середину отрезка ( B{{C}_{1}}) обозначим буквой ( M)

Вначале давай начнем с легкого: найдем координаты точки ( displaystyle M). Так как ( displaystyle Bleft( 0,1,0 right),~{{C}_{1}}left( 1,1,1 right),~) то ( displaystyle Mleft( frac{1}{2},1,frac{1}{2} right).) (вспомни координаты середины отрезка!)

Теперь составляем уравнение плоскости по трем точкам ( displaystyle Aleft( 0,0,0 right),~{{B}_{1}}left( 0,1,1 right),~{{D}_{1}}left( 1,0,1 right).)

(left| {begin{array}{*{20}{c}}x&0&1\y&1&0\z&1&1end{array}} right| = 0)

( displaystyle x+y-z=0.)

( displaystyle A=1,B=1,C=-1,~D=0.)

Теперь я могу приступать к поиску расстояния:

( displaystyle d=frac{left| frac{1}{2}+1-frac{1}{2} right|}{sqrt{1+1+1}}=frac{1}{sqrt{3}})

Ответ: ( displaystyle frac{1}{sqrt{3}})

2. Вновь начинаем с чертежа, на котором отмечаем все данные!

Для пирамиды было бы полезно отдельно рисовать ее основание.

Даже тот факт, что я рисую как курица лапой, не помешает нам с легкостью решить эту задачу!

1. ( AO=OC=frac{1}{2}AC=frac{sqrt{{{2}^{2}}+{{2}^{2}}}}{2}=sqrt{2}).

Тогда ( OS=sqrt{S{{C}^{2}}-O{{C}^{2}}}=sqrt{3}.)

Теперь легко найти координаты точки ( S.)

Так как координаты точки ( O:Oleft( 1,1,0 right),~), то ( Sleft( 1,1,sqrt{3} right).)

2. Так как координаты точки ( C:) ( Cleft( 2,2,0 right),) а ( M) – середина отрезка ( SC), то

( Mleft( frac{3}{2},frac{3}{2},frac{sqrt{3}}{2} right).)

Без проблем найдем и координаты еще двух точек на плоскости ( ADM.) ( Dleft( 1,0,0 right),~Aleft( 0,0,0 right).) Составляем уравнение плоскости и упростим его:

(left| {left| {begin{array}{*{20}{c}}x&1&{frac{3}{2}}\y&0&{frac{3}{2}}\z&0&{frac{{sqrt 3 }}{2}}end{array}} right|} right| = 0)

( frac{3}{2}z-frac{sqrt{3}}{2}y=0)

( sqrt{3}y-3z=0)

( y-sqrt{3}z=0.)

Так как точка ( B) имеет координаты: ( Bleft( 0,2,0 right)), то вычисляем расстояние:

( d=frac{2}{sqrt{1+3}}=1.)

Ответ (очень редкий!): ( 1)

Ну что, разобрался?

Мне кажется, что здесь все так же технично, как и в тех примерах, что мы рассматривали с тобой в предыдущей части. Так что я уверен, что если ты овладел тем материалом, то тебе не составит труда решить оставшиеся две задачи.

Я лишь приведу ответы:

  • ( frac{3sqrt{39}}{4})
  • ( frac{sqrt{3}}{2})

Вычисление расстояния от прямой до плоскости

На самом деле, здесь нет ничего нового. Как могут располагаться прямая и плоскость друг относительно друга?

У них есть всего ( 2) возможности: пересечься, или прямая параллельна плоскости. Как ты думаешь, чем равно расстояние от прямой до плоскости, с которой данная прямая пересекается?

Мне кажется, что тут ясно, что такое расстояние равно нулю. Неинтересный случай.

Второй случай хитрее: тут уже расстояние ненулевое. Однако, так как прямая параллельна плоскости, то каждая точка прямой равноудалена от этой плоскости:

Таким образом:

Расстояние от плоскости до параллельной ей прямой равно расстоянию от любой точки прямой до плоскости.

А это значит, что моя задача свелась к предыдущей: ищем координаты любой точки на прямой, ищем уравнение плоскости, вычисляем расстояние от точки до плоскости.

На самом деле, такие задачи в ЕГЭ встречаются крайне редко. Мне удалось найти лишь одну задачу, и то данные в ней были такими, что метод координат к ней был не очень-то и применим!

Теперь перейдем к другому, гораздо более важному классу задач:

Вычисление расстояния точки до прямой

Что нам потребуется?

  • Координаты точки, от которой мы ищем расстояние: ( {{M}_{0}}left( {{x}_{0}},{{y}_{0}},{{z}_{0}} right).)
  • Координаты любой точки, лежащей на прямой ( {{M}_{1}}left( {{x}_{1}},{{y}_{1}},{{z}_{1}} right))
  • Координаты направляющего вектора прямой ( vec{s}left( m,n,p right))

Какую применяем формулу?

Ответ: ( d=frac{left| overrightarrow{{{M}_{0}}{{M}_{1}}}times vec{s} right|}{sqrt{{{m}^{2}}+{{n}^{2}}+{{p}^{2}}}})

Что означает знаменатель данной дроби тебе и так должно быть ясно: это длина направляющего вектора прямой. Здесь очень хитрый числитель!

Выражение ( left| overrightarrow{{{M}_{0}}{{M}_{1}}}times vec{s} right|) означает модуль (длина) векторного произведения векторов ( overrightarrow{{{M}_{0}}{{M}_{1}}}) и ( vec{s}.)

Как вычислять векторное произведение, мы с тобой изучали в предыдущей части работы. Освежи свои знания, нам они сейчас очень пригодятся!

