Содержание:
Логарифмической функцией называется функция, задаваемая формулой:
где
Теорема 7.
Областью определения логарифмической функции является множество всех положительных действительных чисел, а областью значений — множество всех действительных чисел.
Доказательство:
Пусть . Тогда выражение , в соответствии с определением логарифма числа, имеет значение, если значение аргумента — положительное действительное число, т. е. областью определения логарифмической функции является множество всех положительных действительных чисел.
Любое действительное число может быть значением выражения , так как уравнение имеет корень при любом действительном . Значит, областью значений логарифмической функции является множество всех действительных чисел.
Теорема 8.
Логарифмическая функция на множестве всех положительных действительных чисел является возрастающей при и убывающей при , а ее график проходит через точку (1; 0).
Доказательство:
Пусть . Если допустить, что , то, с учетом возрастания показательной функции с большим единицы основанием (см. теорему 2 из параграфа 11 и следствие из нее), получим, что , или , что противоречит условию . Потому остается признать, что .
Пусть, тогда . Если , то по доказанному . После перехода к основанию получим, что , или .
Поскольку , то точка (1; 0) принадлежит графику логарифмической функции.
Из доказанной теоремы непосредственно получаем следующие утверждения.
Следствие 2.
Значения логарифмической функции с основанием, большим единицы, на промежутке (0; 1) отрицательны, а на промежутке положительны.
Следствие 3.
Значения логарифмической функции с положительным и меньшим единицы основанием на промежутке (0; 1) положительны, а на промежутке отрицательны.
Построим график функции . Для этого нанесем на координатную плоскость некоторые точки этого графика, составив предварительно таблицу значений функции.
Используя построенные точки и установленные свойства логарифмической функции, получим график функции , который представлен на рисунке 167.
Для построения графика функции учтем равенство и используем то, что график функции получается из графика функции симметричным отражением относительно оси абсцисс. Указанное преобразование проведено на рисунке 168.
Теорема 9.
График функции симметричен графику функции относительно прямой .
Доказательство:
Пусть точка принадлежит графику функции (рис. 169). Тогда ее координаты и удовлетворяют равенству . Но тогда истинно и равенство . А это означает, что точка принадлежит графику функции .
Так же доказывается, что если точка принадлежит графику функции , то точка принадлежит графику функции .
Для завершения доказательства остается заметить, что точки симметричны относительно прямой .
Теорема 10.
Если положительные основания и логарифмов оба больше единицы или оба меньше ее и , то при и при .
Доказательство:
Сравним значения выражений и :
Пусть , тогда, с учетом возрастания логарифмической функции с большим единицы основанием, получим или
Если , то , и потому , или
Если , то , и потому или
Пусть теперь . Поскольку логарифмическая функция с меньшим единицы основанием убывает, то , или
Если , то , и потому , а если , то , и потому
В соответствии с теоремой 10 с увеличением основания график функции на промежутке (0; 1) располагается более высоко, а на промежутке — более низко.
График любой логарифмической функции с основанием , большим единицы, похож на график функции . На рисунке 170 представлены графики функций
График любой логарифмической функции с положительным основанием , меньшим единицы, похож на график функции . На рисунке 171 приведены графики функций
Логарифм числа:
Определение:
Логарифмом положительного числа по основанию называется показатель степени, в которую необходимо возвести чтобы получить .
Обозначение:
Десятичный логарифм — это логарифм по основанию 10. Обозначение:
Примеры:
Определение:
Натуральный логарифм — это логарифм по основанию ( — иррациональное число, приближенное значение которого:). Обозначение:
Пример:
Основное логарифмическое тождество:
Примеры:
Свойства логарифмов и формулы логарифмирования:
Логарифм единицы no любому основанию равен нулю.
Логарифм произведения положительных чисел равен сумме логарифмов множителей.
Логарифм частного положительных чисел равен разности логарифмов делимого и делителя.
