Содержание:
- Формула
- Примеры нахождения орта вектора
Формула
Чтобы найти орт $bar{e}$ вектора
$bar{a}$, нужно вектор
$bar{a}$ поделить на его
длину:
$$bar{e}=frac{bar{a}}{|bar{a}|}$$
Если вектор задан на плоскости своими координатами
$bar{a}=left(a_{x} ; a_{y}right)$, то его орт вычисляется по формуле:
$$bar{e}=frac{bar{a}}{|bar{a}|}=frac{a_{x} cdot bar{i}+a_{y} cdot bar{j}}{sqrt{a_{x}^{2}+a_{y}^{2}}}=left(frac{a_{x}}{sqrt{a_{x}^{2}+a_{y}^{2}}} ; frac{a_{y}}{sqrt{a_{x}^{2}+a_{y}^{2}}}right)$$
Если вектор задан в пространстве и имеет координаты
$bar{a}=left(a_{x} ; a_{y} ; a_{z}right)$, то его орт вычисляется по формуле:
$$bar{e}=frac{bar{a}}{|bar{a}|}=frac{a_{x} cdot bar{i}+a_{y} cdot bar{j}+a_{z} cdot bar{k}}{sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}=$$
$$=left(frac{a_{x}}{sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}} ; frac{a_{y}}{sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}} ; frac{a_{z}}{sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}right)$$
Примеры нахождения орта вектора
Пример
Задание. На плоскости задан вектор
$bar{a}=(-2 ; 2)$ . Найти его орт.
Решение. Для нахождения орта заданного вектора воспользуемся формулой:
$$bar{e}=frac{bar{a}}{|bar{a}|}=frac{a_{x} cdot bar{i}+a_{y} cdot bar{j}}{sqrt{a_{x}^{2}+a_{y}^{2}}}$$
Подставляя заданные координаты, получим:
$$bar{e}=frac{-2 cdot bar{i}+2 cdot bar{j}}{sqrt{(-2)^{2}+2^{2}}}=frac{-2 cdot bar{i}+2 cdot bar{j}}{sqrt{4+4}}=frac{-2 cdot bar{i}+2 cdot bar{j}}{sqrt{8}}=$$
$$=frac{-2 cdot bar{i}+2 cdot bar{j}}{2 sqrt{2}}=-frac{1}{sqrt{2}} cdot bar{i}+frac{1}{sqrt{2}} cdot bar{j}$$
Таким образом, искомый орт вектора $bar{a}$
имеет координаты $bar{e}=left(-frac{1}{sqrt{2}} ; frac{1}{sqrt{2}}right)$
Ответ. $bar{e}=left(-frac{1}{sqrt{2}} ; frac{1}{sqrt{2}}right)$
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Даны точки
$A(3 ;-1 ; 4)$ и $B(2 ; 0 ; 2)$ . Найти орт вектора
$overline{A B}$
Решение. Найдем координаты вектора
$overline{A B}$, для этого из координат конца вектора (точки
$B$ ) вычтем соответствующие координаты начала (точки
$A$ ):
$$overline{A B}=(2-3 ; 0-(-1) ; 2-4)=(-1 ; 1 ;-2)$$
Для нахождения орта полученного вектора воспользуемся формулой
$$bar{e}=frac{a_{x} cdot bar{i}+a_{y} cdot bar{j}+a_{z} cdot bar{k}}{sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}$$
Подставим в неё координаты вектора $overline{A B}$, будем иметь:
$$bar{e}=frac{-1 cdot bar{i}+1 cdot bar{j}-2 cdot bar{k}}{sqrt{(-1)^{2}+1^{2}+(-2)^{2}}}=frac{-1 cdot bar{i}+1 cdot bar{j}-2 cdot bar{k}}{sqrt{1+1+4}}=$$
$$=frac{-1 cdot bar{i}+1 cdot bar{j}-2 cdot bar{k}}{sqrt{6}}=-frac{1}{sqrt{6}} cdot bar{i}+frac{1}{sqrt{6}} cdot bar{j}-frac{2}{sqrt{6}} cdot bar{k}$$
Таким образом, орт вектора $overline{A B}$ имеет координаты $bar{e}=left(-frac{1}{sqrt{6}} ; frac{1}{sqrt{6}} ;-frac{2}{sqrt{6}}right)$
Ответ. $bar{e}=left(-frac{1}{sqrt{6}} ; frac{1}{sqrt{6}} ;-frac{2}{sqrt{6}}right)$
Читать дальше: как найти вектор по точкам.
Единичный вектор
Единичный вектор (орты координатных осей) — это вектор, длина которого равна единице.
i — единичный вектор оси абсцисс;
j — единичный вектор оси ординат;
k — единичный вектор оси аппликат.
i⊥j⊥k, i=j=k=1
В прямоугольной системе координат в пространстве координаты векторов равны:
i(1;0;0), j(0;1;0), k(0;0;1)
Единичные векторы являются некомпланарными.
Любой вектор можно разложить в виде вектора по ортам координатных осей, формула ниже.
a=xi+уj+zk
где x, y, z — координаты вектора проекции на соответствующие координатные оси.
Эта формула называется разложением вектора по ортам координатных осей.
