Как найти ось параллелепипеда

План урока:

Прямоугольная система координат

Координаты вектора

Координаты середины отрезка

Вычисление длины векторов и расстояния между точками

Коллинеарность векторов

Определение компланарности векторов

Скалярное произведение векторов

Прямоугольная система координат

В планиметрии мы уже рассматривали прямоугольную систему координат. Ее образовывали 2 перпендикулярные друг другу оси – Ох и Оу. С ее помощью можно было определить положение любой точки на координатной плоскости, просто указав две ее координаты – абсциссу х и ординату у.

В стереометрии необходимо определять положение точки уже не на плоскости, а в пространстве. Для этого добавляется третья ось Оz, которую ещё называют осью апликат. Каждые пара осей образует свою отдельную координатную плоскость, всего получается три таких плос-ти: Оху, Охz и Oуz.

1 koordinaty v stereometrii

Точка О именуется началом координат. Она делит каждую ось на два луча, один из которых – это положительная полуось, а второй – отрицательная полуось.

Для каждой точки в пространстве можно указать три координаты, однозначно определяющие ее положение в пространстве. Пусть в пространстве есть некоторая точка М. Опустим из нее перпендикуляры на координатные плоскости. В свою очередь из этих проекций точки М опустим перпендикуляры уже на координатные оси. В результате будет построен прямоугольный параллелепипед. Измерения этого параллелепипеда и будут координатами точки М:

2 koordinaty v stereometrii

Если точка M находится в одной из координатных плоскостей, то одна из ее координат будет нулевой. Например, если М принадлежит плоскости Охz, то нулю будет равна координата у. Если же точка располагается на одной из координатных осей, то у нее уже две координаты будут нулевыми. Так, если точка находится на оси Ох, то только координата х может быть ненулевой, а у и z окажутся нулевыми координатами.

На показанном рисунке ребра параллелепипеда лежат на положительных полуосях, поэтому все координаты положительны. Если же какие-то ребра будут лежать на отрицательных полуосях, то и соответствующие координаты будут отрицательными.

Координаты вектора

Введем в пространстве прямоугольную систему коорд-т, а далее от ее начала отложим вектора i, j и k, которые соответственно будут лежать на координатных осях Ох, Оу и Оz, и длина которых составит единицу. Эти вектора именуют координатными векторами, единичными векторами или просто ортами.

3 koordinaty v stereometrii

Ясно, что орты находятся в разных плоскостях, то есть они образуют тройку некомпланарных векторов. Это означает, что любой вектор а в пространстве можно разложить на орты:

4 koordinaty v stereometrii

где х, у и z – какие-то действительные числа. Они как раз и считаются координатами вектора а. Записываются коорд-ты вектора в фигурных скобках. На следующем рисунке показан вектор а{3; – 2; – 4}.

5 koordinaty v stereometrii

Задание. Разложите на орты вектор

6 koordinaty v stereometrii

Если начало вектора ОМ располагается в начале системы координат О, то вектор ОМ именуют радиус-вектором. В таком случае коорд-ты точки конца вектора, то есть точки М, совпадают с коорд-тами самого вектора ОМ.

7 koordinaty v stereometrii

Это свойство радиус-вектора мы уже изучали в 9 классе в планиметрии, и в стереометрии оно сохраняется.

Задание. О – начало координат, а точка М имеет коорд-ты (2; 5; – 3). Найдите коорд-ты вектора ОМ.

Решение. Всё очень просто – коорд-ты вектора будут совпадать с коорд-тами его конца, так его начало совпадает с началом коорд-т:

8 koordinaty v stereometrii

Также в стереометрии остаются справедливыми ещё несколько правил, которые были доказаны в курсе планиметрии:

9 koordinaty v stereometrii

Задание. Найдите сначала сумму, а потом разность векторов а{3; 7; 5} и b{2; 4; 6}.

Решение. Будем обозначать коорд-ты векторов через индексы. Например, коорд-ты вектора а – это ха, уа и zа. Пусть сумма векторов будет вектором с, а их разность – вектором d. Для вычисления суммы надо складывать соответствующие координаты:

10 koordinaty v stereometrii

Для вычисления разности надо из коорд-т вектора а вычитать коорд-ты вектора b:

11 koordinaty v stereometrii

Задание. Вычислите коорд-ты вектора р, зная, что:

12 koordinaty v stereometrii

Решение. Для вычисления координат надо в выражении для вектора р сами векторы заменить на их координаты:

13 koordinaty v stereometrii

Получается, что вектор p имеет координаты {0; – 2; 3}.

Теперь мы можем доказать ещё одно утверждение, уже известное из курса планиметрии:

14 koordinaty v stereometrii

Действительно, пусть есть некоторый вектор АВ, причем коорд-ты точек А и В известны. Построим радиус-вектора OА и OВ:

15 koordinaty v stereometrii

Координаты радиус-векторов будут совпадать с координатами их концов:

16 koordinaty v stereometrii

ч. т. д.

Задание. Определите коорд-ты вектора CD, если даны коорд-ты точек С и D: С(3; 8; – 5) и D(5; 4; 1).

Решение. Здесь надо просто из коорд-т точки D, являющейся концом вектора, вычесть коорд-ты точки С:

17 koordinaty v stereometrii

Задание. От точки K(10; 6; 13) отложен вектор m{3; 2; 5}, конец совпал в точку H. Найдите коорд-ты точки H.

Решение. Коорд-ты вектора m и его концов связаны формулами:

18 koordinaty v stereometrii

Координаты середины отрезка

Пусть в пространстве есть отрезок АВ, и координаты его концов известны. Точка М – середина этого отрезка. Как вычислить ее координаты? Рассмотрим взаимосвязь векторов АМ, МВ и АВ:

19 koordinaty v stereometrii

Раз М – середина АВ, то вектора АМ и МВ имеют равные длины, и при этом они находятся на одной прямой. Значит, эти вектора равны и потому у них одинаковые коорд-ты:

20 koordinaty v stereometrii

Аналогично можно получить аналогичные формулы для коорд-т у и z:

21 koordinaty v stereometrii

21 2 koordinaty serediny otrezka ravny polusumme edited

Рассмотрим несколько задач на координаты точек.

