Как найти ординату точки перегиба функции

Когда мы чертим график функции, важно определить интервалы выпуклости и точки перегиба. Они, наряду с промежутками убывания и возрастания, нужны нам для четкого представления функции в графическом виде.

Понимание этой темы требует знания того, что такое производная функции и как ее вычислить до некоторого порядка, а также умения решать разные виды неравенств.

В начале статьи определяются основные понятия. Потом мы покажем, какая связь существует между направлением выпуклости и значением второй производной на определенном интервале. Далее мы укажем условия, в которых можно определить точки перегиба графика. Все рассуждения будут проиллюстрированы примерами решений задач.

Что такое выпуклость/вогнутость функции и точки перегиба графика функции

Определение 1

Дифференцируемая функция является выпуклой по направлению вниз на некотором интервале в том случае, когда ее график располагается не ниже касательной к нему в любой точке этого интервала.

Определение 2

Дифференцируемая функция является выпуклой по направлению вверх на некотором интервале в том случае, если график данной функции располагается не выше касательной к нему в любой точке этого интервала.

Выпуклую вниз функцию можно иначе назвать вогнутой. Оба определения наглядно показаны на графике ниже:

Что такое выпуклость/вогнутость функции и точки перегиба графика функции

Определение 3

Точка перегиба функции – это точка M(x0; f(x0)), в которой существует касательная к графику функции, при условии существования производной в окрестности точки x0 , где с левой и правой стороны график функции принимает разные направления выпуклости.

Проще говоря, точка перегиба – это место на графике, в котором есть касательная, и направление выпуклости графика при прохождении через это место будет менять направление выпуклости. Если вы не помните, при каких условиях возможно существование вертикальной и невертикальной касательной, советуем повторить раздел о касательной графика функции в точке.

Ниже указан график функции, имеющей несколько точек перегиба, которые выделены красным.  Уточним, что наличие точек перегиба не является обязательным. На графике одной функции их может быть одна, две, несколько, бесконечно много или ни одной.

Что такое выпуклость/вогнутость функции и точки перегиба графика функции

Как найти интервалы выпуклости функции

В этом пункте мы расскажем о теореме,  с помощью которой можно определить промежутки выпуклости на графике конкретной функции.

Определение 4

График функции будет иметь выпуклость по направлению вниз или вверх в том случае, если у соответствующей ему функции y=f(x) будет вторая конечная производная на указанном интервале x при условии, что неравенство f”(x)≥0 ∀x∈X (f”(x)≤0 ∀x∈X) будет верным.  

Используя данную теорему, можно найти промежутки вогнутости и выпуклости на любом графике функции. Для этого нужно просто решить неравенства f”(x)≥0  и f”(x)≤0  на области определения соответствующей функции.

Уточним, что те точки, в которых вторая производная не существует, но функция y=f(x) определена, будут включаться в интервалы выпуклости и вогнутости.

Посмотрим на примере конкретной задачи, как правильно применять эту теорему.

Пример 1

Условие: дана функция y=x36-x2+3x-1. Определите, на каких промежутках ее график будет иметь выпуклости и вогнутости.

Решение

Областью определения данной функции является все множество действительных чисел. Начнем с вычисления второй производной.

y’=x36-x2+3x-1’=x22-2x+3⇒y”=x22-2x+3=x-2

Мы видим, что область определения второй производной совпала с областью самой функции Значит, для выявления интервалов выпуклостей нам надо решить неравенства f”(x)≥0  и f”(x)≤0 .

y”≥0⇔x-2≥0⇔x≥2y”≤0⇔x-2≤0⇔x≤2

Мы получили, что график заданной функции будет иметь вогнутость на отрезке [2; +∞) и выпуклость на отрезке (-∞; 2].

Для наглядности изобразим график функции и отметим на нем выпуклую часть синим, а вогнутую – красным цветом.

Как найти интервалы выпуклости функции

Ответ: график заданной функции будет иметь вогнутость на отрезке [2; +∞) и выпуклость на отрезке (-∞; 2].

