Как найти ось симметрии прямой

Если середину отрезка провести перпендикулярную прямую, то она будет осью симметрии данного отрезка.

Есть утверждения, что если через этот отрезок провести прямую, то она будет второй осью симметрии для данного отрезка.

Давайте рассмотрим более подробнее этот случай и для начала ознакомимся с определением некоторых вещей

Определение точки

Определение линии

Определение прямой

Определение отрезка

Отрезок – это часть прямой линии, он имеет длину, но не имеет ширины и толщины, следовательно – разделить его вдоль никак нельзя и поэтому, он имеет только одну ось симметрии.

Теперь рассмотрим случай с прямой.

Проведем две перпендикулярных прямых к прямой а – одну посередине отрезка АА1, который лежит на этой прямой, другую немного правее

Первая прямая будет осью симметрии и для отрезка АА1 и для прямой а, вторая – только для прямой а (для любых точек А и А1 всегда найдем симметричные).

Прямая линия имеет бесконечное количество осей симметрии, но все они должны быть к ней перпендикулярны.

Осевая и центральная симметрия

О чем эта статья:

Что такое симметрия

Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.

Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.

Центр симметрии — это точка, в которой пересекаются все оси симметрии.

Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.

Рассмотрите фигуры с осевой и центральной симметрией.

  • Ось симметрии угла — биссектриса.
  • Ось симметрии равностороннего треугольника — биссектриса, медиана, высота.
  • Оси симметрии прямоугольника проходят через середины его сторон.
  • У ромба две оси симметрии — прямые, содержащие его диагонали.
  • У квадрата 4 оси симметрии, так как он сразу и квадрат, и ромб.
  • Ось симметрии окружности — любая прямая, проведенная через ее центр.

Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.

Осевая симметрия

Вот как звучит определение осевой симметрии:

Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.

При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.

Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.

В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.

Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.

Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.

  1. Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
  2. Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
  3. С другой стороны прямой отложим такие же расстояния.
  4. Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
  5. Получаем два треугольника, симметричных относительно оси симметрии.

Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.

  1. Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
  2. Измеряем расстояние от вершин до точек на прямой.
  3. Откладываем такие же расстояния на другой стороне оси симметрии.
  4. Соединяем точки и строим треугольник A1B1C1.

Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.

  1. Проводим через точку А прямую, перпендикулярную прямой l.
  2. Проводим через точку В прямую, перпендикулярную прямой l.
  3. Измеряем расстояния от точек А и В до прямой l.
  4. Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
  5. Соединяем точки A1 и B1.

Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!

Центральная симметрия

Теперь поговорим о центральной симметрии — вот ее определение:

Центральной симметрией называется симметрия относительно точки.

Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.

Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.

Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).

  1. Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
  2. Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
  3. Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
  4. Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.

Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).

  1. Измеряем расстояние от точки B до точки О и от точки А до точки О.
  2. Проводим прямую из точки А через точку О и выводим ее на другую сторону.
  3. Проводим прямую из точки B через точку О и выводим ее на другую сторону.
  4. Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
  5. Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.

Задачи на самопроверку

В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!

Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.

Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:

Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная

Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.

Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.

Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.

6.7.3. Осевая симметрия

Точки А и А1 симметричны относительно прямой m, так как прямая m перпендикулярна отрезку АА1 и проходит через его середину.

m – ось симметрии.

Прямоугольник ABCD имеет две оси симметрии: прямые m и l.

Если чертеж перегнуть по прямой m или по прямой l, то обе части чертежа совпадут.

Квадрат ABCD имеет четыре оси симметрии: прямые m, l, k и s.

Если квадрат перегнуть по какой-либо из прямых: m, l, k или s, то обе части квадрата совпадут.

Окружность с центром в точке О и радиусом ОА имеет бесчисленное количество осей симметрии. Это прямые: m, m1, m2, m3 .

Задание. Построить точку А1, симметричную точке А(-4; 2) относительно оси Ох.

Построить точку А2, симметричную точке А(-4; 2) относительно оси Оy.

Точка А1(-4; -2) симметрична точке А(-4; 2) относительно оси Ох, так как ось Ох перпендикулярна отрезку АА1 и проходит через его середину.

У точек, симметричных относительно оси Ох абсциссы совпадают, а ординаты являются противоположными числами.

Точка А2(4; -2) симметрична точке А(-4; 2) относительно оси Оy, так как ось Оу перпендикулярна отрезку АА2 и проходит через его середину.

У точек, симметричных относительно оси Оу ординаты совпадают, а абсциссы являются противоположными числами.

Как найти ось симметрии квадратичной функции

Как найти ось симметрии квадратичной функции – Разница Между

Содержание:

Что такое квадратичная функция

Полиномиальная функция второй степени называется квадратичной функцией. Формально f (x) = ax 2 + bx + c – квадратичная функция, где a, b и c – действительные постоянные и a ≠ 0 для всех значений x. График квадратичной функции является параболой.