Логарифм степени положительного числа равен произведению показа теля степени на логарифм основания этой степени.
Формула перехода к логарифмам с другим основанием:
Следствия:
Объяснение и обоснование:
Логарифм числа
Если рассмотреть равенство то, зная любые два числа из этого равенства, мы можем найти третье:
Первые две операции, представленные в этой таблице (возведение в степень и извлечение корня степени), нам уже известны, а с третьей — логарифмированием, то есть нахождением логарифма данного числа, мы ознакомимся в этом параграфе.
В общем виде операция логарифмирования позволяет из равенства найти показатель степени Результат выполнения этой операции обозначается
Таким образом, логарифмом положительного числа по основанию называется показатель степени, в которую необходимо возвести чтобы получить
Например:
- так как
- поскольку
- потому что
Отметим, что при положительных уравнение всегда имеет единственное решение, поскольку функция принимает все значения из промежутка и при является возрастающей, а при — убывающей (рис. 15.1).
И так, каждое свое значение функция принимает только при одном значении Следовательно, для любых положительных чисел и уравнение имеет единственный корень
При уравнение не имеет корней, таким образом, при Ь < 0 значение выражения не существует . Например, не существуют значения
Отметим, что логарифм по основанию 10 называется десятичным логарифмом и обозначается Например,
В недалеком прошлом десятичным логарифмам отдавали предпочтение и составляли очень подробные таблицы их значений, которые использовались в различных вычислениях. В эпоху всеобщей компьютеризации десятичные логарифмы утратили свою ведущую роль. В современной науке и технике широко используются логарифмы, основанием которых является особенное число (такое же знаменитое, как и число ). Число , как и число , — иррациональное,
Логарифм по основанию называется натуральным логарифмом и обозначается Например,
Основное логарифмическое тождество
По определению логарифма, если Подставляя в последнее равенство вместо его значение, получаем равенство, которое называется основным логарифмическим тождеством:
Например:
Свойства логарифмов и формулы логарифмирования
Во всех приведенных ниже формулах
1) Из определения логарифма получаем, что поскольку Таким образом, логарифм единицы по любому основанию равен нулю.
2) Поскольку то
Чтобы получить формулу логарифма произведения обозначим Тогда по определению логарифма
Перемножив почленно два последних равенства, имеем По определению логарифма и с учетом введенных обозначений из последнего равенства получаем
Таким образом,
Логарифм произведения положительных чисел равен сумме логарифмов множителей.
4) Аналогично, чтобы получить формулу логарифма частного — достаточно разделить почленно равенства (1). Тогда По определению логарифма и с учетом введенных обозначений из последнего равенства получаем Таким образом,
Логарифм частного положительных чисел равен разности логарифмов делимого и делителя.
5) Чтобы получить формулу логарифма степени обозначим По определению логарифма Тогда и по определению логарифма с учетом обозначения для имеем Таким образом,
Логарифм степени положительного числа равен произведению показателя степени на логарифм основания этой степени.
Учитывая, что при по формуле (4) имеем: Иными словами, при можно воспользоваться формулой
(запоминать эту формулу не обязательно, при необходимости можно записывать корень из положительного числа как соответствующую степень).
Замечание. Иногда приходится находить логарифм произведения и в том случае, когда оба числа отрицательны
Тогда существует, но формулой (2) воспользоваться нельзя — она обоснована только для положительных значений В случае имеем и теперь Таким образом, для логарифма произведения можно воспользоваться формулой (2). Поэтому при можем записать: Отметим, что полученная формула справедлива и при поскольку в этом случае Таким образом, при
Аналогично можно обобщить и формулы (3) и (4):
при
при
4. Формула перехода к логарифмам с другим основанием Пусть Тогда по определению логарифма Прологарифмируем обе части последнего равенства по основанию Получим Используя в левой части этого равенства формулу логарифма степени, имеем Тогда Учитывая, что получаем
Таким образом, логарифм положительного числа по одному основанию равен логарифму этого же числа по новому основанию , деленному на логарифм прежнего основания по новому основанию .