Таким образом, алгоритм решения задач будет следующий:

  • Ищем координаты точки, от которой мы ищем расстояние: ( {{M}_{0}}left( {{x}_{0}},{{y}_{0}},{{z}_{0}} right).)
  • Ищем координаты любой точки на прямой, до которой мы ищем расстояние: ( {{M}_{1}}left( {{x}_{1}},{{y}_{1}},{{z}_{1}} right))
  • Строим вектор ( overrightarrow{{{M}_{0}}{{M}_{1}}}:) ( overrightarrow{{{M}_{0}}{{M}_{1}}}left( {{x}_{1}}-{{x}_{0}},{{y}_{1}}-{{y}_{0}},{{z}_{1}}-{{z}_{0}} right).)
  • Строим направляющий вектор прямой ( vec{s}left( m,n,p right))
  • Вычисляем векторное произведение ( overrightarrow{{{M}_{0}}{{M}_{1}}}times vec{s})
  • Ищем длину полученного вектора: ( left| overrightarrow{{{M}_{0}}{{M}_{1}}}times vec{s} right|)
  • Вычисляем расстояние: ( d=frac{left| overrightarrow{{{M}_{0}}{{M}_{1}}}times vec{s} right|}{sqrt{{{m}^{2}}+{{n}^{2}}+{{p}^{2}}}})

Работы у нас много, а примеры будут достаточно сложными! Так что теперь сосредоточь все внимание!

1. Дана пра­виль­ная тре­уголь­ная пи­ра­ми­да ( DABC) с вер­ши­ной ( D). Сто­ро­на ос­но­ва­ния пи­ра­ми­ды равна ( sqrt{6}), вы­со­та равна ( sqrt{30}).

Най­ди­те рас­сто­я­ние от се­ре­ди­ны бо­ко­во­го ребра ( BD) до пря­мой ( MT), где точки ( M) и ( T) — се­ре­ди­ны ребер ( AC) и ( AB) со­от­вет­ствен­но.

2. Длины ребер ( AB,A{{A}_{1}}) и ( AD) пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да ( ABCD{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}) равны со­от­вет­ствен­но ( 12,text{ }16~) и ( 15.)

Най­ди­те рас­сто­я­ние от вер­ши­ны ( {{A}_{1}}) до пря­мой ( B{{D}_{1}}.)

3. В пра­виль­ной ше­сти­уголь­ной приз­ме ( ABCDEF{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}{{E}_{1}}{{F}_{1}}) все ребра ко­то­рой равны ( 1) най­ди­те рас­сто­я­ние от точки ( B) до пря­мой ( {{E}_{1}}{{F}_{1}}.)

Решения:

1. Делаем аккуратный чертеж, на котором отмечаем все данные:

Ну что же, работы нам предстоит немало! Принимаемся за нее, засучив рукава!

1. Чтобы найти координаты высоты пирамиды, нам нужно знать координаты точки ( displaystyle O.) Её аппликата равна нулю, а ордината равна ( displaystyle frac{sqrt{6}}{2}.)

Абсцисса ее равна длине отрезка ( displaystyle OS.) ( displaystyle AS=sqrt{A{{B}^{2}}-S{{B}^{2}}}=sqrt{6-frac{6}{4}}=frac{3}{sqrt{2}}.~)

Так как ( displaystyle AS) – высота равностороннего треугольника ( displaystyle ABC), то она делится в отношении ( displaystyle 2:1), считая от вершины, отсюда ( displaystyle OS=frac{3}{3sqrt{2}}=frac{1}{sqrt{2}}).

Окончательно, получили координаты:

( displaystyle Oleft( frac{1}{sqrt{2}},frac{sqrt{6}}{2},0 right).)

Тогда ( displaystyle D(left( frac{1}{sqrt{2}},frac{sqrt{6}}{2},sqrt{30} right)).

Координаты точки ( displaystyle A:Aleft( frac{3}{sqrt{2}},frac{sqrt{6}}{2},0 right).)

2. ( displaystyle K) – середина отрезка ( displaystyle BD:)

( displaystyle Kleft( frac{1}{2sqrt{2}},frac{sqrt{6}}{4},frac{sqrt{30}}{2} right).~)

3. ( displaystyle M) – середина отрезка ( displaystyle AC:)

( displaystyle Mleft( frac{3}{2sqrt{2}},~frac{frac{sqrt{6}}{2}+sqrt{6}}{2},0 right)=Mleft( frac{3}{2sqrt{2}},~frac{3sqrt{6}}{4},0 right).)

( displaystyle T) – середина отрезка ( displaystyle AB)

( displaystyle Tleft( frac{3}{2sqrt{2}},~frac{sqrt{6}}{4},0 right).~)

4. Координаты( displaystyle overrightarrow{KT}:overrightarrow{KT}left( frac{3}{2sqrt{2}}-frac{1}{2sqrt{2}},frac{sqrt{6}}{4}-frac{sqrt{6}}{4},~0-frac{sqrt{30}}{2} right)=overrightarrow{KT}left( frac{1}{sqrt{2}},~0,~-frac{sqrt{30}}{2} right).)

Координаты вектора ( displaystyle overrightarrow{TM}:)

( displaystyle overrightarrow{TM}left( 0,frac{3sqrt{6}}{4}-frac{sqrt{6}}{4},0 right)=overrightarrow{TM}left( 0,~frac{sqrt{6}}{2},0 right).)

5. Вычисляем векторное произведение:

( displaystyle overrightarrow{KT}times overrightarrow{TM}=frac{1}{sqrt{2}}cdot frac{sqrt{6}}{2}cdot overrightarrow{k}-frac{sqrt{30}}{2}cdot frac{sqrt{6}}{2}cdot vec{i}=frac{3sqrt{5}}{2}vec{i}+frac{sqrt{3}}{2}overrightarrow{k}=left( frac{3sqrt{5}}{2},0,~frac{sqrt{3}}{2} right).)

6. Длина вектора ( displaystyle TM): проще всего заменить, что отрезок ( displaystyle TM) – средняя линия треугольника ( displaystyle ABC), а значит, он равен половине основания ( displaystyle BC). Так что ( displaystyle left| text{ }!!~!!text{ }overrightarrow{TM} right|=frac{sqrt{6}}{2}).