А что же делать в случае, если область определения второй производной не совпадает с областью определения функции? Здесь нам пригодится замечание, сделанное выше: те точки, где конечная вторая производная не существует, мы тоже будем включать в отрезки вогнутости и выпуклости.

Пример 2

Условие: дана функция y=8xx-1 . Определите, в каких промежутках ее график будет иметь вогнутость, а в каких – выпуклость.

Решение

Для начала выясним область определения функции.

x≥0x-1≠0⇔x≥0x≠1⇔x∈[0; 1)∪(1;+∞)

Теперь вычисляем вторую производную:

y’=8xx-1’=8·12x·(x-1)-x·1(x-1)2=-4·x+1x·(x-1)2y”=-4·x+1x·(x-1)2’=-4·1·x·x-12-(x+1)·x·x-12’x·(x-1)4==-4·1·x·x-12-x+1·12x·(x-1)2+x·2(x-1)x·x-14==2·3×2+6x-1×32·(x-1)3

Область определения второй производной – это множество x∈(0; 1)∪(1; +∞). Мы видим, что x, равный нулю, будет принадлежать области определения исходной функции, но не области определения второй производной. Эту точку нужно обязательно включить в отрезок вогнутости или выпуклости.

После этого нам надо решить неравенства f”(x)≥0  и f”(x)≤0  на области определения заданной функции. Используем для этого метод интервалов: при x=-1-233≈-2,1547 или x=-1+233≈0,1547  числитель 2·(3×2+6x-1)x23·x-13 обращается в 0, а знаменатель равен 0 при x, равном нулю или единице.

Нанесем получившиеся точки на график и определим знак выражения на всех интервалах, которые войдут в область определения исходной функции. На графике эта область обозначена штриховкой. Если значение положительно, отмечаем интервал плюсом, если отрицательно, то минусом.

Как найти интервалы выпуклости функции

Следовательно,

f”(x)≥0x∈[0; 1)∪(1; +∞)⇔x∈0; -1+233∪(1; +∞), а f”(x)≤0x∈[0; 1)∪(1; +∞)⇔x∈[-1+233; 1)

Включаем ранее отмеченную точку x=0 и получаем нужный ответ. График исходной функции будет иметь выпуклость по направлению вниз при 0; -1+233∪(1; +∞) , и вверх – при x∈[-1+233; 1) .

Изобразим  график, отметив на нем выпуклую часть синим, а вогнутую красным цветом. Вертикальная асимптота отмечена черным пунктиром.

Как найти интервалы выпуклости функции

Ответ:  График исходной функции будет иметь выпуклость по направлению вниз при 0; -1+233∪(1; +∞) , и вверх – при x∈[-1+233; 1) .

Условия перегиба графика функции

Начнем с формулировки необходимого условия перегиба графика некоторой функции.

Определение 5

Допустим, что у нас есть функция y=f(x), график которой имеет точку перегиба. При  x=x0  у него есть непрерывная вторая производная, следовательно, будет выполняться равенство f”(x0)=0.

Учитывая данное условие, нам следует поискать точки перегиба среди тех, в которых вторая производная будет обращаться в 0. Это условие не будет достаточным: не все такие точки нам подойдут.

Также обратите внимание, что, согласно общему определению, нам нужна будет касательная прямая, вертикальная или невертикальная. На практике это означает, что для нахождения точек перегиба следует взять те, в которых вторая производная данной функции обращается в 0. Следовательно, чтобы найти абсциссы точек перегиба, нам нужно взять все x0 из  области определения функции, где limx→x0-0f'(x)=∞ и limx→x0+0f'(x)=∞. Чаще всего это такие точки, в которых знаменатель первой производной обращается в 0.

Первое достаточное условие существования точки перегиба графика функции

Мы нашли все значения x0, которые можно взять в качестве абсцисс точек перегиба. После этого нам нужно применить первое достаточное условие перегиба.

Определение 6

Допустим, что у нас есть функция y=f(x), которая является непрерывной в точке M(x0; f(x0)). При этом она имеет на этой точке касательную, а сама функция имеет вторую производную в окрестности этой точки x0. В таком случае если с левой и правой стороны вторая производная приобретает противоположные знаки, то данную точку можно считать точкой перегиба.

