Как найти осевое сечение цилиндра формула

Сечение цилиндра: определение, виды, его образующая

Содержание:

  • Кратко о цилиндре
  • Осевое сечение
  • Как найти площадь сечения
  • Осевое сечение наклонного цилиндра
  • Примеры задач

    • Задача 1
    • Задача 2

Кратко о цилиндре

Цилиндр — это геометрическая фигура, которая ограничена цилиндрической поверхностью и двумя плоскими окружностями.

Также можно сказать, что это тело вращения, возникающее при вращении прямоугольника вокруг его стороны.

Осевое сечение

Это сечение фигуры плоскостью, проходящей через ее ось. Оно является прямоугольником. Таким образом, любое сечение, параллельное оси цилиндра (и перпендикулярное его основанию), становится прямоугольником. Сторонами этой фигуры будет диаметр цилиндра и высота его оси.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Как найти площадь сечения

Формула 1

(S = d*h,)

где (d) — диаметр, а (h) — высота всей фигуры.

Цилиндр

Источник: reader.lecta.rosuchebnik.ru

Также есть формулы для расчета площади сечения, параллельного оси геометрического тела (но не пересекающего ее).

Формула 2

(S = a*h, )

где (a) — хорда.

Сечение цилиндра параллельно оси

Источник: bezikev.ru

Осевое сечение наклонного цилиндра

Сечение наклонного цилиндра по оси представляет собой параллелограмм. Его стороны нам уже известны: одна из них равна диаметру d, как и в случае с прямой фигурой. Другая — длина образующего отрезка. Ее мы можем обозначить буквой b.

Для точного определения всех параметров параллелограмма недостаточно знать только длины его сторон. Для расчета площади фигуры нам понадобится один из ее углов. Допустим, что острый угол между плоскостью и направляющий равен α. Тогда формула S параллелограмма будет выглядеть следующим образом:

(S = d * b * sin(α))

Осевое сечение наклонного цилиндра

Источник: present5.com

Примеры задач

Рассмотрим пару задач на осевое сечение с решениями.

Задача 1

Дан круглый прямой цилиндр. Его осевое сечение является квадратом. Вопрос: чему равна S сечения, если площадь поверхности всего цилиндра — 100 см²?

Решение

Чтобы найти S квадрата, нужно сначала определить радиус или диаметр окружности цилиндра. Для этого вспомним формулу для нахождения площади самого цилиндра:

(Sц = 2pi * r * (r + h))

Так как осевое сечение — квадрат, значит радиус основания в два раза меньше высоты фигуры. В таком случае, формула будет выглядеть так:

(Sц = 2pi * r * (r + 2r) = 6 * pi * r²)

Исходя из этого, будем выражать радиус:

(r = √(Sц / (6*pi)))

Если сторона квадратного сечения равна диаметру основания цилиндра, то для определения площади квадрата S используем формулу:

(S = (2*r)2 = 4*r2 = 2*Sц/ (3*pi))

Подставим известные данные ((Sц = 100см^2)) и получим площадь сечения (S = 21,23 см²).

Ответ: (S = 21,23 см²).

Задача 2

Дано: ABCD — осевое сечение цилиндра. Площадь сечения (Sc) равна (10 м²), а площадь основания (Sо— 5 м²). Найти высоту цилиндра.

Решение

Так как площадь основания — круг, то (Sо = pi * r²). Тогда (r = √(Sо/pi) = √(5/pi).)

Так как площадь сечения  — прямоугольник, то (Sc = AB * BC = h * 2r.) Тогда (h = Sc/(2r) = 10/(2√(5/pi)) = 5√(pi/5) = √(5pi).)

Ответ: (h = √(5pi).)

Насколько полезной была для вас статья?

Рейтинг: 5.00 (Голосов: 1)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

Цилиндр — это тело вращения, которое получается при вращении прямоугольника вокруг его стороны.

Цилиндор.png

Прямоугольник

AOO1A1

 вращается вокруг стороны

OO1

.

OO1

 — ось симметрии цилиндра и высота цилиндра.

AA1

 — образующая цилиндра, длина которой равна длине высоты цилиндра.
(AO) — радиус цилиндра.

Полученная цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги — основаниями цилиндра.