С помощью последней формулы можно получить следующие следствия. 1) Учитывая, что имеем
2) Аналогично, учитывая формулу перехода от одного основания логарифма к другому и формулу логарифма степени, получаем (при )
Записав полученную формулу справа налево, имеем
Примеры решения задач:
Пример №1
Вычислите:
Решение:
1) поскольку
2) так как
Комментарий:
Исходя из определения логарифма, необходимо подобрать такой показатель степени, чтобы при возведении основания логарифма в эту степень получить число, стоящее под знаком логарифма.
Пример №2
Запишите решение простейшего показательного уравнения:
Решение:
По определению логарифма:
1)
2)
3)
Комментарий:
Для любых положительных чисел и уравнение имеет единственный корень. Показатель степени в которую необходимо возвести основание чтобы получить , называется логарифмом по основанию поэтому
Пример №3
Выразите логарифм по основанию 3 выражения . (где ) через логарифмы по основанию 3 чисел и . (Коротко говорят так: «Прологарифмируйте данное выражение по основанию 3».)
Решение:
Комментарий:
Сначала запишем выражения, стоящие в числителе и знаменателе данного выражения, как степени чисел и букв. Далее учтем, что логарифм частного положительных чисел равен разности логарифмов числителя и знаменателя, а затем то, что логарифм произведения () равен сумме логарифмов множителей.
Пример №4
Известно, что Выразите через
Решение:
Комментарий:
Сначала представим число 700 как произведение степеней данных чисел 5 и 7 и основания логарифма 2, а далее используем свойства логарифмов и подставим в полученное выражение значения и
Пример №5
Прологарифмируйте по основанию 10 выражение
Решение:
Комментарий:
Поскольку логарифмы существуют только для положительных чисел, то мы можем прологарифмировать данное выражение только в случае, когда Из условия не следует, что в данном выражении значения положительны. Поэтому будем пользоваться обобщенными формулами логарифмирования а также учтем, что
Иногда приходится искать выражение, зная его логарифм. Такую операцию называют потенцированием.
Пример №6
Найдите по его логарифму:
Решение:
Комментарий:
Пользуясь формулами логарифмирования справа налево, запишем правые части данных равенств в виде логарифма какого-либо выражения. Из полученного равенства получаем (как будет показано, значение , удовлетворяющее равенству (1), — единственное).
Пример №7
Вычислите значение выражения
Решение:
Поскольку
Кроме того
Тогда
Итак,
Комментарий:
Попытаемся привести показатель степени данного выражения к виду чтобы можно было воспользоваться основным логарифмическим тождеством: Для этого перейдем в показателе степени к одному основанию логарифма — 5.
Логарифмическая функция
Определение:
Логарифмической функцией называется функция вида
1. График логарифмической функции
Функции — взаимно обратные функции, поэтому их графики симметричны относительно прямой
2. Свойства логарифмической функции
1. Область определения: 2. Область значений: 3. Функция ни четная, ни нечетная. 4. Точки пересечения с осями координат:
С осью , с осью
5. Промежутки возрастания и убывания:
функция возрастает на всей области определения
функция убывает на всей области определения
6. Промежутки знакопостоянства:
7. Наибольшего и наименьшего значений функция не имеет.
8.
Объяснение и обоснование:
Понятие логарифмической функции
Логарифмической функцией называется функция вида Покажем, что эта функция является обратной функции
Действительно, показательная функция при возрастает на множестве , а при — убывает на множестве . Область значений функции — промежуток Таким образом, функция обратима и имеет обратную функцию с областью определения и областью значений . Напомним, что для записи формулы обратной функции достаточно из равенства выразить через у и в полученной формуле аргумент обозначить через , а функцию — через .