7. Считаем длину векторного произведения:

( displaystyle left| overrightarrow{KT}times overrightarrow{TM} right|=sqrt{{{left( frac{3sqrt{5}}{2} right)}^{2}}+{{left( frac{sqrt{3}}{2} right)}^{2}}}=2sqrt{3}.)

8. Наконец, находим расстояние:

( displaystyle d=frac{left| overrightarrow{KT}times overrightarrow{TM} right|}{text{ }!!~!!text{ }left| text{ }!!~!!text{ }overrightarrow{TM} right|}=frac{2sqrt{3}}{frac{sqrt{6}}{2}}=2sqrt{2})

Уф, ну все!

Честно тебе скажу: решение этой задачи традиционными методами (через построения), было бы намного быстрее.

Зато здесь я все свел к готовому алгоритму!

Я так думаю, что алгоритм решения тебе ясен? Поэтому попрошу тебя решить оставшиеся две задачи самостоятельно. Сравним ответы?

2. ( displaystyle 12)

3. ( displaystyle 2)

Опять-таки повторюсь: эти задачи проще (быстрее) решать через построения, а не прибегая к координатному методу.

Я продемонстрировал такой способ решения лишь затем, чтобы показать тебе универсальный метод, который позволяет «ничего не достраивать».

Наконец, рассмотрим последний класс задач: Вычисление расстояния между скрещивающимися прямыми.

Вычисление расстояния между скрещивающимися прямыми

Здесь алгоритм решения задач будет схож с предыдущим. Что у нас есть:

  • Направляющий вектор первой прямой: ( overrightarrow{{{a}_{1}}(}{{x}_{1}},{{y}_{1}},{{z}_{1}}).)
  • Направляющий вектор второй прямой: ( overrightarrow{{{a}_{2}}(}{{x}_{2}},{{y}_{2}},{{z}_{2}}).)
  • Любой вектор, соединяющий точки первой и второй прямой: ( overrightarrow{{{a}_{3}}}left( {{x}_{0}},{{y}_{0}},{{z}_{0}} right))

Как мы ищем расстояние между прямыми?

Формула следующая:

( d=frac{left| left( overrightarrow{{{a}_{3}}},~overrightarrow{{{a}_{1}}},overrightarrow{{{a}_{2}}} right) right|}{left| overrightarrow{{{a}_{1}}}times overrightarrow{{{a}_{2}}} right|})

Числитель – это модуль смешанного произведения (мы его вводили в предыдущей части), а знаменатель – как и в предыдущей формуле (модуль векторного произведения направляющих векторов прямых, расстояние между которыми мы с тобой ищем).

Я напомню тебе, что

тогда формулу для расстояния можно переписать в виде:

[d = frac{{left| begin{array}{l}begin{array}{*{20}{c}}{{x_0}}&{{y_0}}&{{z_0}}end{array}\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&{{z_1}}end{array}\begin{array}{*{20}{c}}{{x_2}}&{{y_2}}&{{z_2}}end{array}end{array} right|}}{{left| begin{array}{l}begin{array}{*{20}{c}}{overrightarrow i }&{overrightarrow j }&{overrightarrow k }end{array}\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&{{z_1}}end{array}\begin{array}{*{20}{c}}{{x_2}}&{{y_2}}&{{z_2}}end{array}end{array} right|}}]

Этакий определитель делить на определитель! Хотя, если честно, мне здесь совсем не до шуток!

Данная формула, на самом деле, очень громоздка и приводит к достаточно сложным вычислениям. На твоем месте я бы прибегал к ней только в самом крайнем случае!

Давай попробуем решить несколько задач, используя изложенный выше метод:

  • В пра­виль­ной тре­уголь­ной приз­ме ( ABC{{A}_{1}}{{B}_{1}}{{C}_{1}}), все рёбра ко­то­рой равны ( 1), най­ди­те рас­сто­я­ние между пря­мы­ми ( A{{A}_{1}}) и ( B{{C}_{1}}).
  • Дана пра­виль­ная тре­уголь­ная приз­ма ( ABC{{A}_{1}}{{B}_{1}}{{C}_{1}}) все рёбра ос­но­ва­ния ко­то­рой равны ( 2sqrt{7}) Се­че­ние, про­хо­дя­щее через бо­ко­вое ребро ( A{{A}_{1}}) и се­ре­ди­ну ( M) ребра ( {{B}_{1}}{{C}_{1}}) яв­ля­ет­ся квад­ра­том. Най­ди­те рас­сто­я­ние между пря­мы­ми ( {{A}_{1}}B) и ( AM.)

Первую решаю я, а опираясь на нее, вторую решаешь ты!

1. Рисую призму и отмечаю прямые ( A{{A}_{1}}) и ( B{{C}_{1}}.)

Координаты точки С: ( C:Cleft( frac{sqrt{3}}{2},frac{1}{2},0 right),) тогда ( {{C}_{1}}left( frac{sqrt{3}}{2},frac{1}{2},1 right).~)

Координаты точки ( B:Bleft( 0,1,0 right).~)

Координаты вектора ( overrightarrow{B{{C}_{1}}}:~overrightarrow{B{{C}_{1}}}left( frac{sqrt{3}}{2},-frac{1}{2},1 right).)

Координаты точки ( {{A}_{1}}:{{A}_{1}}left( 0,0,1 right).)

Координаты вектора ( overrightarrow{A{{A}_{1}}}:~overrightarrow{A{{A}_{1}}}left( 0,0,1 right).)

Координаты вектора ( overrightarrow{AB}left( 0,1,0 right).)