Мы видим, что данное условие не требует, что в этой точке непременно существовала вторая производная, достаточно ее наличия в окрестности точки x0.

Все сказанное выше удобно представить в виде последовательности действий.

Как найти точки перегиба графика функции

  1. Для начала нужно найти все абсциссы x0  возможных точек перегиба, где f”(x0)=0, limx→x0-0f'(x)=∞, limx→x0+0f'(x)=∞.
  2. Выясним, в каких точках производная будет менять знак. Эти значения  и есть абсциссы точек перегиба, а точки M(x0; f(x0)) , соответствующие им, – это сами точки перегиба.

Для наглядности разберем две задачи.

Пример 3

Условие: дана функция y=110·x412-x36-3×2+2x . Определите, где график данной функции будет иметь точки перегиба и выпуклости.

Решение

Указанная функция определена на всем множестве действительных чисел. Считаем первую производную:

y’=110·x412-x36-3×2+2x’=110·4×312-3×26-6x+2==110·x33-x22-6x+2

Теперь найдем область определения первой производной. Это также множество всех действительных чисел. Значит, равенства limx→x0-0f'(x)=∞ и limx→x0+0f'(x)=∞ не могут быть выполнены ни при каких значениях x0.

Вычисляем вторую производную:

y”==110·x33-x22-6x+2’=110·3×23-2×2-6=110·x2-x-6

Далее определяем, когда она будет обращаться в 0:

y”=0⇔110·(x2-x-6)=0⇔x2-x-6=0D=(-1)2-4·1·(-6)=25×1=1-252=-2, x2=1+252=3

Мы нашли абсциссы двух вероятных точек перегиба –2 и 3. Все, что нам осталось сделать – это проверить, в какой точке производная изменит свой знак. Изобразим числовую ось и нанесем на нее данные точки, после чего расставим знаки второй производной на получившихся промежутках.

Как найти точки перегиба графика функции

Дуги показывают направление выпуклости графика в каждом интервале.

Вторая производная меняет знак на противоположный (с плюса на минус)  в точке с абсциссой 3, проходя через нее слева направо, и также делает это (с минуса на плюс) в точке с абсциссой 3. Значит, мы можем сделать вывод, что x=-2 и x=3– это абсциссы точек перегиба графика функции. Им будут соответствовать точки графика -2; -43 и 3; -158.

Взглянем вновь на изображение числовой оси и получившиеся знаки на интервалах, чтобы сделать выводы о местах вогнутости и выпуклости. Получается, что выпуклость будет расположена на отрезке -2; 3 , а вогнутость на отрезках (-∞; -2]  и [3; +∞).

Решение задачи наглядно изображено на графике: синий цвет – выпуклости, красный – вогнутость, черный цвет означает точки перегиба.

Как найти точки перегиба графика функции

Ответ: выпуклость будет расположена на отрезке -2; 3 , а вогнутость на отрезках (-∞; -2]  и [3; +∞).

Пример 4

Условие: вычислите абсциссы всех точек перегиба графика функции y=18·x2+3x+2·x-335.

Решение

Область определения заданной функции – множество всех действительных чисел. Вычисляем производную:

y’=18·(x2+3x+2)·x-335’==18·x2+3x+2’·(x-3)35+(x2+3x+2)·x-335’==18·2x+3·(x-3)35+(x2+3x+2)·35·x-3-25=13×2-6x-3940·(x-3)25

В отличие от функции, ее первая производная не будет определена при значении x, равном 3, но:

limx→3-0y'(x)=13·(3-0)2-6·(3-0)-3940·3-0-325=+∞limx→3+0y'(x)=13·(3+0)2-6·(3+0)-3940·3+0-325=+∞

Это значит, что через данную точку будет проходить вертикальная касательная к графику. Следовательно, 3 может быть абсциссой точки перегиба.