Тогда из уравнения по определению логарифма получаем — формулу обратной функции, в которой аргумент обозначен через , а функция — через . Изменяя обозначения на традиционные, имеем формулу — функции, обратной функции
Как известно, графики взаимно обратных функций симметричны относительно прямой Таким образом, график функции можно получить из графика функции симметричным отображением его относительно прямой На рис. 16.1 приведены графики логарифмических функций при и при График логарифмической функции называют логарифмической кривой.
Свойства логарифмической функции
Свойства логарифмической функции и другие свойства прочитаем из полученного графика функции и обоснуем, опираясь на свойства функции
Поскольку область определения прямой функции является областью значений обратной, а область значений прямой функции — областью определения обратной, то, зная эти характеристики для функции получаем соответствующие характеристики для функции
Функция:
1) 2)
Область определения :
1) 2)
Область значений:
1) 2)
Обоснуем это, опираясь на свойства функции
Например, при возьмем По основному логарифмическому тождеству можно записать: Тогда, учитывая, что имеем Поскольку при функция является возрастающей, то из последнего неравенства получаем А это и означает, что при функция возрастает на всей области определения.
Аналогично можно обосновать, что при функция убывает на всей области определения. 6) Промежутки знакопостоянства. Поскольку график функции пересекает ось в точке то, учитывая возрастание функции при и убывание при имеем:
Значение функции:
1) 2)
Значение аргумента
1) 2)
Значение аргумента
1) 2)
Примеры решения задач:
Пример №8
Найдите область определения функции:
Решение:
1)Область определения функции задается неравенствомОтсюдато есть 2) Область определения функции задается неравенством Это неравенство выполняется при всех действительных значениях Таким образом, 3) Область определения функции задается квадратным неравенством Решая его, получаем или (см. рисунок), То есть
Комментарий:
Поскольку выражение, стоящее под знаком логарифма, должно быть положительным, то для нахождения области определения данной функции необходимо найти те значения аргумента х, при которых выражение, стоящее под знаком логарифма, будет положительным.
Пример №9
Изобразите схематически график функции:
Комментарий:
Область определения функции — значения следовательно, график этой функции всегда расположен справа от оси Этот график пересекает ось в точке При логарифмическая функция возрастает, таким образом, графиком функции у будет логарифмическая кривая, точки которой при увеличении аргумента поднимаются. При логарифмическая функция убывает, таким образом, графиком функции будет логарифмическая кривая, точки которой при увеличении аргумента опускаются.
Чтобы уточнить поведение графиков данных функций, найдем координаты нескольких дополнительных точек.
Решение:
Пример №10
Изобразите схематически график функции
Решение:
Последовательно строим графики:
Комментарий:
Составим план последовательного построения графика данной функции с помощью геометрических преобразований. 1. Можно построить график функции у (основание логарифма — логарифмическая функция возрастает). 2. Затем можно построить график функции (справа от оси график функции остается без изменений, и эта же часть графика отображается симметрично относительно оси ). 3. После этого можно построить график данной функции параллельным переносом графика функции вдоль оси на 2 единицы.
Пример №11
Сравните положительные числа зная, что:
Решение:
1) Поскольку функция возрастающая, то для положительных чисел из неравенства c получаем 2) Так как функция убывающая, то для положительных чисел из неравенства получаем
Комментарий:
В каждом задании данные выражения — это значения логарифмической функции в точках . Используем возрастание или убывание соответствующей функции: 1) при функция возрастающая, и поэтому большему значению функции соответствует большее значение аргумента; 2) при функция убывающая, следовательно, большему значению функции соответствует меньшее значение аргумента.
