Как найти ось вращения земли

Направление суточного вращения

Фото звёздного неба c Земли при многочасовой экспозиции — иллюстрация вращения Земли вокруг своей оси. Видно северный полюс мира

Су́точное враще́ние Земли́ вокруг своей оси происходит с периодом в одни звёздные сутки. Наблюдаемым проявлением вращения Земли является суточное вращение небесной сферы.

Вращение Земли происходит в том же направлении, что и её движение вокруг Солнца: если смотреть с северной стороны, против часовой стрелки (то есть с запада на восток).

История[править | править код]

История идей о суточном вращении Земли:

Античность[править | править код]

Объяснение суточного вращения небосвода вращением Земли вокруг оси впервые было предложено представителями пифагорейской школы, сиракузянами Гикетом и Экфантом. Согласно некоторым реконструкциям, вращение Земли утверждал также пифагореец Филолай из Кротона[1] (V век до н. э.). Высказывание, которое можно трактовать как указание на вращение Земли, содержится в Платоновском диалоге Тимей[2].

Однако о Гикете и Экфанте практически ничего неизвестно, и даже само их существование иногда подвергается сомнению[3]. Согласно мнению большинства ученых, Земля в системе мира Филолая совершала не вращательное, а поступательное движение вокруг Центрального огня. В других своих произведениях Платон следует традиционному мнению о неподвижности Земли. Однако до нас дошли многочисленные свидетельства, что идею вращения Земли отстаивал философ Гераклид Понтийский (IV век до н. э.)[4]. Вероятно, с гипотезой о вращении Земли вокруг оси связано ещё одно предположение Гераклида: каждая звезда представляет собой мир, включающий землю, воздух, эфир, причем всё это располагается в бесконечном пространстве. Действительно, если суточное вращение неба является отражением вращения Земли, то исчезает предпосылка считать звезды находящимися на одной сфере.

Примерно столетие спустя предположение о вращении Земли стало составной частью первой гелиоцентрической системы мира, предложенной великим астрономом Аристархом Самосским (III век до н. э.)[5]. Аристарха поддержал вавилонянин Селевк (II век до н. э.)[6], также, как и Гераклид Понтийский, считавший Вселенную бесконечной. О том, что идея суточного вращения Земли имела своих сторонников ещё в I веке н. э., свидетельствуют некоторые высказывания философов Сенеки, Деркиллида, астронома Клавдия Птолемея[7]. Подавляющее большинство астрономов и философов, однако, не сомневалось в неподвижности Земли.

Аргументы против идеи движения Земли имеются в произведениях Аристотеля и Птолемея. Так, в своем трактате О Небе Аристотель обосновывает неподвижность Земли тем, что на вращающейся Земле брошенные вертикально вверх тела не могли бы упасть в ту точку, из которой началось их движение: поверхность Земли сдвигалась бы под брошенным телом[8]. Другой довод в пользу неподвижности Земли, приводимый Аристотелем, основан на его физической теории: Земля является тяжелым телом, а для тяжелых тел свойственно движение к центру мира, а не вращение вокруг него.

Одним из доводов Птолемея в пользу неподвижности Земли является вертикальность траекторий падающих тел, как и у Аристотеля. Далее, он отмечает, что при вращении Земли должны наблюдаться явления, которые на самом деле не происходят:

все не закрепленные на ней [Земле] предметы должны совершать одно и то же движение, [по направлению] противоположное земному. Таким образом, мы никогда не могли бы видеть какое-нибудь идущее к востоку облако или брошенное в том же направлении тело, так как Земля в своем движении к востоку опережала бы все тела. Они казались бы нам движущимися к западу и отстающими от движения Земли[9].

Из сочинения Птолемея следует, что сторонники гипотезы вращения Земли на эти доводы отвечали, что и воздух и все земные предметы совершают движение вместе с Землей. По всей видимости, роль воздуха в этом рассуждении принципиально важна, поскольку подразумевается, что именно его движение вместе с Землей скрывает вращение нашей планеты. Птолемей на это возражает, что

находящиеся в воздухе тела всегда будут казаться отстающими… А если бы тела вращались вместе с воздухом как одно целое, то никакое из них не казалось бы опережающим другое или отстающим от него, но оставалось бы на месте, в полете и бросании оно не совершало бы отклонений или движений в другое место вроде тех, которые мы воочию видим совершающимися, и у них вообще не происходило бы замедления или ускорения, оттого что Земля не является неподвижной[10].

Средние века[править | править код]

Индия

Первым из средневековых авторов, высказавший предположение о вращении Земли вокруг оси, был великий индийский астроном и математик Ариабхата (кон. V — нач. VI вв.). Он формулирует её в нескольких местах своего трактата Ариабхатия, например:

Точно также, как человек на движущемся вперед корабле видит закрепленные объекты движущимися назад, так и наблюдатель… видит неподвижные звезды движущимися по прямой линии на запад[11].

Неизвестно, принадлежит ли эта идея самому Ариабхате или он её заимствовал у древнегреческих астрономов[12].

Ариабхату поддержал только один астроном, Пртхудака (IX век)[13]. Большинство индийских ученых отстаивало неподвижность Земли. Так, астроном Варахамихира (VI в.) утверждал, что на вращающейся Земле летящие в воздухе птицы не могли бы вернуться к своим гнездам, а камни и деревья слетали бы с поверхности Земли. Выдающийся астроном Брахмагупта (VI в.) повторил также старый аргумент, что тело, упавшее с высокой горы, но смогло бы опуститься к её основанию. При этом он, однако, отверг один из доводов Варахамихиры: по его мнению, даже если бы Земля вращалась, предметы не могли бы оторваться от неё вследствие своей тяжести.

Исламский Восток

Возможность вращения Земли рассматривали многие ученые мусульманского Востока. Так, известный геометр ас-Сиджизи изобрел астролябию, принцип действия которой основан на этом предположении[14]. Некоторые исламские ученые (имена которых до нас не дошли) даже нашли правильный способ опровержения основного довода против вращения Земли: вертикальности траекторий падающих тел. По существу, при этом был высказан принцип суперпозиции движений, согласно которому любое перемещение можно разложить на два или несколько составляющих: по отношению к поверхности вращающейся Земли падающее тело двигается по отвесной линии, но точка, являющаяся проекцией этой линии на поверхность Земли, переносится бы её вращением. Об этом свидетельствует знаменитый ученый-энциклопедист ал-Бируни, который сам, однако, склонялся к неподвижности Земли. По его мнению, если на падающее тело будет действовать какая-то дополнительная сила, то результат её действия на вращающейся Земле приведет к некоторым эффектам, которые на самом деле не наблюдаются[15].

Среди ученых XIII—XVI веков, связанных с Марагинской и Самаркандской обсерваториями, развернулась дискуссия о возможности эмпирического обоснования неподвижности Земли. Так, известный астроном Кутб ад-Дин аш-Ширази (XIII—XIV вв.) полагал, что неподвижность Земли может быть удостоверена экспериментом. С другой стороны, основатель Марагинской обсерватории Насир ад-Дин ат-Туси полагал, что если бы Земля вращалась, то это вращение разделял бы слой воздуха, прилегающий к её поверхности, и все движения вблизи поверхности Земли происходили бы точно также, как если бы Земля была неподвижной. Он это обосновывал с помощью наблюдений комет: согласно Аристотелю, кометы являются метеорологическим явлением в верхних слоях атмосферы; тем не менее, астрономические наблюдения показывают, что кометы принимают участие в суточном вращении небесной сферы. Следовательно, верхние слои воздуха увлекаются вращением небосвода, поэтому и нижние слои также могут увлекаться вращением Земли. Таким образом, эксперимент не может дать ответ на вопрос о том, вращается ли Земля. Однако он оставался сторонником неподвижности Земли, поскольку это соответствовало философии Аристотеля.

Большинство исламских учёных более позднего времени (аль-Урди, аль-Казвини, ан-Найсабури, ал-Джурджани, ал-Бирджанди и другие) были согласны с ат-Туси, что все физические явления на вращающейся и неподвижной Землей проистекали бы одинаково. Однако роль воздуха при этом уже не считалась принципиальной: не только воздух, но и все предметы переносятся вращающейся Землей. Следовательно, для обоснования неподвижности Земли необходимо привлекать учение Аристотеля.

Особую позицию в этих спорах занял третий директор Самаркандской обсерватории Алауддин Али аль-Кушчи (XV в.), отвергавший философию Аристотеля и считавший вращение Земли физически возможным[16]. В XVII веке к аналогичному выводу пришел иранский теолог и ученый-энциклопедист Баха ад-Дин ал-Амили. По его мнению, астрономы и философы не представили достаточных доказательств, опровергающих вращение Земли[17].

Латинский Запад

Подробное обсуждение возможности движения Земли широко содержится в сочинениях парижских схоластов Жана Буридана[18], Альберта Саксонского[19], и Николая Орема[20] (вторая половина XIV в.). Важнейшим аргументом в пользу вращения Земли, а не неба, приведенным в их работах, является малость Земли по сравнению со Вселенной, что делает приписывание суточного вращения небосвода Вселенной в высшей степени противоестественным.

Однако все эти ученые в конечном итоге отвергли вращение Земли, хотя и на разных основаниях. Так, Альберт Саксонский полагал, что эта гипотеза не способна объяснить наблюдаемые астрономические явления. С этим справедливо не согласились Буридан и Орем, по мнению которых небесные явления должны происходить одинаково независимо от того, что совершает вращение, Земля или Космос. Буридан смог найти только один существенный довод против вращения Земли: стрелы, пускаемые вертикально вверх, падают вниз по отвесной линии, хотя при вращении Земли они, по его мнению, должны были бы отставать от движения Земли и падать к западу от точки выстрела.

Но даже и этот довод был отвергнут Оремом. Если Земля вращается, то стрела летит вертикально вверх и одновременно с этим движется на восток, будучи захваченная воздухом, вращающимся вместе с Землей. Таким образом, стрела должна упасть на то же место, откуда она была выпущена. Хотя здесь снова упоминается об увлекающей роли воздуха, в действительности он не играет особой роли. Об этом говорит следующая аналогия:

Подобным образом, если бы воздух был закрыт в движущемся судне, то человеку, окруженному этим воздухом, показалось бы, что воздух не движется… Если бы человек находился в корабле, движущемся с большой скоростью на восток, не зная об этом движении, и если бы он вытянул руку по прямой линии вдоль мачты корабля, ему бы показалось, что его рука совершает прямолинейное движение; точно так же, согласно этой теории, нам представляется, что такая же вещь происходит со стрелой, когда мы пускаем её вертикально вверх или вертикально вниз. Внутри корабля, движущегося с большой скоростью на восток, могут иметь место все виды движения: продольное, поперечное, вниз, вверх, во всех направлениях — и они кажутся точно такими же, как тогда, когда корабль пребывает неподвижным[21].

Далее Орем приводит формулировку, предвосхищающую принцип относительности:

Я заключаю, следовательно, что с помощью какого бы то ни было опыта невозможно продемонстрировать, что небеса имеют суточное движение и что Земля его не имеет[22].

Тем не менее, окончательный вердикт Орема о возможности вращения Земли был отрицательным. Основанием для такого вывода был текст Библии:

Однако до сих пор все поддерживают и я верю, что они [Небеса], а не Земля движется, ибо «Бог сотворил круг Земли, который не поколеблется», несмотря на все противоположные аргументы[23].

О возможности суточного вращения Земли упоминали и средневековые европейские ученые и философы более позднего времени, однако никаких новых аргументов, не содержавшихся у Буридана и Орема, добавлено не было.

Таким образом, практически никто из средневековых ученых так и не принял гипотезу о вращении Земли. Однако в ходе её обсуждения учеными Востока и Запада было высказано множество глубоких мыслей, которые потом будут повторены учеными Нового времени.

Эпоха Возрождения и Новое время[править | править код]

В первой половине XVI века увидели свет несколько сочинений, утверждавших, что причиной суточного вращения небосвода является вращение Земли вокруг оси. Одним из них был трактат итальянца Челио Кальканьини «О том, что небо неподвижно, а Земля вращается, или о вечном движении Земли» (написан около 1525 г., издан в 1544 г.). Он не произвел большого впечатления на современников, поскольку к тому времени уже был опубликован фундаментальный труд польского астронома Николая Коперника «О вращениях небесных сфер» (1543 г.), где гипотеза суточного вращения Земли у него стала частью гелиоцентрической системы мира, как у Аристарха Самосского. Свои мысли Коперник ранее изложил в небольшом рукописном сочинении Малый Комментарий (не ранее 1515 г.). Два года ранее основного труда Коперника вышло сочинение немецкого астронома Георга Иоахима Ретика Первое повествование (1541 г.), где популярно изложена теория Коперника.

В XVI веке Коперника полностью поддержали астрономы Томас Диггес, Ретик, Кристоф Ротман, Михаэль Мёстлин, физики Джамбатиста Бенедетти, Симон Стевин, философ Джордано Бруно, богослов Диего де Цунига[24]. Некоторые учёные принимали вращение Земли вокруг оси, отвергая её поступательное движение. Такова была позиция немецкого астронома Николаса Реймерса, известного также как Урсус, а также итальянских философов Андреа Чезальпино и Франческо Патрици. Не совсем ясна точка зрения выдающегося физика Вильяма Гильберта, который поддержал осевое вращение Земли, но не высказывался по поводу её поступательного движения. В начале XVII века гелиоцентрическая система мира (включая вращение Земли вокруг оси) получила внушительную поддержку со стороны Галилео Галилея и Иоганна Кеплера. Наиболее влиятельными противниками идеи движения Земли в XVI — начале XVII века были астрономы Тихо Браге и Христофор Клавиус.