Как найти ось симметрии квадратичной функции

Любая квадратичная функция показывает поперечную симметрию поперек оси y или линии, параллельной ей. Ось симметрии квадратичной функции может быть найдена следующим образом:

F (X) = ах 2 + bx + c, где a, b, c, x∈R и a ≠ 0

Написание х терминов в виде полного квадрата у нас есть,

Переставляя члены вышеприведенного уравнения

Это означает, что для каждого возможного значения f (x) есть два соответствующих значения x. Это хорошо видно на диаграмме ниже.

расстояние влево и вправо от значения -b / 2a. Другими словами, значение -b / 2a всегда является средней точкой линии, соединяющей соответствующие значения x (точки) для любого заданного f (x).

Следовательно ,
x = -b / 2a – уравнение оси симметрии для заданной квадратичной функции в виде f (x) = ax 2 + BX + C

Как найти ось симметрии квадратичной функции – Примеры

  • Квадратичная функция определяется как f (x) = 4x 2 + Х + 1. Найдите симметричную ось.

х = -b / 2a = -1 / (2 × 4) = – 1/8

Следовательно, уравнение оси симметрии имеет вид х = -1 / 8

  • Квадратичная функция задается выражением f (x) = (x-2) (2x-5)

Упрощая выражение, мы получаем f (x) = 2x 2 -5x-4x + 10 = 2x 2 -9x + 10

Мы можем сделать вывод, что a = 2 и b = -9. Следовательно, мы можем получить ось симметрии как

[spoiler title=”источники:”]

http://mathematics-repetition.com/6-7-3-osevaya-simmetriya/

http://ru.strephonsays.com/how-to-find-the-axis-of-symmetry-of-a-quadratic-function

[/spoiler]

Осевая симметрия — это симметрия относительно прямой.

osevaya-simmetriyaПусть дана некоторая прямая g.

Чтобы построить точку, симметричную некоторой точке A относительно прямой g, надо:

simmetriya-otnositelno-pryamoj1) Провести из точки A к прямой g перпендикуляр AO.

tochki-simmetrichnye-otnositelno-pryamoj2) На продолжении перпендикуляра с другой стороны от прямой g отложить отрезок OA1, равный отрезку AO: OA1=AO.

Полученная точка A1 симметрична точке A относительно прямой g.

Прямая g называется осью симметрии.

Таким образом, точки A и A1 симметричны относительно прямой g, если эта прямая проходит через середину отрезка AA1 и перпендикулярна к нему.

Если точка A лежит на прямой g, то симметричная ей точка есть сама точка A.

Преобразование фигуры F  в фигуру F1, при котором каждая её точка A переходит в точку A1, симметричную относительно данной прямой g, называется преобразованием симметрии относительно прямой g.

Фигуры F и F1 называются фигурами, симметричными относительно прямой g.

treugolniki-simmetrichnye-otnositelno-pryamojЧтобы построить треугольник, симметричный данному относительно прямой g, достаточно построить точки, симметричные вершинам треугольника, и соединить их отрезками.

Например, треугольники ABC и A1B1C1 симметричны относительно прямой g.

Если преобразование симметрии относительно прямой g переводит фигуру в себя, то такая фигура называется симметричной относительно прямой g, а прямая g называется её осью симметрии.

Симметричная фигура своей осью симметрии делится на две равные половины. Если симметричную фигуру нарисовать на бумаге, вырезать и согнуть по оси симметрии, то эти половинки совпадут.

Примеры фигур, симметричных относительно прямой.

osi-simmetrii-pryamougolnika1) Прямоугольник.

Прямоугольник имеет 2 оси симметрии: прямые, проходящие через точку пересечения диагоналей параллельно сторонам.

2) Ромб.

simmetriya-v-rombe

Ромб имеет две оси симметрии:

прямые, на которых лежат его диагонали.

3) Квадрат, как ромб и прямоугольник, имеет четыре оси симметрии: прямые, содержащие его диагонали, и прямые, проходящие через точку пересечения диагоналей параллельно сторонам.

4) Окружность.

okruzhnost-simmetrichna-otnositelno-pryamyh

Окружность имеет бесконечное множество осей симметрии:

любая прямая, содержащая диаметр, является осью симметрии окружности.

5) Прямая.

Прямая также имеет бесконечное множество осей симметрии: любая перпендикулярная ей прямая является для данной прямой осью симметрии.

6) Равнобедренная трапеция.

ravnobedrennaya-trapeciya-simmetrichna-otnositelno-pryamoj

Равнобедренная трапеция — фигура, симметричная относительно прямой,перпендикулярной основаниям и проходящей через их середины.