Задание. Найдите коорд-ты середины отрезка, соединяющего точки А(3; 7; 12) и В(1; 5; – 4).

Решение. Просто используем только что выведенные формулы. Середину также обозначаем буквой М:

22 koordinaty v stereometrii

Задание. Известно, что K середина отрезка CD. Даны координаты точек С и K: С(12; 9; – 3) и K(15; 7; 3). Найдите коорд-ты D.

Решение. Сначала запишем формулу для коорд-ты х:

23 koordinaty v stereometrii

Вычисление длины векторов и расстояния между точками

Рассмотрим радиус-вектор ОМ с коорд-тами {x; у; z}. Попытаемся найти его длину. Мы можем построить прямоугольный параллелепипед, в котором этот вектор окажется диагональю:

24 koordinaty v stereometrii

Напомним, что квадрат длины диагонали в прямоугольном параллелепипеде равен сумме квадратов его измерений. Но в полученном параллелепипеде измерения – это коорд-ты х, у и z, поэтому можно записать:

25 koordinaty v stereometrii

Так как равные вектора имеют как одинаковы и коорд-ты, и длина, то ясно, что каждый вектор с коорд-тами {x; y; z} будет равен рассмотренному радиус-вектору, а значит и его длина будет рассчитываться по такой же формуле.

26 koordinaty v stereometrii

Задание. Найдите длину вектора m{– 2; 9; 6}.

Решение. Просто используем формулу:

27 koordinaty v stereometrii

Рассмотрим отрезок АВ с известными коорд-тами его концов. Можно построить вектор АВ, его коорд-ты будут определяться так:

28 koordinaty v stereometrii

28 2 dlina otrezka vychisljaetsja edited

Задание. Найдите расстояние между точкой K(10; 15; 5) и M(16; 21; – 2).

Решение. Просто подставляем коорд-ты точек в формулу:

29 koordinaty v stereometrii

Задание. Найдите длину медианы KM в KPN, если известны коорд-ты его вершин: P(2; 5; 8), N (6; 9; 12) и K(16; 11; 13).

Решение. Для нахождения длины медианы достаточно знать коорд-ты ее концов. Коорд-ты K уже известны, а M – середина PN, что позволяет вычислить и ее коорд-ты:

30 koordinaty v stereometrii

Коллинеарность векторов

Напомним, что если два вектора а и b коллинеарны друг другу, то должно существовать такое число k, что

31 koordinaty v stereometrii

32 koordinaty v stereometrii

Полученное отношение (1) является одновременно и признаком коллинеарных векторов, и их свойством. Слово «признак» означает, что любые вектора, чьи координаты соответствуют условию (1), будут коллинеарны. Слово «свойство» означает обратное – если известно, что вектора коллинеарны, то для них обязательно выполняется условие (1). В таких случаях в математике может использоваться словосочетание «тогда и только тогда»:

33 koordinaty v stereometrii

Очень важно то, что это правило действует только в случае, если все коорд-ты векторов ненулевые. Теперь рассмотрим случай, когда какие-то коорд-ты вектора b (одна или две из них) равны нулю. Например, пусть

34 koordinaty v stereometrii

В результате мы выяснили, что если коорд-та одного вектора нулевая, то и у любого вектора, коллинеарному ему, эта же коорд-та также должна быть нулевой. Особняком стоит случай с нулевым вектором с коорд-тами {0; 0; 0}. Он условно признается коллинеарным любому вектору.

Задание. Выясните, какие из этих пар векторов коллинеарны:

35 koordinaty v stereometrii

Решение. В первом задании просто делим друг на друга соответствующие коорд-ты и находим значение коэффициента k:

36 koordinaty v stereometrii

Значение коэффициента k оказалось одинаковым для каждой пары коорд-т, значит, вектора коллинеарны.

Повторяем эти действия в задании б):

37 koordinaty v stereometrii

На этот раз коэффициенты k оказались различными, значит, вектора неколлинеарны.

В задании в) у вектора е коорд-та z нулевая. Значит, если и у вектора f, если он коллинеарен z, эта координата должна быть нулевой, но это не так. Значит, вектора e и f неколлинеарны.

В задании г) снова указаны вектора с нулевыми коорд-тами. Но у обоих векторов коорд-та z нулевая, поэтому они могут быть коллинеарными. Однако необходимо проверить, что отношение ненулевых координат одинаково:

38 koordinaty v stereometrii

Коэффициент k получился одинаковым, поэтому вектора коллинеарны.

В последнем задании д) вектор n – нулевой, ведь все его коорд-ты нулевые. Нулевой вектор всегда коллинеарен другим векторам, в том числе и в этом задании.

Ответ: а) да; б) нет; в) нет; г) да; д) да.

Задание. Выясните, располагаются ли на одной прямой точки А(3; 5; 12), В(5; 7; 16) и С(0; 2; 6).

Решение. Ясно, что если эти точки находятся на одной прямой, то вектора АВ и ВС будут коллинеарными. Если же эти вектора неколлинеарны, то и точки должны находиться на разных прямых.

Сначала вычислим коорд-ты векторов АВ и ВС:

39 koordinaty v stereometrii

Теперь проверяем, коллинеарны ли эти вектора:

40 koordinaty v stereometrii

Коэффициенты k одинаковы, а потому АВ и ВС – коллинеарные векторы. Значит, точки А, В и С находятся на одной прямой.

Определение компланарности векторов

Пусть у нас есть три вектора с известными коорд-тами:

41 koordinaty v stereometrii

Как определить, компланарны ли эти вектора, то есть располагаются ли они в одной плоскости? Если эти вектора компланарны, то, по признаку компаланарности, вектор а можно разложить на вектора b и с:

42 koordinaty v stereometrii

где х и y – некоторые числа. Но если такое разложение существует, то коорд-ты векторов а, b и с будут связаны равенствами:

43 koordinaty v stereometrii

Получили систему из 3 уравнений с двумя неизвестными (х и y). Если такая система имеет решение, то вектора компланарны. Если же решения нет, то вектора не компланарны.