Осевое сечение цилиндра — это сечение цилиндра плоскостью, которая проходит через ось цилиндра. Это сечение является прямоугольником.

При сечении цилиндра плоскостью, параллельной оси цилиндра (т. е. перпендикулярной основанию), также получается прямоугольник.

Цилиндор1.png

На рисунке изображён цилиндр, пересечённый плоскостью, которая параллельна оси цилиндра

OO1

.

ABB1A1

 — прямоугольник.
(OA = OB = R) — радиусы.

(OC) — расстояние от оси цилиндра до плоскости сечения.
Дуга (AB) равна центральному углу (AOB).

При сечении цилиндра плоскостью, параллельной основанию, в сечении получаем круг, равный основаниям цилиндра.

Если представить, что боковая цилиндрическая поверхность разрезана по образующей

AA1

и развёрнута, получаем прямоугольник.

Sanu_vsma1.png

Сторона

AA1

равна высоте (H), а другую сторону образует развёрнутая окружность основания длиной

2πR

.

Так как развёртка — прямоугольник, то боковая поверхность определяется по формуле:

Основания цилиндра — два круга с общей площадью

2⋅πR2

.

Полная поверхность цилиндра определяется по формуле:

Sполн.=2πRH+2πR2=2πR⋅H+R

.

Площадь сечения цилиндра

Цилиндр — это геометрическая фигура, ограниченная цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими её. Основными математическими характеристиками цилиндра являются диаметр основания и высота.

Сечение цилиндра — это изображение фигуры, образованной рассечением цилиндра плоскостью в поперечном или продольном направлении.

площадь сечения цилиндра

Формула для расчета площади основания цилиндра:

S = π * d 2 / 4, где

d — диаметр цилиндра.

Формула для расчета площади осевого сечения цилиндра:

S = d * h, где

d — диаметр цилиндра;
h — высота цилиндра.

Формула для расчета площади параллельного оси сечения цилиндра (бокового сечения цилиндра):

S = a * h, где

a — хорда основания цилиндра;
h — высота цилиндра.

Смотрите также статью о всех геометрических фигурах (линейных 1D, плоских 2D и объемных 3D).

Быстро выполнить эту математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.

На этой странице представлен самый простой онлайн калькулятор расчета площади поперечного или продольного сечения цилиндра, если известны диаметр цилиндра, длина хорды и высота цилиндра. С помощью этого калькулятора вы в один клик сможете рассчитать площадь сечения цилиндра (площадь осевого сечения цилиндра, площадь параллельного сечения цилиндра, площадь бокового сечения цилиндра и площади основания цилиндра).

Цилиндры

Цилиндр образующая цилиндра ось основание высота боковая поверхность полная поверхность цилиндра

Если из каждой точки окружности опустить перпендикуляр на плоскость β , то основания этих перпендикуляров образуют на плоскости β окружность радиуса r , центр O1 которой является основанием перпендикуляра, опущенного из точки O на плоскость β (рис.2).

Цилиндр образующая цилиндра ось основание высота боковая поверхность полная поверхность цилиндра

Цилиндр образующая цилиндра ось основание высота боковая поверхность полная поверхность цилиндра

Цилиндр образующая цилиндра ось основание высота боковая поверхность полная поверхность цилиндра

Отрезок перпендикуляра, опущенного из любой точки окружности с центром O на плоскость β , который заключен между плоскостями α и β , называют образующей цилиндра .

Совокупность всех образующих цилиндра называют цилиндрической поверхностью .

Фигуру, ограниченную цилиндрической поверхностью и плоскостями α и β, называют цилиндром .

Отрезок OO1 называют осью цилиндра .

Радиус окружности Радиус окружности на плоскости α с центром в точке O называют радиусом цилиндра .

Круги с центрами O и O1 на плоскостях α и β , называют основаниями цилиндра .

Замечание 1. Цилиндрическую поверхность часто называют боковой поверхностью цилиндра . Боковая поверхность цилиндра и основания цилиндра вместе составляют полную поверхность цилиндра .

Замечание 2. Каждая образующая цилиндра параллельна оси цилиндра, а длина каждой образующей цилиндра равна высоте цилиндра.

Замечание 3. Прямая OO1 является осью симметрии цилиндра, а середина отрезка OO1 является центром симметрии цилиндра.