Единичный вектор определяется по формуле:
Дан вектор а = (1; 2; -2)
Требуется найти длину (модуль) и единичный вектор e направления вектора а
Находим длину вектора a
затем вычисляем единичный вектор e
Векторное произведения единичных векторов
Если направление кратчайшего пути от первого вектора ко второму вектору совпадает с направлением стрелки, то произведение равно третьему вектору, а если не совпадает, то третий вектор берется со знаком «минус» . Смотрите схему 1.
На основании схемы получаем таблицу векторного произведения единичных векторов
Пример 1
Найти векторное произведение iхj, где i, j — единичные векторы (орты) правой системы координат.
Решение
1) Так как длины основных векторов равны единице масштаба, то площадь параллелограмма MOKT численно равна единице. Значит, модуль векторного произведения равен единице.
2) Так как перпендикуляр к плоскости MOKT есть ось OZ, то искомое векторное произведение есть вектор, коллинеарный с вектором k; а так как оба они имеют модуль 1, то искомое векторное произведение равно либо k, либо -k.
3) Из этих двух возможных векторов надо выбрать первый, так как векторы i, j, k образуют правую систему (а векторы i, j, -k — левую).
iхj=k
Пример 2
Найти векторное произведение jхi.
Решение
Как в примере 1, заключаем, что вектор jхi равен либо k, либо —k. Но теперь надо выбрать -k, ибо векторы j, i, —k образуют правую систему (а векторы i, j, —k -левую).
jхi = −k
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 3.5 / 5. Количество оценок: 4
Что такое орты
Орт:
- это вектор,
- он лежит на оси,
- направлен туда же, куда направлена ось,
- его длина равна единице.
На рисунке 1 изображены орты для двумерного а) и трехмерного б) случаев.
Орты сонаправлены с осями, на которых они лежат:
- Орт ( vec ) направлен вдоль оси Ox;
- Орт ( vec ) направлен вдоль оси Oy;
- Орт ( vec ) направлен вдоль оси Oz;
Орты обладают единичной длиной:
Все три орта взаимно перпендикулярны. Перпендикулярные векторы часто называют ортогональными.
Любые два орта из трех, лежат в одной плоскости:
- Орты ( vec ) и ( vec ) лежат в плоскости xOy;
- Орты ( vec ) и ( vec ) лежат в плоскости xOz;
- Орты ( vec ) и ( vec ) лежат в плоскости yOz;
Векторы, лежащие в одной плоскости, называют компланарными. Об этом подробно написано «здесь» (откроется в новой вкладке).
Координаты вектора можно указать двумя способами. Либо, перечислив эти координаты в скобках, либо, с помощью разложения вектора по ортам.
Как найти орт вектора
Формула
Примеры нахождения орта вектора
Задание. На плоскости задан вектор $bar=(-2 ; 2)$ . Найти его орт.
Решение. Для нахождения орта заданного вектора воспользуемся формулой:
Подставляя заданные координаты, получим:
Задание. Даны точки $A(3 ;-1 ; 4)$ и $B(2 ; 0 ; 2)$ . Найти орт вектора $overline$
Решение. Найдем координаты вектора $overline$, для этого из координат конца вектора (точки $B$ ) вычтем соответствующие координаты начала (точки $A$ ):
Для нахождения орта полученного вектора воспользуемся формулой
Подставим в неё координаты вектора $overline$, будем иметь:
Таким образом, орт вектора $overline$ имеет координаты $bar=left(-frac<1><sqrt<6>> ; frac<1><sqrt<6>> ;-frac<2><sqrt<6>>right)$
[spoiler title=”источники:”]
http://www.webmath.ru/poleznoe/formules_13_15.php
[/spoiler]
Как найти орт вектора
Вектором в геометрии называют направленный отрезок или упорядоченную пару точек евклидова пространства.Ортом вектора является единичный вектор нормированного векторного пространства или вектор, норма (длина) которого равна единице.
Вам понадобится
- Знания по геометрии.
Инструкция
Для начала необходимо вычислить длину вектора. Как известно, длина (модуль) вектора равна корню квадратному из суммы квадратов координат. Пусть дан вектор с координатами: a(3, 4). Тогда его длина равна |a| = (9 + 16)^1/2 или |a|=5.
Чтобы найти орт вектора a, необходимо поделить каждую его который называется ортом или единичным вектором. Для вектора а(3, 4) ортом будет являться вектор а(3/5, 4/5). Вектор a’ будет являться единичным для вектора а.
Для проверки, правильно ли найден орт, можно проделать следующее: найти длину полученного орта, если она равна единице, то все найдено верно, если нет, то в расчеты закралась ошибка. Проверим правильно ли найден орт a’. Длина вектора a’ равна: a’ = (9/25 + 16/25)^1/2 = (25/25)^1/2 = 1. Итак, длина вектора a’ равна единице, значит орт найден верно.
Видео по теме
Обратите внимание
Орт нулевого вектора не существует, так как длина нулевого вектора равна нулю.