Задание. Определите, компланарны ли вектора

44 koordinaty v stereometrii

45 koordinaty v stereometrii

Имеем систему с тремя уравнениями. Из последних двух уравнений очевидно, что его решением может быть только пара чисел:

46 koordinaty v stereometrii

Значит, рассмотренная тройка векторов компланарна.

Задание. Располагаются ли в одной плос-ти вектора:

47 koordinaty v stereometrii

Решение. Нам надо проверить компаланарность векторов, поэтому действуем также, как и в предыдущей задаче. Если вектора компланарны, то существует разложение:

48 koordinaty v stereometrii

Получилось неверное равенство. Это означает, что у системы уравнений решения нет, и потому тройка векторов некомпланарна.

Скалярное произведение векторов

В 9 классе мы уже изучали скалярное произведение векторов.

49 koordinaty v stereometrii

Для нахождения угла между векторами необходимо отложить их от одной точки, тогда они образуют такой угол.

Задание. Угол между векторами с и d составляет 60°, а их длины соответственно равны 5 и 6. Найдите их скалярное произведение.

Решение. Здесь для расчета просто перемножаем длины векторов и косинус 60°:

50 koordinaty v stereometrii

Напомним несколько уже известных нам фактов о скалярном произведении, остающихся верными и в стереометрии:

51 koordinaty v stereometrii

52 koordinaty v stereometrii

Формула для расчета скалярного произведения по коорд-там векторов, используемая в стереометрии, несколько отличается от формулы из курса планиметрии. Напомним, что в планиметрии произведение векторов а{xа; уа} и b{хb; yb} можно было рассчитать так:

53 koordinaty v stereometrii

53 2 skaljarnoe proivzedenie vektorov edited

Задание. Вычислите скалярное произведение векторов:

54 koordinaty v stereometrii

На практике скалярное произведение обычно используется для расчета углов между векторами, а также отрезками и прямыми. Рассмотрим несколько задач.

Задание. Вычислите угол между векторами:

55 koordinaty v stereometrii

Теперь через скалярное произведение возможно рассчитать косинус искомого нами угла, а затем и сам угол, который мы обозначим как α:

56 koordinaty v stereometrii

Задание. Рассчитайте углы в ∆АВС, зная коорд-ты его вершин: А(1; – 1; 3), В(3; – 1; 1) и С(– 1; 1; 3).

Решение. Чтобы найти ∠В, необходимо просто рассчитать угол между векторами ВС и ВА также, как это сделано в предыдущей задаче. Но сначала найдем коорд-ты векторов ВС и ВА и их длины:

57 koordinaty v stereometrii

Далее рассчитываем скалярное произведение векторов:

58 koordinaty v stereometrii

Теперь найдем угол А, который представляет собой угол между векторам AВ и AС. Вектор AВ – это вектор, противоположный ВA, то у него та же длина, но противоположный знак у коорд-т:

59 koordinaty v stereometrii

60 koordinaty v stereometrii

Задание. В прямоугольном параллелепипеде АВСDA1B1C1D1 ребра имеют длину:

AB = 1

BC = 2

BB1 = 2

Рассчитайте угол между векторами DB1 и BC1.

Решение. Введем систему коорд-т Охуz и расположим в нем параллелепипед следующим образом:

61 koordinaty v stereometrii

При этом построении граничные точки векторов будут иметь следующие коорд-ты:

62 koordinaty v stereometrii

Находим коорд-ты векторов, а также их длины:

63 koordinaty v stereometrii

Рассчитываем скалярное произведение DB1 и BC1:

64 koordinaty v stereometrii

Получили ноль. Из этого вытекает, что вектора перпендикулярны, то есть искомый нами угол составляет 90°.

Ответ: 90°

Сегодня мы научились использовать координаты для решения стереометрических задач. Почти все формулы, используемые в методе координаты, аналогичны тем формулам, которые были выведены ещё в курсе планиметрии. Надо лишь учитывать существование ещё одной, третьей координаты z.

Для правила сложения трех векторов рассмотрим следующую задачу.

Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Доказать, что $overrightarrow+overrightarrow+overrightarrow=overrightarrow$

Доказательство.

Воспользуемся свойством правила треугольника сложения двух векторов $overrightarrow+overrightarrow=overrightarrow$, получим:

Из этой задачи получаем следующее правило для нахождения сложения трех векторов. Чтобы найти сумму трех векторов $overrightarrow,overrightarrow и overrightarrow$ нужно от произвольной точки $O$ отложить векторы $overrightarrow=overrightarrow$, $overrightarrow=overrightarrow$ и $overrightarrow=overrightarrow$ и построим параллелепипед на этих векторах. Тогда вектор диагонали $overrightarrow$ и будет суммой этих трех векторов. Это правило называется правилом параллелепипеда для сложения трех векторов.

Разложение вектора по двум неколлинеарным векторам

Вспомним сначала, какие векторы называются компланарными.

Два вектора, которые параллельны одной плоскости называются компланарными.

Произвольный вектор $overrightarrow

$ можно разложить по трем некомпланарным векторам $overrightarrow, overrightarrow$ и $overrightarrow$ с единственными коэффициентами разложения.

Математически это можно записать следующим образом

Доказательство.

Существование: Пусть нам даны три некомпланарных вектора $overrightarrow, overrightarrow$ и $overrightarrow$. Выберем произвольную точку $O$ и построим следующие векторы:

[overrightarrow=overrightarrow, overrightarrow=overrightarrow, overrightarrow=overrightarrow и overrightarrow

=overrightarrow]

Рассмотрим следующий рисунок:

Произведем следующие дополнительные построения. Проведем через точку $P$ прямую, которая будет параллельна вектору $overrightarrow$. Пусть эта прямая пересекает плоскость $OAB$ в точке $P_1$. Далее, проведем через точку $P_1$ прямую, которая будет параллельна вектору $overrightarrow$. Пусть эта прямая пересекает прямую $OA$ в точке $P_2$ (смотри рисунок выше).