Сечения цилиндра

Определение 2. Сечением цилиндра называют пересечение цилиндра с плоскостью.
Если сечение проходит через ось цилиндра, то такое сечение называют осевым сечением цилиндра (рис. 3).

осевое сечение цилиндра

Замечание 4. Каждое осевое сечение цилиндра с радиусом r и высотой h является прямоугольником со сторонами 2r и h .

Определение 3. Перпендикулярным сечением цилиндра называют сечение, перпендикулярное оси цилиндра (рис. 4).

перпендикулярное сечение цилиндра

Замечание 5. Любым перпендикулярным сечением цилиндра будет круг радиуса r .

Замечание 6. Более подробно случаи взаимного расположения цилиндра и плоскости рассматриваются в разделе нашего справочника «Взаимное расположение цилиндра и плоскости в пространстве».

Объем цилиндра. Площадь боковой поверхности цилиндра.
Площадь полной поверхности цилиндра

Для цилиндра с радиусом r и высотой h (рис. 5)

объем цилиндра площадь боковой поверхности цилиндра площадь полной поверхности цилиндра

введем следующие обозначения

V объем цилиндра
Sбок площадь боковой поверхности цилиндра
Sполн площадь полной поверхности цилиндра
Sосн площадь основания цилиндра

Тогда справедливы следующие формулы для вычисления объема, площади боковой и полной поверхности цилиндра:

при помощи предельного перехода, когда число сторон правильной призмы n неограниченно возрастает. Однако доказательство этого факта выходит за рамки школьной программы.

Примеры того, как вычислить площадь цилиндра

Существует большое количество задач, связанных с цилиндром. В них нужно находить радиус и высоту тела или вид его сечения. Плюс ко всему, иногда требуется вычислить площадь цилиндра и его объем.

круговой прямой цилиндр

Какое тело является цилиндром?

В курсе школьной программы изучается круговой, то есть являющийся таковым в основании, цилиндр. Но выделяют еще и эллиптический вид данной фигуры. Из названия ясно, что его основанием будет эллипс или овал.

Оснований у цилиндра два. Они равны друг другу и соединены отрезками, которые совмещают соответствующие точки оснований. Они называются образующими цилиндра. Все образующие параллельны друг другу и равны. Именно они составляют боковую поверхность тела.

эллиптический цилиндр

В общем случае цилиндр — это наклонное тело. Если образующие составляют прямой угол с основаниями, то говорят уже о прямой фигуре.

Интересно, что круговой цилиндр является телом вращения. Он получается от поворота прямоугольника вокруг одной из его сторон.

Основные элементы цилиндра

Основные элементы цилиндра выглядят следующим образом.

  1. Высота. Она является кратчайшим расстоянием между основаниями цилиндра. Если он прямой, то высота совпадает с образующей.
  2. Радиус. Совпадает с тем, который можно провести в основании.
  3. Ось. Это прямая линия, которая содержит центры обоих оснований. Ось всегда параллельна всем образующим. В прямом цилиндре она перпендикулярна основаниям.
  4. Осевое сечение. Оно образуется при пересечении цилиндра плоскостью, содержащей ось.
  5. Касательная плоскость. Она проходит через одну из образующих и перпендикулярна осевому сечению, которое проведено через эту образующую.

осевое сечение цилиндра

Как связан цилиндр с вписанной в него или описанной около него призмой?

Иногда встречаются задачи, в которых нужно вычислить площадь цилиндра, а известны при этом некоторые элементы связанной с ним призмы. Как соотносятся эти фигуры?

Если призма вписана в цилиндр, то ее основания – равные многоугольники. Причем они вписаны в соответствующие основания цилиндра. Боковые ребра призмы совпадают с образующими.

У описанной призмы в основаниях находятся правильные многоугольники. Они описаны около кругов цилиндра, являющихся его основаниями. Плоскости, которые содержат грани призмы, касаются цилиндра по образующим.

О площади боковой поверхности и основания для прямого кругового цилиндра

Если сделать развертку боковой поверхности, то получится прямоугольник. Его стороны будут совпадать с образующей и длиной окружности основания. Поэтому боковая площадь цилиндра будет равна произведению этих двух величин. Если записать формулу, то получится следующее:

Sбок= l * н,

где н — образующая, l — длина окружности.