[left( {B,overrightarrow {A{A_1}} overrightarrow {B{C_1}} } right) = left| {begin{array}{*{20}{l}}{begin{array}{*{20}{c}}0&1&0end{array}}\{begin{array}{*{20}{c}}0&0&1end{array}}\{begin{array}{*{20}{c}}{frac{{sqrt 3 }}{2}}&{ — frac{1}{2}}&1end{array}}end{array}} right| = frac{{sqrt 3 }}{2}]

Считаем векторное произведение между векторами ( AA) и ( overrightarrow{B{{C}_{1}}}:)

[overrightarrow {A{A_1}} cdot overrightarrow {B{C_1}} = left| begin{array}{l}begin{array}{*{20}{c}}{overrightarrow i }&{overrightarrow j }&{overrightarrow k }end{array}\begin{array}{*{20}{c}}0&0&1end{array}\begin{array}{*{20}{c}}{frac{{sqrt 3 }}{2}}&{ — frac{1}{2}}&1end{array}end{array} right| — frac{{sqrt 3 }}{2}overrightarrow k + frac{1}{2}overrightarrow i ]

Теперь считаем его длину:

( left| overrightarrow{A{{A}_{1}}}times overrightarrow{B{{C}_{1}}} right|=sqrt{{{left( -frac{sqrt{3}}{2} right)}^{2}}+{{left( frac{1}{2} right)}^{2}}}=1)

Тогда

( d=frac{frac{sqrt{3}}{2}}{1}=frac{sqrt{3}}{2}.)

Ответ: ( frac{sqrt{3}}{2}.)

Теперь постарайся аккуратно выполнить вторую задачу. Ответом на нее будет: ( frac{sqrt{6}}{2}).

Как найти координаты центра окружности 🚩 центр и радиус окружности 🚩 Математика

Инструкция

Предположим, что ваша задача — составить уравнение окружности заданного радиуса R, центр которой находится в начале координат. Окружность, по определению — множество точек, находящихся на заданном расстоянии от центра. Это расстояние как раз и равно радиусу R.

Расстояние от точки (x, y) до центра координат равно длине отрезка, соединяющего ее с точкой (0, 0). Этот отрезок вместе с его проекциями на координатные оси составляют прямоугольный треугольник, катеты которого равны x0 и y0, а гипотенуза, по теореме Пифагора, равна √(x^2 + y^2).

Чтобы получить окружность, вам нужно уравнение, определяющее все точки, для которых это расстояние будет равно R. Таким образом:√(x^2 + y^2) = R, а следовательно,
x^2 + y^2 = R^2.

Аналогичным способом составляется уравнение окружности радиусом R, центр которой находится в точке (x0, y0). Расстояние от произвольной точки (x, y) до заданной точки (x0, y0) равно √((x — x0)^2 + (y — y0)^2). Следовательно, уравнение нужной вам окружности будет выглядеть так:(x — x0)^2 + (y — y0)^2 = R^2.

Вам может понадобиться также составить уравнение окружности с центром в точке координат, проходящей через заданную точку (x0, y0). В этом случае радиус искомой окружности не задан в явном виде, и его придется вычислять. Очевидно, он будет равен расстоянию от точки (x0, y0) до начала координат, то есть √(x0^2 + y0^2). Подставляя это значение в уже выведенное уравнение окружности, вы получите:x^2 + y^2 = x0^2 + y0^2.

Если вам предстоит построить окружность по выведенным формулам, то их придется разрешать относительно y. Даже самое простое из этих уравнений при этом превращается в:y = ±√(R^2 — x^2).Знак ± необходим здесь потому, что квадратный корень числа всегда неотрицателен, а это значит, что без знака ± такое уравнение описывает только верхнюю полуокружность.Чтобы построить окружность, удобнее составить ее параметрическое уравнение, в котором обе координаты x и y зависят от параметра t.

Согласно определению тригонометрических функций, если гипотенуза прямоугольного треугольника равна 1, а один из углов при гипотенузе равен φ, то прилежащий к нему катет равен cos(φ), а противолежащий — sin(φ). Таким образом, sin(φ)^2 + cos(φ)^2 = 1 для любого φ.

Предположим, вам дана окружность единичного радиуса с центром в начале координат. Возьмем любую точку (x, y) на этой окружности и проведем от нее отрезок к центру. Этот отрезок образует угол с положительной полуосью x, который может быть равен от 0 до 360° или от 0 до 2π радиан. Обозначая этот угол t, вы получите зависимость:x = cos(t),
y = sin(t).

Эту формулу можно обобщить на случай окружности радиуса R с центром в произвольной точке (x0, y0):x = R*cos(t) + x0,
y = R*sin(t) + y0.

www.kakprosto.ru

Подготовка школьников к ЕГЭ и ОГЭ в учебном центре «Резольвента» (Справочник по математике — Алгебра

Числовая ось

      Определение 1. Числовой осью (числовой прямой, координатной прямой)   Ox   называют прямую линию, на которой точка   O   выбрана началом отсчёта (началом координат) (рис.1), направление

O x

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Рис.1

      Определение 2. Отрезок, длина которого принята за единицу длины, называют масштабом.

      Каждая точка числовой оси имеет координату, являющуюся вещественным числом. Координата точки   O   равна нулю. Координата произвольной точки   A ,   лежащей на луче   Ox ,   равна длине отрезка   OA .   Координата произвольной точки   A   числовой оси, не лежащей на луче   Ox ,   отрицательна, а по абсолютной величине равна длине отрезка   OA .

Прямоугольная декартова система координат на плоскости

      Определение 3. Прямоугольной декартовой системой координат   Oxy   на плоскости называют две взаимно перпендикулярных числовых оси   Ox   и   Oy   с одинаковыми масштабами и общим началом отсчёта в точке   O ,   причём таких, что поворот от луча   Ox   на угол   90°   до луча   Oy   осуществляется в направлении против хода часовой стрелки (рис.2).

Рис.2

      Замечание. Прямоугольную декартову систему координат   Oxy ,   изображённую на рисунке 2, называют правой системой координат, в отличие от левых систем координат, в которых поворот луча   Ox   на угол   90°   до луча   Oy   осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

      Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат   Oxy ,   то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть   A   – произвольная точка плоскости. Опустим из точки   A   перпендикуляры   AA1   и   AA2   на прямые   Ox   и   Oy   соответственно (рис.3).