Гипотеза о вращении Земли и становление классической механики

По существу, в XVI—XVII вв. единственным аргументом в пользу осевого вращения Земли было то, что в этом случае отпадает надобность в приписывании звездной сфере огромных скоростей вращения, ведь ещё в античности уже было надежно установлено, что размер Вселенной значительно превышает размер Земли (этот аргумент содержался ещё у Буридана и Орема).

Против этой гипотезы высказывались соображения, основанные на динамических преставлениях того времени. Прежде всего, это вертикальность траекторий падающих тел[25]. Появились и другие доводы, например, равная дальность стрельбы в восточном и западном направлениях. Отвечая на вопрос о ненаблюдаемости эффектов суточного вращения в земных экспериментах, Коперник писал:

Вращается не только Земля с соединенной с ней водной стихией, но также и немалая часть воздуха и все, что каким-либо образом сродно с Землёй, или уже ближайший к Земле воздух пропитанный земной и водной материей, следует тем же самым законам природы, что и Земля, или имеет приобретенное движение, которое сообщается ему прилегающей Землей в постоянном вращении и без всякого сопротивления[26]

Таким образом, главную роль в ненаблюдаемости вращения Земли играет увлечение воздуха её вращением. Такого же мнения придерживались и большинство коперниканцев в XVI веке.

Однако уже у Диггеса и Бруно появились и другие соображения: все земные тела разделяют движение Земли, воздух не играет особой роли. Они это выразили с помощью аналогии с процессами на движущемся корабле: если человек, находящийся на мачте движущегося корабля, бросит вертикально вниз камень, он падет к основанию мачты, как бы быстро корабль ни двигался, лишь бы без качки. Воздух не играет особой роли в этих рассуждениях (необходимо добавить, что такого же рода рассуждения были уже и Орема, ал-Кушчи и других средневековых ученых). При опровержении доводов противников гипотезы о вращении Земли Бруно использовал также теорию импетуса.

Позднее Галилей, рассмотрев много примеров относительности движения, обобщил их и пришел к принципу относительности: движение Земли, корабля или любого другого тела вообще не сказывается на протекающих на них процессах, если это движение равномерное. Пьер Гассенди в 1642 г. выполнил эксперимент по падению тяжести с мачты движущегося корабля и непосредственно убедился в правоте коперниканцев: независимо от скорости движения, груз падал к основанию мачты (возможно, ещё раньше такой эксперимент проделывали Диггес и Галилей)[27].

Однако сам Галилей (руководствуясь, правда, не совсем ясными соображениями) указал, что ввиду сферичности Земли камень, падающий с высокой башни, упадет не точно к основанию и тем более недалеко позади него (как считали противники гипотезы о вращении Земли), но немного впереди основания (то есть к востоку)[28]. В 1679 г. Исаак Ньютон показал с помощью вычислений, что камень действительно должен упасть немного к востоку от основания башни, хотя и ошибся в величине эффекта (точное значение установил только Гаусс в начале XIX века). Он предложил провести такой эксперимент с целью подтверждения или опровержения гипотезы о вращении Земли. Эта идея была реализована только в конце XVIII — начале XIX века, послужив одним из первых экспериментальных свидетельств в пользу вращения Земли вокруг оси.

Другой популярный аргумент против вращения Земли заключался в том, что скорость вращения Земли должна быть настолько велика, что Земля испытывала бы колоссальные центробежные силы, которые разорвали бы её на части, а все находящиеся на её поверхности лёгкие предметы разлетелись бы во все стороны Космоса. Коперник не смог дать на это удовлетворительного ответа, отделавшись замечанием, что этот аргумент ещё более приложим ко Вселенной, «движение которой должно быть во столько раз быстрее, во сколько раз небо больше Земли», и что поскольку вращение Земли происходит «по природе», центробежная сила не угрожает Земле и земным предметам. Галилей, произведя вычисление центробежной силы, заключил, что она бесконечно мала по сравнению с силой тяжести на земной поверхности, так что она практически не сказывается на движении земных тел. Однако его вычисления содержали ошибку, которую устранил только Христиан Гюйгенс (1673 г.), окончательно доказав, что центробежная сила действительно слишком мала, чтобы способствовать распаду Земли или отбрасыванию с её поверхности незакрепленных предметов. Он же предсказал, что из-за действия центробежной силы Земля должна быть сплющена у полюсов.

Гипотеза о вращении Земли и новая космология

Идея вращения Земли заставила пересмотреть не только механику, но и космологию. В традиционной геоцентрической системе мира обычно предполагалось, что звезды расположены на одной сфере конечного размера. Такого же мнения придерживался и Коперник. Однако если суточное вращение неба является отражением вращения Земли, то исчезает предпосылка считать звезды находящимися на одной сфере. Неудивительно, что многие (хотя и не все) сторонники вращения Земли считали звезды рассеянными по всему пространству и Вселенную — бесконечной[29]. Такой вывод в явном виде был сформулирован выдающимся английским физиком Вильямом Гильбертом, сторонником гипотезы вращающейся Земли. В своем сочинении О магните (1600 г.) он пишет о несовместимости космологии безграничной Вселенной с существованием вращения небосвода:

Невероятно, чтобы высочайшее небо и все это зримое великолепие неподвижных звезд направлялось по этому чрезвычайно быстрому и бесполезному пути[30]… Нет никакого сомнения в том, что также, как планеты находятся на неодинаковом расстоянии от Земли, так и эти обширные и многочисленные светила отстоят от Земли на различные и очень большие расстояния… Каким образом могли бы они сохранять своё положение, подхваченные столь стремительным вращением огромной сферы, состоящей из столь неопределенной субстанции…
Каким же бесконечным должно быть тогда пространство, которое тянется до самых этих отдаленнейших звезд!.. Каким чудовищным было бы тогда совершаемое движение!.. Если им [звездам] присуще движение, то оно будет скорее движением каждой из них вокруг её собственного центра, как это происходит с Землей, либо движением вперед от своего центра по орбите, как это происходит с Луной. Но движение бесконечности и бесконечного тела невозможно и, следовательно, нет суточного обращения Перводвигателя[31].

Сторонниками бесконечности Вселенной в XVI веке были также Томас Диггес, Джордано Бруно, Франческо Патрици — все они поддерживали гипотезу о вращении Земли вокруг оси (а первые двое — также вокруг Солнца). Кристоф Ротман и Галилео Галилей полагали звезды расположенными на разных расстояниях от Земли, хотя явно не высказывались по поводу бесконечности Вселенной. С другой стороны, Иоганн Кеплер отрицал бесконечность Вселенной, хотя и был сторонником вращения Земли.

Религиозный контекст споров о вращении Земли

Ряд возражений против вращения Земли был связан с её противоречиями тексту Священного Писания. Эти возражения были двух видов. Во-первых, некоторые места в Библии приводились в подтверждение того, что суточное движение совершает именно Солнце, например:

Восходит солнце и заходит солнце, и спешит к месту своему, где оно восходит[32].

В данном случае под удар попадало осевое вращение Земли, поскольку движение Солнца с востока на запад является частью суточного вращения небосвода. Часто в этой связи цитировался отрывок из книги Иисуса Навина:

Иисус воззвал к Господу в тот день, в который предал Господь Аморрея в руки Израилю, когда побил их в Гаваоне, и они побиты были пред лицем сынов Израилевых, и сказал пред Израильтянами: стой, солнце, над Гаваоном, и луна, над долиною Авалонскою[33]!

Поскольку команда остановиться была дана Солнцу, а не Земле, отсюда делался вывод, что суточное движение совершает именно Солнце. Другие отрывки приводились в поддержку неподвижности Земли, например:

Ты поставил землю на твердых основах: не поколеблется она во веки и веки[34].

Эти отрывки считались противоречащими как мнению о вращении Земли вокруг оси, так и обращению вокруг Солнца.

Сторонники вращения Земли (в частности, Джордано Бруно, Иоганн Кеплер[35] и особенно Галилео Галилей[36]) проводили защиту по нескольким направлениям. Во-первых, они указывали, что Библия написана языком, понятным простым людям, и если бы её авторы давали четкие с научной точки зрения формулировки, она не смогла бы выполнять свою основную, религиозную миссию[37]. Так, Бруно писал:

Во многих случаях глупо и нецелесообразно приводить много рассуждений скорее в соответствии с истиной, чем соответственно данному случаю и удобству. Например, если бы вместо слов: «Солнце рождается и поднимается, переваливает через полдень и склоняется к Аквилону» — мудрец сказал: «Земля идет по кругу к востоку и, покидая солнце, которое закатывается, склоняется к двум тропикам, от Рака к Югу, от Козерога к Аквилону», — то слушатели стали бы раздумывать: «Как? Он говорит, что Земля движется? Что это за новости?» В конце концов они его сочли бы за глупца, и он действительно был бы глупцом[38].

Такого рода ответы давались в основном на возражения, касавшиеся суточного движения Солнца. Во-вторых, отмечалось, что некоторые отрывки Библии должны быть трактованы аллегорически (см. статью Библейский аллегоризм). Так, Галилей отмечал, что если Св. Писание целиком понимать буквально, то окажется, что у Бога есть руки, он подвержен эмоциям типа гнева и т. п. В целом, главной мыслью защитников учения о движении Земли было то, что наука и религия имеют разные цели: наука рассматривает явления материального мира, руководствуясь доводами разума, целью религии является моральное усовершенствование человека, его спасение. Галилей в этой связи цитировал кардинала Баронио, что Библия учит тому, как взойти на небеса, а не тому, как устроены небеса.

Эти доводы были сочтены католической церковью неубедительными, и в 1616 г. учение о вращении Земли было запрещено, а в 1631 г. Галилей был осужден судом инквизиции за его защиту. Однако за пределами Италии этот запрет не оказал существенного влияния на развитие науки и способствовал главным образом падению авторитета самой католической церкви.

Необходимо добавить, что религиозные доводы против движения Земли приводили не только церковные деятели, но и ученые (например, Тихо Браге[39]). С другой стороны, католический монах Паоло Фоскарини написал небольшое сочинение «Письмо о воззрениях пифагорейцев и Коперника на подвижность Земли и неподвижность Солнца и о новой пифагорейской системе мироздания» (1615 г.), где высказывал соображения, близкие к галилеевским, а испанский богослов Диего де Цунига даже использовал теорию Коперника для толкования некоторых мест Священного Писания (хотя впоследствии он изменил своё мнение). Таким образом, конфликт между богословием и учением о движении Земли был не столько конфликтом между наукой и религией как таковыми, сколько конфликтом между старыми (к началу XVII века уже устаревшими) и новыми методологическими принципами, полагаемыми в основу науки.

Значение изучения суточного вращения Земли для развития науки

Осмысление научных проблем, поднимаемых теорией вращающейся Земли, способствовало открытию законов классической механики и созданию новой космологии, в основе которой лежит представление о безграничности Вселенной. Обсуждавшиеся в ходе этого процесса противоречия между этой теорией и буквалистским прочтением Библии способствовали размежеванию естествознания и религии.

Период и скорость вращения[править | править код]

Почему звёздные сутки не равны солнечным. 1-2 — звёздные сутки, 1-3 — солнечные.

{displaystyle v=left({frac {R_{e},R_{p}}{sqrt {{R_{p}}^{2}+{R_{e}}^{2},{mathrm {tg} ^{2}varphi }}}}+{frac {{R_{p}}^{2}h}{sqrt {{R_{p}}^{4}+{R_{e}}^{4},mathrm {tg} ^{2}varphi }}}right)omega ,}

где R_{e} = 6378,1 км — экваториальный радиус, R_{p} = 6356,8 км — полярный радиус.

  • Самолёт, летящий с этой скоростью с востока на запад (на высоте 12 км: 936 км/ч на широте Москвы, 837 км/ч на широте Санкт-Петербурга), в инерциальной системе отсчёта будет покоиться.
  • Суперпозиция вращения Земли вокруг оси с периодом в одни звёздные сутки и вокруг Солнца с периодом в один год приводит к неравенству солнечных и звёздных суток: длина средних солнечных суток составляет ровно 24 часа, что на 3 минуты 56 секунд длиннее звёздных суток.

Используемые в России понятия параметров вращения Земли и параметров ориентации Земли несколько отличаются от международных, эти терминологические различия необходимо учитывать при чтении и переводе зарубежной литературы[40].

Физический смысл и экспериментальные подтверждения[править | править код]

Наклон земной оси по отношению к плоскости эклиптики (плоскости орбиты Земли)

Физический смысл вращения Земли вокруг оси[править | править код]

Поскольку любое движение является относительным, необходимо указывать конкретную систему отсчёта, относительно которой изучается движение того или иного тела. Когда говорят, что Земля вращается вокруг воображаемой оси, имеется в виду, что она совершает вращательное движение относительно любой инерциальной системы отсчёта, причем период этого вращения равен звездным суткам — периоду полного оборота Земли (небесной сферы) относительно небесной сферы (Земли).

Все экспериментальные доказательства вращения Земли вокруг оси сводятся к доказательству того, что система отсчёта, связанная с Землей, является неинерциальной системой отсчёта специального вида — системой отсчёта, совершающей вращательное движение относительно инерциальных систем отсчёта.

В отличие от инерциального движения (то есть равномерного прямолинейного движения относительно инерциальных систем отсчёта), для обнаружения неинерциального движения замкнутой лаборатории не обязательно производить наблюдения над внешними телами, — такое движение обнаруживается с помощью локальных экспериментов (то есть экспериментов, произведенных внутри этой лаборатории). В этом смысле слова неинерциальное движение, включая вращение Земли вокруг оси, может быть названо абсолютным.

Силы инерции[править | править код]

Центробежная сила на вращающейся Земле

В неинерциальных системах отсчёта второй закон Ньютона записывается следующим образом:

F+F_{mathrm {in} }=ma,

где m — масса тела, a — его ускорение относительно данной системы отсчёта, F — реально действующая на тело сила, вызванная взаимодействием между телами, и F_{mathrm {in} } — сила инерции, связанная с математическим преобразованием от инерциальной к неинерциальной системы отсчёта. В равномерно вращающихся системах отсчёта действуют две силы инерции: центробежная сила F_{mathrm {pr} } и сила Кориолиса F_{mathrm {cor} }. Следовательно, утверждения «Земля вращается вокруг своей оси» и «В системе отсчёта, связанной с Землёй, действуют центробежная сила и сила Кориолиса» являются эквивалентными высказываниями, выраженными разными способами[41]. Поэтому экспериментальные доказательства вращения Земли сводятся к доказательству существования в связанной с ней системе отсчёта этих двух сил инерции.

Направление силы Кориолиса на вращающейся Земле

Центробежная сила, действующая на тело массы m, по модулю равна

F_{mathrm {pr} }=momega ^{2}r,

где omega  — угловая скорость вращения и r — расстояние от оси вращения. Вектор этой силы лежит в плоскости оси вращения и направлен перпендикулярно от неё. Величина силы Кориолиса, действующей на частицу, движущуюся со скоростью v относительно данной вращающейся системы отсчёта, определяется выражением

F_{mathrm {cor} }=2m,vomega ,sin alpha ,

где alpha  — угол между векторами скорости частицы и угловой скорости системы отсчёта. Вектор этой силы направлен перпендикулярно обоим векторам {vec {v}} и {vec {omega }} вправо от скорости тела (определяется по правилу буравчика).

Эффекты центробежной силы[править | править код]

Зависимость ускорения свободного падения от географической широты. Эксперименты показывают, что ускорение свободного падения зависит от географической широты: чем ближе к полюсу, тем оно больше. Это объясняется действием центробежной силы. Во-первых, точки земной поверхности, расположенные на более высоких широтах, ближе к оси вращения и, следовательно, при приближении к полюсу расстояние r от оси вращения уменьшается, доходя до нуля на полюсе. Во-вторых, с увеличением широты угол между вектором центробежной силы и плоскостью горизонта уменьшается, что приводит к уменьшению вертикальной компоненты центробежной силы.

Это явление было открыто в 1672 году, когда французский астроном Жан Рише, находясь в экспедиции в Африке, обнаружил, что у экватора маятниковые часы идут медленнее, чем в Париже. Ньютон вскоре объяснил это тем, что период колебаний маятника обратно пропорционален квадратному корню из ускорения свободного падения, которое уменьшается на экваторе из-за действия центробежной силы.

Сплюснутость Земли. Влияние центробежной силы приводит к сплюснутости Земли у полюсов. Это явление, предсказанное Гюйгенсом и Ньютоном в конце XVII века, было впервые обнаружено Пьером де Мопертюи в конце 1730-х годов в результате обработки данных двух французских экспедиций, специально снаряженных для решения этой проблемы в Перу (под руководством Пьера Бугера и Шарля де ла Кондамина) и Лапландию (под руководством Алексиса Клеро и самого Мопертюи).

Эффекты силы Кориолиса: лабораторные эксперименты[править | править код]

Маятник Фуко на северном полюсе. Ось вращения Земли лежит в плоскости колебаний маятника

Маятник Фуко. Эксперимент, наглядно демонстрирующий вращение Земли, поставил в 1851 году французский физик Леон Фуко. Его смысл наиболее понятен в случае, если маятник закреплен на одном из полюсов Земли. Тогда его плоскость колебаний неизменна относительно инерциальной системы отсчёта, в данном случае относительно неподвижных звёзд. Таким образом, в системе отсчёта, связанной с Землей, плоскость колебаний маятника должна поворачиваться в сторону, противоположную направлению вращения Земли. С точки зрения неинерциальной системы отсчёта, связанной с Землёй, плоскость колебаний маятника Фуко поворачивается под действием силы Кориолиса[42].

Наиболее отчетливо этот эффект должен быть выражен на полюсах, где период полного поворота плоскости маятника равен периоду вращения Земли вокруг оси (звёздным суткам). В общем случае, период обратно пропорционален синусу географической широты[43], на экваторе плоскость колебаний маятника неизменна.

В настоящее время маятник Фуко с успехом демонстрируется в ряде научных музеев и планетариев, в частности, в планетарии Санкт-Петербурга[44], планетарии Волгограда.

Существует ряд других опытов с маятниками, используемых для доказательства вращения Земли[45]. Например, в опыте Браве (1851 г.) использовался конический маятник. Вращение Земли доказывалось тем, что периоды колебаний по и против часовой стрелки различались, поскольку сила Кориолиса в этих двух случаях имела разный знак. В 1853 г. Гаусс предложил использовать не математический маятник, как у Фуко, а физический, что позволило бы уменьшить размеры экспериментальной установки и увеличить точность эксперимента. Эту идею реализовал Камерлинг-Оннес в 1879 г.[уточнить]

Гироскоп — вращающееся тело со значительным моментом инерции сохраняет момент импульса, если нет сильных возмущений. Фуко, которому надоело объяснять, что происходит с маятником Фуко не на полюсе, разработал другую демонстрацию: подвешенный гироскоп сохранял ориентацию, а значит медленно поворачивался относительно наблюдателя[46].

Отклонение снарядов при орудийной стрельбе. Другим наблюдаемым проявлением силы Кориолиса является отклонение траекторий снарядов (в северном полушарии вправо, в южном — влево), выстреливаемых в горизонтальном направлении. С точки зрения инерциальной системы отсчёта, для снарядов, выстреливаемых вдоль меридиана, это связано с зависимостью линейной скорости вращения Земли от географической широты: при движении от экватора к полюсу снаряд сохраняет горизонтальную компоненту скорости неизменной, в то время как линейная скорость вращения точек земной поверхности уменьшается, что приводит к смещению снаряда от меридиана в сторону вращения Земли. Если выстрел был произведён параллельно экватору, то смещение снаряда от параллели связано с тем, что траектория снаряда лежит в одной плоскости с центром Земли, в то время как точки земной поверхности движутся в плоскости, перпендикулярной оси вращения Земли[47]. Этот эффект (для случая стрельбы вдоль меридиана) был предсказан Гримальди в 40-х годах XVII в. и впервые опубликован Риччоли в 1651 г.[48]

Отклонение свободно падающих тел от вертикали.
(подробнее…)
Если скорость движения тела имеет большую вертикальную составляющую, сила Кориолиса направлена к востоку, что приводит к соответствующему отклонению траектории тела, свободно падающего (без начальной скорости) с высокой башни[49]. При рассмотрении в инерциальной системе отсчёта эффект объясняется тем, что вершина башни относительно центра Земли движется быстрее, чем основание[50], благодаря чему траектория тела оказывается узкой параболой, и тело слегка опережает основание башни[51].

Этот эффект был предсказан Борелли в 1667 г. и Ньютоном в 1679 г.[52] Ввиду сложности проведения соответствующих экспериментов эффект удалось подтвердить только в конце XVIII — первой половине XIX века (Гульельмини, 1791; Бенценберг, 1802; Райх, 1831)[53].

Австрийский астроном Иоганн Хаген (1902 г.) осуществил эксперимент, являющийся модификацией этого опыта, где вместо свободно падающих грузов использовалась машина Атвуда. Это позволило снизить ускорение падения, что привело к уменьшению размеров экспериментальной установки и повышению точности измерений[54].

Эффект Этвёша. На низких широтах сила Кориолиса при движении по земной поверхности направлена в вертикальном направлении и её действие приводит к увеличению или уменьшению ускорения свободного падения, в зависимости от того, движется ли тело на запад или восток. Этот эффект назван эффектом Этвёша в честь венгерского физика Лоранда Этвёша, экспериментально обнаружившего его в начале XX века.

Опыты, использующие закон сохранения момента импульса. Некоторые эксперименты основаны на законе сохранения момента импульса: в инерциальной системе отсчёта величина момента импульса (равная произведению момента инерции на угловую скорость вращения) под действием внутренних сил не меняется. Если в некоторый начальный момент времени установка неподвижна относительно Земли, то скорость её вращения относительно инерциальной системы отсчёта равна угловой скорости вращения Земли. Если изменить момент инерции системы, то должна измениться угловая скорость её вращения, то есть начнётся вращение относительно Земли. В неинерциальной системе отсчёта, связанной с Землёй, вращение возникает в результате действия силы Кориолиса. Эта идея была предложена французским учёным Луи Пуансо в 1851 г.

Первый такой эксперимент был поставлен Хагеном в 1910 г.: два груза на гладкой перекладине были установлены неподвижно относительно поверхности Земли. Затем расстояние между грузами было уменьшено. В результате установка пришла во вращение[55]. Ещё более наглядный опыт поставил немецкий учёный Ханс Букка (Hans Bucka) в 1949 г. Стержень длиной примерно 1,5 метра был установлен перпендикулярно прямоугольной рамке. Первоначально стержень был горизонтален, установка была неподвижной относительно Земли. Затем стержень был приведен в вертикальное положение, что привело к изменению момента инерции установки примерно в 104 раз и её быстрому вращению с угловой скоростью, в 104 раз превышающей скорость вращения Земли[56].

Воронка в ванне.

Поскольку сила Кориолиса очень слаба, она оказывает пренебрежимо малое влияние на направление закручивания воды при сливе в раковине или ванне, поэтому в общем случае направление вращения в воронке не связано с вращением Земли. Лишь только в тщательно контролируемых экспериментах можно отделить действие силы Кориолиса от других факторов: в северном полушарии воронка будет закручена против часовой стрелки, в южном — наоборот[57].

Эффекты силы Кориолиса: явления в окружающей природе[править | править код]

Закон Бэра. Как впервые отметил петербургский академик Карл Бэр в 1857 году, реки размывают в северном полушарии правый берег (в южном полушарии — левый), который вследствие этого оказывается более крутым (закон Бэра). Объяснение эффекта аналогично объяснению отклонения снарядов при стрельбе в горизонтальном направлении: под действием силы Кориолиса вода сильнее ударяется в правый берег, что приводит к его размытию, и, наоборот, отступает от левого берега[58]. (См. также Парадокс чайного листа).

Циклон над юго-восточным побережьем Исландии (вид из космоса)

Ветры: пассаты, циклоны, антициклоны. С наличием силы Кориолиса, направленной в северном полушарии вправо и в южном влево, связаны также атмосферные явления: пассаты, циклоны и антициклоны. Явление пассатов вызывается неодинаковостью нагрева нижних слоёв земной атмосферы в приэкваториальной полосе и в средних широтах, приводящему к течению воздуха вдоль меридиана на юг или север в северном и южном полушариях, соответственно. Действие силы Кориолиса приводит к отклонению потоков воздуха: в северном полушарии — в сторону северо-востока (северо-восточный пассат), в южном полушарии — на юго-восток (юго-восточный пассат). (См. также Сила Кориолиса в гидроаэромеханике).

Циклоном называется атмосферный вихрь с пониженным давлением воздуха в центре. Массы воздуха, стремясь к центру циклона, под действием силы Кориолиса закручиваются против часовой стрелки в северном полушарии и по часовой стрелке в южном. Аналогично, в антициклоне, где в центре имеется максимум давления, наличие силы Кориолиса приводит к вихревому движению по часовой стрелке в северном полушарии и против часовой стрелки в южном. В стационарном состоянии направление движения ветра в циклоне или антициклоне таково, что сила Кориолиса уравновешивает градиент давления между центром и периферией вихря (геострофический ветер).

Оптические эксперименты[править | править код]

В основе ряда опытов, демонстрирующих вращение Земли, используется эффект Саньяка: если кольцевой интерферометр совершает вращательное движение, то вследствие релятивистских эффектов[59] во встречных лучах появляется разность фаз

Delta varphi ={frac {8pi A}{lambda c}}omega ,

где A — площадь проекции кольца на экваториальную плоскость (плоскость, перпендикулярную оси вращения), c — скорость света, omega  — угловая скорость вращения. Для демонстрации вращения Земли этот эффект был использован американским физиком Майкельсоном в серии экспериментов, поставленных в 1923—1925 гг. В современных экспериментах, использующих эффект Саньяка, вращение Земли необходимо учитывать для калибровки кольцевых интерферометров.

Существует ряд других экспериментальных демонстраций суточного вращения Земли[60].

Неравномерность вращения Земли[править | править код]

Прецессия и нутация[править | править код]

Земля в процессе вращения вокруг своей оси претерпевает прецессию и нутацию, вызванные воздействием Солнца, Луны и планет[40].

Прецессия (позднелат. praecessio — движение впереди, от лат. praecedo — иду впереди, предшествую) — медленное движение вращающегося твёрдого тела, при котором его ось вращения описывает конус. Прецессию Земли открыл во II веке до н. э. древнегреческий учёный Гиппарх[40].

Прецессия Земли называется также предварением равноденствий, так как она вызывает медленное смещение точек весеннего и осеннего равноденствий, обусловленное движением плоскостей эклиптики и небесного экватора (точки равноденствия определяются линией пересечения этих плоскостей). Упрощённо прецессию можно представить как медленное движение оси мира (прямой, параллельной средней оси вращения Земли) по круговому конусу, ось которого перпендикулярна к эклиптике, с периодом полного оборота около 26 000 лет[61].

Прецессия земной оси вызвана в основном действием гравитации Луны и (в меньшей степени) Солнца на экваториальную выпуклость Земли[62][40].

Нутация (от лат. nūtāre лат. nutatio — колебание) — происходящее одновременно с прецессией движение вращающегося твёрдого тела, при котором изменяется угол между осью собственного вращения тела и осью, вокруг которой происходит прецессия; этот угол называется углом нутации (см. Углы Эйлера). В случае Земли нутационные колебания, открытые в 1737 Дж. Брадлеем, обусловлены изменениями притяжения, оказываемого Луной и Солнцем на так называемый экваториальный избыток массы вращающейся Земли (который является следствием сжатия Земли), и называются лунно-солнечной, или вынужденной нутацией[63][40].

Существует также свободная нутация, то есть свободное движение географических полюсов по кривой, близкой к окружности, с периодом 1,2 года, обусловленное тем, что Земля как целое смещается в пространстве относительно оси вращения.

В целом, причиной прецессии и нутации Земли является её несферичность и несовпадение плоскостей экватора и эклиптики. В результате гравитационного притяжения Луной и Солнцем экваториального утолщения Земли возникает момент сил, стремящийся совместить плоскости экватора и эклиптики.

Замедление вращения с течением времени[править | править код]

Скорость вращения Земли медленно снижается[40]. В 1962 году замедление вращения Земли было вычислено по косвенным геологическим факторам[64]. В частности, исследование ископаемых кораллов возрастом 350 млн лет показало, что в тот период год состоял из 385 дней и, следовательно, длительность суток составляла менее 23 часов[65].

Происхождение вращения Земли[править | править код]

Самая распространенная теория объясняет это процессами, происходившими во времена образования планет. Облака космической пыли уплотнялись, образуя зародыши планет, к ним притягивались другие более или менее крупные космические тела. Столкновения с этими телами и могли придать вращение будущим планетам. А дальше планеты продолжали вращаться по инерции[66].

См. также[править | править код]

  • Центробежная сила
  • Сила Кориолиса
  • Сила Кориолиса в гидроаэромеханике
  • Маятник Фуко
  • Гелиоцентрическая система мира
  • Гераклид Понтийский
  • Аристарх Самосский
  • Ариабхата
  • Николай Коперник
  • О вращении небесных сфер
  • Галилео Галилей
  • Эфемеридное время
  • Приливное ускорение
  • Дельта T
  • Сутки

Примечания[править | править код]

  1. Веселовский, 1961; Житомирский, 2001.
  2. «Земле же, кормилице нашей, он [Демиург] определил вращаться вокруг оси, проходящей через Вселенную» [1] Архивная копия от 9 мая 2008 на Wayback Machine.
  3. Иногда их считают персонажами диалогов Гераклида Понтийского.
  4. Эти свидетельства собраны в статье Van der Waerden, 1978 Архивная копия от 10 сентября 2010 на Wayback Machine.
  5. Свидетельства о суточном вращении Земли у Аристарха: Плутарх, О лике, видимом на диске Луны (отрывок 6)[2] Архивная копия от 6 сентября 2010 на Wayback Machine; Секст Эмпирик, Против ученых [3] Архивная копия от 4 марта 2009 на Wayback Machine; Plutarch, Platonic questions (question VIII) Архивная копия от 26 июня 2009 на Wayback Machine.
  6. [https://web.archive.org/web/20090626065257/http://www.gutenberg.org/dirs/etext02/pluta10.txt Архивная копия от 26 июня 2009 на Wayback Machine Об этом свидетельствует Плутарх].
  7. Heath 1913, pp. 304, 308; Птолемей, Альмагест, кн. 1, гл.7 (недоступная ссылка).
  8. Аристотель, О Небе, кн. II.14.
  9. Птолемей, Альмагест, кн. 1, гл.7. (недоступная ссылка)
  10. Там же.
  11. Chatterjee 1974, p. 51.
  12. Согласно мнениям некоторых историков, теория Ариабхаты является переработанной гелиоцентрической теорией греческих астрономов (Van der Waerden, 1987).
  13. Chatterjee 1974, p. 54.
  14. Розенфельд и др. 1973, с. 94, 152—155.
  15. Бируни, Канон Мас’уда, кн.1, гл.1. Дата обращения: 19 июня 2009. Архивировано 9 сентября 2010 года.
  16. Ragep, 2001. См. также Джалалов, 1958.
  17. The Biographical Encyclopedia of Astronomers, p. 42.
  18. Jean Buridan on the diurnal rotation of Earth Архивная копия от 10 декабря 2006 на Wayback Machine; см. также Ланской 1999.
  19. Лупандин, Лекция 11. Дата обращения: 19 июня 2009. Архивировано из оригинала 14 июля 2007 года.
  20. Nicole Oresme on the Book of the Heavens and the world of Aristotle Архивная копия от 12 июня 2008 на Wayback Machine; см. также Dugas 1955 (p. 62-66), Grant 1974, Ланской 1999 и Лупандин, Лекция 12. Архивная копия от 14 июля 2007 на Wayback Machine
  21. Лупандин, Лекция 12. Дата обращения: 19 июня 2009. Архивировано из оригинала 14 июля 2007 года.
  22. Grant 1974, p. 506.
  23. Ланской 1999, с. 97. Следует отметить, однако, что не все религиозные доводы против вращения Земли Орем считал убедительными (Dugas 1955, p. 64)).
  24. В конце жизни Цунига, однако, отверг суточное вращение Земли как «абсурдное предположение». См. Westman 1986, p. 108.
  25. Истории этого аргумента и разнообразных попыток его преодоления посвящены многие статьи (Михайлов и Филонович 1990, Koyre 1943, Armitage 1947, Koyre 1955, Ariotti 1972, Massa 1973, Grant 1984).
  26. Коперник, О вращениях небесных сфер, русский перевод 1964 г., с. 28.
  27. Михайлов и Филонович 1990, Ariotti 1972.
  28. Галилей Г. Избранные труды в двух томах. — Т. 1. — С. 333.
  29. В древности сторонниками бесконечности Вселенной были Гераклид Понтийский и Селевк, предполагавшие вращение Земли.
  30. Имеется в виду суточное вращение небесной сферы.
  31. Койре, 2001, с. 46—48.
  32. Экклезиаст 1:5.
  33. Библия, Книга [[Иисус Навин|Иисуса Навина]], глава 10. Дата обращения: 22 июня 2009. Архивировано 20 сентября 2011 года.
  34. Псалом 103:5.
  35. Rosen 1975.
  36. Этому посвящены его письма к его ученику, священнику Бенедетто Кастелли и Великой герцогине Кристине Лотарингской. Обширные выдержки из них приведены в работе Фантоли 1999.
  37. Об этом говорил ещё Орем в XIV веке.
  38. Дж. Бруно, Пир на пепле, диалог IV.
  39. Howell 1998.
  40. 1 2 3 4 5 6 Пасынок, 2016.
  41. Пуанкаре, О науке, с. 362—364.
  42. Впервые этот эффект наблюдал Винченцо Вивиани (ученик Галилея) ещё в 1661 г. (Граммель 1923, Hagen 1930, Guthrie 1951).
  43. Теория маятника Фуко подробно изложена в Общем курсе физики Сивухина (Т. 1, § 68).
  44. При советской власти маятник Фуко длиной 98 м демонстрировался в Исаакиевском соборе (Ленинград).
  45. Граммель 1923.
  46. Kuhn 1957.
  47. Подробнее см. Михайлов 1984, с. 26.
  48. Graney 2011.
  49. Расчет эффекта см. в Общем курсе физики Сивухина (Т. 1, § 67).
  50. Угловая скорость основания и вершины одна и та же, но линейная скорость равна произведению угловой скорости на радиус вращения.
  51. Несколько иное, но эквивалентное объяснение основано на II законе Кеплера. Секториальная скорость движущегося в поле тяготения тела, пропорциональная произведению радиуса-вектора тела на квадрат угловой скорости, является постоянной величиной. Рассмотрим простейший случай, когда башня расположена на земном экваторе. Когда тело находится на вершине, его радиус-вектор максимален (радиус Земли плюс высота башни) и угловая скорость равна угловой скорости вращения Земли. При падении тела его радиус-вектор уменьшается, что сопровождается увеличением угловой скорости тела. Таким образом, средняя угловая скорость тела оказывается чуть больше угловой скорости вращения Земли.
  52. Koyre 1955, Burstyn 1965.
  53. Armitage 1947, Михайлов и Филонович 1990.
  54. Граммель 1923, с. 362.
  55. Граммель 1923, с. 354—356
  56. Schiller, Motion Mountain, Архивная копия от 24 сентября 2019 на Wayback Machine pp. 123, 374.
  57. Сурдин 2003.
  58. Подробное объяснение см. в книге Асламазова и Варламова (1988).
  59. Г. Б. Малыкин, «Эффект Саньяка. Корректные и некорректные объяснения», Успехи физических наук, том 170, № 12, 2000. [4] Архивная копия от 4 июня 2009 на Wayback Machine
  60. Граммель 1923, Rigge 1913, Compton 1915, Guthrie 1951, Schiller, Motion Mountain Архивная копия от 24 сентября 2019 на Wayback Machine.
  61. [bse.sci-lib.com/article092586.html Прецессия] — статья из Большой советской энциклопедии (3-е издание)
  62. Астронет > Сферическая астрономия. Дата обращения: 24 октября 2010. Архивировано 19 октября 2012 года.
  63. [bse.sci-lib.com/article082842.html Нутация (физич.)] — статья из Большой советской энциклопедии (3-е издание)
  64. Ламакин В. В. О возможном значении замедления земного вращения в происхождении Байкальской впадины // Доклады IV совещания по проблемам астрогеологии Географического общества СССР: [Ленинград. 7-12 мая 1962 г.]. Л.: ВГО, 1962. С. 65-67.
  65. Чаун, Маркус. Гравитация. Последнее искушение Эйнштейна. Глава «Как замедлить Землю». — СПб.: Питер, 2019. — 336 с. — (New Science). — ISBN 978-5-4461-0724-7.
  66. Почему Земля вращается вокруг своей оси, да еще и с постоянной скоростью? :: Сто тысяч”почему”. Почемучка. allforchildren.ru. Дата обращения: 9 апреля 2016. Архивировано 26 марта 2016 года.

Литература[править | править код]

  • Л. Г. Асламазов, А. А. Варламов, «Удивительная физика», М.: Наука, 1988. DJVU
  • В. А. Бронштэн, Трудная задача, Квант, 1989. № 8. С. 17.
  • A. В. Бялко, «Наша планета — Земля», М.: Наука, 1983. DJVU
  • И. Н. Веселовский, «Аристарх Самосский — Коперник античного мира», Историко-астрономические исследования, Вып. VII, с.17-70, 1961. Online (недоступная ссылка)
  • Р. Граммель, «Механические доказательства движения Земли», УФН, том III, вып. 4, 1923. PDF
  • Г. А. Гурев, «Учение Коперника и религия», М.: Изд-во АН СССР, 1961.
  • Г. Д. Джалалов, «Некоторые замечательные высказывания астрономов Самаркандской обсерватории», Историко-астрономические исследования, вып. IV, 1958, с. 381—386.
  • А. И. Еремеева, «Астрономическая картина мира и её творцы», М.: Наука, 1984.
  • С. В. Житомирский, «Античная астрономия и орфизм», М.: Янус-К, 2001.
  • И. А. Климишин, «Элементарная астрономия», М.: Наука, 1991.
  • А. Койре, «От замкнутого мира к бесконечной Вселенной», М.: Логос, 2001.
  • Г. Ю. Ланской, «Жан Буридан и Николай Орем о суточном вращении Земли», Исследования по истории физики и механики 1995—1997, с. 87-98, М.: Наука, 1999.
  • А. А. Михайлов, «Земля и её вращение», М.: Наука, 1984. DJVU
  • Г. К. Михайлов, С. Р. Филонович. К истории задачи о движении свободно брошенных тел на вращающейся Земле, Исследования по истории физики и механики 1990, с. 93-121, М.: Наука, 1990.
  • Е. Мищенко, Ещё раз о трудной задаче, Квант. 1990. № 11. С. 32.
  • А. Паннекук, «История астрономии», М.: Наука, 1966. Online
  • А. Пуанкаре, «О науке», М.: Наука, 1990. DJVU
  • Б. Е. Райков, «Очерки по истории гелиоцентрического мировоззрения в России», М.-Л.: АН СССР, 1937.
  • И. Д. Рожанский, «История естествознания в эпоху эллинизма и Римской империи», М.: Наука, 1988.
  • Д. В. Сивухин, «Общий курс физики. Т. 1. Механика», М.: Наука, 1989.
  • О. Струве, Б. Линдс, Г. Пилланс, «Элементарная астрономия», М.: Наука, 1964.
  • В. Г. Сурдин, «Ванна и закон Бэра», Квант, No 3, с. 12-14, 2003. DJVU PDF
  • А. Фантоли, «Галилей: в защиту учения Коперника и достоинства Святой Церкви», М.: Мик, 1999.
  • P. Ariotti, «From the top to the foot of a mast on a moving ship», Annals of Science, Volume 28, Issue 2, pp. 191—203(13), 1972.
  • A. Armitage, «The deviation of falling bodies», Annals of Science, Volume 5, Issue 4, pp. 342-51, 1947.
  • Burstyn H. L. The deflecting force of the earth’s rotation from Galileo to Newton // Annals of Science. — 1965. — Vol. 21. — P. 47—80.
  • Burstyn H. L. Early explanations of the role of the Earth’s rotation in the circulation of the atmosphere and the ocean // Isis. — 1966. — Vol. 57. — P. 167—187.
  • J. W. Campbell, «The Deviations of Falling Bodies», Journal of the Royal Astronomical Society of Canada, Vol. 12, p. 202—209, 1918. Online
  • B. Chatterjee, «A glimpse of Aryabhata’s theory of rotation of Earth», Indian J. History Sci., volume 9(1), pp. 51-55, 1974.
  • A. H. Compton, «A Determination of Latitude, Azimuth, and the Length of the Day Dependent of Astronomical Observations», Popular Astronomy, vol. 23, pp. 199—207, 1915. Online
  • J. L. E. Dreyer, «History of the planetary systems from Thales to Kepler», Cambridge University Press, 1906. PDF
  • R. Dugas, «A history of mechanics», Editions du Griffon, Neuchatel, Switzerland, 1955. PDF
  • C. M. Graney, «Contra Galileo: Riccioli’s „Coriolis-Force“ Argument on the Earth’s Diurnal Rotation», Physics in Perspective, V. 13, No 4, 387—400, 2011. Online (недоступная ссылка)
  • E. Grant, «Late Medieval Thought, Copernicus, and the Scientific Revolution», Journal of the History of Ideas, Vol. 23, No. 2, pp. 197—220, 1962.
  • E. Grant, «A Source Book in Medieval Science», Harvard University Press, 1974.
  • E. Grant, «In Defense of the Earth’s Centrality and Immobility: Scholastic Reaction to Copernicanism in the Seventeenth Century», Transactions of the American Philosophical Society, New Ser., Vol. 74, No. 4. (1984), pp. 1-69.
  • W. G. Guthrie, «The rotation of the Earth», Irish Astronomical Journal, Vol. 1, p. 213, 1951. Online
  • J. G. Hagen, «The free-pendulum experiment photographed», Popular Astronomy, Vol. 38, p. 381, 1930. Online
  • T. L. Heath, «Aristarchus of Samos, the ancient Copernicus: a history of Greek astronomy to Aristarchus», Oxford: Clarendon, 1913; reprinted New York: Dover, 1981. PDF
  • K. J. Howell, «The role of biblical interpretation in the cosmology of Tycho Brahe», Stud. Hist. Phil. Sci., Vol. 29, No. 4, pp. 515—537, 1998.
  • A. Koyre, «Galileo and the Scientific Revolution of the Seventeenth Century», The Philosophical Review, Vol. 52, No. 4, pp. 333—348, 1943.
  • A. Koyre, «A Documentary History of the Problem of Fall from Kepler to Newton», Transactions of the American Philosophical Society, New Ser., Vol. 45, No. 4., pp. 329—395, 1955.
  • T. S. Kuhn, «The Copernican Revolution: planetary astronomy in the development of Western thought», Cambridge: Harvard University Press, 1957. ISBN 0-674-17100-4.
  • D. Massa, «Giordano Bruno and the top-sail experiment», Annals of Science, Volume 30, Issue 2, pp. 201—211(11), 1973.
  • G. McColley, «The theory of diurnal rotation of the Earth», Isis, volume 26 (1937), pages 392—402.
  • F. J. Ragep, «Tusi and Copernicus: The Earth’s Motion in Context», Science in Context 14 (2001) (1-2), p. 145—163.
  • W. F. Rigge, «Experimental Proofs of the Earth’s Rotation», Popular Astronomy, vol. 21, pp. 208—216, 267—276, 1913. Part 1 Part 2
  • E. Rosen, «Kepler and the Lutheran attitude towards Copernicanism in the context of the struggle between science and religion», Vistas in Astronomy, vol. 18, Issue 1, pp. 317—338, 1975.
  • L. Russo, «The forgotten revolution: how science was born in 300 BC and why it had to be reborn», Berlin: Springer 2004.
  • C. Schiller, «Motion Mountain», Online edition (Chapter 5. From the rotation of the Earth to the relativity of motion)
  • B. L. van der Waerden, «On the motion of the planets according to Heraclides of Pontus», Arch. Internat. Hist. Sci. 28 (103) (1978), 167—182. Русский перевод
  • B. L. van der Waerden, «The heliocentric system in Greek, Persian and Hindu astronomy», in «From deferent to equant: A Volume of Studies in the History of Science in the Ancient and Medieval Near East in Honor of E.S. Kennedy», Annals of the New York Academy of Sciences, Volume 500, June 1987, 525—545. Русский перевод (недоступная ссылка)
  • R. S. Westman, «The Copernicans and the Churches», God and Nature: Historical Essays on the Encounter between Christianity and Science, ed. by D.C. Lindberg and R.L. Numbers, p. 76-113, Berkeley: University of California Press, 1986.
  • Пасынок, Л. Методы и средства определения параметров вращения Земли : [арх. 10 декабря 2020] / ФГУП «ВНИИФТРИ». — Альманах современной метрологии. — 2016. — Т. 3, № 8. — С. 269–323. — УДК 521.3, 521.92(G). — ISSN 2313-8068.

Ссылки[править | править код]

  • Ю. А. Кимелев, Т. Л. Полякова. Наука и религия. Глава 3. Коперниканская революция.
  • И. В. Лупандин. Лекции по истории натурфилософии: 10. Космология Николая Орема, 12. Космология Альберта Саксонского.
  • В. Ф. Майоров. Как узнать, что Земля вращается?
  • Г. А. Гурьев. Системы мира от древнейших времён до наших дней
  • Опыт Фуко: доказательство вращения Земли (англ.)
  • G. Hagen. J. Systems of the Universe (The catholic encyclopedia) (англ.)
  • Куда мы движемся? Дата обращения: 6 марта 2013.

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных ссылок

  • bse.sci-lib.com/article082842.html
  • bse.sci-lib.com/article092586.html

“Earth’s rotation period” redirects here. For the duration of daylight and night, see Daytime.

Earth’s rotation or Earth’s spin is the rotation of planet Earth around its own axis, as well as changes in the orientation of the rotation axis in space. Earth rotates eastward, in prograde motion. As viewed from the northern polar star Polaris, Earth turns counterclockwise.

The North Pole, also known as the Geographic North Pole or Terrestrial North Pole, is the point in the Northern Hemisphere where Earth’s axis of rotation meets its surface. This point is distinct from Earth’s North Magnetic Pole. The South Pole is the other point where Earth’s axis of rotation intersects its surface, in Antarctica.

Earth rotates once in about 24 hours with respect to the Sun, but once every 23 hours, 56 minutes and 4 seconds with respect to other distant stars (see below). Earth’s rotation is slowing slightly with time; thus, a day was shorter in the past. This is due to the tidal effects the Moon has on Earth’s rotation. Atomic clocks show that a modern day is longer by about 1.7 milliseconds than a century ago,[1] slowly increasing the rate at which UTC is adjusted by leap seconds. Analysis of historical astronomical records shows a slowing trend; the length of a day increased about 2.3 milliseconds per century since the 8th century BCE.[2]

Scientists reported that in 2020 Earth had started spinning faster, after consistently spinning slower than 86,400 seconds per day in the decades before. On June 29, 2022, Earth’s spin was completed in 1.59 milliseconds under 24 hours, setting a new record.[3] Because of that trend, engineers worldwide are discussing a ‘negative leap second’ and other possible timekeeping measures.[4]

This increase in speed is thought to be due to various factors, including the complex motion of its molten core, oceans, and atmosphere, the effect of celestial bodies such as the Moon, and possibly climate change, which is causing the ice at Earth’s poles to melt. The masses of ice account for the Earth’s shape being that of an oblate spheroid, bulging around the equator. When these masses are reduced, the poles rebound from the loss of weight, and Earth becomes more spherical, which has the effect of bringing mass closer to its centre of gravity. Conservation of angular momentum dictates that a mass distributed more closely around its centre of gravity spins faster.[5]

History[edit]

Among the ancient Greeks, several of the Pythagorean school believed in the rotation of Earth rather than the apparent diurnal rotation of the heavens. Perhaps the first was Philolaus (470–385 BCE), though his system was complicated, including a counter-earth rotating daily about a central fire.[6]

A more conventional picture was supported by Hicetas, Heraclides and Ecphantus in the fourth century BCE who assumed that Earth rotated but did not suggest that Earth revolved about the Sun. In the third century BCE, Aristarchus of Samos suggested the Sun’s central place.

However, Aristotle in the fourth century BCE criticized the ideas of Philolaus as being based on theory rather than observation. He established the idea of a sphere of fixed stars that rotated about Earth.[7] This was accepted by most of those who came after, in particular Claudius Ptolemy (2nd century CE), who thought Earth would be devastated by gales if it rotated.[8]

In 499 CE, the Indian astronomer Aryabhata suggested that the spherical Earth rotates about its axis daily, and that the apparent movement of the stars is a relative motion caused by the rotation of Earth. He provided the following analogy: “Just as a man in a boat going in one direction sees the stationary things on the bank as moving in the opposite direction, in the same way to a man at Lanka the fixed stars appear to be going westward.”[9][10]

In the 10th century, some Muslim astronomers accepted that Earth rotates around its axis.[11] According to al-Biruni, al-Sijzi (d. circa 1020) invented an astrolabe called al-zūraqī based on the idea believed by some of his contemporaries “that the motion we see is due to the Earth’s movement and not to that of the sky.”[12][13] The prevalence of this view is further confirmed by a reference from the 13th century which states: “According to the geometers [or engineers] (muhandisīn), the Earth is in constant circular motion, and what appears to be the motion of the heavens is actually due to the motion of the Earth and not the stars.”[12] Treatises were written to discuss its possibility, either as refutations or expressing doubts about Ptolemy’s arguments against it.[14] At the Maragha and Samarkand observatories, Earth’s rotation was discussed by Tusi (b. 1201) and Qushji (b. 1403); the arguments and evidence they used resemble those used by Copernicus.[15]

In medieval Europe, Thomas Aquinas accepted Aristotle’s view[16] and so, reluctantly, did John Buridan[17] and Nicole Oresme[18] in the fourteenth century. Not until Nicolaus Copernicus in 1543 adopted a heliocentric world system did the contemporary understanding of Earth’s rotation begin to be established. Copernicus pointed out that if the movement of Earth is violent, then the movement of the stars must be very much more so. He acknowledged the contribution of the Pythagoreans and pointed to examples of relative motion. For Copernicus this was the first step in establishing the simpler pattern of planets circling a central Sun.[19]

Tycho Brahe, who produced accurate observations on which Kepler based his laws of planetary motion, used Copernicus’s work as the basis of a system assuming a stationary Earth. In 1600, William Gilbert strongly supported Earth’s rotation in his treatise on Earth’s magnetism[20] and thereby influenced many of his contemporaries.[21]: 208  Those like Gilbert who did not openly support or reject the motion of Earth about the Sun are called “semi-Copernicans”.[21]: 221  A century after Copernicus, Riccioli disputed the model of a rotating Earth due to the lack of then-observable eastward deflections in falling bodies;[22] such deflections would later be called the Coriolis effect. However, the contributions of Kepler, Galileo and Newton gathered support for the theory of the rotation of Earth.

Empirical tests[edit]

Earth’s rotation implies that the Equator bulges and the geographical poles are flattened.
In his Principia, Newton predicted this flattening would amount to one part in 230, and pointed to the pendulum measurements taken by Richer in 1673 as corroboration of the change in gravity,[23] but initial measurements of meridian lengths by Picard and Cassini at the end of the 17th century suggested the opposite.
However, measurements by Maupertuis and the French Geodesic Mission in the 1730s established the oblateness of Earth, thus confirming the positions of both Newton and Copernicus.[24]

In Earth’s rotating frame of reference, a freely moving body follows an apparent path that deviates from the one it would follow in a fixed frame of reference. Because of the Coriolis effect, falling bodies veer slightly eastward from the vertical plumb line below their point of release, and projectiles veer right in the Northern Hemisphere (and left in the Southern) from the direction in which they are shot. The Coriolis effect is mainly observable at a meteorological scale, where it is responsible for the opposite directions of cyclone rotation in the Northern and Southern hemispheres (anticlockwise and clockwise, respectively).

Hooke, following a suggestion from Newton in 1679, tried unsuccessfully to verify the predicted eastward deviation of a body dropped from a height of 8.2 meters, but definitive results were obtained later, in the late 18th and early 19th century, by Giovanni Battista Guglielmini in Bologna, Johann Friedrich Benzenberg in Hamburg and Ferdinand Reich in Freiberg, using taller towers and carefully released weights.[n 1] A ball dropped from a height of 158.5 m departed by 27.4 mm from the vertical compared with a calculated value of 28.1 mm.

The most celebrated test of Earth’s rotation is the Foucault pendulum first built by physicist Léon Foucault in 1851, which consisted of a lead-filled brass sphere suspended 67 m from the top of the Panthéon in Paris. Because of Earth’s rotation under the swinging pendulum, the pendulum’s plane of oscillation appears to rotate at a rate depending on latitude. At the latitude of Paris the predicted and observed shift was about 11 degrees clockwise per hour. Foucault pendulums now swing in museums around the world.

Periods [edit]

True solar day[edit]

Earth’s rotation period relative to the Sun (solar noon to solar noon) is its true solar day or apparent solar day.[26] It depends on Earth’s orbital motion and is thus affected by changes in the eccentricity and inclination of Earth’s orbit. Both vary over thousands of years, so the annual variation of the true solar day also varies. Generally, it is longer than the mean solar day during two periods of the year and shorter during another two.[n 2] The true solar day tends to be longer near perihelion when the Sun apparently moves along the ecliptic through a greater angle than usual, taking about 10 seconds longer to do so. Conversely, it is about 10 seconds shorter near aphelion. It is about 20 seconds longer near a solstice when the projection of the Sun’s apparent motion along the ecliptic onto the celestial equator causes the Sun to move through a greater angle than usual. Conversely, near an equinox the projection onto the equator is shorter by about 20 seconds. Currently, the perihelion and solstice effects combine to lengthen the true solar day near 22 December by 30 mean solar seconds, but the solstice effect is partially cancelled by the aphelion effect near 19 June when it is only 13 seconds longer. The effects of the equinoxes shorten it near 26 March and 16 September by 18 seconds and 21 seconds, respectively.[27][28]

Mean solar day[edit]

The average of the true solar day during the course of an entire year is the mean solar day, which contains 86400 mean solar seconds. Currently, each of these seconds is slightly longer than an SI second because Earth’s mean solar day is now slightly longer than it was during the 19th century due to tidal friction. The average length of the mean solar day since the introduction of the leap second in 1972 has been about 0 to 2 ms longer than 86400 SI seconds.[29][30][31] Random fluctuations due to core-mantle coupling have an amplitude of about 5 ms.[32][33] The mean solar second between 1750 and 1892 was chosen in 1895 by Simon Newcomb as the independent unit of time in his Tables of the Sun. These tables were used to calculate the world’s ephemerides between 1900 and 1983, so this second became known as the ephemeris second. In 1967 the SI second was made equal to the ephemeris second.[34]

The apparent solar time is a measure of Earth’s rotation and the difference between it and the mean solar time is known as the equation of time.

Stellar and sidereal day[edit]

On a prograde planet like Earth, the stellar day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again but the Sun is not (1→2 = one stellar day). It is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day).

Earth’s rotation period relative to the International Celestial Reference Frame, called its stellar day by the International Earth Rotation and Reference Systems Service (IERS), is 86 164.098 903 691 seconds of mean solar time (UT1) (23h 56m 4.098903691s, 0.99726966323716 mean solar days).[35][n 3] Earth’s rotation period relative to the precessing mean vernal equinox, named sidereal day, is 86164.09053083288 seconds of mean solar time (UT1) (23h 56m 4.09053083288s, 0.99726956632908 mean solar days).[35] Thus, the sidereal day is shorter than the stellar day by about 8.4 ms.[37]

Both the stellar day and the sidereal day are shorter than the mean solar day by about 3 minutes 56 seconds. This is a result of the Earth turning 1 additional rotation, relative to the celestial reference frame, as it orbits the Sun (so 366.25 rotations/y). The mean solar day in SI seconds is available from the IERS for the periods 1623–2005[38] and 1962–2005.[39]

Recently (1999–2010) the average annual length of the mean solar day in excess of 86400 SI seconds has varied between 0.25 ms and 1 ms, which must be added to both the stellar and sidereal days given in mean solar time above to obtain their lengths in SI seconds (see Fluctuations in the length of day).

Angular speed[edit]

The angular speed of Earth’s rotation in inertial space is (7.2921150 ± 0.0000001)×10−5 radians per SI second.[35][n 4] Multiplying by (180°/π radians) × (86,400 seconds/day) yields 360.9856 °/day, indicating that Earth rotates more than 360° relative to the fixed stars in one solar day. Earth’s movement along its nearly circular orbit while it is rotating once around its axis requires that Earth rotate slightly more than once relative to the fixed stars before the mean Sun can pass overhead again, even though it rotates only once (360°) relative to the mean Sun.[n 5] Multiplying the value in rad/s by Earth’s equatorial radius of 6,378,137 m (WGS84 ellipsoid) (factors of 2π radians needed by both cancel) yields an equatorial speed of 465.10 metres per second (1,674.4 km/h).[40] Some sources state that Earth’s equatorial speed is slightly less, or 1,669.8 km/h.[41] This is obtained by dividing Earth’s equatorial circumference by 24 hours. However, the use of the solar day is incorrect; it must be the sidereal day, so the corresponding time unit must be a sidereal hour. This is confirmed by multiplying by the number of sidereal days in one mean solar day, 1.002 737 909 350 795,[35] which yields the equatorial speed in mean solar hours given above of 1,674.4 km/h.

The tangential speed of Earth’s rotation at a point on Earth can be approximated by multiplying the speed at the equator by the cosine of the latitude.[42] For example, the Kennedy Space Center is located at latitude 28.59° N, which yields a speed of: cos(28.59°) × 1674.4 km/h = 1470.2 km/h. Latitude is a placement consideration for spaceports.

While Everest is Earth’s highest elevation (green) and Mauna Kea is tallest from its base (orange), Cayambe is farthest from Earth’s axis (pink) and Chimborazo is farthest from Earth’s centre (blue) – not to scale

The peak of the Cayambe volcano is the point of Earth’s surface farthest from its axis; thus, it rotates the fastest as Earth spins.[43]

Changes[edit]

Earth’s axial tilt is about 23.4°. It oscillates between 22.1° and 24.5° on a 41000-year cycle and is currently decreasing.

In rotational axis[edit]

Earth’s rotation axis moves with respect to the fixed stars (inertial space); the components of this motion are precession and nutation. It also moves with respect to Earth’s crust; this is called polar motion.

Precession is a rotation of Earth’s rotation axis, caused primarily by external torques from the gravity of the Sun, Moon and other bodies. The polar motion is primarily due to free core nutation and the Chandler wobble.

In rotational speed[edit]

Tidal interactions[edit]

Over millions of years, Earth’s rotation has been slowed significantly by tidal acceleration through gravitational interactions with the Moon. Thus angular momentum is slowly transferred to the Moon at a rate proportional to r^{{-6}}, where r is the orbital radius of the Moon. This process has gradually increased the length of the day to its current value, and resulted in the Moon being tidally locked with Earth.

This gradual rotational deceleration is empirically documented by estimates of day lengths obtained from observations of tidal rhythmites and stromatolites; a compilation of these measurements[44] found that the length of the day has increased steadily from about 21 hours at 600 Myr ago[45] to the current 24-hour value. By counting the microscopic lamina that form at higher tides, tidal frequencies (and thus day lengths) can be estimated, much like counting tree rings, though these estimates can be increasingly unreliable at older ages.[46]

Resonant stabilization[edit]

A simulated history of Earth’s day length, depicting a resonant-stabilizing event throughout the Precambrian era.[47]

The current rate of tidal deceleration is anomalously high, implying Earth’s rotational velocity must have decreased more slowly in the past. Empirical data[44] tentatively shows a sharp increase in rotational deceleration about 600 Myr ago. Some models suggest that Earth maintained a constant day length of 21 hours throughout much of the Precambrian.[45] This day length corresponds to the semidiurnal resonant period of the thermally-driven atmospheric tide; at this day length, the decelerative lunar torque could have been canceled by an accelerative torque from the atmospheric tide, resulting in no net torque and a constant rotational period. This stabilizing effect could have been broken by a sudden change in global temperature. Recent computational simulations support this hypothesis and suggest the Marinoan or Sturtian glaciations broke this stable configuration about 600 Myr ago; the simulated results agree quite closely with existing paleorotational data.[47]

Global events[edit]

Deviation of day length from SI-based day

Some recent large-scale events, such as the 2004 Indian Ocean earthquake, have caused the length of a day to shorten by 3 microseconds by reducing Earth’s moment of inertia.[48] Post-glacial rebound, ongoing since the last Ice age, is also changing the distribution of Earth’s mass, thus affecting the moment of inertia of Earth and, by the conservation of angular momentum, Earth’s rotation period.[49]

The length of the day can also be influenced by manmade structures. For example, NASA scientists calculated that the water stored in the Three Gorges Dam has increased the length of Earth’s day by 0.06 microseconds due to the shift in mass.[50]

Measurement[edit]

The primary monitoring of Earth’s rotation is performed by very-long-baseline interferometry coordinated with the Global Positioning System, satellite laser ranging, and other satellite geodesy techniques. This provides an absolute reference for the determination of universal time, precession, and nutation.[51]
The absolute value of Earth rotation including UT1 and nutation can be determined using space geodetic observations, such as Very Long Baseline Interferometry and Lunar laser ranging, whereas their derivatives, denoted as Length-of-day excess and nutation rates can be derived from satellite observations, such as GPS, GLONASS, Galileo[52] and Satellite laser ranging to geodetic satellites.[53]

Ancient observations[edit]

There are recorded observations of solar and lunar eclipses by Babylonian and Chinese astronomers beginning in the 8th century BCE, as well as from the medieval Islamic world[54] and elsewhere. These observations can be used to determine changes in Earth’s rotation over the last 27 centuries, since the length of the day is a critical parameter in the calculation of the place and time of eclipses. A change in day length of milliseconds per century shows up as a change of hours and thousands of kilometers in eclipse observations. The ancient data are consistent with a shorter day, meaning Earth was turning faster throughout the past.[55][56]

Cyclic variability[edit]

Around every 25–30 years Earth’s rotation slows temporarily by a few milliseconds per day, usually lasting around 5 years. 2017 was the fourth consecutive year that Earth’s rotation has slowed. The cause of this variability has not yet been determined.[57]

Origin[edit]

Earth’s original rotation was a vestige of the original angular momentum of the cloud of dust, rocks, and gas that coalesced to form the Solar System. This primordial cloud was composed of hydrogen and helium produced in the Big Bang, as well as heavier elements ejected by supernovas. As this interstellar dust is heterogeneous, any asymmetry during gravitational accretion resulted in the angular momentum of the eventual planet.[58]

However, if the giant-impact hypothesis for the origin of the Moon is correct, this primordial rotation rate would have been reset by the Theia impact 4.5 billion years ago. Regardless of the speed and tilt of Earth’s rotation before the impact, it would have experienced a day some five hours long after the impact.[59] Tidal effects would then have slowed this rate to its modern value.

See also[edit]

  • Allais effect
  • Diurnal cycle
  • Earth’s orbit
  • Earth orientation parameters
  • Formation and evolution of the Solar System
  • Geodesic (in mathematics)
  • Geodesics in general relativity
  • Geodesy
  • History of Earth
  • History of geodesy
  • Inner core super-rotation
  • List of important publications in geology
  • Nychthemeron
  • Rossby wave
  • Spherical Earth
  • World Geodetic System

Notes[edit]

  1. ^ See Fallexperimente zum Nachweis der Erdrotation (German Wikipedia article).
  2. ^ When Earth’s eccentricity exceeds 0.047 and perihelion is at an appropriate equinox or solstice, only one period with one peak balances another period that has two peaks.[27]
  3. ^ Aoki, the ultimate source of these figures, uses the term “seconds of UT1” instead of “seconds of mean solar time”.[36]
  4. ^ It can be established that SI seconds apply to this value by following the citation in “USEFUL CONSTANTS” to E. Groten “Parameters of Common Relevance of Astronomy, Geodesy, and Geodynamics” which states units are SI units, except for an instance not relevant to this value.
  5. ^ In astronomy, unlike geometry, 360° means returning to the same point in some cyclical time scale, either one mean solar day or one sidereal day for rotation on Earth’s axis, or one sidereal year or one mean tropical year or even one mean Julian year containing exactly 365.25 days for revolution around the Sun.

References[edit]

  1. ^ Dennis D. McCarthy; Kenneth P. Seidelmann (18 September 2009). Time: From Earth Rotation to Atomic Physics. John Wiley & Sons. p. 232. ISBN 978-3-527-62795-0.
  2. ^ Stephenson, F. Richard (2003). “Historical eclipses and Earth’s rotation”. Astronomy & Geophysics. 44 (2): 2.22–2.27. Bibcode:2003A&G….44b..22S. doi:10.1046/j.1468-4004.2003.44222.x.
  3. ^ Robert Lea (3 August 2022). “Earth sets record for the shortest day”. Space.com. Retrieved 8 August 2022.
  4. ^ Knapton, Sarah (4 January 2021). “The Earth is spinning faster now than at any time in the past half century”. The Telegraph. Retrieved 11 February 2021.
  5. ^ Pappas, Stephanie (25 September 2018). “Humans Contribute to Earth’s Wobble, Scientists Say”. Scientific American. Retrieved 12 August 2022.
  6. ^ Pseudo-Plutarchus, Placita philosophorum (874d-911c), Stephanus page 896, section A, line 5 Ἡρακλείδης ὁ Ποντικὸς καὶ Ἔκφαντος ὁ Πυθαγόρειος κινοῦσι μὲν τὴν γῆν, οὐ μήν γε μεταβατικῶς, ἀλλὰ τρεπτικῶς τροχοῦ δίκην ἐνηξονισμένην, ἀπὸ δυσμῶν ἐπ’ ἀνατολὰς περὶ τὸ ἴδιον αὐτῆς κέντρον; Plutarchus Biogr., Phil., Numa, Chapter 11, section 1, line 5, Νομᾶς δὲ λέγεται καὶ τὸ τῆς Ἑστίας ἱερὸν ἐγκύκλιον περιβαλέσθαι τῷ ἀσβέστῳ πυρὶ φρουράν, ἀπομιμούμενος οὐ τὸ σχῆμα τῆς γῆς ὡς Ἑστίας οὔσης, ἀλλὰ τοῦ σύμπαντος κόσμου, οὗ μέσον οἱ Πυθαγορικοὶ τὸ πῦρ ἱδρῦσθαι νομίζουσι, καὶ τοῦτο Ἑστίαν καλοῦσι καὶ μονάδα· τὴν δὲ γῆν οὔτε ἀκίνητον οὔτε ἐν μέσῳ τῆς περιφορᾶς οὖσαν, ἀλλὰ κύκλῳ περὶ τὸ πῦρ αἰωρουμένην οὐ τῶν τιμιωτάτων οὐδὲ τῶν πρώτων τοῦ κόσμου μορίων ὑπάρχειν. Burch, George Bosworth (1954). “The Counter-Earth”. Osiris. 11: 267–294. doi:10.1086/368583. JSTOR 301675. S2CID 144330867.
  7. ^ Aristotle. Of the Heavens. Book II, Ch 13. 1.
  8. ^ Ptolemy. Almagest Book I, Chapter 8.
  9. ^ “Archived copy” (PDF). Archived from the original (PDF) on 13 December 2013. Retrieved 8 December 2013.{{cite web}}: CS1 maint: archived copy as title (link)
  10. ^ Kim Plofker (2009). Mathematics in India. Princeton University Press. p. 71. ISBN 978-0-691-12067-6.
  11. ^ Alessandro Bausani (1973). “Cosmology and Religion in Islam”. Scientia/Rivista di Scienza. 108 (67): 762.
  12. ^ a b Young, M. J. L., ed. (2 November 2006). Religion, Learning and Science in the ‘Abbasid Period. Cambridge University Press. p. 413. ISBN 9780521028875.
  13. ^ Nasr, Seyyed Hossein (1 January 1993). An Introduction to Islamic Cosmological Doctrines. SUNY Press. p. 135. ISBN 9781438414195.
  14. ^ Ragep, Sally P. (2007). “Ibn Sīnā: Abū ʿAlī al‐Ḥusayn ibn ʿAbdallāh ibn Sīnā”. In Thomas Hockey; et al. (eds.). The Biographical Encyclopedia of Astronomers. New York: Springer. pp. 570–2. ISBN 978-0-387-31022-0. (PDF version)
  15. ^ Ragep, F. Jamil (2001a), “Tusi and Copernicus: The Earth’s Motion in Context”, Science in Context, 14 (1–2): 145–163, doi:10.1017/s0269889701000060, S2CID 145372613
  16. ^ Aquinas, Thomas. Commentaria in libros Aristotelis De caelo et Mundo. Lib II, cap XIV. trans in Grant, Edward, ed. (1974). A Source Book in Medieval Science. Harvard University Press. pages 496–500
  17. ^ Buridan, John (1942). Quaestiones super libris quattuo De Caelo et mundo. pp. 226–232. in Grant 1974, pp. 500–503
  18. ^ Oresme, Nicole. Le livre du ciel et du monde. pp. 519–539. in Grant 1974, pp. 503–510
  19. ^ Copernicus, Nicolas. On the Revolutions of the Heavenly Spheres. Book I, Chap 5–8.
  20. ^ Gilbert, William (1893). De Magnete, On the Magnet and Magnetic Bodies, and on the Great Magnet the Earth. New York, J. Wiley & sons. pp. 313–347.
  21. ^ a b Russell, John L (1972). “Copernican System in Great Britain”. In J. Dobrzycki (ed.). The Reception of Copernicus’ Heliocentric Theory. ISBN 9789027703118.
  22. ^ Almagestum novum, chapter nine, cited in Graney, Christopher M. (2012). “126 arguments concerning the motion of the earth. GIOVANNI BATTISTA RICCIOLI in his 1651 ALMAGESTUM NOVUM”. Journal for the History of Astronomy. volume 43, pages 215–226. arXiv:1103.2057.
  23. ^ Newton, Isaac (1846). Newton’s Principia. Translated by A. Motte. New-York : Published by Daniel Adee. p. 412.
  24. ^ Shank, J. B. (2008). The Newton Wars and the Beginning of the French Enlightenment. University of Chicago Press. pp. 324, 355. ISBN 9780226749471.
  25. ^ “Starry Spin-up”. Retrieved 24 August 2015.
  26. ^ “What Is Solar Noon?”. www.timeanddate.com. Retrieved 15 July 2022.
  27. ^ a b Jean Meeus; J. M. A. Danby (January 1997). Mathematical Astronomy Morsels. Willmann-Bell. pp. 345–346. ISBN 978-0-943396-51-4.
  28. ^ Ricci, Pierpaolo. “www.pierpaoloricci.it/dati/giorno solare vero VERSIONE EN”. Pierpaoloricci.it. Retrieved 22 September 2018.
  29. ^ “INTERNATIONAL EARTH ROTATION AND REFERENCE SYSTEMS SERVICE : EARTH ORIENTATION PARAMETERS : EOP (IERS) 05 C04”. Hpiers.obspm.fr. Retrieved 22 September 2018.
  30. ^ “Physical basis of leap seconds” (PDF). Iopscience.iop.org. Retrieved 22 September 2018.
  31. ^ Leap seconds Archived 12 March 2015 at the Wayback Machine
  32. ^ “Prediction of Universal Time and LOD Variations” (PDF). Ien.it. Retrieved 22 September 2018.
  33. ^ R. Hide et al., “Topographic core-mantle coupling and fluctuations in the Earth’s rotation” 1993.
  34. ^ Leap seconds by USNO Archived 12 March 2015 at the Wayback Machine
  35. ^ a b c d “USEFUL CONSTANTS”. Hpiers.obspm.fr. Retrieved 22 September 2018.
  36. ^ Aoki, et al., “The new definition of Universal Time”, Astronomy and Astrophysics 105 (1982) 359–361.
  37. ^ P. Kenneth Seidelmann, ed. (1992). Explanatory Supplement to the Astronomical Almanac. Mill Valley, California: University Science Books. p. 48. ISBN 978-0-935702-68-2.
  38. ^ IERS Excess of the duration of the day to 86,400s … since 1623 Archived 3 October 2008 at the Wayback Machine Graph at end.
  39. ^ “Excess to 86400s of the duration day, 1995–1997”. 13 August 2007. Archived from the original on 13 August 2007. Retrieved 22 September 2018.
  40. ^ Arthur N. Cox, ed., Allen’s Astrophysical Quantities p.244.
  41. ^ Michael E. Bakich, The Cambridge planetary handbook, p.50.
  42. ^ Butterworth & Palmer. “Speed of the turning of the Earth”. Ask an Astrophysicist. NASA Goddard Spaceflight Center.
  43. ^ Klenke, Paul. “Distance to the Center of the Earth”. Summit Post. Retrieved 4 July 2018.
  44. ^ a b Williams, George E. (1 February 2000). “Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit”. Reviews of Geophysics. 38 (1): 37–59. Bibcode:2000RvGeo..38…37W. doi:10.1029/1999RG900016. ISSN 1944-9208. S2CID 51948507.
  45. ^ a b Zahnle, K.; Walker, J. C. (1 January 1987). “A constant daylength during the Precambrian era?”. Precambrian Research. 37 (2): 95–105. Bibcode:1987PreR…37…95Z. CiteSeerX 10.1.1.1020.8947. doi:10.1016/0301-9268(87)90073-8. ISSN 0301-9268. PMID 11542096.
  46. ^ Scrutton, C. T. (1 January 1978). “Periodic Growth Features in Fossil Organisms and the Length of the Day and Month”. In Brosche, Professor Dr Peter; Sündermann, Professor Dr Jürgen (eds.). Tidal Friction and the Earth’s Rotation. Springer Berlin Heidelberg. pp. 154–196. doi:10.1007/978-3-642-67097-8_12. ISBN 9783540090465.
  47. ^ a b Bartlett, Benjamin C.; Stevenson, David J. (1 January 2016). “Analysis of a Precambrian resonance-stabilized day length”. Geophysical Research Letters. 43 (11): 5716–5724. arXiv:1502.01421. Bibcode:2016GeoRL..43.5716B. doi:10.1002/2016GL068912. ISSN 1944-8007. S2CID 36308735.
  48. ^ Sumatran earthquake sped up Earth’s rotation, Nature, 30 December 2004.
  49. ^ Wu, P.; W.R.Peltier (1984). “Pleistocene deglaciation and the earth’s rotation: a new analysis”. Geophysical Journal of the Royal Astronomical Society. 76 (3): 753–792. Bibcode:1984GeoJ…76..753W. doi:10.1111/j.1365-246X.1984.tb01920.x.
  50. ^ “NASA Details Earthquake Effects on the Earth”. NASA/JPL. Retrieved 22 March 2019.
  51. ^ “Permanent monitoring”. Hpiers.obspm.fr. Retrieved 22 September 2018.
  52. ^ Zajdel, Radosław; Sośnica, Krzysztof; Bury, Grzegorz; Dach, Rolf; Prange, Lars (July 2020). “System-specific systematic errors in earth rotation parameters derived from GPS, GLONASS, and Galileo”. GPS Solutions. 24 (3): 74. doi:10.1007/s10291-020-00989-w.
  53. ^ Sośnica, K.; Bury, G.; Zajdel, R. (16 March 2018). “Contribution of Multi‐GNSS Constellation to SLR‐Derived Terrestrial Reference Frame”. Geophysical Research Letters. 45 (5): 2339–2348. Bibcode:2018GeoRL..45.2339S. doi:10.1002/2017GL076850. S2CID 134160047.
  54. ^ “Solar and lunar eclipses recorded in medieval Arab chronicles”, Historical Eclipses and Earth’s Rotation, Cambridge University Press, pp. 431–455, 5 June 1997, doi:10.1017/cbo9780511525186.012, ISBN 9780521461948, retrieved 15 July 2022
  55. ^ Sid Perkins (6 December 2016). “Ancient eclipses show Earth’s rotation is slowing”. Science. doi:10.1126/science.aal0469.
  56. ^ FR Stephenson; LV Morrison; CY Hohonkerk (7 December 2016). “Measurement of the Earth’s rotation: 720 BC to AD 2015”. Proceedings of the Royal Society A. 472 (2196): 20160404. Bibcode:2016RSPSA.47260404S. doi:10.1098/rspa.2016.0404. PMC 5247521. PMID 28119545.
  57. ^ Nace, Trevor. “Earth’s Rotation Is Mysteriously Slowing Down: Experts Predict Uptick In 2018 Earthquakes”. Forbes. Retrieved 18 October 2019.
  58. ^ “Why do planets rotate?”. Ask an Astronomer.
  59. ^ Stevenson, D. J. (1987). “Origin of the moon–The collision hypothesis”. Annual Review of Earth and Planetary Sciences. 15 (1): 271–315. Bibcode:1987AREPS..15..271S. doi:10.1146/annurev.ea.15.050187.001415.

External links[edit]

  • USNO Earth Orientation new site, being populated
  • USNO IERS old site, to be abandoned
  • IERS Earth Orientation Center: Earth rotation data and interactive analysis
  • International Earth Rotation and Reference Systems Service (IERS)
  • If the Earth’s rotation period is less than 24 hours, why don’t our clocks fall out of sync with the Sun?

Когда произошел переход к гелиоцентрической модели мира, Солнце стало в центр вращения. Теперь Земля вращается вокруг Солнца и другие объекты Солнечной системы тоже.

Оглавление

  • 1 Из-за чего происходит вращение Земли
  • 2 Вращение Земли вокруг Солнца
    • 2.1 Может ли Земля упасть на Солнце или улететь в космос
    • 2.2 В какую сторону происходит орбитальное вращение Земли
  • 3 Земная ось и ее наклон
    • 3.1 Осевое вращение Земли
    • 3.2 Теория об инертном вращении
    • 3.3 Теория о магнитных полях
  • 4 Почему люди не чувствуют движения Земли
  • 5 Линия перемены дат

Из-за чего происходит вращение Земли

Вращение Земли можно поделить на две составляющие: обращение вокруг Солнца и вращение вокруг собственной оси.

Вращение Земли вокруг Солнца

Оба этих процесса, вероятней всего, берут свое начала с времен формирования Солнечной системы, когда протопланетарный диск из газа и пыли собирался вокруг молодого Солнца, образуя планеты и астероиды.

Но все равно, не все планеты Солнечной системы имеют одинаковые параметры вращения. Выходит, не так просто шло формирование нашей звездой системы и на нее современный вид повлияло много факторов.

Вращение Земли вокруг Солнца

Как и у всех объектов Солнечной системы, вращение Земли вокруг Солнца происходит по вытянутой орбите – эллипсу. Средний радиус обращения равен 149,5 млн км – это расстояние принято называть астрономической единицей.

По второму закону Кеплера, тела, движущиеся по эллипсу, в каждый момент времени заметают одинаковую площадь. Это значит, что чем дальше Земля от Солнца – в апогелии – тем меньше ее скорость. А чем ближе планета к звезде – в перигелии – тем больше скорость ее орбитального движения. Так, скорость обращения Земли колеблется в диапазоне 29,3 – 30 км/с.

Время, за которое Земля делает полный оборот вокруг нашей звезды, равно 365 дней, 5 часов, 48 минут и 46 секунд. Из-за этих «добавок» каждый 4-й год добавляется один день.

Афелий и Перигелий

Может ли Земля упасть на Солнце или улететь в космос

Земля «держится» на своей орбите благодаря силе гравитации. Гравитационная сила Солнца в 28 раз сильнее, чем гравитационная сила у Земли. Земля, как бы не старалась, не сможет ее преодолеть.

Упасть на нашу звезду тоже вряд ли получится, ведь скорость орбитального движения Земли достаточно велика, и масса тоже. Земля обладает колоссальной инерцией и кинетической энергией, а для того, чтобы упасть на Солнце, планете придется замедлить свой ход, а для этого потребуется приложить немалую работу, которую «просто так» ниоткуда не взять.

В какую сторону происходит орбитальное вращение Земли

Все планеты движутся вокруг Солнца в одном направлении. Если продлить Земную ось в космос, залезть на ее северный кончик и посмотреть оттуда на плоскость эклиптики, то Солнечная системы осуществляет свое движение против часовой стрелки.

Земная ось и ее наклон

Планета Земля имеет наклон к плоскости эклиптики в 23,5 градуса. Именно благодаря наклону земной оси происходит смена сезонов на планете, что делает жизнь на ней разнообразней и пригодней для развития.

Наклон земной оси относительно плоскости эклиптики

Осевое вращение Земли

Полный круг вокруг своей оси Земля делает за 23 часа, 26 минут и 4 секунды – это звездные сутки.

Скорость вращения на экваторе планеты равна 465 м/c. При приближении к полюсам эта скорость падает, так как уменьшается радиус вращения. В географических полюсах скорость осевого вращения Земли равна 0.

Если мы снова перенесемся на Северный кончик земной оси, то увидим, что Земля вращается вокруг своей оси в ту же сторону что и вокруг Солнца — против часовой стрелки.

Теория об инертном вращении

Существует версия, что в момент формирования Солнечной системы, все планеты и Земля, в частности, двигались по орбитам с бОльшей скоростью, тем самым приобретая запас энергии. Теперь же, все движения Солнечной системы осуществляется благодаря этому «запасу». Но вопрос откуда взялась первоначальная энергия – вопрос пока открытый.

Теория о магнитных полях

Еще одной недоказанной теорией вращения Земли является предположение о магнитных полюсах. Как известно, одноименные полюса магнита отталкиваются друг от друга. Так как Северный и Южный полюса обладают одинаковым знаком, то они стремятся оттолкнутся друг от друга, тем самым заставляя планету вращаться.

Почему люди не чувствуют движения Земли

По той же самой причине, по которой мы не ощущаем полет самолета, находясь внутри него. Или движение корабля. Все что находится на Земле движется вместе с планетой с одинаковой скоростью. И мы просто «привыкли» к этому движению.

Линия перемены дат

Так как часовые пояса двигаются с востока на запад, а планета у нас все-таки круглая, они должны где-то встретится.

Линией такой встречи является условная линия в Тихом океане, которая огибает острова.

В Беренговом проливе, между Камчаткой и Аляской, находятся два острова Ратманова и Крузенштерна. Их называют острова «вчера» и «завтра». Линия смены дат проходит аккурат между ними.

Время, за которое можно доплыть с одного острова до другого составляет около 20 минут. При этом время на островах отличается на сутки.

острова завтра и вчера

Еще больше космоса и интересных фактов в телеграмм-канале.

То, что Земля постоянно находится в движении – факт общеизвестный. Но вот детали этого процесса мало кому известны. Вряд ли кто сразу готов ответить на опрос, с какой скоростью двигается наша планета и в какую сторону.

Если вы ищете лучшие сайты для ставок в онлайн-казино, лучшие букмекерские конторы в Латинской Америке или на рынке Испании, сайты, которые предлагают лучшие варианты ставок, лучшие шансы и информативные блоги об одном из самых популярных видов деятельности в последнее время, чтобы иметь возможность выигрывать реальные деньги и наслаждаться различными ставками и спортивными дисциплинами, приходите и узнайте, какие букмекерские конторы DrApuestas являются лучшими в Латинской Америке, Испании и США. В этом руководстве содержится полная информация, которая поможет вам лучше понять сферу спортивных ставок, несколько советов по безопасным ставкам и тому, как получать реальные деньги на свои ставки и использовать свои знания в области спорта.

А если углубиться в эту тему, то всплывет много любопытнейших подробностей.

  • Движение Земли вокруг своей оси
  • Движение Земли вокруг Солнца
  • Земные доказательства космических процессов

В какую сторону вращается Земля относительно своей оси и Солнца

Движение Земли вокруг своей оси

Из-за того, что Земля непрерывно вращается, на каждом участке планеты непрерывно что-то меняется. Например, на смену дню приходит вечер, плавно перетекающий в ночь. И это все благодаря движению вокруг оси.

Стоит сразу отметить, что никакая земная ось на самом деле не существует, только в воображении. Представить ее несложно, она как будто бы проходит сквозь всю планету, пронизывая ее в двух точках-полюсах, Северном и Южном. Несмотря на физическое отсутствие оси, вращается планета так, будто и правда насажена на эту гигантскую палку и раскручена чьей-то сильной рукой.

Направление движения стабильно и происходит с запада на восток. Именно поэтому на протяжении миллионов лет все обитатели планеты видят, что Солнце восходит на востоке и потом скрывается на западе.

Интересно, что если вдруг кто-то возьмется наблюдать за ним с Северного полюса, то выглядеть оно будет как вращение против часовой стрелки. Ну а если с Южного, то, наоборот, по часовой стрелке.

Интересно, что скорость движения, в отличие от направления, периодически меняется. Несложно догадаться, что один оборот Земля делает примерно за 24 часа. Слово «примерно» появилось здесь не случайно. На самом деле, дотошные ученые установили, что сутки суткам рознь и могут отличаться на какие-то доли секунд.

Например, самые короткие были зафиксированы в 2003 году. Они длились меньше, чем положено на целую секунду и еще 5 ее тысячных.

Причин для изменения скорости множество. Это могут быть и внутренние процессы, происходящие глубоко под земной корой, и магнитное излучение Луны, и небесные тела, проносящиеся поблизости от Солнечной системы.

Самые дотошные ученые поли дальше. Они тщательно изучили записи, оставленные их коллегами во времена расцвета Вавилона, и пришли к выводу, что тогда длина суток была меньше на 0,04 секунды. А анализ сохранившихся до наших дней артефактов Мезозойской эры показал, что во времена господства динозавров на планете, длина суток составляла всего 23 часа.

Движение Земли вокруг Солнца

Благодаря тому что Земля неустанно вращается и вокруг Солнца, мы переживаем смену времен года. Один оборот планета совершает за 365 дней и 6 часов. Для удобства при составлении календаря эти шесть часов было решено не учитывать каждый раз. В результате за четыре года «накапливаются» еще одни сутки, которые в результате присоединяются к февралю. Именно поэтому каждый четвертый год становится длиннее, и называют его високосным.

Двигается вокруг Солнца Земля в том же направлении, что и вокруг своей оси. То есть, с запада на восток. И опять же для Северного полюса это движение будет выглядеть как то, что совершается против часовой стрелки, а для Южного – по часовой.

Если рассмотреть большое количество астрономических карт, то можно обратить внимание на одну закономерность. Землю всегда изображают таким образом, что Северный полюс оказывается наверху. Это не случайность: именно с этой точки принято вести отсчет. Соответственно, говорить о том, что Земля вращается против часовой стрелки, будет правильнее.

Земные доказательства космических процессов

Удивительно, но вращение Земли в заданном направлении накладывает отпечатки, которые многие просто не замечают. Самый простой пример – воронка, которая образуется при сливе воды из раковины. В Северном полушарии она закручивается против часовой стрелки. В Южном по часовой. А на линии экватора просто сливается, вообще не образуя воронку.

То же самое происходит и с циклонами. В тех, что бушуют на севере, ветра двигаются против часовой стрелки. Южные же словно являются их зеркальным отражением.

Можно провести и собственный эксперимент, доказывающий направление вращения земли. Для этого достаточно сбросить предмет с высоты, тщательно зафиксировав его положение до падения и после. Наверняка он приземлится чуть восточнее. Чем дольше будет длиться его свободное падение, тем сильнее будет это отклонение.

При желании можно найти и другие доказательства вращения Земли. Для этого даже не обязательно лететь в космос, ведь все самое удивительное на самом деле находится рядом с нами, тщательно маскируясь под обыденное и привычное.

Загрузка…

Содержание

  • 1 Земная ось и ее наклон
  • 2 Вращение Земли вокруг своей оси
  • 3 Вращение Земли вокруг Солнца
    • 3.1 В какую сторону вращается Земля
  • 4 Почему мы не чувствуем ее движения
  • 5 Что, если она остановится

Наша планета всегда в движении. Вращение Земли происходит одновременно вокруг центральной точки Солнечной системы и вокруг своей оси.

Вращение Земли вокруг солнца и своей оси

Наша планета находится в постоянном движении. Credit: Planetanovosti

Земная ось и ее наклон

Под земной осью понимают условную прямую, проходящую через центр и оба географических полюса планеты.

Она не вертикальна — наклонена под углом 66°33´, и это объясняет смену времен года:

  • при положении Солнце на 23°27´ с. ш. (над Северным тропиком) северное полушарие получает максимум тепла и света, в этот период здесь начинается лето;
  • через полгода Солнце поднимается уже над другим тропиком — Южным, находящимся на 23°27´ ю. ш., теперь больше света и тепла получает южное полушарие, а в северном начинается зима.

Смена времен года

Смена времен года на нашей планете зависит от расположения ее оси. Credit: Сезоны-года.рф

Если бы земная ось располагалась всегда вертикально, явления сезонности планета не знала бы: на освещенной Солнцем половине все точки получали бы одинаковый объем тепла и света.

На угол наклона оси не влияет никакой внешний или внутренний фактор, включая притяжение Солнца, луны или других планет, но сама ось совершает прецессию — перемещение по круговой конической траектории.

Сегодня географический Северный полюс Земли смотрит на Полярную звезду, но уже через 12 тыс. лет ось развернется в противоположную сторону.

Полюс будет направлен на звезду Вега в созвездии Лиры. Через 25,8 тыс. лет он снова вернется к Полярной звезде.

Кроме того, земная ось немного дрейфует в области полюсов из-за того, что Земля вертится, немного колеблясь, двигаясь на восток или на запад со скоростью до 10-15 см/год, объясняется это климатическими изменениями, происходящим до 45° с. ш. и ю .ш.: таянием льдов Антарктиды и Гренландии, потерями воды в Евразии, излишне засушливыми или влажными годами в Австралии.

Вращение Земли вокруг своей оси

Один такой оборот Земли называется сутками и длится 24 часа, точнее — 23 часа 56 минут и несколько секунд. Движение планеты происходит с запада на восток. Это явление объясняет смену дня и ночи: день наблюдается на той половине земного шара, которая освещается Солнцем, а ночь — на теневой стороне.

Из-за такого вращения существует отклонение любых движущихся потоков вещества (воды в реках, воздуха в ветрах) от линий, параллельных экватору: в южном влево, а в северном — в обратную сторону. По-разному движутся и водовороты — от природных круговых водопадов до воды в сливе домашнего умывальника. В северной части планеты вода в воронках крутится по часовой стрелке, в южном полушарии — в обратном направлении.

Как Земля вращается вокруг своей оси

Суточный оборот Земли. Credit: Infourok

Линейная скорость такого движения планеты на экваторе — 465 м/с (1674 км/ч).

С увеличением широты на север и на юг скоростные показатели постепенно становятся ниже, например на 55° с.ш. (широта Москвы) они уже почти в 2 раза меньше и равны 260 м/с.

На Южном и Северном полюсах линейная скорость достигает 0 м/с. Угловая скорость вращения планеты в любой ее точке одинакова — 15° в час.

Ученые обнаружили пятилетние циклы ускорения и замедления в обращении Земли вокруг оси, и каждый последний «медленный» год чаще всего сопровождается всплеском количества землетрясений во всем мире. Прямая причинно-следственная связь этого еще не выявлена, но такие циклы могут стать инструментом прогнозирования роста сейсмической активности.

Вращение Земли вокруг Солнца

Обращение планеты по отношению к центральной точке нашей системы происходит по эллиптической орбите на среднем расстоянии от центра системы почти 149,6 млн км со средней орбитальной скоростью примерно 29,8 км/с.

Значение скорости изменяется в зависимости от расположения нашей планеты в космическом пространстве: находясь в ближайшей к Солнцу точке (она называется перигелием), это небесное тело движется быстрее — более 30 км/с, в афелии (наиболее удаленной от светила позиции) — медленнее, около 29,3 км/с.

Вращение планеты Земля вокруг солнца

Годовой оборот Земли. Credit: Spacegid

Пока Земля совершает полный оборот вокруг Солнца, она успевает сделать примерно 365,25 своего собственного витка. Столько дней входит в 1 астрономический год.

Он отличается от календарного, в котором за сутки принят период времени ровно 24 часа и который длится 365 дней. Каждый четвертый год в календарь добавляется дополнительный, 366 день.

В какую сторону вращается Земля

Если глянуть на Солнечную систему «сверху», т. е. так, что земельные участки, расположенные около Северного полюса, будут ровно напротив нашего взгляда, то вращение будет проходить против часовой стрелки

Почему мы не чувствуем ее движения

Человек не может ощущать вращения планеты, потому что вместе с ним параллельно движутся и все объекты на ее поверхности, в том же направлении и с такой же скоростью. Как пример, можно привести плавание на корабле. Находясь на его палубе, мы не замечаем, что окружающие предметы плывут по водоему вместе с нами. Относительно нас самих они остаются неподвижными.

Что, если она остановится

Если Земля перестанет вращаться вокруг своей оси, то:

  • одна ее сторона будет постоянно повернута к центру Солнечной системы, светило нагреет почву до высочайших температур, и вся влага с поверхности испарится;
  • вторая сторона планеты погрузится в вечную ночь, тут постоянно будет свирепствовать мороз, вода превратится в толстый слой льда, и его толщина достигнет километров;
  • условия станут крайне затруднительны для возникновения и развития любых форм жизни, в т.ч. для дальнейшего существования человечества.

Земные сутки будут длиться целый год, длина дня составит 6 месяцев, и после незначительного периода сумерек на планете наступит шестимесячная ночь. Закат и восход станут определяться исключительно вращением планеты вокруг светила — всходить оно будет на западе и заходить на востоке.

Что будет при остановке нашей планеты

Если остановка Земли вдруг произойдет, то это повлечет за собой массу негативных последствий. Credit: Krpress

Так как линейная вращательная скорость достигает весомых значений, при внезапной остановке планеты все здания, растения, животные и люди будут снесены с поверхности силами инерции.

Исключение составят лишь сооружения, вмурованные в земную твердь или горные породы. По инерции продолжат вращаться океаны, вызвав гигантский цунами.

Сегодня под воздействием центробежных сил Земля несколько сплющена у полюсов и имеет своеобразный «горб» в области экватора. После остановки он исчезнет, вся вода океанов стечет к югу и северу, обнажив дно в экваториальной области до 30° с.ш. и ю.ш.. Так на планете образуется один опоясывающий ее гигантский материк и две полюсные «водяные шапки».

Магнитное поле Земли также пропадет, оставив нас без защиты от солнечного и космического ветров — опасных для всего живого заряженных частиц, которые обрушатся на планету. Потеря магнитного поля приведет к исчезновению полярных сияний.

Все описанные последствия справедливы и для ситуации, если прекратится движение Земли вокруг Солнца, только они будут еще более катастрофическими. Смены времени суток больше не будет, на одной половине планеты установится вечная ночь, на другой — такой же вечный день.

Добавить комментарий