Вычисляем вторую производную. Также находим область ее определения и точки, в которых она обращается в 0:

y”=13×2-6x-3940·x-325’==140·13×2-6x-39’·(x-3)25-13×2-6x-39·x-325′(x-3)45==125·13×2-51x+21(x-3)75, x∈(-∞; 3)∪(3; +∞)y”(x)=0⇔13×2-51x+21=0D=(-51)2-4·13·21=1509×1=51+150926≈3,4556, x2=51-150926≈0,4675

У нас получились еще две возможные точки перегиба. Нанесем их все на числовую прямую и разметим получившиеся интервалы знаками:

Как найти точки перегиба графика функции

Перемена знака будет происходить при прохождении через каждую указанную точку, значит, они все являются точками перегиба.

Ответ: Изобразим график функции, отметив вогнутости красным, выпуклости синим и точки перегиба – черным:

Как найти точки перегиба графика функции

Зная первое достаточное условие перегиба, мы можем определить нужные точки, в которых не обязательно наличие второй производной. Исходя из этого, первое условие можно считать наиболее универсальным и пригодным для решения разных типов задач.

Отметим, что существует еще два условия перегиба, однако их можно применять только тогда, когда в указанной точке есть конечная производная.

Второе достаточное условие перегиба графика функции

Если мы имеем f”(x0)=0 и  f”'(x0)≠0, то x0 будет абсциссой точки перегиба графика y=f(x).

Пример 5

Условие: задана функция y=160×3-320×2+710x-25 . Определите, будет ли график функции иметь перегиб в точке 3; 45.

Решение

Первое, что нужно сделать, – это убедиться в том, что данная точка вообще будет принадлежать графику этой функции.

y(3)=160·33-320·32-25=2760-2720+2110-25=9-27+42-820=45

Заданная функция определена для всех аргументов, являющихся действительными числами. Вычислим первую и вторую производные:

y’=160×3-320×2+710x-25’=120×2-310x+710y”=120×2-310x+710’=110x-310=110(x-3)

Мы получили, что вторая производная будет обращаться в 0, если x будет равен 0. Значит, необходимое условие перегиба для этой точки будет выполнено. Теперь используем второе условие: найдем третью производную и выясним, будет ли она обращаться в 0 при 3:

y”’=110(x-3)’=110

Третья производная не будет обращаться в нуль ни при одном значении x. Поэтому можно заключить, что данная точка будет точкой перегиба графика функции.

Ответ: Покажем решение на иллюстрации:

Второе достаточное условие перегиба графика функции 

Третье достаточное условие перегиба графика функции

Допустим, что f'(x0)=0, f”(x0)=0, …, f(n)(x0)=0 и f(n+1)(x0)≠0 .В таком случае при четном n мы получим, что x0 – это абсцисса точки перегиба графика y=f(x).

Пример 6

Условие: дана функция y=(x-3)5+1. Вычислите точки перегиба ее графика.

Решение

Данная функция является определенной на всем множестве действительных чисел. Вычисляем производную: y’=((x-3)5+1)’=5·x-34 . Поскольку она тоже будет определена для всех действительных значений аргумента, то в любой точке ее графике будет существовать невертикальная касательная.

Теперь вычислим, при каких значениях вторая производная будет обращаться в 0:

y”=5·(x-3)4’=20·x-33y”=0⇔x-3=0⇔x=3

Мы получили,  что при x=3 график функции может иметь точку перегиба. Используем третье условие, чтобы подтвердить это:

y”’=20·(x-3)3’=60·x-32, y”'(3)=60·3-32=0y(4)=60·(x-3)2’=120·(x-3), y(4)(3)=120·(3-3)=0y(5)=120·(x-3)’=120, y(5)(3)=120≠0

Имеем n=4 по третьему достаточному условию. Это четное число, значит, x=3 будет абсциссой точки перегиба и ей соответствует точка графика функции (3;1).

Ответ: Вот график данной функции с отмеченными выпуклостями, вогнутостями и точкой перегиба:

Третье достаточное условие перегиба графика функции

Точки перегиба графика функции

В задачах на исследование функции в одном из пунктов предлагается найти точки перегиба графика функции. Как это решить? Необходимо понимать, что такое точка перегиба по определению и её признаки. 