Рис.3

      Определение 4. Абсциссой точки   A   называют координату точки   A1   на числовой оси   Ox ,   ординатой точки   A   называют координату точки   A2   на числовой оси   Oy .

      Обозначение. Координаты (абсциссу и ординату) точки   A   в прямоугольной декартовой системе координат   Oxy   (рис.4) принято обозначать   (; y)   или   A = (y).

Рис.4

      Замечание. Точка   O ,   называемая началом координат, имеет координаты   (0 ; 0) .

      Определение 5 . В прямоугольной декартовой системе координат   Oxy   числовую ось   Ox   называют осью абсцисс, а числовую ось   Oy   называют осью ординат (рис. 5).

      Определение 6. Каждая прямоугольная декартова система координат делит плоскость на   4   четверти (квадранта), нумерация которых показана на рисунке 5.

Рис.5

      Определение 7. Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью.

      Замечание. Ось абсцисс задаётся на координатной плоскости уравнением   y = 0 ,   ось ординат задаётся на координатной плоскости уравнением   x = 0.

Формула для расстояния между двумя точками координатной плоскости

      Утверждение 1. Расстояние между двумя точками координатной плоскости

A1 (x1 ; y1)   и   A2 (x2 ; y2)

вычисляется по формуле

      Доказательство. Рассмотрим рисунок 6.

Рис.6

      Поскольку в прямоугольном треугольнике   A1A2B   длина катета   A1B   равна   | x2 – x1|    а длина катета   A2B   равна   | y2 – y1| ,   то по теореме Пифагора

| A1A2|2 =
= ( x2 x1)2 + ( y2 y1)2 .
(1)

     Следовательно,

что и требовалось доказать.

Уравнение окружности на координатной плоскости

      Рассмотрим на координатной плоскости   Oxy   (рис. 7) окружность радиуса   R   с центром в точке   A0 (x0 ; y0) .

Рис.7

      Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

( x – x0)2 + ( y – y0)2 = R2.

Уравнение (2) и есть искомое уравнение окружности радиуса   R   с центром в точке   A0 (x0 ; y0) .

      Следствие. Уравнение окружности радиуса   R   с центром в начале координат имеет вид

x2 + y2 = R2.

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

геометрия / Поиск координат точек на окружности / Математика

Координаты векторов $%vec{OA}$% и $%vec{OB}$% находятся при помощи вычитания: из координат конца вектора вычитаются координаты его начала. Например, если $%O(3;2)$% и $%A(5,1)$%, то первый вектор будет иметь координаты $%(2;-1)$%.

Зная координаты вектора, можно найти квадрат его длины как сумму квадратов координат. Для предыдущего примера получится $%2^2+(-1)^2=5$%. Извлекая квадратный корень, находим длину вектора (в примере это даёт $%sqrt{5}$%). Это радиус окружности $%r$%.

Для того, чтобы разделить дугу на 4 равные части, достаточно научиться делить её на 2 равные части. Тогда сначала находим координаты точки $%E_1$%, а далее, зная их, по той же процедуре делим на равные части дуги $%AE_1$% и $%E_1B$%, выявляя точки $%E_0$%, $%E_2$%.

Сначала находим сумму векторов $%vec{OA}$% и $%vec{OB}$% покоординатным сложением. Этот вектор будет иметь то же направление, что и $%vec{OE_1}$%. Далее его надо будет поделить на свою длину, получая единичный вектор того же направления, а затем умножить на $%r$% — радиус окружности, найденный ранее. То есть всё сводится к нахождению длины вектора $%vec{OA}+vec{OB}$%. Делается это так же, как и раньше: координаты вектора найдены; их сумма квадратов есть квадрат длины вектора. Осталось извлечь квадратный корень.

Теперь о длине дуги: она равна $%ralpha$%, где $%alpha$% — угол между векторами. Радиус мы знаем, и остаётся найти угол. Сначала находим его косинус: это будет отношение скалярного произведения векторов к произведению их длин. Длины нам известны, и обе они равны $%r$%. Скалярное произведение есть сумма произведений координат. Например, у векторов с координатами $%(4;-1)$% и $%(3;7)$% скалярное произведение равно $%4cdot3+(-1)cdot7=5$%. Поделив его на произведение длин векторов, находим $%cosalpha$%. Тогда сам угол будет равен арккосинусу полученного числа.

отвечен
9 Сен ’13 23:55

math.hashcode.ru

Как найти координаты центра окружности

Окружность ? геометрическое место точек плоскости, равноудаленных от центра на некоторое расстояние, называемое радиусом. Если задана нулевая точка отсчета, единичный отрезок и направление координатных осей, центр окружности будет характеризоваться определенными координатами. Как водится, окружность рассматривают в декартовой прямоугольной системе координат.

Инструкция

1. Аналитически окружность задается уравнением вида (x-x0)?+(y-y0)?=R?, где x0 и y0 ? координаты центра окружности , R ? ее радиус. Выходит, центр окружности (x0;y0) тут задан в очевидном виде.

2. Пример. Установите центр фигуры, заданной в декартовой системе координат уравнением (x-2)?+(y-5)?=25.Решение. Данное уравнение является уравнением


окружности . Ее центр имеет координаты (2;5). Радиус такой окружности равен 5.

3. Уравнение x?+y?=R? соответствует окружности с центром в начале координат, то есть, в точке (0;0). Уравнение (x-x0)?+y?=R? обозначает, что центр окружности имеет координаты (x0;0) и лежит на оси абсцисс. Вид уравнения x?+(y-y0)?=R? говорит о расположении центра с координатами (0;y0) на оси ординат.

4. Всеобщее уравнение окружности в аналитической геометрии запишется как: x?+y?+Ax+By+C=0. Дабы привести такое уравнение к выше обозначенному виду, нужно сгруппировать члены и выделить полные квадраты: [x?+2(A/2)x+(A/2)?]+[y?+2(B/2)y+(B/2)?]+C-(A/2)?-(B/2)?=0. Для выделения полных квадратов, как дозволено подметить, требуется добавлять добавочные величины: (A/2)? и (B/2)?. Дабы знак равенства сохранялся, эти же величины нужно вычесть. Прибавление и вычитание одного и того же числа не меняет уравнения.