Полезный совет
Для того, чтобы понять единичный ли вектор, необходимо найти его длину. Если она равна единице, то вектор единичный.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Литература: (1,
с. 34-42; 2, с. 58-58; 3, с. 222-231)
-
Координаты
точек
Декартова
прямоугольная система координат в
пространстве определяется заданием
единицы масштаба для измерения длин и
трёх пересекающихся в точке
перпендикулярных осей:– ось абсцисс, ось– ось ординат и– ось аппликат. Если в пространстве
задана точка, то, проектируя её на
соответствующие оси, получим три
координаты точки в пространстве.
-
Координаты
векторов
Положение
координатных осей можно задать с помощью
единичных векторов
,,,
направленных соответственно по осям.
Векторы,,называются основными или базисными
ортами.
Пусть задан в
пространстве вектор
своими проекциями на координатные оси:,,.
Тогда имеет место
формула:
(3)
Формула (3) называется
разложением вектора по основным ортам.
Проекции
,,векторана координатные оси называются его
координатами. Зная координаты вектора,
можно записать разложение вектора по
основным ортам и, наоборот, зная разложение
вектора по основным ортам, определяют
координаты вектора (коэффициенты при
ортах – есть координаты вектора).
-
Действия над
векторами, заданными координатами
Равные вектора
имеют равные координаты.
Вектор
,
направленный из начала координат в
точку,
называется радиусом – вектором точки.
Проекции радиуса-вектора равны координаты
точки М, т.е.
(4)
Если даны координаты
точек
и,
то координаты вектораполучаются вычитанием из координат его
конца В координат начала А:
(5)
При сложении
(вычитании) векторов их координаты
складываются (вычитаются); при умножении
вектора на число все го координаты
умножаются на это число, т.е. если
,,
то
(6)
(7)
Если векторы
иколлинеарные, тои, следовательно,
(8)
Формула (8) выражает
условие коллинеарности двух векторов:
для того, чтобы два вектора были
коллинеарны, необходимо и достаточно,
чтобы их проекции были пропорциональны.
-
Длинна вектора
и его направляющие косинусы
Длина вектора
вычисляется по формуле:
(9)
Если же вектор
задан координатами своих концов А и В,
то длина его вычисляется по формуле:
(10)
С помощью формулы
(10) находится расстояние между двумя
точками А и В.
Направление вектора
в пространстве определяется углами
,
которые вектор составляет с осями
координат:,,.
Косинусы этих углов называются
направляющими косинусами.
,
,(11)
Направляющие
косинусы являются координатами орта
вектора
,
(12)
Направляющие
косинусы связаны между собой соотношением:
-
Примеры
1) Определить, при
каких значениях
ивекторыиколлинеарны.
Решение. Из формулы
разложения вектора по ортам (3) определим
координаты данных векторов:
;.
Из условия коллинеарности векторов (8)
получим:
.
2) Даны три
последовательные вершины параллелограмма
,,.
Найти четвёртую вершину,
противоположную вершине В.
Решение. Так как
– параллелограмм, то
Из равенства
векторов получим :
;;.
Следовательно,
3) Найти длину и
направляющие косинусы вектора
,
гдеи.
Решение. Используя
формулу (10), имеем:
Тогда по формулам
(11):
,
,.
4) Даны векторы
и.
Найти координаты вектора.
Решение. По формуле
(7) найдём:
Тогда по формуле
(6):
-
Вопросы для
самопроверки
Как задаётся
прямоугольная декартова система
координат?
Что такоё основные
орты?
Запишите формулу
разложения вектора по ортам. Как
определяются координаты и компоненты
вектора?
Что называется
направляющими косинусами вектора и как
они определяются?
Как проводятся
линейные операции над векторами,
заданными своими координатами?
При каких условиях
векторы коллинеарны?
Как находится орт
вектора
,
заданного своими координатами?
-
Задания для
самостоятельного решения-
Найти орт вектора
. -
Найти длину и
направляющие косинусы вектора
-
Найти вектор
,
еслии. -
Даны два вектора
и.
Определить проекцию вектора. -
Определить, при
каких значениях
ивекторыиколлинеарны. -
Векторы
исовпадают со сторонами треугольника
АВС. Определить координаты векторов,
приложенных к вершинам треугольника
и совпадающих с его медианами АМ,,
СР. -
Даны три вектора
,и.
Найти разложение векторапо базису.
-
-
Ответы к
примерам
2.7.1.
2.7.2.
2.7.3.
2.7.4.
2.7.5.
2.7.6.
2.7.7.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание:
Векторная алгебра
Векторная алгебра – это раздел векторного исчисления, изучающий линейные операции с векторами и их геометрические свойства; часть линейной алгебры, занимающаяся векторными пространствами; различные векторные алгебры XIX века (например, кватернионов, бикватернионов, сплит-кватернионов).
Векторы и линейные операции над ними
Займемся теперь таким важным как в самой математике, так и в ее многочисленных приложениях, понятием вектора.
Определение: Вектором, на плоскости или в пространстве называется отрезок прямой с заданным на нем направлением, т. е. одна из его граничных точек считается начальной, а вторая – конечной.
Обозначать векторы мы будем строчными латинскими буквами
Длина отрезка, изображающего вектор называется его длиной и обозначается через Вектор с совпадающими начальной и конечной точками называется нуль-вектором. Для него используется обозначение
По определению, два вектора считаются равными, если один из них можно преобразовать в другой с помощью параллельного переноса.