Причем последний параметр вычисляется по формуле:

l = 2 π * r,

здесь r — радиус окружности, π — число «пи», равное 3,14.

Поскольку основание — круг, то его площадь вычисляется с помощью такого выражения:

Sосн = π * r 2 .

площадь сечения цилиндра

О площади всей поверхности прямого кругового цилиндра

Так как она образована двумя основаниями и боковой поверхностью, то нужно сложить эти три величины. То есть полная площадь цилиндра будет вычисляться по формуле:

Sпол = 2 π * r * н + 2 π * r 2 .

Часто ее записывают в другом виде:

Sпол= 2 π * r (н + r).

площадь цилиндра

О площадях наклонного кругового цилиндра

Что касается оснований, то там все формулы те же, ведь они по-прежнему круги. А вот боковая поверхность уже не дает прямоугольника.

Для расчета площади боковой поверхности наклонного цилиндра потребуется перемножить значения образующей и периметра сечения, которое будет перпендикулярно выбранной образующей.

Формула выглядит так:

Sбок= х * Р,

где х — длина образующей цилиндра, Р — периметр сечения.

Сечение, кстати, лучше выбирать такое, чтобы оно образовывало эллипс. Тогда будут упрощены расчеты его периметра. Длина эллипса вычисляется по формуле, которая дает приблизительный ответ. Но его часто бывает достаточно для задач школьного курса:

l = π * (а + в),

где «а» и «в» — полуоси эллипса, то есть расстояния от центра до ближайшей и самой дальней его точек.

Площадь всей поверхности нужно вычислять с помощью такого выражения:

Sпол = 2 π * r 2 + х * Р.

Чему равны некоторые сечения прямого кругового цилиндра?

Когда сечение проходит через ось, то его площадь определяется как произведение образующей и диаметра основания. Это объясняется тем, что оно имеет вид прямоугольника, стороны которого совпадают с обозначенными элементами.

Чтобы найти площадь сечения цилиндра, являющегося параллельным осевому, потребуется тоже формула для прямоугольника. В этой ситуации одна его сторона будет по-прежнему совпадать с высотой, а другая равна хорде основания. Последняя же совпадает с линией сечения по основанию.

Когда сечение перпендикулярно оси, то оно имеет вид круга. Причем его площадь такая же, как у основания фигуры.

Возможно еще пересечение под некоторым углом к оси. Тогда в сечении получается овал или его часть.

боковая площадь цилиндра

Примеры задач

Задание №1. Дан прямой цилиндр, площадь основания которого 12,56 см 2 . Необходимо вычислить полную площадь цилиндра, если его высота равна 3 см.

Решение. Необходимо воспользоваться формулой для полной площади кругового прямого цилиндра. Но в ней не хватает данных, а именно радиуса основания. Зато известна площадь круга. Из нее легко вычислить радиус.

Он оказывается равным квадратному корню из частного, которое получается от деления площади основания на пи. После деления 12,56 на 3,14 выходит 4. Квадратный корень из 4 — это 2. Поэтому радиус будет иметь именно такое значение.

Теперь можно подсчитать площадь боковой поверхности. Для этого следует умножить пи на радиус, высоту и 2. Произведение будет выглядеть так: 3,14 * 3 * 2 * 2. Итогом действий является: 37,68 см 2 .

Для того чтобы сосчитать полную площадь нужно сложить два основания (12,56 см 2 ) и боковую поверхность (37,68 см 2 ). В результате получается число 50,24 см 2 .

Ответ: Sпол = 50,24 см 2 .

Задание №2. Цилиндр с радиусом 5 см пресечен плоскостью, параллельной оси. Расстояние от сечения до оси равно 3 см. Высота цилиндра — 4 см. Требуется найти площадь сечения.

Решение. Форма сечения — прямоугольная. Одна его сторона совпадает с высотой цилиндра, а другая равна хорде. Если первая величина известна, то вторую нужно найти.

Для этого следует сделать дополнительное построение. В основании проводим два отрезка. Оба они будут начинаться в центре окружности. Первая будет заканчиваться в центре хорды и равняться известному расстоянию до оси. Вторая — на конце хорды.