Воспользуемся свойством правила треугольника сложения двух векторов $overrightarrow+overrightarrow=overrightarrow$, получим:

Так как векторы $overrightarrow$ и $overrightarrow$ коллинеарны, то

Так как векторы $overrightarrow$ и $overrightarrow$ коллинеарны, то

Так как векторы $overrightarrow$ и $overrightarrow$ коллинеарны, то

Тогда, получаем, что

Существование разложения доказано.

Единственность: Предположим противное. Пусть существует еще одно разложение вектора $overrightarrow

$ по векторам $overrightarrow, overrightarrow$ и $overrightarrow$:

Вычтем эти разложения друг из друга

Из этого получаем

Теорема доказана.

Геометрия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Прямоугольная система координат

В планиметрии мы уже рассматривали прямоугольную систему координат. Ее образовывали 2 перпендикулярные друг другу оси – Ох и Оу. С ее помощью можно было определить положение любой точки на координатной плоскости, просто указав две ее координаты – абсциссу х и ординату у.

В стереометрии необходимо определять положение точки уже не на плоскости, а в пространстве. Для этого добавляется третья ось Оz, которую ещё называют осью апликат. Каждые пара осей образует свою отдельную координатную плоскость, всего получается три таких плос-ти: Оху, Охz и Oуz.

Точка О именуется началом координат. Она делит каждую ось на два луча, один из которых – это положительная полуось, а второй – отрицательная полуось.

Для каждой точки в пространстве можно указать три координаты, однозначно определяющие ее положение в пространстве. Пусть в пространстве есть некоторая точка М. Опустим из нее перпендикуляры на координатные плоскости. В свою очередь из этих проекций точки М опустим перпендикуляры уже на координатные оси. В результате будет построен прямоугольный параллелепипед. Измерения этого параллелепипеда и будут координатами точки М:

Если точка M находится в одной из координатных плоскостей, то одна из ее координат будет нулевой. Например, если М принадлежит плоскости Охz, то нулю будет равна координата у. Если же точка располагается на одной из координатных осей, то у нее уже две координаты будут нулевыми. Так, если точка находится на оси Ох, то только координата х может быть ненулевой, а у и z окажутся нулевыми координатами.

На показанном рисунке ребра параллелепипеда лежат на положительных полуосях, поэтому все координаты положительны. Если же какие-то ребра будут лежать на отрицательных полуосях, то и соответствующие координаты будут отрицательными.

Координаты вектора

Введем в пространстве прямоугольную систему коорд-т, а далее от ее начала отложим вектора i, j и k, которые соответственно будут лежать на координатных осях Ох, Оу и Оz, и длина которых составит единицу. Эти вектора именуют координатными векторами, единичными векторами или просто ортами.

Ясно, что орты находятся в разных плоскостях, то есть они образуют тройку некомпланарных векторов. Это означает, что любой вектор а в пространстве можно разложить на орты:

где х, у и z – какие-то действительные числа. Они как раз и считаются координатами вектора а. Записываются коорд-ты вектора в фигурных скобках. На следующем рисунке показан вектор а<3; – 2; – 4>.

Задание. Разложите на орты вектор

Если начало вектора ОМ располагается в начале системы координат О, то вектор ОМ именуют радиус-вектором. В таком случае коорд-ты точки конца вектора, то есть точки М, совпадают с коорд-тами самого вектора ОМ.

Это свойство радиус-вектора мы уже изучали в 9 классе в планиметрии, и в стереометрии оно сохраняется.

Задание. О – начало координат, а точка М имеет коорд-ты (2; 5; – 3). Найдите коорд-ты вектора ОМ.

Решение. Всё очень просто – коорд-ты вектора будут совпадать с коорд-тами его конца, так его начало совпадает с началом коорд-т:

Также в стереометрии остаются справедливыми ещё несколько правил, которые были доказаны в курсе планиметрии:

Задание. Найдите сначала сумму, а потом разность векторов а <3; 7; 5>и b<2; 4; 6>.

Решение. Будем обозначать коорд-ты векторов через индексы. Например, коорд-ты вектора а – это ха, уа и zа. Пусть сумма векторов будет вектором с, а их разность – вектором d. Для вычисления суммы надо складывать соответствующие координаты:

Для вычисления разности надо из коорд-т вектора а вычитать коорд-ты вектора b:

Задание. Вычислите коорд-ты вектора р, зная, что:

Решение. Для вычисления координат надо в выражении для вектора р сами векторы заменить на их координаты:

Получается, что вектор p имеет координаты <0; – 2; 3>.

Теперь мы можем доказать ещё одно утверждение, уже известное из курса планиметрии:

Действительно, пусть есть некоторый вектор АВ, причем коорд-ты точек А и В известны. Построим радиус-вектора OА и OВ:

Координаты радиус-векторов будут совпадать с координатами их концов:

Задание. Определите коорд-ты вектора CD, если даны коорд-ты точек С и D: С(3; 8; – 5) и D(5; 4; 1).

Решение. Здесь надо просто из коорд-т точки D, являющейся концом вектора, вычесть коорд-ты точки С:

Задание. От точки K(10; 6; 13) отложен вектор m<3; 2; 5>, конец совпал в точку H. Найдите коорд-ты точки H.

Решение. Коорд-ты вектора m и его концов связаны формулами:

Координаты середины отрезка

Пусть в пространстве есть отрезок АВ, и координаты его концов известны. Точка М – середина этого отрезка. Как вычислить ее координаты? Рассмотрим взаимосвязь векторов АМ, МВ и АВ:

Раз М – середина АВ, то вектора АМ и МВ имеют равные длины, и при этом они находятся на одной прямой. Значит, эти вектора равны и потому у них одинаковые коорд-ты:

Аналогично можно получить аналогичные формулы для коорд-т у и z:

Рассмотрим несколько задач на координаты точек.

Задание. Найдите коорд-ты середины отрезка, соединяющего точки А(3; 7; 12) и В(1; 5; – 4).

Решение. Просто используем только что выведенные формулы. Середину также обозначаем буквой М:

Задание. Известно, что K середина отрезка CD. Даны координаты точек С и K: С(12; 9; – 3) и K(15; 7; 3). Найдите коорд-ты D.