5. Таким образом, получается: [x+(A/2)]?+[y+(B/2)]?=(A/2)?+(B/2)?-C. Из этого уравнения теснее видно, что x0=-A/2, y0=-B/2, R=?[(A/2)?+(B/2)?-C]. Кстати, выражение для радиуса дозволено упростить. Домножьте обе части равенства R=?[(A/2)?+(B/2)?-C] на 2. Тогда: 2R=?[A?+B?-4C]. Отсель R=1/2·?[A?+B?-4C].

6. Окружность не может быть графиком функции в декартовой системе координат, потому что, по определению, в функции всем x соответствует исключительное значение y, а для окружности таких «игреков» будет два. Дабы удостовериться в этом, проведите перпендикуляр к оси Ox, пересекающий окружность. Вы увидите, что точек пересечения две.

7. Но окружность дозволено представить как объединение 2-х функций: y=y0±?[R?-(x-x0)?]. Тут x0 и y0, соответственно, представляют собой желанные координаты центра окружности . При совпадении


центра окружности с началом координат объединение функций принимает вид: y=?[R?-x?].

Отрезок прямой определяется двумя крайними точками и состоит из множества точек, лежащих на проходящей через крайние точки прямой линии. Если отрезок размещен в какую-нибудь систему координат, то, обнаружив средние точки его проекций на всякую из осей, дозволено узнать координаты середины отрезка. По сути, операция сводится к нахождению среднего арифметического значения пар чисел для всей из координатных осей.

Инструкция

1. Разделяете напополам сумму исходной и финальной координат крайних точек отрезка по всякой оси, дабы определить координаты средней точки по этой оси. Скажем, пускай отрезок размещен в трехмерную систему координат XYZ и знамениты координаты его крайних точек A(Xa,Ya,Za) и C(Xc,Yc,Zc). Тогда


координаты
его средней точки E(Xe,Ye,Ze) дозволено вычислить по формулам Xe=(Xa+Xc)/2, Ye=(Ya+Yc)/2, Ze=(Za+Zc)/2.

2. Используйте всякий из калькуляторов, если вычислить средние значения координат крайних точек отрезка в уме не представляется допустимым. Если под рукой нет такого гаджета, то используйте программный калькулятор из состава ОС Windows. Его дозволено запустить, если, щелкнув кнопку «Пуск» раскрыть основное меню системы. В меню нужно перейти в раздел «Типовые», после этого в подраздел «Служебные», а потом в сегменты «Все программы» предпочесть пункт «Калькулятор». Дозволено обойтись без основного меню, если нажать сочетание клавиш WIN + R, ввести команду calc, а после этого нажать клавишу Enter.

3. Суммируйте попарно исходные и финальные координаты крайних точек отрезка по всякой оси и разделяете итог на два. Интерфейс программного калькулятора имитирует обыкновенный калькулятор, а вводить числовые значения и символы математических операций дозволено как щелкая кнопки курсором мыши на экране, так и нажимая соответствующие клавиши на клавиатуре. Никаких трудностей с этими вычислениями появиться не должно.

4. Записывайте математические операции в текстовом виде и вводите их в поле поискового запроса на основной странице сайта Google, если отчего-либо не можете применять калькулятор, но имеете доступ в интернет. Данный поисковик имеет встроенный универсальный калькулятор, пользоваться которым гораздо проще, чем любым иным. Тут нет никакого интерфейса с кнопками – вводить все данные нужно в текстовом виде в исключительное поле. Скажем, если знамениты координаты крайних точек отрезка в трехмерной системе координат A(51,34 17,2 13,02) и A(-11,82 7,46 33,5), то координаты средней точки отрезка C((51,34-11,82)/2 (17,2+7,46)/2 (13,02+33,5)/2). Вводя в поле поискового запроса (51,34-11,82)/2, после этого (17,2+7,46)/2 и (13,02+33,5)/2, дозволено с поддержкой Google получить


координаты
С(19,76 12,33 23,26).

Стандартное уравнение окружности дозволяет узнать несколько значимых сведений об этой фигуре, скажем, координаты ее центра, длину радиуса. В некоторых задачах, напротив, по заданным параметрам требуется составить уравнение.

Инструкция

1. Проверьте, указаны ли в условиях задачи координаты центральной точки окружности и длина радиуса в очевидном виде. В этом случае вам довольно подставить данные в стандартную запись уравнения, дабы получить результат.

2. Определите, какими сведениями об окружности вы располагаете, исходя из данной вам задачи. Запомните, что финальной целью является надобность определить координаты центра, а также диаметр. Все ваши действия обязаны быть направлены на достижение именно этого итога.

3. Используйте данные о наличии точек пересечения с координатными прямыми либо другими прямыми. Обратите внимание, что, если окружность проходит через ось абсцисс, вторая точка пересечения будет иметь координату 0, а если через ось ординат – то первая. Эти координаты дозволят вам обнаружить координаты центра окружности, а также вычислить радиус.

4. Не забывайте об основных свойствах секущих и касательных. В частности, особенно пригодной оказывается теорема о том, что в точке касания радиус и касательная образуют прямой угол. Но обратите внимание на то, что вас могут попросить подтвердить все использованные в ходе решения теоремы.

5. Прорешайте особенно типовые типы задач, дабы обучиться сразу видеть, как применять те либо иные данные для приобретения уравнения окружности. Так, помимо теснее указанных задач с прямо заданными координатами и теми, в условиях которых даны данные о наличии точек пересечения, для составления уравнения окружности дозволено воспользоваться познаниями о центре окружности, длине хорды и уравнения прямой, на которой эта хорда лежит.

6. Для решения постройте равнобедренный треугольник, основанием которого будет данная хорда, а равные стороны – радиусами. Составьте систему уравнений, из которой вы легко обнаружите нужные данные. Для этого довольно воспользоваться формулой для нахождения длины отрезка в координатной плоскости.