Учитывая приведенное определение, всюду в дальнейшем мы без специальных оговорок будем перемещать вектор параллельным переносом в любую удобную для нас точку.
Два вектора называются коллинеарными (обозначение ), если отрезки их изображающие параллельны.
Аналогично, векторы а и b называются ортогональными (обозначение ), если соответствующие отрезки перпендикулярны.
Три вектора называются компланарными, если после приведения их общему началу, они будут расположены в одной плоскости.
Углом между векторами приведенными к общему началу, называется меньший из двух углов между соответствующими отрезками. Обозначать угол мы будем строчными греческими буквами … или через
Два ненулевых вектора мы будем считать одинаково направленными, если и противоположно направленными, если
Введем теперь линейные операции над векторами.
а) Умножение числа на вектор.
Произведением действительного числа на векторназывается вектор длина которого равна а направление его совпадает с направлением вектора если и имеет противоположное с ним направление, если Если или
В частности, вектор обозначается через и называется вектором, противоположным вектору
Если то произведение мы будем иногда записывать в виде
Из приведенного определения сразу же следует, что коллинеарные векторы линейно связаны, т. е. существует константа такая,что В качестве такой константы следует
взять число Если то В частности, если то вектором единичной длины с направлением данного вектора является вектор
b) Сложение векторов.
Суммой двух векторов называется вектор который находится по правилу треугольника
или по равносильному ему правилу параллелограмма
Вектор называется разностью векторов
Свойства линейных операций над векторами аналогичны соответствующим свойствам действительных чисел.
Проекцией вектора на вектор называется число
Геометрически очевидны следующие свойства проекции:
Пример №1
Пусть Е и F – середины сторон AD и ВС соответственно выпуклого четырехугольника ABCD. Доказать, что
Доказательство. Из четырехугольников EDCF и EABF по правил}’ сложения векторов получим:
Сложив данные равенства и учитывая, что будем иметь:
что и требовалось.
Базис и декартова система координат
Определение: Базисом на плоскости называется упорядоченная пара неколлинеарных векторов. Базисом в пространстве называется упорядоченная тройка некомпланарных векторов.
Обозначение: — базис на плоскости, — базис в пространстве. Всюду в дальнейшем, не оговаривая это особо, будем рассматривать только положительно ориентированные базисы, т. е. базисы, у которых кратчайший поворот от вектора к вектору совершается против часовой стрелки, если наблюдение ведется со стороны вектораСформулируем теперь фундаментальное свойство базиса.
Теорема. Любой вектор единственным образом разлагается по базису, т. е. представляется в виде где действительные числа – координаты вектора в базисе
Приведем геометрическое доказательство этого утверждения.
Вектор можно единственным образом представить как большую диагональ параллелепипеда, ребра которого, параллельны базисным векторам. Тогда по правилу сложения векторов В виду коллинеарности векторов соответствующим базисным векторам, мы можем записать, что — некоторые действительные числа. Отсюда и следует искомое разложение.
Если базис зафиксирован, то факт, что вектор а в этом базисе имеет координаты коротко записывается как
Из доказанной теоремы следует, что при выполнении линейных операций над векторами точно также преобразуются и их координаты, т. е. если если Отсюда, в частности, следует, что два вектора коллинеарны тогда и только тогда, когда их координаты пропорциональны, т. е.
Рассмотрим теперь ортонормированный базис т.е. базис, в котором все векторы имеют единичную длин}’ и попарно ортогональны. Векторы этого базиса мы будем называть ортами. Пусть в этом базисе
Как видно из чертежа, координаты вектора в ортонормированном базисе представляют собой проекции этого вектора на соответствующие орты. т. е.
Величины т. е. косинусы углов, которые образует данный вектор с ортами к соответственно, называются направляющими косинусами вектора Единичный вектор имеет координаты
Очевидно также, что
Свяжем теперь с ортонормированным базисом декартову (прямоугольную) систему координат. Для этого поместим начала ортов в некоторую точку О, ось Ох (абсцисс) направим вдоль орта ось (ординат) — вдоль орта наконец, ось (аппликат) направим вдоль орта
В выбранной системе координат координаты радиуса-вектора мы будем называть координатами точки М и записывать
Если известны координаты начальной и конечной точек вектора, то из равенства слезет, что его координаты равны
и, значит, расстояние между точками вычисляется по формуле
Найдем теперь координаты точки М, делящей отрезок с концами в точках в данном
отношении Так как Отсюда, переходя к координатам получим:
Следовательно, координаты искомой точки вычисляются по формулам:
Найдем, в частности, координаты середины отрезка. Здесь А = 1, поэтому
Пример №2
Треугольник задан координатами своих вершин Найти координаты точки пересечения его медиан. Решение.
Пусть – середина отрезка – точка пересечения медиан. Тогда
По известному свойству точки пересечения медиан и потому
Подставив сюда найденные координаты точки ползучим:
Таким образом, координаты точки пересечения медиан треугольника равны средним арифметическим соответствующих координат его вершин.