Решение. Сначала запишем формулу для коорд-ты х:

Вычисление длины векторов и расстояния между точками

Рассмотрим радиус-вектор ОМ с коорд-тами . Попытаемся найти его длину. Мы можем построить прямоугольный параллелепипед, в котором этот вектор окажется диагональю:

Напомним, что квадрат длины диагонали в прямоугольном параллелепипеде равен сумме квадратов его измерений. Но в полученном параллелепипеде измерения – это коорд-ты х, у и z, поэтому можно записать:

Так как равные вектора имеют как одинаковы и коорд-ты, и длина, то ясно, что каждый вектор с коорд-тами будет равен рассмотренному радиус-вектору, а значит и его длина будет рассчитываться по такой же формуле.

Задание. Найдите длину вектора m<– 2; 9; 6>.

Решение. Просто используем формулу:

Рассмотрим отрезок АВ с известными коорд-тами его концов. Можно построить вектор АВ, его коорд-ты будут определяться так:

Задание. Найдите расстояние между точкой K(10; 15; 5) и M(16; 21; – 2).

Решение. Просто подставляем коорд-ты точек в формулу:

Задание. Найдите длину медианы KM в KPN, если известны коорд-ты его вершин: P(2; 5; 8), N (6; 9; 12) и K(16; 11; 13).

Решение. Для нахождения длины медианы достаточно знать коорд-ты ее концов. Коорд-ты K уже известны, а M – середина PN, что позволяет вычислить и ее коорд-ты:

Коллинеарность векторов

Напомним, что если два вектора а и b коллинеарны друг другу, то должно существовать такое число k, что

Полученное отношение (1) является одновременно и признаком коллинеарных векторов, и их свойством. Слово «признак» означает, что любые вектора, чьи координаты соответствуют условию (1), будут коллинеарны. Слово «свойство» означает обратное – если известно, что вектора коллинеарны, то для них обязательно выполняется условие (1). В таких случаях в математике может использоваться словосочетание «тогда и только тогда»:

Очень важно то, что это правило действует только в случае, если все коорд-ты векторов ненулевые. Теперь рассмотрим случай, когда какие-то коорд-ты вектора b (одна или две из них) равны нулю. Например, пусть

В результате мы выяснили, что если коорд-та одного вектора нулевая, то и у любого вектора, коллинеарному ему, эта же коорд-та также должна быть нулевой. Особняком стоит случай с нулевым вектором с коорд-тами <0; 0; 0>. Он условно признается коллинеарным любому вектору.

Задание. Выясните, какие из этих пар векторов коллинеарны:

Решение. В первом задании просто делим друг на друга соответствующие коорд-ты и находим значение коэффициента k:

Значение коэффициента k оказалось одинаковым для каждой пары коорд-т, значит, вектора коллинеарны.

Повторяем эти действия в задании б):

На этот раз коэффициенты k оказались различными, значит, вектора неколлинеарны.

В задании в) у вектора е коорд-та z нулевая. Значит, если и у вектора f, если он коллинеарен z, эта координата должна быть нулевой, но это не так. Значит, вектора e и f неколлинеарны.

В задании г) снова указаны вектора с нулевыми коорд-тами. Но у обоих векторов коорд-та z нулевая, поэтому они могут быть коллинеарными. Однако необходимо проверить, что отношение ненулевых координат одинаково:

Коэффициент k получился одинаковым, поэтому вектора коллинеарны.

В последнем задании д) вектор n – нулевой, ведь все его коорд-ты нулевые. Нулевой вектор всегда коллинеарен другим векторам, в том числе и в этом задании.

Ответ: а) да; б) нет; в) нет; г) да; д) да.

Задание. Выясните, располагаются ли на одной прямой точки А(3; 5; 12), В(5; 7; 16) и С(0; 2; 6).

Решение. Ясно, что если эти точки находятся на одной прямой, то вектора АВ и ВС будут коллинеарными. Если же эти вектора неколлинеарны, то и точки должны находиться на разных прямых.

Сначала вычислим коорд-ты векторов АВ и ВС:

Теперь проверяем, коллинеарны ли эти вектора:

Коэффициенты k одинаковы, а потому АВ и ВС – коллинеарные векторы. Значит, точки А, В и С находятся на одной прямой.

Определение компланарности векторов

Пусть у нас есть три вектора с известными коорд-тами:

Как определить, компланарны ли эти вектора, то есть располагаются ли они в одной плоскости? Если эти вектора компланарны, то, по признаку компаланарности, вектор а можно разложить на вектора b и с:

где х и y – некоторые числа. Но если такое разложение существует, то коорд-ты векторов а, b и с будут связаны равенствами:

Получили систему из 3 уравнений с двумя неизвестными (х и y). Если такая система имеет решение, то вектора компланарны. Если же решения нет, то вектора не компланарны.

Задание. Определите, компланарны ли вектора

Имеем систему с тремя уравнениями. Из последних двух уравнений очевидно, что его решением может быть только пара чисел:

Значит, рассмотренная тройка векторов компланарна.

Задание. Располагаются ли в одной плос-ти вектора:

Решение. Нам надо проверить компаланарность векторов, поэтому действуем также, как и в предыдущей задаче. Если вектора компланарны, то существует разложение:

Получилось неверное равенство. Это означает, что у системы уравнений решения нет, и потому тройка векторов некомпланарна.

Скалярное произведение векторов

В 9 классе мы уже изучали скалярное произведение векторов.

Для нахождения угла между векторами необходимо отложить их от одной точки, тогда они образуют такой угол.

Задание. Угол между векторами с и d составляет 60°, а их длины соответственно равны 5 и 6. Найдите их скалярное произведение.

Решение. Здесь для расчета просто перемножаем длины векторов и косинус 60°:

Напомним несколько уже известных нам фактов о скалярном произведении, остающихся верными и в стереометрии:

Формула для расчета скалярного произведения по коорд-там векторов, используемая в стереометрии, несколько отличается от формулы из курса планиметрии. Напомним, что в планиметрии произведение векторов аа; уа> и b<хb; yb> можно было рассчитать так:

Задание. Вычислите скалярное произведение векторов:

На практике скалярное произведение обычно используется для расчета углов между векторами, а также отрезками и прямыми. Рассмотрим несколько задач.