Точка перегиба функции – это точка, в которой график функции изменяет свою выпуклость или вогнутость

Как найти?

  1. Найти вторую производную функции $ y”(x) $
  2. Найти точки $ x_0 $, в которых вторая производная равна нулю, имеет разрыв, или не существует
  3. Исследовать каждую найденную точку $ x_0 $ на перегиб, с помощью третьей производной $ y”'(x) $

Как проверить является ли найденная точка $ x_0 $ перегибом? Необходимо найти третью производную $ y”'(x)$. Если $ y”'(x_0) $ ≠ $ 0 $, то исследуемая точка – это точка перегиба.

Примеры решений 

Пример 1
Найти точки перегиба графика функции: $ y = 2x^4-6x^2+1 $
Решение

Найдем первую производную, заданной функции:

$$ y’ = (2x^4 – 6x^2 + 1)’ = 8x^3 – 12x $$

Теперь получим вторую производную:

$$ y” = (y’)’ = (8x^3 – 12x)’ = 24x^2 – 12 $$

Приравниваем к нулю $ y” = 0 $ и решаем уравнение:

$$ 24x^2 – 12 = 0 $$

$$ x^2 = frac{1}{2} $$

$$ x_1 = -frac{1}{sqrt{2}}, x_2 = frac{1}{sqrt{2}} $$

Найдем третью производную и вычислим её значения в точках $ x_1 $ и $ x_2 $:

$$ y”'(x) = (y”(x))’ = 48x $$

$$ y”'(x_1) = y”'(-frac{1}{sqrt{2}}) = -frac{48}{sqrt{2}} $$

$$ y”'(x_2) = y”'(frac{1}{sqrt{2}}) = frac{48}{sqrt{2}} $$

Так как $ y”'(x_1) $ и $ y”'(x_2) $ не равны нулю, то точки $ x_1 $ и $ x_2 $ соответственно точки перегиба функции.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ

$$ x_1 = – frac{1}{sqrt{2}}, x_2 = frac{1}{sqrt{2}} $$

Пример 2
Узнать, является ли для графика функции $ y = cos x $ точка $ x_0 = frac{pi}{2} $ точкой перегиба
Решение

Найдем производные до третьего порядка фунции, указанной в условии к задаче:

$$ y'(x) = (cos x)’ = – sin x $$ $$ y”(x) = (-sin x)’ = -cos x $$ $$ y”'(x) = (-cos x)’ = sin x $$

Вычислим значения $ y”(x_0) text{ и } y”'(x_0) $:

$$ y”(x_0) = y”(frac{pi}{2}) = – cos frac{pi}{2} = 0 $$

$$ y”'(x_0) = y”'(frac{pi}{2}) = sin frac{pi}{2} = 1 $$

Так как $ y”(frac{pi}{2}) = 0 $, а $ y”'(frac{pi}{2}) neq 0 $, то делаем вывод, что точка $ x_0 = frac{pi}{2} $ является точкой перегиба для функции $ y = cos x $

Ответ
Точка $ x_0 = frac{pi}{2} $ точка перегиба

Выпуклость, вогнутость кривой. Точки перегиба.

Исследование
функции на экстремум и определение его
типа (мак­симум или минимум) во многих
случаях проще выполняется не путем
анализа перемены знака производной при
ее прохождении через крити­ческую
точку, а с помощью второй производной.

Определение
1.
Непрерывная линия называется
выпуклой или обра­щенной выпуклостью
вверх на отрезке
[а, b],
если все точки этой линии ле­жат выше
(не ниже) хорды, соединяющей любые две
ее точки
(рис. 4. а).

Аналогично,
вогнутой (обращенной
выпуклостью вниз
)
называет­ся линия, проходящая ниже
(не выше) своих хорд
(рис.
4,
б).

Рис.
4.

Замечание.
В некоторых руководствах
выпуклость и вогнутость иногда
определяются противоположным образом.