Пример №12
Сравните с единицей положительное число зная, что
Решение:
Поскольку а из условия получаем, что (то есть), то функция убывающая, поэтому
Комментарий:
Числа — это два значения функции Исходя из данного неравенства, выясняем, является эта функция возрастающей или убывающей, и учитываем, что она возрастает при и убывает при
Решение логарифмических уравнений
1. Основные определения и соотношения
Определение:
Логарифмом положительного числа по основанию называется показатель степени, в которую необходимо возвести чтобы получить
График функции
2. Решение простейших логарифмических уравнений
Ориентир
Если — число (), то
(используем определение логарифма)
Пример:
Ответ: 10
3. Использование уравнений-следствий
Ориентир:
Если из предположения, что первое равенство верно, следует, что каж дое следующее верно, то гарантируем, что получаются уравнения- следствия. При использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составной частью решения.
Пример:
По определению логарифма получаем
Проверка, — посторонний корень (в основании логарифма получаем отрицательное число);
Ответ: 2
4. Равносильные преобразования логарифмических уравнений
Замена переменных
Ориентир:
Если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то соответствующее выражение с переменной удобно обозначить одной буквой (новой переменной).
Пример:
Ответ: 0,1; 1000.
Уравнение вида
Ориентир:
(учитываем ОДЗ и приравниваем выражения, стоящие под знаками логарифмов)
Пример:
На этой ОДЗ данное уравнение равносильно уравнениям:
— посторонний корень (не удовлетворяет условиям ОДЗ); — корень (удовлетворяет условиям ОДЗ). Ответ: 3.
Равносильные преобразования уравнений в других случаях
Ориентир:
- 1. данного уравнения (и избегаем преобразований, приводящих к сужению ОДЗ)
- 2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.
Пример:
На этой ОДЗ данное уравнение равносильно уравнениям:
— корень (удовлетворяет условиям ОДЗ); — посторонний корень (не удовлетворяет условиям ОДЗ). Ответ: 1.
Объяснение и обоснование:
Решение простейших логарифмических уравнений
Простейшим логарифмическим уравнением обычно считают уравнение
Логарифмическая функция возрастает (или убывает) на всей своей области определения, то есть при (см. графики в п. 1 табл. 23), и поэтому каждое свое значение принимает только при одном значении аргумента. Учитывая, что логарифмическая функция принимает все действительные значения, уравнение всегда имеет единственный корень, который можно записать, исходя из определения логарифма:
Если рассмотреть уравнение и выполнить замену переменной: f (х) = t, то получим простейшее логарифмическое уравнение имеющее единственный корень Выполняя обратную замену, получаем, что решения уравнения (2) совпадают с корнями уравнения
Следовательно, уравнения (2) и (3) равносильны. Таким образом, мы обосновали, что для равносильного преобразования простейшего логарифмического уравнения. (1) или уравнения (2) (которое мы также будем относить к простейшим при условии, что основание — число) достаточно применить определение логарифма. Если обозначить равносильность уравнений значком то коротко этот результат можно записать так:
Напомним, что все равносильные преобразования уравнения выполняются на его области допустимых значений (ОДЗ). Для уравнения (2) ОДЗ задается условием Но для всех корней уравнения (3) это условие выполняется автоматически (потому что ). Поэтому в явном виде ОДЗ для простейших логарифмических уравнений можно не записывать (поскольку оно учитывается автоматически при переходе от уравнения (2) к уравнению (3)). Например, уравнение равносильно уравнению корень которого и является корнем данного уравнения. Аналогично записано и решение простейшего уравнения в табл. 23.
Использование уравнений-следствий при решении логарифмических уравнений
При решении уравнения главное — не потерять его корни, и поэтому важно следить за тем, чтобы каждый корень первого уравнения оставался корнем следующего уравнения — в этом случае получаем уравнения-следствия. Напомним, что каждый корень данного уравнения обращает его в верное числовое равенство. Используя это определение, можно обосновать, что в случае, когда преобразования уравнений проводятся так: если из предположения, что первое равенство верно, следует, что каждое следующее верно, то мы получаем уравнения-следствия (поскольку каждый корень первого уравнения будет и корнем следующего уравнения). Хотя при использовании уравнений-следствий и не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составляющей решения при использовании уравнений-следствий.
Пример решения логарифмического уравнения с помощью уравнений- следствий и оформление такого решения приведены в п. 3.
Равносильные преобразования логарифмических уравнений
Одним из часто используемых способов равносильных преобразований уравнений является замена переменной.
Напомним общий ориентир, которого мы придерживались при решении уравнений из других разделов: если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то соответствующее выражение с переменной удобно обозначить одной буквой ( новой переменной).
Например, в уравнение переменная входит только в виде поэтому для его решения целесобразно применить замену получить квадратное уравнение имеющее корни а затем выполнить обратную замену и получить простейшие логарифмические уравнения: Тогда, по определению логарифма, корнями данных уравнений являются и
Принимая во внимание то, что замена переменной (вместе с обратной заменой) является равносильным преобразованием уравнения на любом множестве, для выполнения замены не обязательно находить ОДЗ данного уравнения. После выполнения обратной замены мы получили простейшие логарифмические уравнения, ОДЗ которых (как было показано выше) учитываются автоматически и могут также не записываться. Таким образом, в приведенном решении ОДЗ данного уравнения учтена автоматически, и поэтому в явном виде ОДЗ можно не записывать в решение. Именно так и оформлено решение этого уравнения в п. 4.
Рассмотрим также равносильные преобразования уравнения вида
Как уже отмечалось, все равносильные преобразования уравнения выполняются на его области допустимых значений. Для уравнения (4) ОДЗ задается системой неравенств Поскольку логарифмическая функция возрастает (при ) или убывает (при ) на всей своей области определения и каждое свое значение принимает только при одном значении аргумента, то равенство (4) может выполняться (на ОДЗ) тогда и только тогда, когда Учитывая ОДЗ, получаем, что уравнение (4) равносильно системе
Полученный результат символично зафиксирован в п. 4, а коротко его можно сформулировать так:
- чтобы решить уравнение вида с помощью равносильных преобразований, учитываем ОДЗ этого уравнения и приравниваем выражения, стоящие под знаками логарифмов.
Пример использования этого ориентира приведен в табл. 23.
Замечание 1.
Полученную систему (5)-(7) можно несколько упростить. Если в этой системе выполняется равенство (5), то значения и между собой равны, поэтому если одно из них будет положительным, то второе также будет положительным. Таким образом, уравнение (4) равносильно системе, состоящей из уравнения (5) и одного из неравенств (6) или (7) (обычно выбирают простейшее из этих неравенств). Например, уравнение рассмотренное в табл. 23, равносильно системе
Но учитывая, что ограничения ОДЗ этого уравнения:
мы не решали, а только проверяли, удовлетворяют ли найденные корни этим ограничениям, приведенное упрощение не дает существенного выигрыша при решении.
Замечание 2.
Как было обосновано выше, если выполняется равенство (4), то обязательно выполняется и равенство (5). Таким образом, уравнение (5) является следствием уравнения (4). Поэтому для нахождения корней уравнения (4): достаточно найти корни уравнения-следствия (5): и выполнить проверку найденных корней подстановкой в данное уравнение. (При таком способе решения ОДЗ уравнения (4) будет учтено опосредствованно, в момент проверки полученных корней, и его не придется явно записывать.)
Выполняя равносильные преобразования логарифмических уравнений в более сложных случаях, можно придерживаться следующего ориентира (он следует из определения равносильных уравнений и обоснован в курсе 10 класса):
- 1) Учитываем ОДЗ данного уравнения,
- 2) Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.
Например, решим уравнение
с помощью равносильных преобразований. Для этого достаточно учесть ОДЗ уравнения а затем, выполняя каждое преобразование уравнения, все время следить за тем, можно ли на ОДЗ выполнить это преобразование и в обратном направлении. Если ответ положителен, то выполненные преобразования равносильны. Если же какое-то преобразование для всех значений переменной из ОДЗ можно выполнить только в одном направлении (от исходного уравнения к следующему), а для его выполнения в обратном направлении необходимы какие-то дополнительные ограничения, то мы получим только уравнение-следствие, и полученные корни придется проверять подстановкой в исходное уравнение.
Применим этот план к решению уравнения (8).
Чтобы привести это уравнение к простейшему, перенесем все члены уравнения с логарифмами влево. Получим равносильное уравнение
(Равносильность уравнений (8) и (9) следует из известной теоремы: если из одной части уравнения перенести в другую слагаемые с противоположным знаком, то получим уравнение, равносильное данному на любом множестве. Равносильность этих уравнений следует также из того, что мы можем не только перейти от равенства (8) к равенству (9), но и выполнить обратное преобразование, пользуясь свойствами числовых равенств.) Учитывая, что сумма логарифмов положительных (на ОДЗ) чисел равна логарифму произведения, получаем уравнение
На ОДЗ данного уравнения можно выполнить и обратное преобразование: поскольку то логарифм произведения положительных чисел равен сумме логарифмов множителей. Таким образом, от равенства (10) можно вернуться к равенству (9), то есть этот переход также приводит к равносильному уравнению. Уравнение (10) — это простейшее логарифмическое уравнение. Оно равносильно уравнению, которое получается по определению логарифма:
Выполняя равносильные преобразования полученного уравнения, имеем:
Поскольку все равносильные преобразования выполнялись на ОДЗ данного уравнения, учтем ее, подставляя полученные корни в ограничения ОДЗ: — корень, поскольку удовлетворяет условиям ОДЗ;
не является корнем (посторонний корень), потому что не удовлетворяет условиям ОДЗ. Таким образом, данное уравнение имеет только один корень
Замечание:
Рассмотренное уравнение можно было решить и с использованием уравнений-следствий, не учитывая явно ОДЗ, но проверив полученные решения подстановкой их в исходное уравнение. Поэтому каждый имеет право выбирать способ решения: использовать уравнения- следствия или равносильные преобразования данного уравнения. Однако для многих уравнений проверку полученных корней выполнить достаточно непросто, а для неравенств вообще нельзя использовать следствия.
Это обусловлено тем, что не удается проверить все решения — их количество у неравенств, как правило, бесконечно. Таким образом, для неравенств приходится выполнять только равносильные преобразования (по ориентирам, аналогичным приведенным выше).
Пример №13
Решите уравнение
Решение:
Проверка. — посторонний корень (под знаком логарифма получаем 0), — корень, поскольку имеем
Ответ: 14
Комментарий:
Решим данное уравнение с помощью уравнений-следствий. При использовании уравнений-следствий главное — гарантировать, что в случае, когда первое равенство верно, то и все последующие также будут верны. Чтобы избавиться от дробного коэффициента, умножим обе части уравнения (1) на 2 (если равенство (1) верно, то и равенство (2) верно). Если равенства (1) и (2) верны (при значениях , которые являются корнями этих уравнений), то при таких значениях существуют все записанные логарифмы. Тогда выражения — положительны. Следовательно, для положительных можно воспользоваться формулами: таким образом, равенства (3) и (4) также верны.
Учитывая, что функция возрастающая, а значит, каждое свое значение принимает только при одном значении аргумента, из равенства логарифмов (4) получаем равенство соответствующих аргументов (5). Если равенство (5) верно, то знаменатель дроби не равен нулю, и после умножения обеих его частей на получаем верное равенство (6) (а значит, и верное равенство (7)). Поскольку мы использовали уравнения-следствия, то в конце необходимо выполнить проверку.
Пример №14
Решите уравнение
Решение:
На этой ОДЗ данное уравнение равносильно уравнениям:
Учитывая ОДЗ, получаем, что х = 1 входит в ОДЗ, таким образом, является корнем; не входит в ОДЗ, следовательно, не является корнем данного уравнения. Ответ: 1.