7) Равнобедренный треугольник.

ravnobedrennyj-treugolnik-simmetrichen-otnositelno-pryamoj

Равнобедренный треугольник имеет одну ось симметрии:

прямую, проходящую через высоту (медиану, биссектрису), проведённую к основанию.

8) Равносторонний треугольник.

simmetriya-v-pravilnom-treugolnike

Равносторонний треугольник имеет три оси симметрии:

прямые, содержащие его высоты (медианы, биссектрисы).

9) Угол.

ugol-simmetrichen-otnositelno-bissektrisy

Угол — фигура, симметричная относительно прямой, содержащей его биссектрису.

Теорема.

Осевая симметрия является движением.

  1. Главная
  2. Справочники
  3. Справочник по математике 5-9 класс
  4. Координаты на плоскости
  5. Осевая и центральная симметрии

Осевая симметрия

Рассмотрим построение точки, симметричной данной точке А относительно данной прямой .

Пусть дана точка А и прямая .

Точку симметричную точке А относительно прямой , можно построить так. Проведем через точку А прямую , перпендикулярную прямой . Для этого используем чертежный угольник. Прикладываем чертежный угольник так, как показано на рисунке ниже и проводим прямую через точку А.

Пусть прямые и пересекаются в точке О. Отложим при помощи линейки на прямой отрезок ОА1, равный отрезку ОА.

Получаем точки А и А1, которые симметричны относительно прямой .

Также можно построить фигуры, симметричные относительно прямой.

Построим треугольник А1В1С1, симметричный треугольнику АВС относительно прямой .

Пусть дан треугольник АВС и прямая .

Далее строим точки А1, В1 и С1, симметричные точкам А, В и С относительно прямой (алгоритм построения смотри выше), соединив которые получим треугольник А1В1С1, симметричный треугольнику АВС относительно прямой .

Обратите внимание, любые две фигуры, симметричные относительно прямой, равны.

Если фигура имеет ось симметрии (прямая  ) то, все точки этой фигуры, не принадлежащие этой оси, можно разделить на пары симметричных точек.

Центральная симметрия

Точки М и М1 называют симметричными относительно точки О, если точка О является серединой отрезка ММ1 (смотри рисунок ниже).

Рассмотрим построение точки, симметричной данной точке М относительно данной точки О.

Пусть даны точки М и О. Точку, симметричную точке М относительно точки О, можно построит так. Проведем луч МО.

На луче МО отложим отрезок ОN , равный отрезку ОМ.

Точки М и М1, которые симметричны относительно точки О.

Также можно построить фигуры, симметричные относительно точки.

Построим треугольник А1В1С1, симметричный треугольнику АВС относительно точки О.

Пусть дан треугольник АВС и точки О.

Далее строим точки А1, В1 и С1, симметричные точкам А, В и С относительно точки О (алгоритм построения смотри выше), соединив которые получим треугольник А1В1С1, симметричный треугольнику АВС относительно точки О.

Обратите внимание, любые две фигуры, симметричные относительно точки, равны.

Рассмотрим окружность с центром в точке О. Все точки окружности можно разбить на пары точек, симметричных относительно точки О.

В таком случае говорят, что окружность имеет центр симметрии – точку О.

Также центр симметрии имеют такие фигуры, как отрезок, прямоугольник, эллипс.

Советуем посмотреть:

Перпендикулярные прямые

Параллельные прямые

Координатная плоскость

Координаты на плоскости


Правило встречается в следующих упражнениях:

6 класс

Номер 1245,
Мерзляк, Полонский, Якир, Учебник

Номер 1246,
Мерзляк, Полонский, Якир, Учебник

Номер 1249,
Мерзляк, Полонский, Якир, Учебник

Номер 1251,
Мерзляк, Полонский, Якир, Учебник

Номер 1252,
Мерзляк, Полонский, Якир, Учебник

Номер 1253,
Мерзляк, Полонский, Якир, Учебник

Номер 1269,
Мерзляк, Полонский, Якир, Учебник

Номер 1317,
Мерзляк, Полонский, Якир, Учебник

Номер 3,
Мерзляк, Полонский, Якир, Учебник

Номер 8,
Мерзляк, Полонский, Якир, Учебник


Что называется осевой симметрией

Содержание:

  • Что такое осевая симметрия в геометрии 
  • Свойства осевой симметрии
  • Теорема и доказательство
  • Фигуры, обладающие симметрией
  • Симметрия в повседневной жизни

Что такое осевая симметрия в геометрии 

Симметрия – это свойство геометрических фигур отражаться. Симметрия относительно точки называется центральной. Осевая симметрия – это симметрия относительно прямой.