Определение
2.
Точки,
отделяющие выпуклые участки линии от
вогнутых (и наоборот), называются точками
перегиба.

Теорема.
Если вторая производная функции
у =
f(х) в
данном проме­жутке значений х
положительна, то кривая вогнута в этом
промежутке, а если отрицательна

выпукла.

Точками
перегиба являются те точки, при переходе
через которые вторая производная меняет
знак.

Линия
называется выпуклой (или
вогнутой) в точке, если
значе­ние ее второй производной в
данной точке меньше (или больше) нуля.

Пример
1.
Выяснить, выпуклая или вогнутая
линия у = 3x3
+ 8 в точке с абсциссой х = 3.

Решение.
Находим производные у’ = 6х2
и у” = 12х. В точке х
= 3 имеем:

у”(3) = 12 • 6
= 36 > 0. Значит, в точке х = 3 данная
линия вогнута.

Нахождение точки перегиба

Чтобы
исследовать функцию на вогнутость,
необходимо опреде­лить знак второй
производной. Если на данном промежутке
f “(х) < 0 для
всех х, то линия вогнута, если f
“(х) > 0
для всех х, то линия
выпукла. Выпуклую часть кривой от
вогнутой отделяет точка перегиба.

Правило
нахождения точек перегиба

Чтобы
найти точку перегиба линии
у
= f(х),
нужно:

1. Найти
вторую производную функции у =
f(х).

2.
Приравняв ее к нулю, решить полученное
уравнение.

3.
Расположив корни второй производной
х1, х2, х3,
в порядке их возрастания, подставить
в выражение для второй производной
сначала лю­бое число, меньшее х1
затем — любое число

х


(х1, х2); если в обоих
слу­чаях получатся разные знаки, то
при х = х1 имеется точка перегиба;
если же одинаковые, то точки перегиба
нет; аналогично определяется знак второй
производной и далее аналогично поступить
с числами х2, х3 и т.
д.

4. Найти
ординаты точек перегиба, т. е. найти
значения функции в соответствующих
точках.

Пример
1. Найти точки перегиба линии
f(х) = х3.

Решение.
Находим: f ‘(х) =
Зх
2; f “(х)
=
6х; 6х = 0 => х = 0;
f(0) = 0.

Следовательно,
A (0;0) – точка
перегиба.

Пример
2.
Найти точки пере­гиба линии
у = х 4 2х2
3.

Решение.
1) у’ = 4х34х;
у” = 12х2 – 4.

2)
у” = 0 => 12х2 = 4; х
= ±

.

3)
При |х| >

имеем у” > 0 — линия вогнута; при
|х| <


имеем у” < 0 — линия выпукла.
Точки ±

являются точками перегиба (рис. 7).


Асимптоты
графика функции.

Определение
1.
Асимптотой
графика функции
y
=
f (x)
называется прямая, обладающая тем
свойством, что расстояние от точки
M(x,
f(x))
до этой прямой стремится к нулю при
неограниченном удалении точки графика
от начала координат.

Определение
2.
Прямая
x = xo
называется вертикальной асимптотой
графика функции

y
=
f(x),
если хотя бы один из односторонних
пределов f(xо
0) =

(предел слева) или f(xо
+
0) =
(предел
справа) равен +

или –

(см. рис. 8).

Определение
3.
Прямая
у = kx + b
называется наклонной асимптотой
графика функции
y
=
f(x)
при x
+
если
функцию y = f(x)
можно представить в виде

f(x)
= kx + b + a(x),

где
a(x)

при x

При x

наклонная асимптота называется правой,
а при x

левой. При k
= 0

асимптота
называется горизонтальной.

Теорема.
Для того чтобы график функции у =
f(x)
имел при



наклонную асимптоту
y
=
kx + b,
необходимо и достаточно, чтобы существовали
пределы

и

.

Пример
2. Рассмотрим функцию y
=

Так
как y = f(x)
= x + 2 +

,
где a (x)
=

при x
,
то прямая у = x +
2 является левой и правой наклонной
асимптотой графика функции.