Замечание. Базисом n-мерного пространства называется упорядоченная совокупность n векторов
обладающая тем свойством, что любой вектор единственным образом представляется в виде линейной комбинации базисных векторов (1), т.е. существуют действительные числа (координаты векторав базисе (1)) такие, что
В качестве базиса в мы можем взять, например, векторы
так как, очевидно, любой вектор однозначно представляется в виде (2).
Скалярное произведение векторов
Определение: Скалярным произведением векторов называется число
Из этого определения сразу же следует, что
и таким образом, если один из векторов имеет единичную длину, то их скалярное произведение равно проекции второго вектора на единичный.
Отметим основные свойства скалярного произведения.
Первые два и последнее свойства немедленно следуют из определения скалярного произведения, а третье и четвертое – из сформулированных в §1 свойств проекции.
Найдем теперь представление скалярного произведения в координатах. Пусть в орто-нормированном базисе векторы имеют координаты Заметив, что по свойствам 1) и 5) скалярного произведения
перемножим векторыскалярно, используя свойства 2) – 4):
Таким образом, скалярное произведение в ортонормированном базисе равно сумме произведений соответствующих координат векторов.
Пример №3
Разложить вектор на две ортогональные составляющие, одна из которых коллинеарна вектору
Решение.
Из чертежа следует, что – искомое разложение. Найдем векторы Составляющая коллинеарная вектору равна, очевидно, вектору проекции и, следовательно,
Тогда вторая ортогональная составляющая вектора равна
В заключение параграфа рассмотрим одно простое приложение скалярного произведения в механике. Пусть под действием постоянной силы материальная тотп<а переместилась по прямой из положения В в положение С.
Найдем работу этой силы. Для этого разложим вектор силы на две ортогональные составляющие. одна из которых коллинеарна вектору перемещения Тогда
Составляющая работы не совершает, следовательно, работа силы равна работе составляющей и, таким образом,
Окончательно, работа силы, под действием которой материальная точка перемещается по отрезку прямой из положения В в положение С, вычисляется по формуле:
Замечание. Скалярным произведением векторов n-мерного пространстваназывается число равное произведению первого вектора, записанного строкой, на второй вектор, записанный столбцом. Таким образом, если
то
Несложной проверкой мы можем убедиться в том, что таким образом определенное скалярное произведение в обладает свойствами 2) — 4) скалярного произведения векторов на плоскости или в пространстве.
Длиной вектора называется число
Векторы называются ортогональными, если Векторы
составляют ортонормированный базис пространства , так как каждый из этих векторов имеет единичную длину и все они попарно ортогональны.
Любой вектор мы можем рассматривать как точку
n-мерного пространства с координатами
Взяв еще одну точку соответствующую вектору мы под расстоянием между точками М и N будем понимать длину вектора т. е. число
Таким образом переопределенное пространство с расстоянием (2) между точками мы будем называть евклидовым пространством, сохранив для него то же обозначение.
Совокупность точки О(0.0,…, 0) и ортонормированного базиса (1) называется декартовой системой координат евклидова пространства R”. Точка 0(0,0,… ,0) называется, естественно, началом координат.
Векторное произведение векторов
Определение: Векторным произведением некоялинеарных векторов называется вектор такой, что
Из этого определения следует, что площадь параллелограмма, построенного на векторах и равна длине векторного произведения , т. е.
Сформулируем основные свойства векторного произведения.
Первые два свойства очевидным образом следуют из определения векторного произведения. Доказательство третьего ввиду его громоздкости мы приводить не будем.
Найдем формулу для вычисления векторного произведения в координатах. Пусть векторы и в ортонормированном базисе имеют координаты Учитывая, tito по определению векторного произведения
раскроем скобки в векторном произведении принимая во внимание свойства 1) – 3):
Полученный вектор мы можем записать в виде следующего символического определителя.
вычислять который удобно разложением по первой строке.
Пример №4
Найти составляющую вектора , ортогональную плоскости векторов .
Решение.
Из чертежа видно, что искомая составляющая представляет собой вектор проекции данного вектора на векторное произведение и, следовательно.
Переходим к вычислениям:
Тогда
Среди многочисленных приложений векторного произведения отметим его применение в механике при вычислении момента силы.
Итак, пусть сила приложена к материальной точке В. Моментом этой силы относительно неподвижной точки С называется вектор
Смешанное произведение векторов
Определение: Смешанным произведением трех векторов называется число
Выясним геометрический смысл смешанного произведения для тройки некомпланарных векторов.
По определению смешанного произведения
Поскольку – площадь параллелограмма, построенного на векторах (§4)
-высота параллелепипеда построенного на векторах то
– объем параллелепипеда. Таким образом, абсолютная величина смешанного произведения трех векторов равна объему параллелепипеда, построенного на этих векторах.
Если векторы заданы своими координатами в ортонормированном базисе , т.е. то учитывая формулы для вычисления скалярного и векторного произведений (§3, §4), получим:
Следовательно (глава I. §2, пункт 3, свойство 7)), в координатах смешанное произведение вычисляется по формуле:
Докажем, пользуясь этой формулой, некоторые свойства смешанного произведения.
что следует из свойства 4) определителя (глава I. §2, пункт 3). Таким образом, в смешанном произведении можно менять местами знаки скалярного и векторного произведения, и поэтому для него используется более короткое обозначение . которым мы и будем пользоваться в дальнейшем.