Получится прямоугольный треугольник. В нем известны гипотенуза и один из катетов. Гипотенуза совпадает с радиусом. Второй катет равен половине хорды. Неизвестный катет, умноженный на 2, даст искомую длину хорды. Вычислим его значение.

Для того чтобы найти неизвестный катет, потребуется возвести в квадрат гипотенузу и известный катет, вычесть из первого второе и извлечь квадратный корень. Квадраты равны 25 и 9. Их разность – 16. После извлечения квадратного корня остается 4. Это искомый катет.

Хорда будет равна 4 * 2 = 8 (см). Теперь можно вычислить площадь сечения: 8 * 4 = 32 (см 2 ).

Ответ: Sсеч равна 32 см 2 .

Задание №3. Необходимо вычислить площадь осевого сечения цилиндра. Известно, что в него вписан куб с ребром 10 см.

Решение. Осевое сечение цилиндра совпадает с прямоугольником, который проходит через четыре вершины куба и содержит диагонали его оснований. Сторона куба является образующей цилиндра, а диагональ основания совпадает с диаметром. Произведение этих двух величин даст площадь, которую нужно узнать в задаче.

Для поиска диаметра потребуется воспользоваться знанием того, что в основании куба – квадрат, а его диагональ образует равносторонний прямоугольный треугольник. Гипотенуза его является искомой диагональю фигуры.

Для ее расчета потребуется формула теоремы Пифагора. Нужно возвести в квадрат сторону куба, умножить ее на 2 и извлечь квадратный корень. Десять во второй степени — это сто. Умноженное на 2 — двести. Квадратный корень из 200 равен 10√2.

Сечение – это снова прямоугольник со сторонами 10 и 10√2. Его площадь легко сосчитать, перемножив эти значения.

Цилиндр – это симметричная пространственная фигура, свойства которой рассматривают в старших классах школы в курсе стереометрии. Для его описания используют такие линейные характеристики, как высота и радиус основания. В данной статье рассмотрим вопросы касательно того, что такое осевое сечение цилиндра, и как рассчитать его параметры через основные линейные характеристики фигуры.

Геометрическая фигура

Сначала дадим определение фигуре, о которой пойдет речь в статье. Цилиндр представляет собой поверхность, образованную параллельным перемещением отрезка фиксированной длины вдоль некоторой кривой. Главным условием этого перемещения является то, что отрезок плоскости кривой принадлежать не должен.

Предположение — это и высказанная вслух мысль, и основа прогрессаВам будет интересно:Предположение — это и высказанная вслух мысль, и основа прогресса

На рисунке ниже показан цилиндр, кривая (направляющая) которого является эллипсом.

Эллиптический цилиндр

Здесь отрезок длиной h является его образующей и высотой.

Видно, что цилиндр состоит из двух одинаковых оснований (эллипсы в данном случае), которые лежат в параллельных плоскостях, и боковой поверхности. Последней принадлежат все точки образующих линий.

Прямой и наклонный цилиндры

Перед тем как переходить к рассмотрению осевого сечения цилиндров, расскажем, какие типы этих фигур бывают.

Если образующая линия перпендикулярна основаниям фигуры, тогда говорят о прямом цилиндре. В противном случае цилиндр будет наклонным. Если соединить центральные точки двух оснований, то полученная прямая называется осью фигуры. Приведенный рисунок демонстрирует разницу между прямым и наклонным цилиндрами.

Прямой и наклонный цилиндры

Видно, что для прямой фигуры длина образующего отрезка совпадает со значением высоты h. Для наклонного цилиндра высота, то есть расстояние между основаниями, всегда меньше длины образующей линии.

Далее охарактеризуем осевые сечения обоих типов цилиндров. При этом будем рассматривать фигуры, основаниями которых является круг.

Осевое сечение прямого цилиндра

Осевым называется любое сечение цилиндра, которое содержит его ось. Это определение означает, что осевое сечение будет всегда параллельно образующей линии.

В цилиндре прямом ось проходит через центр круга и перпендикулярна его плоскости. Это означает, что рассматриваемое сечение круг будет пересекать по его диаметру. На рисунке показана половинка цилиндра, которая получилась в результате пересечения фигуры плоскостью, проходящей через ось.

Половинка цилиндра

Не сложно понять, что осевое сечение прямого круглого цилиндра представляет собой прямоугольник. Его сторонами являются диаметр d основания и высота h фигуры.

Запишем формулы для площади осевого сечения цилиндра и длины hd его диагонали:

S = h*d;

hd = √(h2 + d2)

Прямоугольник имеет две диагонали, но обе они равны друг другу. Если известен радиус основания, то не сложно переписать эти формулы через него, учитывая, что он в два раза меньше диаметра.

Осевое сечение наклонного цилиндра

Наклонный цилиндр

Рисунок выше демонстрирует наклонный цилиндр, изготовленный из бумаги. Если выполнить его осевое сечение, то получится уже не прямоугольник, а параллелограмм. Его стороны – это известные величины. Одна из них, как и в случае сечения прямого цилиндра, равна диаметру d основания, другая же – длина образующего отрезка. Обозначим ее b.

Для однозначного определения параметров параллелограмма недостаточно знать его длины сторон. Необходим еще угол между ними. Предположим, что острый угол между направляющей и основанием равен α. Он же и будет углом между сторонами параллелограмма. Тогда формулу для площади осевого сечения наклонного цилиндра можно записать следующим образом:

S = d*b*sin(α)

Диагонали осевого сечения цилиндра наклонного рассчитать несколько сложнее. Параллелограмм имеет две диагонали разной длины. Приведем без вывода выражения, позволяющие рассчитывать диагонали параллелограмма по известным сторонам и острому углу между ними:

l1 = √(d2 + b2 – 2*b*d*cos(α));

l2 = √(d2 + b2 + 2*b*d*cos(α))

Здесь l1 и l2 – длины малой и большой диагоналей соответственно. Эти формулы можно получить самостоятельно, если рассмотреть каждую диагональ как вектор, введя прямоугольную систему координат на плоскости.

Задача с прямым цилиндром

Покажем, как использовать полученные знания для решения следующей задачи. Пусть дан круглый прямой цилиндр. Известно, что осевое сечение цилиндра – квадрат. Чему равна площадь этого сечения, если площадь поверхности всей фигуры составляет 100 см2?

Для вычисления искомой площади необходимо найти либо радиус, либо диаметр основания цилиндра. Для этого воспользуемся формулой для общей площади Sf фигуры:

Sf = 2*pi*r*(r + h)

Поскольку сечение осевое представляет собой квадрат, то это означает, что радиус r основания в два раза меньше высоты h. Учитывая это, можно переписать равенство выше в виде:

Sf = 2*pi*r*(r + 2*r) = 6*pi*r2

Теперь можно выразить радиус r, имеем:

r = √(Sf / (6*pi))

Поскольку сторона квадратного сечения равна диаметру основания фигуры, то для вычисления его площади S будет справедлива следующая формула:

S = (2*r)2 = 4*r2 = 2*Sf / (3*pi)

Мы видим, что искомая площадь однозначно определяется площадью поверхности цилиндра. Подставляя данные в равенство, приходим к ответу: S = 21,23 см2.

На этой странице вы узнаете

  • Как вода в кружке иллюстрирует сечение цилиндра?
  • Как лист бумаги превратить в цилиндр?

Что общего у джентльмена 19 века, Вилли Вонка из «Чарли и шоколадная фабрика», Шерлока Холмса в экранизации «Безобразная невеста» и некоторых сценических костюмов? Цилиндр! О нем, вернее о фигуре цилиндра и поговорим в статье.

Понятие цилиндра

Сейчас мы говорим про мужской головной убор, который был популярен в 19 веке и стал достаточно узнаваем в массовой культуре. Оказывается, в математике также существует цилиндр. И они похожи по форме.

Цилиндр — тело вращения, полученное при вращении прямоугольника вокруг одной из его сторон. 

Возможно, для уточнения некоторых терминов вам захочется заглянуть в статью «Тела вращения». 

Если посмотреть на форму шляпы, то она действительно будет похожа на геометрическую фигуру.  Встретить цилиндр можно и в наше время. Обычная кружка является цилиндром.

Прямая, вокруг которой мы крутили прямоугольник, чтобы получить цилиндр, — это ось цилиндра

Также, как у Земли есть ось вращения, она есть и у цилиндра. 

Наша кружка стоит на круглом дне. Это дно, как и самый верх кружки, будут называться основаниями цилиндра. 

Снова посмотрим на стенки кружки. В цилиндре эта поверхность будет называться цилиндрической поверхностью. Ее также могут называть боковой поверхностью цилиндра. 

Представим, что наша кружка раскрашена вертикальными линиями. Эти линии будут лежать на цилиндрической поверхности и перпендикулярны основаниям. У них есть название:

Образующая цилиндра — отрезок, соединяющий точки окружностей основания и перпендикулярный плоскостям оснований. 

Все образующие, — а в цилиндре их очень-очень много, —лежат только на цилиндрической поверхности. Эта поверхность и состоит из множества образующих. 

Узнаем ширину кружки. Для этого нужно измерить радиус дна. Этот же радиус будет радиусом основания, а в цилиндре он называется радиусом цилиндра. 

Теперь найдем высоту кружки. Для этого нужно измерить расстояние от дна до самого верха кружки. 

В математике это будет расстоянием между плоскостями, а ищется оно как длина перпендикуляра, опущенного из одной плоскости на другую. Подробнее про это можно прочесть в статье «Расстояния между фигурами». 

Высота цилиндра — перпендикуляр, опущенный из плоскости одного основания на плоскость второго основания. 

Свойства цилиндра

Рассмотрим, какими свойствами обладает цилиндр. 

Свойство 1. Основания цилиндра равны и параллельны. 

Это всегда два равных круга, лежащих в параллельных плоскостях. 

Свойство 2. Образующие цилиндра равны и параллельны. 

Поскольку все образующие перпендикулярны основаниям, то они параллельны между собой по свойству прямой и перпендикулярной ей плоскости. Подробнее про это свойство можно прочесть в статье «Углы в пространстве». 

А равны они потому, что являются перпендикуляром к основаниям, то есть равны высоте цилиндра.

Свойство 3. Сечение цилиндра, проходящее через ось цилиндра, является прямоугольником. Такое сечение в цилиндре будет называться осевым сечением цилиндра. 

Например, если разрезать тортик по диаметру, то место среза как раз будет прямоугольником. 

Подробности про сечения фигур можно найти в статье «Сечения». 

Свойство 4. Сечение цилиндра, проходящее параллельно оси цилиндра и перпендикулярно его основаниям, будет являться прямоугольником. 

Свойство 5. Сечение цилиндра, перпендикулярное оси цилиндра, является кругом с радиусом, равным радиусу цилиндра. Такое сечение в цилиндре называется перпендикулярным сечением цилиндра. 

Как вода в кружке иллюстрирует сечение цилиндра?

Если налить в кружку воду, то ее поверхность примет круглую форму. При этом совершенно без разницы, сколько воды наливать: поверхность останется кругом. 

Поскольку поверхность воды параллельна дну кружки, то есть основаниям цилиндра, то она является перпендикулярным сечением цилиндра. 

Этим опытом можно подтвердить свойство 5. 

Заметим, что все вышеописанные свойства относятся к прямому цилиндру. 

Цилиндр также может быть наклонным. В этом случае ось цилиндра и его образующие не будут перпендикулярны основаниям. 

Если мы разрежем поверхность цилиндра по одной из его образующих и как бы “развернем” ее, у нас получится прямоугольник. 

Это также легко увидеть, если вспомнить художников с тубусами. Тубус имеет форму цилиндра, и свернутый прямоугольный лист принимает такую же форму. 

Развертка боковой поверхности цилиндра — прямоугольник, одна сторона которого равна высоте цилиндра, а вторая — длине окружности его основания. 

Как лист бумаги превратить в цилиндр?

Поскольку развертка боковой поверхности цилиндра — это прямоугольник, то любой лист бумаги можно превратить в цилиндр. Для этого достаточно скрутить его в трубочку. При этом чем тоньше будет трубочка, тем меньше будет радиус цилиндра.

Формулы цилиндра

А если это прямоугольник, то мы знаем, как найти его площадь. Нам нужно умножить его длину на высоту. Так мы получаем площадь боковой поверхности цилиндра. 