Задание. Вычислите угол между векторами:

Теперь через скалярное произведение возможно рассчитать косинус искомого нами угла, а затем и сам угол, который мы обозначим как α:

Задание. Рассчитайте углы в ∆АВС, зная коорд-ты его вершин: А(1; – 1; 3), В(3; – 1; 1) и С(– 1; 1; 3).

Решение. Чтобы найти ∠В, необходимо просто рассчитать угол между векторами ВС и ВА также, как это сделано в предыдущей задаче. Но сначала найдем коорд-ты векторов ВС и ВА и их длины:

Далее рассчитываем скалярное произведение векторов:

Теперь найдем угол А, который представляет собой угол между векторам AВ и AС. Вектор AВ – это вектор, противоположный ВA, то у него та же длина, но противоположный знак у коорд-т:

Задание. В прямоугольном параллелепипеде АВСDA1B1C1D1 ребра имеют длину:

Рассчитайте угол между векторами DB1 и BC1.

Решение. Введем систему коорд-т Охуz и расположим в нем параллелепипед следующим образом:

При этом построении граничные точки векторов будут иметь следующие коорд-ты:

Находим коорд-ты векторов, а также их длины:

Рассчитываем скалярное произведение DB1 и BC1:

Получили ноль. Из этого вытекает, что вектора перпендикулярны, то есть искомый нами угол составляет 90°.

Сегодня мы научились использовать координаты для решения стереометрических задач. Почти все формулы, используемые в методе координаты, аналогичны тем формулам, которые были выведены ещё в курсе планиметрии. Надо лишь учитывать существование ещё одной, третьей координаты z.

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.


Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

То есть A + C + D = 0.

Аналогично для точки K:

Получили систему из трех уравнений:

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Выразим C и B через A и подставим в третье уравнение:

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор — это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать “параллелепипед”.

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Координаты вектора — тоже:

Находим угол между плоскостями, равный углу между нормалями к ним:

Зная косинус угла, находим его тангенс по формуле

Получим:

Ответ:

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

Находим синус угла между прямой m и плоскостью α по формуле:

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Находим координаты вектора .

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

Найдем угол между прямой и плоскостью:

Ответ:

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

Решим эту систему. Выберем

Тогда

Уравнение плоскости A1DB имеет вид:

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

[spoiler title=”источники:”]

http://100urokov.ru/predmety/koordinaty-v-stereometrii

http://ege-study.ru/ru/ege/materialy/matematika/vektory-v-prostranstve-i-metod-koordinat/

[/spoiler]

Измерения

Будем проверять зависимость (9) для
простого случая, когда исследуемое
твердое тело имеет форму прямоугольного
параллелепипеда с ребрами a,
bиc.
Исследуем три образца: куб(a
=
b
=
c),симметричный параллелепипед(a=
b

c)и параллелепипед, у которого длины всех
трех ребер различны(a

b

c). Выясним, как можно провести проверку
зависимости (9) в этих трех случаях.

Однородный куб

Очевидно, что все три момента инерции
куба относительно главных осей ОХ,
ОУ
иОZ
одинаковы:Ix
=
Iy
=
Iz
.

Из (1) с учетом равенства (2) находим:

I(n)
= I
x(cos2
+ cos
2
+ cos
2)
= I
x
= const

(10)

Таким образом,момент
инерции однородного куба относительно
любой проходящей через его центр оси
одинаков
.Ясно, что и период крутильных колебаний
куба должен быть одинаковым для любой
оси вращения, проходящей через его
центр:

T(n)
= T
x
= const

(11)

Проверить это можно,
закрепляя куб в рамке в различных
положениях, при которых ось вращения
проходит через центр куба и измеряя
соответствующие периоды крутильных
колебаний.

Симметричный прямоугольный параллелепипед

Очевидно, что и в этом случае моменты
инерции параллелепипеда относительно
главных осей ОХиОУ
и соответствующие им периоды
крутильных колебаний равны между собой:Ix
=
Iy
,
Tx
=
Tу.

Из (1) и (9) с учетом равенства: cos2
+
cos2
= 1 –
cos2получаем:

I(n)
= I
x(1
– cos
2)
+ I
zcos2
(12)

T2(n)
= T
x2
(1
– cos
2)
+ T
z2cos2
(13)

Таким образом, период
крутильных колебанийT(n)зависит только от угла,который ось вращенияn
образует с осью телаOZ.
ВеличинаT(n)не зависит от углови(при
=
const).
В частности, должен быть одинаковым
период колебаний относительно любой
оси, лежащей в плоскостиОХУ
(т.е. при

= 2).
В любом случаеcos
= 0
и, согласно (13),

T(n)
= T
x
= const (при

=
2)
(14)

Проверить это соотношение
можно, закрепляя в рамке крутильного
маятника симметричный параллелепипед
так, чтобы ось вращения была перпендикулярна
его большому ребру. Периоды крутильных
колебаний при любом таком положении
тела должны совпадать.

Несимметричный прямоугольный параллелепипед

Закрепим параллелепипед

врамке так, чтобы ось вращения

совпадала с его главной диагона-

лью АВ
(рис. 4). Вычислив направ-

ляющие косинусы, из (9) находим

T 2AB(a2
+ b
2
+ c
2)
=

= Tx2a2
+ T
y2b2
+ T
z2c2
(15)

Аналогично, для осейEF,

MN
иPQиз (9) следует:

T2EF(b2
+ c
2)
= T
y2b2
+ T
z2c2

T 2MN(a2
+ c
2)
= T
x2a2
+ T
z2c2
(16)

T 2PQ(a2
+ b
2)
= T
x2a2
+ T
y2b2

.

Таким образом, для проверки
формулы (9) в случае несимметричного
параллелепипеда можно выяснить,
выполняются ли соотношения (15) и (16) для
измеренных значений периодов колебаний.