Видео по теме

Под окружностью понимают фигуру, которая состоит из множества точек плоскости, равноудаленных от ее центра. Расстояние от центра до точек окружности именуется радиусом.

Вам понадобится

  • – примитивный карандаш;
  • – тетрадь;
  • – транспортир;
  • – циркуль;
  • – ручка.

Инструкция

1. Раньше чем обнаружить координаты той либо другой точки окружности , постройте заданную окружность. При ее построении вам могут встретиться уйма новых представлений. Так хорда – это отрезок, тот, что соединяет две точки окружности , причем хорда, проходящая через центр окружности – максимальная (она носит наименование диаметра). Помимо того, к окружности может быть проведена касательная, которая представляет собой прямую, перпендикулярно расположенную к радиусу окружности , тот, что проведен к точке пересечения касательной и рассматриваемой геометрической фигуры.

2. Если по условию задания вестимо, что построенную вами окружность пересекает иная окружность (она поменьше по размерам), изобразите это графически: на рисунке должно быть изображено, что две эти окружности пересекаются, то есть имеют ряд всеобщих точек. Центр первой окружности обозначьте точкой 1 (ее координаты (X1,Y1)), а ее радиус – R1. Таким образом, центр 2-й окружности должен быть обозначен точкой 2 (координаты этой точки (X2,Y2)), а радиус – R2. В точках пересечения фигур поставьте точки 3 (X3,Y3) и 4 (X4,Y4). Центральная точка пересечения должна быть обозначена 0: ее координаты (X,Y).

3. Для того дабы обнаружить координаты пресечения данных окружностей, а следственно и точку, принадлежащую и первой, и 2-й из них, вам придется решить квадратное уравнение. Разглядите два образовавшихся треугольника (?103 и ?203) и проанализируйте их показатели. Гипотенузы этих треугольников – R1 и R2 соответственно. Зная значение гипотенуз, обнаружьте отрезок D, соединяющий центр первой окружности с центром 2-й. Выбранный способ расчета напрямую зависит от того, какими получились анализируемые вами треугольники. Если они прямоугольные, то квадрат длины гипотенузы всякого из них будет равен сумме квадратов катетов данного треугольника. К тому же, длину катета дозволено обнаружить по формуле: a = ccos ?, где с – длина гипотенузы, а cos? – косинус прилежащего угла. Обнаружив значение катетов, определите координаты волнующей вас точки.

Видео по теме

Обратите внимание!
Будьте внимательны, рассчитывая значения катетов: не допустите ошибку.

Полезный совет
Не позабудьте: один из углов прямоугольного треугольника прямой, то есть равен 90о.

Обратите внимание!
Две окружности, имеющие центром точку с одними и теми же координатами, именуются концентрическими. Если они заданы уравнениями (x-x0)?+(y-y0)?=R? и (x-x0′)?+(y-y0′)?=R’?, тогда x0=x0′, y0=y0′. В всеобщем уравнении для концентрических окружностей A1=A2 и B1=B2.

Полезный совет
Кстати, в физике окружность может рассматриваться как тонкое однородное кольцо. Центр этого кольца будет являться центром масс (либо центром инерции) такого тела. Если кольцо имеет массу m и радиус r, а через центр перпендикулярно плоскости кольца провести ось, то момент инерции кольца касательно оси будет равен mr?. Момент инерции твердо главен при рассмотрении вращательного движения тела.

jprosto.ru

Найти центр и радиус окружности

Если окружность задана уравнением вида

найти центр (a;b) и радиус R такой окружности несложно.

Примеры.

Определить по уравнению окружности координаты её центра и радиуса:

Решение:

a=3, b=7, R²=4.

Таким образом, центр данной окружности — точка (3;7), радиус R=2.

a=-2, b=5, R²=1. Окружность с центром в точке (-2;5) и радиусом 1.

a=0, b=-3, R²=9.

Центр окружности — (0;-3), радиус R=3.

a=6, b=0, R²=5.

Центр — в точке (6;0), радиус R=√5.

Это уравнение задаёт окружность с центром в начале координат. Центр — O(0;0), радиус R=√11.

Чтобы найти центр и радиус окружности, заданной уравнением вида

нужно дополнить его до полных квадратов, чтобы привести к привычному виду.

Для этого сначала сгруппируем слагаемые

затем прибавим и вычтем квадрат второго слагаемого из формулы квадрата разности (2ax- удвоенное произведение первого слагаемого на второе. Первое — x, второе — a)

Отсюда

При a²+b²-c>0 это уравнение задаёт окружность с радиусом

При a²+b²-c=0 уравнению удовлетворяют координаты единственной точки (a;b).

При a²+b²-c<0 нет ни одной точки, удовлетворяющей этому уравнению.

Примеры.

Найти координаты центра и радиус окружности:

Решение:

Группируем слагаемые

Выделяем в уравнении полные квадраты. В первых скобках удвоенное слагаемое 10x представляем как 10x=2·a·5 (чтобы получить 2ab для формулы a²+2ab+b²=(a+b)²). Получается, что b=5. Если прибавить и вычесть b², результат не изменится:

Аналогично

Таким образом,

Центром этой окружности является точка (-5;3), радиус R=7.

Центр окружности — точка (2,5;0), радиус R=1,5.