Эти свойства смешанного произведения также являются прямыми следствиями соответствующих свойств определителя.
Докажем еще одно, геометрическое свойство смешанного произведения.
Теорема. Три вектора компланарны тогда и только тогда, когда их смешанное произведение равно нулю.
Доказательство. Докажем необходимость условия теоремы. Пусть векторы компланарны. Очевидно, что, если хотя бы один из них равен нулю, то и их смешанное произведение равно нулю. Если же все они ненулевые, то, ввиду их компланарности, векторное произведение ортогонально вектору с и, следовательно, . Аналогично проверяется достаточность условия теоремы.
Следствие. Три вектора образуют базис в том и только в том случае, когда их смешанное произведение отлично от нуля.
Заметим, кроме того, что, если , то угол между векторами -острый (тупой) и, следовательно, базис является положительно (отрицательно) ориентированным.
Пример №5
Доказать, что пять точек
расположены в одной плоскости.
Решение. Рассмотрим векторы Так как
то по доказанной выше теореме эти векторы компланарны и, стало быть. точки находятся в одной плоскости Аналогично покажем, что и точки также принадлежат одной плоскости . Действительно,
так как первая и третья строки в определителе пропорциональны. Плоскости имеют три общие точки , следовательно, они совпадают и, таким образом, все пять точек расположены в одной плоскости.
Векторы и линейные операции над ними
Определение: Вектором называется направленный отрезок (рис. 1).
А – начало, В – конец вектора
Рис. 1
Так как вектор определяется его началом и концом, то можно сформулировать эквивалентное данному определение.
Определение: Вектором называется упорядоченная пара точек.
Определение: Длина вектора – расстояние между его началом и концом.
Определение: Два вектора называются равными, если они имеют равные длины и одинаково направлены. При этом одинаково направленными называются векторы, лежащие на параллельных прямых и имеющие одинаковые направления.
Из этого определения следует, что точка приложения вектора значения не имеет, то есть вектор не изменяется, если его перемещать параллельно самому себе, сохраняя длину. Такие векторы называются свободными.
Если начало и конец вектора совпадают, он называется нулевым:
– нулевой вектор: его направление не определено, а длина .
Определение: Векторы называются коллинеарными, если они лежат на параллельных прямых:
Так как направление нулевого вектора не определено, то он коллинеарен любому другому.
Определение: Векторы называются компланарными, если они параллельны одной плоскости.
Нулевой вектор компланарен любой системе компланарных векторов.
Линейные операции над векторами
Линейными называются операции сложения векторов и умножения на число.
Сложение
а) Правило параллелограмма (рис.2): начала совмещаются в одной точке, и – диагональ параллелограмма, построенного на .
б) Правило треугольника (рис. 3): начало совмещается с концом направлен от начала к концу .
в) Правило сложения нескольких векторов (рис. 4).
Вектор замыкает ломаную линию, построенную таким образом: конец предыдущего вектора совмещается с началом последующего и направлен от начала к концу .
Умножение на число
Определение: Произведением вектора на число называется вектор , aудовлетворяющий условиям:
а)
б)
в) , если ,a если , если .
Произведение называется вектором, противоположным вектору . Очевидно, .
Определение: Разностью называется сумма вектора и вектора, противоположного (рис. 5).
Начала совмещаются в одной точке, и направлен от конца к концу .
Свойства линейных операций
Определение: Результат конечного числа линейных операций над векторами называется их линейной комбинацией: – линейная комбинация векторов с коэффициентами
Пример №6
Пусть М – точка пересечения медиан треугольника АВС, а О – произвольная точка пространства. Представить как линейную комбинацию
(рис. 6).
. Так как точка пересечения медиан треугольника делит их в отношении 2:1, считая от вершины, то из правила параллелограмма следует, что
По правилу треугольника , то есть – линейная комбинация с коэффициентами
Теорема: Пусть – неколлинеарные векторы. Тогда любой компланарный с ними вектор c может быть представлен в виде
где коэффициенты (2.1) определяются единственным образом.
Представление вектора в виде (2.1) называется разложением его по двум неколлинеарным векторам.
Доказательство:
- Пусть среди есть два коллинеарных, например:
- Пусть среди коллинеарных нет, тогда совместим начала всех трех векторов в одной точке. Построим параллелограмм, диагональ которого совпадает с , а стороны параллельны прямым, на которых лежат (рис. 7).
Тогда c но Поэтому
Докажем единственность разложения. Предположим, что и Тогда, вычитая одно равенство из другого, получим:
Если , что противоречит условию. Теорема доказана.
Теорема: Пусть – некомпланарные векторы. Тогда любой вектор может быть представлен в виде
причем единственным образом.
Представление вектора в виде (2.2) называется разложением его по трем некомпланарным.
Доказать самостоятельно.
Проекция вектора на ось
Проекция вектора на ось — это скалярная величина (число), равная длине геометрической проекции вектора, если направление оси и геометрической проекции совпадают; или число, противоположное длине геометрической проекции вектора, если направления геометрической проекции и оси — противоположные.
Координаты вектора
Осью называется направленная прямая.
Определение: Ортом оси называется единичный вектор
направление которого совпадает с направлением оси.
Определение: Ортогональной проекцией точки М на ось называется основание перпендикуляра, опущенного из М на .
Определение: Ортогональной проекцией вектора на ось называется длина отрезка этой оси, заключенного между ортогональными проекциями его начала и конца, взятая со знаком «+», если направление вектора совпадает с направлением оси, и со знаком «–», если эти направления противоположны (рис. 8).
Определение: Углом между вектором и осью называется угол, на который нужно повернуть в положительном направлении ось до совпадения ее направления с направлением вектора (положительным считается поворот против часовой стрелки).
Очевидно, проекцию вектора на ось можно найти по формуле
Можно показать, что проекция линейной комбинации векторов равна та-
кой же линейной комбинации их проекций:
В частности, проекция суммы векторов равна сумме их проекций:
Рассмотрим прямоугольную декартову систему координат ХОY. Обозначим – орт оси ОХ, – орт оси OY. Выберем точку A , и пусть x, y – проекции ее на ОХ и OY,то есть координаты этой точки (рис. 9).
Аналогично в пространственной системе OXYZ – орты координатных осей) (рис. 10):
– разложение по ортам координатных осей (единственно по теореме 2).
Таким образом, если задана прямоугольная декартова система координат (пдск), то со всяким пространственным вектором можно связать три числа x,y,z (или два числа x, y, если вектор плоский), которые являются коэффициентами разложения этого вектора по ортам координатных осей, а также являются проекциями этого вектора на координатные оси.
Определение: Координатами вектора в любой пдск называются коэффициенты в разложении этого вектора по ортам координатных осей.
Таким образом, можно дать еще одно определение вектора.
Определение: Вектором называется упорядоченная тройка чисел (упорядоченная пара, если вектор плоский).
Пример №7
Если и наоборот, если
Так как, с одной стороны, вектор – объект, имеющий длину и направление, а с другой, – упорядоченная тройка чисел, то, зная длину и направление, можно определить его координаты и наоборот. Направление вектора в заданной системе координат характеризуется его направляющими косинусами (рис. 11):
Из этих формул очевидно следует основное свойство направляющих косинусов:
Если известны длина и направляющие косинусы вектора, то его координаты вычисляются по формулам:
Пусть AB – произвольный вектор в системе OXYZ, OA,OB – радиус-векторы его начала и конца,
Тогда
(см. свойства линейных операций над векторами). Таким образом,, то есть для определения координат вектора надо из координат его конца вычесть координаты начала.
Определение: Базисом в пространстве называется любая упорядоченная тройка некомпланарных векторов (рис. 13).
Если – базис, то – другой базис, так как изменился порядок следования векторов.
Определение: Базис называется прямоугольным декартовым, если базисные векторы взаимно перпендикулярны и длина каждого равна 1.
Такой базис принято обозначать
Из теоремы 2 следует, что всякий вектор может быть разложен по базису , то есть представлен в виде: . Числа x,y,z называются координатами в базисе .
Определение: Базисом на плоскости называется любая упорядоченная пара неколлинеарных векторов.
Если – базис, то представление вектора в виде называется разложением по базису и x, y – координаты в этом базисе.
Определение: Базисом на прямой называется любой ненулевой вектор этой прямой.
Деление отрезка в данном отношении
Рассмотрим задачу: дан отрезок AB . Найти точку D , которая делит AB в заданном отношении (рис. 14).
Введем прямоугольную декартову систему координат (пдск) OXYZ, тогда
Обозначим
Так как (лежат на одной прямой) и то
Переходя от этого векторного равенства к равенству соответствующих координат, получим:
ЗАМЕЧАНИЕ 1. Если D – середина отрезка AB , то k 1, поэтому
ЗАМЕЧАНИЕ 2. Если k < 0, , то точка D лежит за пределами AB : так как , то при
В этом случае
Скалярное произведение векторов
Определение: Скалярным произведением векторов называется скаляр (число), равный
Скалярное произведение обозначается так: или
Так как (рис. 16) или то
Свойства скалярного произведения
1. – очевидно из определения.
2.
Доказательство:
3.
Доказательство:
а) – очевидно.
б)
в) В этом случае
4.
Отсюда следует, что
Необходимым и достаточным условием перпендикулярности векторов является равенство нулю их скалярного произведения:
5.
Доказательство:
а) пусть
б) пусть
В первом и втором случаях один из сомножителей – нулевой вектор. Его направление не определено, поэтому можно считать, что . В третьем случае
Используя свойства 4 и 5, составим таблицу вычисления скалярного произведения базисных векторов
Пусть в некоторой пдск . Найдем скалярное произведение этих векторов:
Таким образом,
Пример №8
Найти, при каком значении x векторы перпендикулярны.