Замечание.
Для рациональной функции (отношение
двух многочленов) левая и правая асимптоты
совпадают.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #


Загрузить PDF


Загрузить PDF

В дифференциальном исчислении точка перегиба – эта точка кривой, в которой ее кривизна меняет знак (с плюса на минус или с минуса на плюс). Это понятие используется в машиностроении, экономике и статистике для определения существенных изменений в данных.

  1. Изображение с названием Find Inflection Points Step 1

    1

    Определение вогнутой функции. Середина любой хорды (отрезок, соединяющий две точки) графика вогнутой функции лежит либо под графиком, либо на нем.

  2. Изображение с названием Find Inflection Points Step 2

    2

    Определение выпуклой функции. Середина любой хорды (отрезок, соединяющий две точки) графика выпуклой функции лежит либо над графиком, либо на нем.

  3. Изображение с названием Find Inflection Points Step 3

    3

    Определение корней функции. Корень функции – это такое значение переменной «х», при котором у = 0.

    • При построении графика функции корни – это точки, в которых график пересекает ось Х.

    Реклама

  1. Изображение с названием Find Inflection Points Step 4

    1

    Найдите первую производную функции. Посмотрите правила дифференцирования в учебнике; вы должны научиться брать первые производные, и только потом переходить к более сложным вычислениям. Первые производные обозначаются как f ‘(х). Для выражений вида ax^p + bx^(p−1) + cx + d первая производная имеет вид: apx^(p−1) + b(p − 1)x^(p−2) + c.

    • Например, найдите точки перегиба функции f(х) = х^3 +2х -1. Первая производная этой функции имеет вид:

      f ′(x) = (x^3 + 2x − 1)′ = (x^3)′ + (2x)′ − (1)′ = 3x^2 + 2 + 0 = 3×2 + 2

  2. Изображение с названием Find Inflection Points Step 5

    2

    Найдите вторую производную функции. Вторая производная – это производная от первой производной исходной функции. Вторая производная обозначается как f ′′(x).

    • В приведенном выше примере вторая производная имеет вид:

      f ′′(x) = (3×2 + 2)′ = 2 × 3 × x + 0 = 6x

  3. Изображение с названием Find Inflection Points Step 6

    3

    Приравняйте вторую производную к нулю и решите полученное уравнение. Полученный результат будет предполагаемой точкой перегиба.

    • В приведенном выше примере ваш расчет выглядит следующим образом:

      f ′′(x) = 0
      6x = 0
      x=0

  4. Изображение с названием Find Inflection Points Step 7

    4

    Найдите третью производную функции. Чтобы убедиться, что полученный результат на самом деле является точкой перегиба, найдите третью производную, которая является производной от второй производной исходной функции. Третья производная обозначается как f ′′′(x).

    • В приведенном выше примере третья производная имеет вид:

      f ′′′(x) = (6x)′ = 6

    Реклама

  1. Изображение с названием Find Inflection Points Step 8

    1

    Проверьте третью производную. Стандартное правило оценки предполагаемой точки перегиба: если третья производная не равна нулю (то есть f ′′′(x) ≠ 0), то предполагаемая точка перегиба является настоящей точкой перегиба. Проверьте третью производную; если она не равна нулю, то вы нашли настоящую точку перегиба.

    • В приведенном выше примере третья производная равна 6, а не 0. Поэтому вы нашли настоящую точку перегиба.
  2. Изображение с названием Find Inflection Points Step 9

    2

    Найдите координаты точки перегиба. Координаты точки перегиба обозначаются как (x,f(x)), где х – значение независимой переменной «х» в точке перегиба, f(х) – значение зависимой переменной «у» в точке перегиба.

    • В приведенном выше примере при приравнивании второй производной к нулю вы нашли, что х = 0. Таким образом, чтобы определить координаты точки перегиба, найдите f(0). Ваш расчет выглядит следующим образом:

      f(0) = 0^3 +2×0−1 = −1.

  3. Изображение с названием Find Inflection Points Step 10

    3

    Запишите координаты точки перегиба. Координаты точки перегиба – это найденные значения «х» и f(x).