Обсудим теперь, как
можно измерить момент инерции исследуемого
тела.
В соотношениях (7) и (8)
моменты инерции тела выражаются через
соответствующие периоды крутильных
колебаний и момент инерцииIoсвободной рамки. Поэтому, измеривIo, мы сможем найти момент инерцииI(n)любого из изучаемых в работе тел.

Для определения момента инерции рамки
можно воспользоваться эталонным
телом
, момент инерцииIэкоторого известен. Тогда согласно (6)
имеем:

Iо
= I
эTo2
/(T
э2
– T
o2)
(17)

где Tэ
– период колебаний рамки с закрепленным
в ней эталонным телом. В качестве
эталонного тела в работе используется
однородный куб. Момент инерции такого
куба относительно оси, проходящей через
его центр, можно вычислить по формуле:

(18)

где m– масса куба,а– сторона куба.

Вычислив Iэпо формуле (18), можно измерить периоды
колебанийTo

и Tэсвободной рамки и с кубом и затем
определить искомую величинуIо
из соотношения (17).

Соседние файлы в папке физика

  • #
  • #
  • #
  • #
  • #
  • #

Привет, сегодня поговорим про центральная симметрия параллелепипеда, обещаю рассказать все что знаю. Для того чтобы лучше понимать что такое
центральная симметрия параллелепипеда, симметрия параллелепипеда, симметрия куба, осевая симметрия параллелепипеда, симметрия многогранников , настоятельно рекомендую прочитать все из категории Стереометрия.

1
симметрия параллелепипеда

Все диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам. Поэтому противоположные вершины параллелепипеда симметричны относительно этой точки. Следовательно, каждый параллелепипед имеет центр симметрии — точку пересечения его диагоналей (рис 1.).

В общем случае осей и плоскостей симметрии параллелепипед не имеет, Прямой, но не прямоугольный параллелепипед всегда имеет ось симметрии — прямую, проходящую через центры симметрии его оснований, и плоскость симметрии, проходящую через середины его боковых ребер.

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Рисунок 1

Если основания прямого параллелепипеда — ромбы (но не квадраты), то появляются еще две оси и две плоскости симметрии (Рис 2).

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Рисунок 2

Найдите сами элементы симметрии прямоугольного параллелепипеда, среди граней которого нет квадратов.

Если среди граней прямоугольного параллелепипеда есть квадраты, то он является правильной четырехугольной призмой.

Центр симметрии прямоугольного параллелепипеда — точка пересечения диагоналей

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Плоскости симметрии: три плоскости симметрии, проходящие через середины параллельных ребер.

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Оси симметрии: три оси симметрии, проходящие через точки пересечения диагоналей противолежащих граней.

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

2 Симметрия в кубе

Куб имеет один центр симметрии – точку пересечения его диагоналей. Прямые а и b, проходящие соответственно через центры противоположных граней и середины двух противоположных ребер, не принадлежащих одной грани, являются его осями симметрии. Куб имеет девять осей симметрии. Обратите внимание, все оси симметрии проходят через центр симметрии. Плоскостью симметрии куба является плоскость, проходящая через любые две оси симметрии. Куб имеет девять плоскостей симметрии.

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Три плоскости симметрии, проходящие через середины параллельных ребер и шесть плоскостей симметрии , проходящие через противолежащие ребра.

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

3
центральная симметрия параллелепипеда

Теорема

Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Доказательство

Рассмотрим любые две диагонали параллелепипеда, например A1A3` и A4A2`. Так как четырехугольники A1A2A3A4 и A2A2`A3`A3 – параллелограммы с общей стороной A2A3, то их стороны A1A4 и A2`A3` параллельны друг другу, следовательно, лежат в одной плоскости. Эта плоскость пересекает плоскости противолежащих граней параллелепипеда по параллельным прямым A1A2` и A4A3`. Следовательно, четырехугольник A4A1A2`A3` – параллелограмм. Диагонали параллелепипеда A1A3` и A2A4` являются диагоналями этого параллелограмма. Поэтому они пересекаются и точкой пересечения O делятся пополам.
Аналогично доказывается, что диагонали A1A3` и A2A4`, а также диагонали A1A3` и A3A1` пересекаются и точкой пересечения делятся пополам . Об этом говорит сайт https://intellect.icu . Теорема доказана.


симметрия многогранников

Основной интерес к правильным многогранникам вызывает большое число симметрий, которыми они обладают. Под симметрией (или преобразованием симметрии) многогранника мы понимаем такое его движение в пространстве (например, поворот вокруг некоторой прямой, отражение относительно некоторой плоскости и т.д.), которое оставляет неизменными множества вершин, ребер и граней многогранника.

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Рисунок Движение додекаэдра

Иначе говоря, под преобразованием симметрии вершина, ребро или грань либо сохраняет свое исходное положение, либо переводится в исходное положение другой вершины, другого ребра или другой грани. Существует одна симметрия, которая свойственна всем многогранникам. Речь идет о тождественном преобразовании, оставляющем любую точку в исходном положении.

С самым распространенным примером симметрии мы встречаемся в случае прямой правильной n-угольной призмы. Пусть a – прямая, соединяющая центры оснований. Поворот вокруг a на любое целое кратное угла 360/n градусов является симметрией. Пусть, далее, p – плоскость, проходящая посредине между основаниями параллельно им.

Отражение относительно плоскости p(движение, переводящее любую точку A в точку B, такую, что p пересекает отрезок AB под прямым углом и делит его пополам) – еще одна симметрия.

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Риунок 10

Таблица 1 – Элементы симметрии правильных многогранников

Тетраэдр

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Октаэдр

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Икосаэдр

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Гексаэдр (куб)

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Додекаэдр

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Количество граней 4 8 20 6 12
количество ребер 6 12 30 12 30
вершин 4 6 12 8 20
Центры симметрии 1 1 1 1
Оси симметрии 3 9 15 9 15
Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников
Порскости симметрии 6 9 15 9 15
Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников
Развертки Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Теорема Эйлера Вершины + Грани – Ребра = 2.

Следующий серьезный шаг в науке о многогранниках был сделан в XVIII веке Леонардом Эйлером (1707-1783), который без преувеличения «проверил алгеброй гармонию». Теорема Эйлера о соотношении между числом вершин, ребер и граней выпуклого многогранника, доказательство которой Эйлер опубликовал в 1758 г. в «Записках Петербургской академии наук», окончательно навела математический порядок в многообразном мире многогранников.