(S_{бок.} = 2 pi RH)

В этой формуле 2R — длина окружности основания, где R — его радиус, а Н — образующая (или высота) цилиндра. Подробнее про площадь прямоугольника и длину окружности (а также про площадь круга) можно прочесть в статьях «Параллелограмм» и «Окружность и круг». 

Мы нашли площадь боковой поверхности. Как же теперь найти площадь полной поверхности?

Для этого нужно сложить площади боковой поверхности и оснований. Следовательно, мы получаем следующую формулу. 

(S = S_{бок.} + 2S_{осн.} = 2 pi RH+2 pi R^2 = 2 pi R(H + R))

Допустим, мы решили сделать чашку очень вкусного чая, но чтобы правильно его заварить нам нужно знать точный объем воды. Для этого вычислим объем цилиндра. Воспользуемся следующей формулой:

(V = S_{осн.}H = pi R^2H)

В этой формуле R — радиус цилиндра, Н — высота. 

Часто формулу объема можно применить для решения жизненных задач. Например, чтобы найти объем детали, погруженной в воду. 

Пример 1. В цилиндрическом сосуде налито 1650 см3 жидкости. В этот сосуд опустили деталь. При этом уровень жидкости увеличился в 1,2 раза. Найдите объем детали. Ответ выразите в см3

Решение. 

Шаг 1. Выразим высоту жидкости в первый и второй раз. Пусть вначале уровень жидкости был равен х, значит после того, как в нее опустили деталь, он стал равен 1,2х. 

Шаг 2. Вспомним физику и заметим, что объем жидкости в сосуде после того, как в него опустили деталь, будет равен сумме объемов жидкости и детали: V = Vж + Vд

Шаг 3. С помощью объема жидкости выразим площадь основания сосуда:

Vж = Sосн.H
1650 = Sосн.x
(S_{осн} = frac{1650}{x})

Шаг 4. Подставим площадь основания в формулу объема жидкости после того, как в нее опустили деталь:

(V = S_{осн.}H = frac{1650}{x} * 1,2x = 1980)

Шаг 5. Тогда объем детали будет равен:

Vд = V — Vж
Vд = 1980 — 1650 =330 

Ответ: 330 см3

Фактчек

  • Цилиндр — тело вращения, полученное при вращении прямоугольника вокруг одной из его сторон. Цилиндр может быть прямым и наклонным. В наклонном цилиндре ось не перпендикулярна основаниям цилиндра. 
  • Цилиндр состоит из двух оснований и цилиндрической поверхности (боковой поверхности цилиндра). Основания имеют форму кругов, равны между собой и лежат в параллельных плоскостях. Развертка боковой поверхности имеет форму прямоугольника. 
  • Образующая цилиндра — отрезок, соединяющий точки окружностей основания и перпендикулярный плоскостям оснований. В прямом цилиндре образующая равна высоте цилиндра. Образующие равны и параллельны друг другу, а также образуют боковую поверхность цилиндра. 
  • Осевое сечение цилиндра проходит через его ось и является прямоугольником. Любое сечение, параллельное осевому, также будет являться прямоугольником. Перпендикулярное сечение проходит перпендикулярно оси цилиндра и параллельно его основаниям. Перпендикулярное сечение имеет форму круга. 

Проверь себя

Задание 1. 
Что такое образующая цилиндра?

  1. Ось вращения, с помощью которой получен цилиндр.
  2. Диаметр оснований цилиндра.
  3. Любой перпендикуляр, проведенный от одного основания к другому.
  4. Отрезок, соединяющий точки окружности основания. 

Задание 2. 
Площадь боковой поверхности цилиндра равняется 44. Его радиус равен 8. Найдите высоту цилиндра. 

  1. 2,75
  2. 5,5
  3. (2,75 pi)
  4. 2

Задание 3. 
Площадь основания цилиндра равна 16. Его высота равна 4. Найдите площадь полной поверхности цилиндра. 

  1. 64
  2. (64 pi)
  3. 32
  4. (32 pi)

Задание 4. 
Объем цилиндра равен 28, а его высота равняется 7. Найдите диаметр основания.

  1. 4
  2. 2
  3. 16
  4. 8

Ответы: 1. – 4 2. – 1 3. – 2  4. – 1

Добавить комментарий