    • В приведенном выше примере точка перегиба – это точка с координатами (0, -1).

    Реклама

Советы

  • Первая производная от свободного члена (простого числа) всегда равна нулю.

Реклама

Об этой статье

Эту страницу просматривали 21 934 раза.

Была ли эта статья полезной?

Содержание:

  • Теоремы о выпуклости функции и точках перегиба
  • Схема исследования функции на выпуклость, вогнутость

График функции $y=f(x)$, дифференцируемой на интервале
$(a ; b)$, является на этом интервале выпуклым, если график
этой функции в пределах интервала $(a ; b)$ лежит не выше любой
своей касательной (рис. 1).

График функции $y=f(x)$, дифференцируемой на интервале
$(a ; b)$, является на этом интервале вогнутым, если график
этой функции в пределах интервала $(a ; b)$ лежит не ниже любой
своей касательной (рис. 2).

Выпуклость и вогнутость функции

Теоремы о выпуклости функции и точках перегиба

Теорема

(Об условиях выпуклости или вогнутости графика функции)

Пусть функция $y=f(x)$ определена на интервале
$(a ; b)$ и имеет непрерывную, не равную нулю в точке
$x_{0} in(a ; b)$ вторую производную. Тогда, если
$f^{prime prime}(x)>0$ всюду на интервале
$(a ; b)$, то функция имеет вогнутость на этом интервале,
если $f^{prime prime}(x) lt 0$, то функция имеет выпуклость.

Определение

Точкой перегиба графика функции $y=f(x)$
называется точка $Mleft(x_{1} ; fleft(x_{1}right)right)$, разделяющая промежутки выпуклости и вогнутости.

Теорема

(О необходимом условии существования точки перегиба)

Если функция $y=f(x)$ имеет перегиб в точке
$Mleft(x_{1} ; fleft(x_{1}right)right)$, то
$f^{prime prime}left(x_{1}right)=0$ или не существует.

Теорема

(О достаточном условии существования точки перегиба)

Если:

  1. первая производная $f^{prime}(x)$
    непрерывна в окрестности точки $x_{1}$;
  2. вторая производная $f^{prime prime}(x)=0$ или не существует в точке $x_{1}$;
  3. $f^{prime prime}(x)$ при переходе через точку $x_{1}$ меняет свой знак,

тогда в точке $Mleft(x_{1} ; fleft(x_{1}right)right)$ функция $y=f(x)$ имеет перегиб.

Схема исследования функции на выпуклость, вогнутость

  1. Найти вторую производную функции.
  2. Найти точки, в которых вторая производная равна нулю или не существует.
  3. Исследовать знак производной слева и справа от каждой найденной точки и сделать вывод об интервалах выпуклости и точках перегиба.

Пример

Задание. Найти интервалы выпуклости/вогнутости функции
$y=frac{x^{3}}{6}-x^{2}+3 x+1$

Решение. Найдем вторую производную заданной функции:

$y^{prime prime}=left(frac{x^{3}}{6}-x^{2}+3 x+1right)^{prime prime}=left(frac{x^{2}}{2}-2 x+3right)^{prime}=x-2$

Находим точки, в которых вторая производная равна нулю, для этого решаем уравнение
$y^{prime prime}(x)=0$:

$y^{prime prime}(x)=x-2=0 Rightarrow x=2$

Исследуем знак второй производной слева и справа от полученной точки:

Так как на промежутке $(-infty ; 2)$ вторая производная
$y^{prime prime}(x) lt 0$, то на этом промежутке функция
$y(x)$ выпукла; в силу того, что на промежутке
$(2 ;+infty)$ вторая производная
$y^{prime prime}(x)>0$ – функция вогнута. Так как при переходе через
точку $x=2$ вторая производная сменила знак, то
эта точка является точкой перегиба графика функции.

Ответ. Точка $x=2$ – точка перегиба графика функции.

На промежутке $(-infty ; 2)$ функция выпукла, на промежутке
$(2 ;+infty)$ функция вогнута.

Читать дальше: асимптоты графика функции.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Добавить комментарий