Любую симметрию многогранника можно представить в виде произведения отражений. Под произведением нескольких движений многогранника здесь понимается выполнение отдельных движений в определенном заранее установленном порядке. Например, упоминавшийся выше поворот на угол 360/n градусов вокруг прямой a есть произведение отражений относительно любых двух плоскостей, содержащих a и образующих относительно друг друга угол в 180/n градусов. (см. рис 10).

Симметрия, являющаяся произведением четного числа отражений, называется прямой, в противном случае – обратной. Таким образом, любой поворот вокруг прямой – прямая симметрия. Любое отражение есть обратная симметрия.

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Рисунок 11

Рассмотрим подробнее симметрии тетраэдра, т.е. правильного многогранника. Любая прямая, проходящая через любую вершину и центр тетраэдра, проходит через центр противоположной грани. Поворот на 120 или 240 градусов вокруг этой прямой принадлежит к числу симметрий тетраэдра. Так как у тетраэдра 4 вершины (и 4 грани), то мы получим всего 8 прямых симметрий. Любая прямая, проходящая через центр и середину ребра тетраэдра проходит через середину противоположного ребра.

Поворот на 180 градусов (полуоборот) вокруг такой прямой также является симметрией. Так как у тетраэдра 3 пары ребер, мы получаем еще 3 прямые симметрии. Следовательно, общее число прямых симметрий, включая тождественное преобразование, доходит до 12. Можно показать, что других прямых симметрий не существует и что имеется 12 обратных симметрий. Таким образом, тетраэдр допускает всего 24 симметрии.

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Задачи .

Сколько осей симметрии имеет отрезок, правильный треугольник, куб?

Симметрия параллелепипеда и куба, Осевая , центральная симметрия параллелепипеда, симметрия многогранников

Тест “Правильные многогранники”

1. Сколько существует видов правильных многогранников?

  • 13
  • 5
  • 4
  • Много

2. Какие правильные многогранники имеют по 15 осей симметрии и 15 плоскостей симметрии? (несколько ответов)

  • Тетраэдр
  • Икосаэдр
  • Додекаэдр
  • Октаэдр

3. Какой из математиков установил соотношения между числом вершин, ребер и граней выпуклого многогранника?

  • Платон
  • Архимед
  • Эйлер
  • Кеплер

4. Согласно теории о связи структуры Земли с правильными многогранниками, проекции каких вписанных в земной шар фигур проступают в земной коре? (несколько ответов)

  • Икосаэдр
  • Гексаэдр
  • Додекаэдр
  • Октаэдр

5. Кто автор философской картины мира, где главную роль играют правильные многогранники?

  • Эйлер
  • Кеплер
  • Архимед
  • Платон

См. также

  • понятие симметрии , виды симметрии ,
  • симметрия шара , симметрия сферы ,
  • симметрии в призме , симметрии в пирамиде ,
  • свойство симметрии относительно точки ,
  • симметрия относительно прямой , ось симметрии ,
  • симметрия относительно точки , центр симметрии ,
  • архимедовы тела ,
  • тела кеплера – пуансона ,
  • многогранники , классификация многогранников ,
  • Симметрии в физике
  • Суперсимметрия
  • Трансляционная симметрия
  • Симметрии в биологии
  • Асимметрия
  • диссимметрии
  • сферическая симметрия
  • аксиальная симметрия
  • радиальная симметрия
  • трансляционная симметрия
  • двусторонняя (билатеральная) симметрия
  • Симметрия в химии
  • Анизотропия
  • Симметрия в религии и культуре

Понравилась статья про центральная симметрия параллелепипеда? Откомментируйте её Надеюсь, что теперь ты понял что такое центральная симметрия параллелепипеда, симметрия параллелепипеда, симметрия куба, осевая симметрия параллелепипеда, симметрия многогранников
и для чего все это нужно, а если не понял, или есть замечания,
то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории
Стереометрия

Как построить параллелепипед

Параллелепипед является шестигранной трехмерной фигурой, у которой попарно параллельны противоположные грани. При этом любая его грань представляет собой параллелограмм. Противолежащие грани фигуры равны по площади, как и противолежащие внутренние углы. Построить параллелепипед можно с помощью обычной и треугольной линейки. Суть построений заключается в параллельном проведении всех линий геометрической фигуры.

Как построить параллелепипед

Вам понадобится

  • Обычная и треугольная линейка

Инструкция

Возьмите лист бумаги и проведите на нем отрезок прямой, равный одному ребру параллелепипеда. Это будет первое ребро а.

Как построить параллелепипед

Если вам нужно построить любой параллелепипед, установите линейку под любым острым углом к ребру а. Если же параллелепипед должен быть прямоугольным, с помощью треугольной линейки поставьте обычную линейку точно перпендикулярно к первому ребру. Для этого выровняйте по ребру а одну из сторон треугольника, линейку же поместите вдоль перпендикуляра треугольника. Проведите второе ребро b.

Как построить параллелепипед

Параллельно второму ребру постройте противоположное ребро с той же длины. Соедините прямой линией свободные вершины ребер с и b – таким образом получится ребро d, параллельное и равное первому. Построена первая грань параллелепипеда, являющаяся его основанием. Все соединения ребер обозначьте точками А, В, С и D – это будут вершины фигуры.

Как построить параллелепипед

Из вершины А поднимите перпендикуляр нужной вам высоты. Данный отрезок составит третье ребро е параллелепипеда.

Как построить параллелепипед

Аналогично из остальных трех вершин проведите ребра f, g, h той же длины, что и отрезок е. Обозначьте окончания всех ребер, как вершины параллелепипеда буквами E, F, G, H.

Как построить параллелепипед

Начиная из вершины Е постройте грань параллелепипеда параллельно грани АВСD. Ее построение выполните аналогично первой грани. Параллелепипед АВСDEFGH построен.

Как построить параллелепипед

Видео по теме

Источники:

  • треугольный параллелепипед

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий