Загрузить PDF
Загрузить PDF
Многие характеристики графика функции или многочлена невозможно объяснить без визуального представления. Одна из таких характеристик — ось симметрии: вертикальная линия на графике, которая делит этот график на два зеркально симметричных изображения. Найти ось симметрии для данного многочлена относительно несложно.[1]
Существует два основных способа.
-
1
Определите, какова степень многочлена. Степень многочлена — это наибольшая степень, которую имеют одночлены в этом выражении.[2]
Если степень данного многочлена равна 2 (ни один одночлен в выражении не имеет степени выше, чем x2), вы можете найти ось симметрии, используя данный способ. Если степень многочлена больше двух, применяйте второй способ.- Чтобы наглядно продемонстрировать этот способ, возьмем, например, многочлен вида 2x2 + 3x – 1. Самая высокая степень в многочлене — x2, следовательно, мы имеем дело с квадратным трехчленом и можем воспользоваться первым способом для нахождения оси симметрии.
-
2
Подставьте коэффициенты в формулу расчета оси симметрии. Для нахождения оси симметрии для квадратного трехчлена вида ax2 + bx +c (парабола), применяют базовую формулу x = -b / 2a.[3]
- В нашем примере a = 2, b = 3, and c = -1. Подставим эти значения в нашу формулу, и получаем:
x = -3 / 2(2) = -3/4.
- В нашем примере a = 2, b = 3, and c = -1. Подставим эти значения в нашу формулу, и получаем:
-
3
Запишите уравнение оси симметрии. Значение, которое вы рассчитали по формуле оси симметрии, — это значение точки пересечения оси симметрии с осью абсцисс.
- В вышеприведенном примере ось симметрии равна -3/4.
Реклама
-
1
Определите степень многочлена. Степень многочлена — это наибольшая степень, которую имеют одночлены в этом выражении. Если степень данного многочлена равна 2 (ни один одночлен в выражении не имеет степени выше, чем x2), вы можете найти ось симметрии, используя вышеприведенный способ. Если степень многочлена больше 2, применяйте графический способ.
-
2
Начертите систему координат. Нарисуйте две линии, пересекающиеся под прямым углом в виде знака «плюс». Горизонтальная линия будет осью x, а вертикальная — осью у.
-
3
Отложите единичные числовые отрезки на осях. Отложите на осях числовые отрезки равной величины.
-
4
Рассчитайте значение y = f(x) для каждого значения x. Возьмите данный многочлен или функцию и рассчитайте значения f(x), последовательно подставив в выражение значения x.
-
5
Отметьте точки на графике для каждой пары координат. Теперь у вас есть соответствующее значение y = f(x) для каждого значения на оси абсцисс. Для каждой точки с координатами (x, y), отметьте точку в системе координат — по вертикали отложив значение по оси X, а по горизонтали — на оси Y.
-
6
Нарисуйте график многочлена. Когда вы нанесли все точки на систему координат, можно плавно соединить их между собой. У вас получится непрерывный график вашего многочлена.
-
7
Найдите ось симметрии. Внимательно изучите полученный график. Найдите точку на графике, по которой можно провести линию, разделяющую график на две равные зеркальные половины.[4]
-
8
Отметьте ось симметрии. Если вы нашли такую точку (назовем ее «b») на оси x, которая разделяет график на две зеркальные половины, это значение и будет искомой осью симметрии.
Реклама
Советы
- Длина осей абсцисс и ординат должна быть достаточной, чтобы наглядно отобразить форму графика.
- Некоторые многочлены не имеют оси симметрии. Например, для y = 3x не существует оси симметрии.
- Симметрия многочлена может быть определена как четная или нечетная. Любой график, ось симметрии которого совпадает с осью у имеет «четную» симметрию. Любой график, ось симметрии которого совпадает с осью x, — «нечетный».
Реклама
Об этой статье
Эту страницу просматривали 111 750 раз.
Была ли эта статья полезной?
Download Article
Download Article
The graph of a polynomial or function reveals many characteristics that would not be clear without a visual representation. One of these characteristics is the axis of symmetry: a vertical line on a graph that splits the graph into two symmetrical mirror images. Finding the axis of symmetry for a given polynomial is fairly simple.[1]
There are two basic methods.
-
1
Check the degree of your polynomial. The degree (or “order”) of a polynomial is simply the largest exponent value in the expression.[2]
If the degree of your polynomial is 2 (there is no exponent larger than x2), you can find the axis of symmetry using this method. If the degree of the polynomial is higher than 2, use Method 2.- To illustrate, take, as an example, the polynomial 2x2 + 3x – 1. This highest exponent present is the x2, so it is a 2nd order polynomial, and you can use this first method to find the axis of symmetry.
-
2
Plug your numbers into the axis of symmetry formula. To calculate the axis of symmetry for a 2nd order polynomial in the form ax2 + bx +c (a parabola), use the basic formula x = -b / 2a.[3]
- In the example above, a = 2 b = 3, and c = -1. Insert these values into your formula, and you will get:
x = -3 / 2(2) = -3/4.
Advertisement
- In the example above, a = 2 b = 3, and c = -1. Insert these values into your formula, and you will get:
-
3
Write down the equation of the axis of symmetry. The value you calculated with your axis of symmetry formula is the x-intercept of the axis of symmetry.[4]
- In the example above, the axis of symmetry is -3/4.
Advertisement
-
1
Check the degree of your polynomial. The degree (or “order”) of a polynomial is simply the largest exponent value in the expression. If the degree of your polynomial is 2 (there is no exponent larger than x2), you can find the axis of symmetry using the formula method above. If the degree of the polynomial is higher than 2, use this graphical method.
-
2
Draw the x- and y- axes. Make two lines in the shape of a plus sign. The horizontal line is your x-axis; the vertical line is your y-axis.
-
3
Number your graph. Mark both axes with numbers at equal intervals. Spacing should be uniform on both axes.
-
4
Calculate y = f(x) for every x. Take your polynomial or function and calculate values of f(x) by putting all values of x into it.
-
5
Make a graph point for each pair. You now have pairs of y = f(x) for every x on the axis. For each (x, y) pair, make a point on the graph – vertically on the x-axis and horizontally on the y-axis.
-
6
Draw the graph of the polynomial. Once you have marked all the graph points, you can connect your dots smoothly to reveal a continuous graph of your polynomial.[5]
-
7
Look for the axis of symmetry. Inspect your graph carefully. Look for a point on the axis such that when a line is passed through it, the graph splits into two equal, mirrored halves.[6]
-
8
Note the axis of symmetry. If you can find a point – call it “b” – on the x-axis that splits the graph into two mirrored halves, then that point, b, is your axis of symmetry.[7]
Advertisement
Add New Question
-
Question
What is the axis of symmetry of f for f(x)=-2|x+3|-7?
The axis of symmetry is x=-3, because the vertex is at (-3,7). It is an absolute value graph that faces down.
-
Question
What is the axis of symmetry in x = -2(x – 3) + 5?
Because this graph consists of a straight line, it does not have an axis of symmetry. Axes of symmetry occur with parabolic graphs representing quadratic equations (“second-degree” polynomials).
-
Question
What is the axis of symmetry of f(x) = -x^2 – 6x + 4?
As explained in the above article, the axis of symmetry of a second-degree polynomial in the form of ax² + bx + c is given by the formula x = -b/2a, which in this case is x = -(-6) / 2(1) = 6/2 = 3. x=3.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
-
The lengths of your x- and y- axes should allow the overall shape of the graph to be clearly visible.
-
Some polynomials are not symmetrical. For example, y = 3x has no axis of symmetry.
-
The symmetry of a polynomial can be classified into even or odd symmetry. Any graph that has an axis of symmetry on the y-axis has an “even” symmetry; any graph that has an axis of symmetry on the x-axis is “odd.”
Thanks for submitting a tip for review!
Advertisement
References
About This Article
Article SummaryX
To find an axis of symmetry, start by checking the degree or largest exponential value of the polynomial. If the degree of your polynomial is 2, you can find the axis of symmetry by plugging the numbers directly into the axis of symmetry formula. Solve the formula and the answer you get is the x-intercept of the axis of symmetry. If the degree of the polynomial is higher than 2, you will need to find the axis of symmetry by using a graph. For tips on solving graphically, read on!
Did this summary help you?
Thanks to all authors for creating a page that has been read 94,896 times.
Did this article help you?
Как найти ось симметрии
2 методика:Нахождение оси симметрии для квадратного трехчленаНахождение оси симметрии графическим способом
Многие характеристики графика функции или многочлена невозможно объяснить без визуального представления. Одна из таких характеристик – ось симметрии: вертикальная линия на графике, которая делит этот график на два зеркально симметричных изображения. Найти ось симметрии для данного многочлена относительно несложно. Существует два основных способа.
Шаги
Метод 1 из 2: Нахождение оси симметрии для квадратного трехчлена
-
1
Определите, какова степень многочлена. Степень многочлена – это наибольшая степень, которую имеют одночлены в этом выражении. Если степень данного многочлена равна 2 (ни один одночлен в выражении не имеет степени выше, чем x2), вы можете найти ось симметрии, используя данный способ. Если степень многочлена больше двух, применяйте второй способ.- Чтобы наглядно продемонстрировать этот способ, возьмем, например, многочлен вида 2×2 + 3x – 1. Самая высокая степень в многочлене – x2, следовательно, мы имеем дело с квадратным трехчленом и можем воспользоваться первым способом для нахождения оси симметрии.
-
2
Подставьте коэффициенты в формулу расчета оси симметрии. Для нахождения оси симметрии для квадратного трехчлена вида ax2 + bx +c (парабола), применяют базовую формулу x = -b / 2a.- В нашем примере a = 2, b = 3, and c = -1. Подставим эти значения в нашу формулу, и получаем:
x = -3 / 2(2) = -3/4.
- В нашем примере a = 2, b = 3, and c = -1. Подставим эти значения в нашу формулу, и получаем:
-
3
Запишите уравнение оси симметрии. Значение, которое вы рассчитали по формуле оси симметрии, это значение точки пересечения оси симметрии с осью абсцисс.- В вышеприведенном примере, ось симметрии равна -3/4.
Метод 2 из 2: Нахождение оси симметрии графическим способом
-
1
Определите степень многочлена. Степень многочлена – это наибольшая степень, которую имеют одночлены в этом выражении. Если степень данного многочлена равна 2 (ни один одночлен в выражении не имеет степени выше, чем x2), вы можете найти ось симметрии, используя вышеприведенный способ. Если степень многочлена больше 2, применяйте графический способ. -
2
Начертите систему координат. Нарисуйте две линии, пересекающиеся под прямым углом в виде знака “плюс”. Горизонтальная линия будет осью х, а вертикальная – осью у. -
3
Отложите единичные числовые отрезки на осях. Отложите на осях числовые отрезки равной величины. -
4
Рассчитайте значение y = f(x) для каждого значения х. Возьмите данный многочлен или функцию и рассчитайте значения f(x), последовательно подставив в выражение значения х. -
5
Отметьте точки на графике для каждой пары координат. Теперь у вас есть соответствующее значение y = f(x) для каждого значения на оси абсцисс. Для каждой точки с координатами (x, y), отметьте точку в системе координат – по вертикали отложив значение по оси Х, а по горизонтали – на оси Y. -
6
Нарисуйте график многочлена. Когда вы нанесли все точки на систему координат, можно плавно соединить их между собой. У вас получится непрерывный график вашего многочлена. -
7
Найдите ось симметрии. Внимательно изучите полученный график. Найдите точку на графике, по которой можно провести линию, разделяющую график на две равные, зеркальные половины. -
8
Отметьте ось симметрии. Если вы нашли такую точку (назовем ее “b”) на оси х, которая разделяет график на две зеркальные половины, это значение и будет искомою осью симметрии.
Советы
- Длина ваших осей абсцисс и ординат должна быть достаточной, чтобы наглядно отобразить форму графика.
- Некоторые многочлены не имеют оси симметрии. Например, для y = 3x не существует оси симметрии.
- Симметрия многочлена может быть определена как четная или нечетная. Любой график, ось симметрии которого совпадает с осью у имеет “четную” симметрию. Любой график, ось симметрии которого совпадает с осью х – “нечетный.”
Инструкции:
Используйте этот калькулятор для нахождения оси симметрии параболы, показывая все шаги. Пожалуйста, укажите правильную квадратичную функцию в поле формы ниже.
Уравнение оси симметрии
Этот калькулятор позволит вам найти уравнение оси симметрии для заданной квадратичной функции, показывая все этапы процесса.
Вам необходимо предоставить действительное выражение квадратичной функции. Например, допустимой квадратичной функцией является что-то вроде 2x² – 5x + 1, но вы также можете ввести не полностью упрощенную квадратичную функцию, например 2x² + 5x +3/4 x – x² , так как калькулятор проведет необходимое упрощение квадратичной функции.
Как только вы зададите действительную квадратичную функцию, вам нужно нажать кнопку “Вычислить”, и будут предоставлены решения со всеми шагами.
Ось симметрии имеет сильное геометрическое значение, именно она служит “зеркалом” для графика квадратичной функции, которая является параболой, и она тесно связана с корнями квадратичной функции.
Формула оси симметрии
график
из
квадратичная функция
ax² +b x + c – парабола, и эта парабола будет симметрична вокруг своей оси симметрии. Уравнение оси симметрии имеет вид:
[x = displaystyle -frac{b}{2a} ]
Каковы шаги для нахождения уравнения оси симметрии?
- Шаг 1: Определите квадратичную функцию и упростите ее до вида ax² +b x + c
- Шаг 2: Упростив квадратичную функцию, убедитесь, что a ≠ 0, иначе вы не сможете продолжать
- Шаг 3: Уравнение оси симметрии имеет вид (x = displaystyle -frac{b}{2a} )
- Шаг 4: Это означает, что ось симметрии – вертикальная линия, проходящая через точку (left(displaystyle -frac{b}{2a}, 0right) )
Обратите внимание, что это относится к обычным параболам, без вращения осей, что выходит за рамки данного учебника.
Калькулятор оси симметрии
Этот
Калькулятор параболы
получит квадратичную функцию, упростит ее до вида ax² +b x + c и подставит значения a и b в формулу:
[x = displaystyle -frac{b}{2a} ]
Но есть и другие способы поиска
Ось симметрии
параболы. Предположим, что вы
решить квадратное уравнение
ax² +b x + c = 0, и вы находите корни u и v. Как вы находите
Ось симметрии
когда вы знаете корни квадратного уравнения?
- Шаг 1: Определите заданные корни квадратных уравнений
- Шаг 2: У вас будет два корня u и v. Если есть только один корень, вы определяете u и v как одно и то же значение
- Шаг 3: Ось симметрии находится путем вычисления средней точки корней u и v: Таким образом, мы получаем формулу оси симметрии (x = displaystyle frac{u+v}{2}). Это работает как для вещественных, так и для комплексных корней
Когда у вас
сложные корни
то они будут сопряженными комплексными числами, и тогда их среднее даст действительное число.
Зачем заботиться об оси симметрии?
Ось симметрии соответствует симметричной линии для графика квадратичной функции, которая является параболой. Таким образом, наличие ссылки на симметрию дает много информации о параболе.
Например, корни уравнения будут располагаться симметрично относительно этой оси симметрии.
Пример: ось симметрии
Рассмотрим следующее квадратное уравнение: (f(x) = 3x^2 + 2x + 1). Найдите его ось симметрии.
Решение:
чем завершается расчет.
Пример: уравнение оси симметрии
Предположим, что у вас есть следующее квадратичное выражение: (f(x) = x^2 + frac{2}{3}x + frac{5}{4}). Используйте формулу для вычисления его оси симметрии.
Решение:
чем завершается расчет.
Пример: формула оси симметрии из корней
Предположим, что корнями квадратного уравнения являются (r_1 = 3) и (r_2 = 5). Найдите уравнение оси симметрии параболы.
Отвечать:
Мы знаем, что при наличии корней необходимо усреднить корни. Следовательно, уравнение оси симметрии параболы имеет вид
[x = displaystyle frac{u+v}{2} = displaystyle frac{3+5}{2} = 4]
чем завершается расчет.
Больше квадратичных калькуляторов
Нахождение оси симметрии параболы – это лишь одна из многих задач, которые можно решить с помощью функции
квадратичные функции
. Вы можете
решать квадратные уравнения
и
вычислить вершину
.
Кроме того, как вы, вероятно, уже заметили, существует тесная связь между
формула вершины
и ось симметрии: Действительно, ось симметрии – это вертикальная линия, проходящая через вершину.
Как найти ось симметрии квадратичной функции
Как найти ось симметрии квадратичной функции — Разница Между
Содержание:
Что такое квадратичная функция
Полиномиальная функция второй степени называется квадратичной функцией. Формально f (x) = ax 2 + bx + c — квадратичная функция, где a, b и c — действительные постоянные и a ≠ 0 для всех значений x. График квадратичной функции является параболой.
Как найти ось симметрии квадратичной функции
Любая квадратичная функция показывает поперечную симметрию поперек оси y или линии, параллельной ей. Ось симметрии квадратичной функции может быть найдена следующим образом:
F (X) = ах 2 + bx + c, где a, b, c, x∈R и a ≠ 0
Написание х терминов в виде полного квадрата у нас есть,
Переставляя члены вышеприведенного уравнения
Это означает, что для каждого возможного значения f (x) есть два соответствующих значения x. Это хорошо видно на диаграмме ниже.
расстояние влево и вправо от значения -b / 2a. Другими словами, значение -b / 2a всегда является средней точкой линии, соединяющей соответствующие значения x (точки) для любого заданного f (x).
Следовательно ,
x = -b / 2a — уравнение оси симметрии для заданной квадратичной функции в виде f (x) = ax 2 + BX + C
Как найти ось симметрии квадратичной функции — Примеры
- Квадратичная функция определяется как f (x) = 4x 2 + Х + 1. Найдите симметричную ось.
х = -b / 2a = -1 / (2 × 4) = — 1/8
Следовательно, уравнение оси симметрии имеет вид х = -1 / 8
- Квадратичная функция задается выражением f (x) = (x-2) (2x-5)
Упрощая выражение, мы получаем f (x) = 2x 2 -5x-4x + 10 = 2x 2 -9x + 10
Мы можем сделать вывод, что a = 2 и b = -9. Следовательно, мы можем получить ось симметрии как
Квадратичная функция. Построение параболы
О чем эта статья:
8 класс, 9 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Основные понятия
Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.
Задать функцию означает определить правило в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
- Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
- Графический способ: наглядно.
- Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
- Словесный способ.
График функции — это объединение всех точек, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.
Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно на курсах по математике в онлайн-школе Skysmart.
Построение квадратичной функции
Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0. В уравнении существует следующее распределение:
- a — старший коэффициент, который отвечает за ширину параболы. Большое значение a — парабола узкая, небольшое — парабола широкая.
- b — второй коэффициент, который отвечает за смещение параболы от центра координат.
- с — свободный член, который соответствует координате пересечения параболы с осью ординат.
График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 :
Точки, обозначенные зелеными кружками называют базовыми точками. Чтобы найти их координаты для функции y = x 2 , нужно составить таблицу:
x
y
Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов.
График функции y = –x 2 выглядит, как перевернутая парабола:
Зафиксируем координаты базовых точек в таблице:
x
y
Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:
- Если старший коэффициент больше нуля a > 0, то ветви параболы напрaвлены вверх.
- Если старший коэффициент меньше нуля a 2 + bx + c, для построения которой нужно решить квадратное уравнение ax 2 + bx + c = 0. В процессе найдем дискриминант D = b 2 — 4ac, который даст нам информацию о количестве корней квадратного уравнения.
Рассмотрим три случая:
- Если D 0,то график выглядит так:
- Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:
- Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:
Если a > 0, то график выглядит как-то так:
0″ height=»671″ src=»https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=»602″>
На основе вышеизложенного ясно, что зная направление ветвей параболы и знак дискриминанта, у нас есть понимание, как будет выглядеть график конкретной функции.
Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:
Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.
Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).
На изображении отмечены основные параметры графика квадратичной функции:
Алгоритм построения параболы
Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.
Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.
Разберем общий алгоритм на примере y = 2x 2 + 3x — 5.
Как строим:
- Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
- Найдем дискриминант квадратного трехчлена 2x 2 + 3x — 5.
D = b 2 — 4ac = 9 — 4 * 2 * (-5) = 49 > 0
В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:
2x 2 + 3x — 5 = 0 2 + 3x — 5 = 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAPoAAAAyCAYAAAB1V8bkAAAJyElEQVR4Ae2c16sUwRLGfdRX/wXFB30QFFQUQUyIKCIGBEEQzCCoKIgB01ExZwVz4JpzztljwJxzzjlnrcuvL33unD2zOzO7OzvuThU0u5N6uuvrr7u6unrKiYpqQDVQ8BooV/A11AqqBlQDokTXRqAaiIEGlOgxAFmrqBpQomsbUA3EQANK9BiArFVUDSjRtQ2oBmKgASV6DEDWKqoGlOjaBlQDMdBAQRH9z58/8vv3b5P+/v2bMXy/fv0S8kxMGWesGRgNpIMXz7jhkg28CxmWgiH69+/f5dSpU7JixQpZtmyZXLx4UX7+/JkUOxoGjSaVTJw4UVatWiUbNmwoSYcPH071iF7zqYGgeNlsT58+LZMnTy7BA2y2bNkib9++tbfor4sGCobogD19+nR5/fq1nDx5Upo0aSLHjh2TZD39x48f5ebNmy4q+d8pRo327dtLo0aNTF6NGzeWevXqCeRXyVwDQfHijXTMmzZtMjiAL6lu3brSuXNnuXfvXuaFKuAcCobojOQDBgwwgD948EAg5ubNm42Z54bfjRs3ZMqUKW6XzDk6jP379wsjD/LmzRtZt26dvHr1KukzesG/BoLiRc5gceXKFZM4/vbtmxw6dEguXbokP3788P/yGN5ZMET/8uWLvHv3Tt6/f2/Muh49esj169eTQupF9MQHIfm1a9cST+txmhoIipfba86fPy9Hjx4VrDOV1BooGKJTTYh++fJlGTt2rCxevNgcJ6t+EKIz3587d26yrPR8mhoIglfiK549e2Y6dHBU8dZA3hH9+PHjYhNmnFO+fv1qTOwDBw5Ily5dhF+nQ47ndu/ebdLChQule/fuJcecp9E477d5d+zYUW7fvm0P9TeABixW/AbBCz+LffbChQtl3rh69WpZsmSJjuZlNON+Iu+IDkGZW+N427Ztm6nVp0+f5MiRI6Zh2Dl1hw4dZOjQoaVGdebc1oM+a9Ys48Sxx/y6zfUePnwoVapUcdeenvXUQLp4LV261OA8bdo0g5nzRR8+fJBhw4YJeav400DeEf3Ro0dmZGD+/fLlS1NLzLjhw4fLmDFjhEaA4DHv16+fGeHdVOHXdKczqVy5slsWes6HBtLF6/HjxwZn/CLPnz8v9aZbt25Jt27dlOiltJL6IO+I7lYdTPY1a9bIjBkz5M6dO7Jjxw5hRN++fXtSb6xfos+ZM0cqVark9trQzrEmXFxc7LnOH1oBQs44HbycRTpz5oy0a9funyA6DkGW/NavX19mauIsc+J/OkCmJliRL168ME7FVM7jxOeDHhcE0ak05KD3P3v2rFkWO3HihHz+/DmpPlh3XbRoUdLr9gL5LF++3B6G+nv//n3ZuHGjDBw4UDp16pS0kwq1EDnKPChezmI9efJEtm7dmnJVxXl/WP8PHjxopoxXr141RG3Tpo0JsPLzPqaaLVq0kDp16kjDhg2lb9++JgbEz7Pp3FMwRKfyBLkwX2fpxivqjbm8Nf1TKY77WK/NhVBuGvGoUaNMHID1N+Ti3VG8IwhezvIR5gwm/EYlrBgMGTJE9u3bZxy4YDV69Gjf/py9e/fKypUrjSVKLEDYqwcFRfSoQM/2e2fOnGmivgqd6NnWWy7zI3CqefPmUlRUVOIXgrzly5cXfEZewr2Y/XTuyaI3vfIIcj1tolM4lpyIBZ83b56MGzdO9uzZY0YjwkSfPn0apBx6r0MDYRBd8XIoOAt/sRiZU0N4az2OHz9eKlSo4MvSgOgs6RKIBYdIYUraRMfsYpkL84m5cc+ePY1DYv78+dKnTx/B2eAlmKldu3b1TISy5luII8s/XnWbNGmSMC9PlDCIrniJcXB6YcJ15s9+JHEkrlq1qixYsMDPowLRcRqzSgSHiOkI0xeUNtHpxXBUIQQ3tGrVKnLniC8N58FNYRBd8QoOPES2Php8Agw2dvR25gZRcaaNHDnSeTrlf/JxdhTsuMQacJ5LmUHAi2kT3b6HyrNBoXXr1uYUBXVThr3f+YuCcGp4JZRsFYAV8K8lt1hremqveuE4RAeJEgbR7Tvigpfb1JG6e2HCde5DCJbCM16rVi2T2D9BiLVT6Agwv3GsgSXPumHqfAZ+sLqCNWfbNQ455ve8MwxJm+gsXeF0YFcXPRlRaAiebD/OCO5l/XDQoEGeCTPHhqZWq1ZN/rVElF2iTJ061bNemHkEhiRKGESPG141atRIVKtZevXT3tjz7kcYgIioZDRmtyM6Zk09sf0zbYIndkBgabFt27ZmeZeYAgQzvmLFimWe9VMOP/ekTXTWMXv37m16uF69esmECRNMZdgDzgcgVIJrwLm8Vr9+fSECjM4wG6J4ZUOL/8+DgQdSwwGccIRkk4jITBRGaZZM8V/ZlRRGdIJlwJzBsX///gKPwpK0iY7HkArSgKgwu8XYMnju3LmkgSr0ZNZUCatCfvLFtKIHtj2sn2dycY8NmCGcF6cQIwXx+dmQfMMLfEj/qjA1Yx29ZcuWpRLmfaLcvXtXBg8eLCNGjChxUoM1mBAdt3btWmP9ZatTT3w/x2kTHcKytAB5EeYmyYiDecpWz9mzZyf9EIRb4cI6Rw/KikGcLI98w4vlWkKYC0Uw5xkEMeGt4A/Akc28P+wBMG2i28L6+WV7IruRmjVrVmK6+HkujHuYL+3atcuUhbm/SlkNRI0Xn/iqWbOmaTNlS5d/ZzDzITOhslFJTohO5Rg98WDaOUoUFabXpBExV2JThBI9OQpR4YX1x3SQb/UxOBSCYO2yA48RPCqJFdGZmxN8w/q/Ej11k4uK6ERXMqflw4+FQvTUms7N1VgRnYgndq2RlOipG1gURCf2myhLpldNmzZVoqeGKNDV2BAdj+bOnTuNcpTo3m0k10THrCVohCAiRInujVGQO2JDdJYA8bQTpIJHt3bt2mZtk1FEpawGck10PrRB4BEf4QQjgqIIK2UbqErmGsgJ0fE2AmL16tWFj/oRwpprYcRgVCcR+URsPkELBCyolNZAFHgRVcZyrcWoQYMGwtd97KfBSpdQj4JqICdEZ3kBkwwQIZZXLHDQSvi9H687G/wJgyREkl+7McdvHnG4L0q8WG9mUOCDnASf4DxVyVwDOSF65sXMXg6QnYbMMh+/fjfgZK8EmlMqDYAPzji7WyyqQSFVGfPxWuyIno8gaZlVA5lqQImeqQb1edVAHmhAiZ4HIGkRVQOZakCJnqkGI3m+WIrKlZOi45G8XF+ahxpQouchaKbIx4uU6PmKXQTlVqJHoPTMX/lM/tOuSIozz0hziIkGlOgxAVqrGW8NKNHjjb/WPiYaUKLHBGitZrw1oESPN/5a+5hoQIkeE6C1mvHWwH8BSUfSiO3XWNEAAAAASUVORK5CYII=»>
- Координаты вершины параболы:
- Точка пересечения с осью OY находится: (0; -5) и ей симметричная.
- Нанести эти точки на координатную плоскость и построить график параболы:
2 + 3x — 5 = 0″ height=»671″ src=»https://lh6.googleusercontent.com/TYyA5dFfh0ZKINaPSps3Y_X1mCv8Mhv_8bNG3_dPbZud1AEsvo7UBFmVQNm1GcR1CQFo6HE1lNjYaAgepQUTQiK_ay_Fnuv7LEsB53woHkFO66W0R1PP8QfGsFcYzaR_h4AJdLxC» width=»602″>
Уравнение квадратичной функции имеет вид y = a * (x — x₀) 2 + y₀
Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x 2 + 3x — 5 при а = 1, то второй коэффициент является четным числом.
Рассмотрим пример: y = 2 * (x — 1) 2 + 4.
Как строим:
- Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
- построить y = x 2 ,
- умножить ординаты всех точек графика на 2,
- сдвинуть его вдоль оси ОХ на 1 единицу вправо,
- сдвинуть его вдоль оси OY на 4 единицы вверх.
- Построить график параболы для каждого случая. 2 + y₀» height=»431″ src=»https://lh5.googleusercontent.com/_zgF-CXWf4Yy0p2OnBYSJkUm0zO-mNetq5feU6LIPEbIgSrO9kdr2ti_tr7Gg3yTMOlJVnuZgG0HleAFfAzG7yr7ELHT6KSMqMrRHkHqt-VcgIiSZx80cVj0zlPMBzEM0wAWQ-L6″ width=»602″>
Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)
Рассмотрим следующий пример: y = (x − 2) × (x + 1).
Как строим:
Данный вид уравнения позволяет быстро найти нули функции:
(x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.
Определим координаты вершины параболы:
Найти точку пересечения с осью OY:
с = ab = (−2) × (1) = −2 и ей симметричная.
Отметим эти точки на координатной плоскости и соединим плавной прямой.
Симметрии на плоскости и в пространстве
Центральная симметрия с центром в точке C (a,b) описывается уравнениями $frac2=a, x’=-x+2a$ или, что то же самое, $frac2=b, y’=-y+2b$.
Например, если центр симметрии находится в точке C(1,2), то симметричной точке А(2, 3) будет точка А'(0,1), так как $x’=-2+2 times 1=0, y’=-3+2 times 2=1$.
Декартовы уравнения, описывающие осевую симметрию, более сложны, так как осью симметрии может быть любая прямая на плоскости, и чтобы описать ее, потребуется прибегнуть к тригонометрическим функциям. Существуют, однако, три простых случая.
Осевая симметрия относительно оси ОХ
Таким образом, чтобы найти точку, симметричную заданной, достаточно оставить неизменной первую координату и поменять знак у второй. Например, точкой, симметричной точке A(3,-2), будет точка А’(3,2).
Симметрия относительно оси OY
В этом случае для нахождения симметричной точки нужно поменять знак первой координаты и оставить неизменной вторую. Например, точкой, симметричной точке А (-3, 9) относительно оси ОУ, является точка А’(3,9).
Симметрия относительно биссектрисы y=x
Таким образом, достаточно только поменять значения координат местами. То есть точкой, симметричной точк с А(5,1), будет точка А’(1,5).
Симметрии в пространстве
В пространстве также существуют центральная и осевая симметрии (относительно точки или прямой), определяемые примерно так же, как и на плоскости, но с тремя координатами вместо двух. Безусловно, существует еще и третья возможность — симметрия относительно плоскости, так называемая зеркальная симметрия. Строится она следующим образом. Предположим, что Р — плоскость симметрии (симметрия в таком случае обычно обозначается символом ). Чтобы найти преобразование точки А, проводится перпендикуляр к плоскости, проходящий через данную точку. Точкой, симметричной заданной, будет точка А’ находящаяся на этом перпендикуляре и удаленная от плоскости Р на такое же расстояние, что и точка А.
Инвариантные элементы зеркальной симметрии:
- все точки на плоскости Р;
- прямые, перпендикулярные Р (но не точки этих прямых);
- плоскости, перпендикулярные Р (тоже плоскости в целом, но не элементы, их составляющие).
Зеркальная симметрия не только является инволютивным преобразованием, но и имеет следующие свойства:
- сохраняет расстояния между точками;
- переводит прямые в прямые;
- переводит плоскости в плоскости.
источники:
http://skysmart.ru/articles/mathematic/kvadratichnaya-funkciya-parabola
http://matemonline.com/2013/06/symmetries-in-the-plane-and-in-space/