Если точка A и точка B симметричны относительно прямой n, то прямая называется осью симметрии n и проходит через середину отрезка AB. Обозначение осевой симметрии – Sn, таким образом симметрия точек A и B обозначается так:

Sn (А) = В.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Другое название осевой симметрии – вращательная – применяется в естественных науках. Данное понятие означает отражение предметов касательно поворотов вокруг прямой.

Свойства осевой симметрии

  1. Осевая симметрия переводит прямую в прямую, луч – в луч, отрезок – в отрезок, плоскость в плоскость.
  2. Неподвижными являются: ось симметрии и все точки на ней, все прямые и плоскости, перпендикулярные оси симметрии.
  3. Обратное преобразование осевой симметрии есть та же осевая симметрия.
  4. Осевая симметрия – это поворот относительно оси симметрии на 180°.

Теорема и доказательство

Теорема

Осевая симметрия – это движение, то есть при преобразовании осевой симметрии расстояние между точками сохраняется. 

Если отрезок MN симметричен отрезку M1N1  относительно прямой a, то MN = M1N1

Осевая симметрия

Чтобы доказать, что MN = M1N1, сделаем дополнительные построения:

  • P – это точка пересечения MMи прямой a;
  • Q – это точка пересечения NNи прямой a; 
  • построим отрезок MK, перпендикулярный NN1;
  • тогда точка K отразится в точку K1.

Осевая симметрия

Докажем, что прямоугольные треугольники MNK и M1N1K1 равны. Стороны MN и M1Nявляются гипотенузами данных треугольников, поэтому, нужно доказать равенство катетов.

МК = М1К1 , так как перпендикулярны к параллельным прямым.

По построению:

NK = NQ – KQ,

N1K= N1Q – K1Q. 

Точка N отобразилась в точку N1,  значит:

NK = N1K1.

Итак, треугольники равны по двум катетам, следовательно, их гипотенузы равны, то есть  MN = M1N1, что и требовалось доказать.

Фигуры, обладающие симметрией

Осевой симметрией обладает угол, а биссектриса является осью симметрии.

Пример №1

Из произвольной точки одной стороны угла опустим перпендикуляр к биссектрисе и продлим его до другой стороны угла:

Угол обладающий симметрией

Рассмотрим Δ KAO и Δ MAO:

  • AO – общая сторона
  • Из свойства биссектрисы: ∠ MAO = ∠KAO
  • Треугольники KAO и MAO прямоугольные,

Отсюда следует, что KO = OM, поэтому точки K и M симметричны касательно биссектрисы угла.

Следовательно, равнобедренный треугольник тоже симметричен относительно биссектрисы, проведенной к основанию.

Пример №2

Равносторонний треугольник имеет три оси симметрии – биссектрисы, медианы, высоты каждого угла:

Равносторонний треугольник

Пример №3

У прямоугольника две оси симметрии. Каждая из них проходит через середины противоположных сторон.

Прямоугольник

Пример №4

Ромб обладает двумя осями симметрии – это прямые, содержащие его диагонали.

Ромб

Пример №5

Квадрат имеет 4 оси симметрии, так как он одновременно и ромб, и прямоугольник.

Квадрат

Пример №6

У окружности бесконечное множество осей симметрии – это все прямые, проведенные через центр круга.

Круг

Симметрия в повседневной жизни

Симметрия стала частью жизни человека уже в древние времена. Орнаменты с признаками зеркального отражения встречаются на античных зданиях, древнегреческих вазах. Свойство пропорционального расположения заимствовано в науку из природы. 

Зеркальное отражение часто встречается в живой и неживой природе. Этой характеристикой обладают снежинки. В растительном мире одинаково расположены противоположные элементы растений: большинство листьев зеркально отражаются сравнительно среднего стебля. В животном мире законы симметрии проявляются в наличии у животных правой и левой сторон. Большинство представителей фауны обладает парными частями тела: уши, лапы, глаза, крылья, рога. Ярким образцом зеркальной симметрии считается бабочка. Прямая, условно проведенная вдоль туловища насекомого по центру, является осью симметрии.

Поскольку человек – это часть природы, в своем творчестве он использует принцип симметрии. В искусстве свойство отражения применяется для создания красоты и гармонии. В архитектуре пропорциональность выполняет практическую функцию – придает зданиям устойчивость и надежность. В предметах быта можно встретить одинаковость в расположении частей узоров на коврах, принтов на ткани, рисунков обоев.

Стремление к созданию симметричного, предположительно, связано с притяжением Земли – гравитацией. Человек интуитивно считает симметрию формулой устойчивости. Принцип зеркального отражения играет важную роль в человеческой жизни. Тяга к гармонии и красоте побуждает человечество придерживаться правил пропорциональности.

Добавить комментарий