Разделим обе части уравнения на 3:

Далее — аналогично

Центр этой окружности лежит в точке

www.treugolniki.ru

Координата — центр — окружность

Координата — центр — окружность

Cтраница 1

Координаты центра окружности и ее радиус будут определены автоматически.
 [2]

Координаты центра окружности равны координатам курсора, а значение радиуса высвечивается в правой части экрана в поле V и первоначально равняется шагу курсора. Перемещение курсора вызывает движение центра окружности в пространстве.
 [3]

Значения координат центра окружности приближения подвергнуты вариации только один раз. Это изменение в схеме программы 1 не дано.
 [4]

Возьмем значения координат центра окружности О, дирекцией-кого угла АК, радиуса R и угла а из предыдущего примера.
 [6]

В таблице приведены координаты Центра заменяющей окружности х0 и г / 0 и величина ее радиуса А. Величины, приведенные в таблицах, даны для значения радиуса начальной окружности г 1; поэтому для получения истинных величин необходимо табличные величины умножить на величину радиуса начальной окружности обрабатываемого валика.
 [7]

Считая, что заданы координаты центра окружности и одной из ее точек, построить все такие окружности.
 [8]

Для круговых контуров необхо-димо задавать координаты центра окружности, координаты точек сопряжения с прямыми и радиус или угол, охватываемый дугой окружности и радиус.
 [9]

После задания частоты со определяются координаты центров окружностей и соответствующие радиусы гх ( со) и гу ( со), которыми и проводятся эти окружности, проходящие через начало координат. Точка пересечения окружностей, кроме начала координат, является искомой точкой амплитудно-фазовой характеристики элемента, соответствующей заданному значению со, как это показано на фиг.
 [10]

Положение его на плоскости определяется координатами центра окружности, по которой очерчен рассматриваемый элемент, и углом наклона начальной касательной к положительному направлению оси х; угол а отсчитывается против часовой стрелки.
 [12]

Положение его на плоскости определяется координатами центра окружности, по которой очерчен рассматриваемый элемент, и углом наклона начальной касательной к положительному направлению оси х; угол а отсчитывается против часовой стрелки.
 [14]

Из этого выражения очевидно, что у есть координата центра окружности.
 [15]

Страницы:  

   1

   2

   3

www.ngpedia.ru

Окружность на координатной плоскости — Науколандия

Если расположить единичную числовую окружность на координатной плоскости, то для ее точек можно найти координаты. Числовую окружность располагают так, чтобы ее центр совпал с точкой начала координат плоскости, т. е. точкой O (0; 0).

Обычно на единичной числовой окружности отмечают точки соответствующие от начала отсчета на окружности

  • четвертям — 0 или 2π, π/2, π, (2π)/3,
  • серединам четвертей — π/4, (3π)/4, (5π)/4, (7π)/4,
  • третям четвертей — π/6, π/3, (2π)/3, (5π)/6, (7π)/6, (4π)/3, (5π)/3, (11π)/6.

На координатной плоскости при указанном выше расположении на ней единичной окружности можно найти координаты, соответствующие этим точкам окружности.

Координаты концов четвертей найти очень легко. У точки 0 окружности координата x равна 1, а y равен 0. Можно обозначить так A (0) = A (1; 0).

Конец первой четверти будет располагаться на положительной полуоси ординат. Следовательно, B (π/2) = B (0; 1).

Конец второй четверти находится на отрицательной полуоси абсцисс: C (π) = C (-1; 0).

Конец третьей четверти: D ((2π)/3) = D (0; -1).

Но как найти координаты середин четвертей? Для этого строят прямоугольный треугольник. Его гипотенузой является отрезок от центра окружности (или начала координат) к точке середины четверти окружности. Это радиус окружности. Поскольку окружность единичная, то гипотенуза равна 1. Далее проводят перпендикуляр из точки окружности к любой оси. Пусть будет к оси x. Получается прямоугольный треугольник, длины катетов которого — это и есть координаты x и y точки окружности.

Четверть окружности составляет 90º. А половина четверти составляет 45º. Поскольку гипотенуза проведена к точке середины четверти, то угол между гипотенузой и катетом, выходящим из начала координат, равен 45º. Но сумма углов любого треугольника равна 180º. Следовательно, на угол между гипотенузой и другим катетом остается также 45º. Получается равнобедренный прямоугольный треугольник.

Из теоремы Пифагора получаем уравнение x2 + y2 = 12. Поскольку x = y, а 12 = 1, то уравнение упрощается до x2 + x2 = 1. Решив его, получаем x = √½ = 1/√2 = √2/2.

Таким образом, координаты точки M1 (π/4) = M1 (√2/2; √2/2).

В координатах точек середин других четвертей будут меняться только знаки, а модули значений оставаться такими же, так как прямоугольный треугольник будет только переворачиваться. Получим:
M2 ((3π)/4) = M2 (-√2/2; √2/2)
M3 ((5π)/4) = M3 (-√2/2; -√2/2)
M4 ((7π)/4) = M4 (√2/2; -√2/2)

При определении координат третьих частей четвертей окружности также строят прямоугольный треугольник. Если брать точку π/6 и проводить перпендикуляр к оси x, то угол между гипотенузой и катетом, лежащим на оси x, составит 30º. Известно, что катет, лежащий против угла в 30º, равен половине гипотенузы. Значит, мы нашли координату y, она равна ½.

Зная длины гипотенузы и одного из катетов, по теореме Пифагора находим другой катет:
x2 + (½)2 = 12
x2 = 1 — ¼ = ¾
x = √3/2

Таким образом T1 (π/6) = T1 (√3/2; ½).

Для точки второй трети первой четверти (π/3) перпендикуляр на ось лучше провести к оси y. Тогда угол при начале координат также будет 30º. Здесь уже координата x будет равна ½, а y соответственно √3/2: T2 (π/3) = T2 (½; √3/2).

Для других точек третей четвертей будут меняться знаки и порядок значений координат. Все точки, которые ближе расположены к оси x будут иметь по модулю значение координаты x, равное √3/2. Те точки, которые ближе к оси y, будут иметь по модулю значение y, равное √3/2.
T3 ((2π)/3) = T3 (-½; √3/2)
T4 ((5π)/6) = T4 (-√3/2; ½)
T5 ((7π)/6) = T5 (-√3/2; -½)
T6 ((4π)/3) = T6 (-½; -√3/2)
T7 ((5π)/3) = T7 (½; -√3/2)
T8 ((11π)/6) = T8 (√3/2; -½)

scienceland.info

Добавить комментарий