Два вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю (свойство 5), поэтому найдем скалярное произведение по формуле (2.5):
Пример №9
Найти угол между биссектрисой AD и медианой если
Так как
то
Найдем координаты векторов . Точка M – середина BC , поэтому по формулам (2.4)
По теореме о биссектрисе внутреннего угла треугольника
Чтобы найти k , вычислим длины AC и AB :
Разделим отрезок CB в данном отношении по формулам (2.3):
отсюда
Заметим, что . Это замечание позволит нам не иметь дело с дробями, так как
Пример №10
Найти
Воспользуемся свойствами 1–4 скалярного произведения:
Отсюда
ЗАМЕЧАНИЕ. Так как работа силы по перемещению материальной точки вдоль вектора вычисляется по формуле
Определение векторного произведения векторов
Определение: Тройка некомпланарных векторов , имеющих общее начало, называется правой (левой), если конца третьего вектора c вращение первого вектора ко второму вектору по кратчайшему пути наблюдается против (по) часовой стрелки (рис. 17).
Определение: Векторным произведением вектора на вектор называется вектор, удовлетворяющий условиям:
- ( перпендикулярен плоскости векторов и ).
- Направление таково, что тройка– правая.
Векторное произведение обозначается так:
ЗАМЕЧАНИЕ 1. Геометрический смысл векторного произведения: длина векторного произведения численно равна площади параллелограмма, построенного на этих векторах.
Это следует из того, что площадь параллелограмма равна произведению длин смежных сторон на синус угла между ними.
Заметим, что
Таким образом, длину вектора векторного произведения можно вычислить с помощью скалярного произведения по формуле
Пример №11
Найти площадь параллелограмма, построенного на векторах
По формуле (2.7):
ЗАМЕЧАНИЕ 2. Направление вектора можно также (кроме п.2) определить по правилу винта: направление вектора совпадает с направлением поступательного движения винта в правой резьбой при вращении его в сторону поворота первого вектора ко второму вектору по кратчайшему пути (рис. 19).
Свойства векторного произведения
1.
Доказательство:
а)пусть или . В первом и втором случаях один из сомножителей – нулевой вектор.
Его направление не определено, поэтому можно считать, что . Если
б)пусть
2.
Доказательство: По определению направления векторов и противоположны, а модули равны, значит, векторы отличаются лишь знаком.
3. – свойство линейности векторного произведения по первому сомножителю (без доказательства).
Векторное произведение также линейно и по второму сомножителю.
Используя определение и свойства 1 и 2, составим таблицу вычисления векторного произведения базисных векторов : векторы, стоящие в левом столбце, умножаются на соответствующие векторы верхней строки (рис. 20).
Пусть в некоторой пдск . Найдем векторное произведение этих векторов:
Заметим, что это выражение можно получить, вычислив символический определитель (сделать это можно по-разному, но лучше разложить по первой строке):
Таким образом,
Пример №12
Вычислить векторное произведение векторов
По формуле (2.8):
Заметим, что площадь треугольника, построенного на векторах , можно вычислить двумя способами: как половину длины найденного вектора или используя формулу (2.7). Заметим, что
или
Пример №13
Вычислить площадь параллелограмма, построенного на векторах
Так как , то вычислим векторное произведение, используя его свойства:
Отсюда
Определение смешанного произведения векторов
Определение: Смешанным произведением векторов называется число – скалярное произведение a на векторное произведение
Смешанное произведение обозначается так:
Пусть в некоторой пдск
Обозначим
Тогда
по 7 свойству определителей.
Таким образом,
По определению скалярного произведения
Совместим начала всех трех векторов в одной точке. Тогда (рис. 21)
– площадь параллелограмма,
– высота параллелепипеда,
– объем параллелепипеда.
Геометрический смысл смешанного произведения: модуль смешанного произведения численно равен объему параллелепипеда, построенного на векторах-сомножителях, при этом – правая тройка, и – левая тройка.
Свойства смешанного произведения
1. Необходимым и достаточным условием компланарности трех векторов является равенство нулю их смешанного произведения: компланарны
Доказательство: а) компланарны
Если компланарны, то на них нельзя построить параллелепипед, а потому
б)компланарны.
Во всех трех случаях компланарны: в частности, если параллелен плоскости векторов , что означает их компланарность.
2. Круговая перестановка сомножителей в смешанном произведении не изменяет его величины. Перестановка соседних сомножителей изменяет его знак, не изменяя абсолютной величины:
Доказательство следует из формулы (2.9) и свойства 3 определителей, при этом круговая перестановка сомножителей соответствует двойной перемене строк в определителе, а потому оставляет его неизменным.
3. В смешанном произведении векторное и скалярное произведения можно менять местами:
Доказательство: из свойства 2 смешанного произведения и свойства 1 скалярного получим:
4. Смешанное произведение линейно по каждому из трех сомножителей.
– линейность по первому сомножителю.
Доказательство следует из формулы (2.9) и свойств определителей.
Пример №14
Найти объем тетраэдра, построенного на векторах
, и его высоту, перпендикулярную плоскости векторов .
Объем тетраэдра в 6 раз меньше объема параллелепипеда, построенного на этих векторах, поэтому
Отсюда (заметим, что – левая тройка, так как смешанное произведение отрицательно).
Чтобы найти высоту, воспользуемся формулой
По формуле (2.7)
Лекции по предметам:
- Математика
- Алгебра
- Линейная алгебра
- Геометрия
- Аналитическая геометрия
- Высшая математика
- Дискретная математика
- Математический анализ
- Теория вероятностей
- Математическая статистика
- Математическая логика