Комментарий:
Решим данное уравнение с по мощью равносильных преобразований. Для этого достаточно учесть ОДЗ данного уравнения и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства. Заметим, что на ОДЗ выражение может быть как положительным, так и отрицательным, поэтому мы не имеем права применять к выражению формулу: (это приведет к потере корня). Применение обобщенной формулы логарифмирования приведет к уравнению с модулем. Используем другой способ преобразований, учтя, что Поскольку на ОДЗ все выражения, стоящие под знаками логарифмов, положительны, то все преобразования от уравнения (1) к уравнению (2) равносильны. Выполнить равносильные преобразования уравнения (2) можно с использованием ориентира, приведенного на с. 213. Равносильность уравнений (2) и (3) можно обосновать также через возрастание функции которая каждое свое значение принимает только при одном значении аргумента.
Пример №15
Решите уравнение
Решение:
На ОДЗ данное уравнение равносильно уравнению
Замена: Получаем:
(оба корня входят в ОДЗ). Ответ: 16; 64.
Комментарий:
Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ Поскольку в уравнение входят логарифмы с разными основаниями, то приведем их к одному и тому же основанию (желательно числовому, иначе можно потерять корни уравнения). В данном случае приводим к основанию 4 по формуле После приведения логарифмов к одному основанию переменная входит в уравнение только в одном виде Выполним замену Поскольку по ограничениям ОДЗ Тогда полученное дробное уравнение (1) равносильно квадратному уравнению (2). Поскольку замена и обратная замена являются равносильными преобразованиями на ОДЗ, то для полученных решений достаточно проверить, входят ли они в ОДЗ.
Пример №16
Решите уравнение
Решение:
ОДЗ: На ОДЗ данное уравнение равносильно уравнениям:
Замена: Получаем:
Обратная замена дает
Ответ: 0,1; 1000
Комментарий:
Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ и используем ориентир: если переменная входит и в основание, и в показатель степени, то для решения такого уравнения можно попытаться прологарифмировать обе его части (только если они положительны). В запись уравнения входит десятичный логарифм , поэтому прологарифмируем обе части по основанию 10 (на ОДЗ они обе положительны ). Поскольку функция возрастающая, то каждое свое значение она принимает только при одном значении аргумента. Следовательно, если выполняется равенство (1), то выполняется и равенство (2), и наоборот: если выполняется равенство (2), то выполняется и равенство (1). Таким образом, уравнения (1) и (2) равносильны на ОДЗ. При применение формулы является равносильным преобразованием, а значит, уравнения (2) и (3) также равносильны . Обоснование равносильности дальнейших преобразований полностью совпадает с аналогичным обоснованием в предыдущей задаче.
Пример №17
Решите уравнение
Решение:
Замена: Получаем
Обратная замена дает
— корней нет. Ответ: 2.
Комментарий:
Если сначала рассмотреть данное уравнение как простейшее логарифмическое, то по определению логарифма оно равносильно уравнению Как уже отмечалось (с. 211), ОДЗ данного уравнения для всех корней уравнения (1) учитывается автоматически, поскольку всегда. После этого уравнение (1) решается по схеме решения показательных уравнений (табл. 19, с. 178). Поскольку поэтому уравнение (2) равносильно уравнению (3).
Пример №18
Решите систему уравнений
Решение:
По определению логарифма имеем
Из второго уравнения последней системы получаем и подставляем в первое уравнение:
Проверка — решение данной системы.
— постороннее решение
(под знаком логарифма получаем отрицательные числа). Ответ: (1; 4).
Комментарий:
Как и логарифмические уравнения, системы логарифмических уравнений можно решать как с помощью систем-следствий (каждое решение первой системы является решением второй), так и с помощью равносильных преобразований систем (все решения каждой из них являются решениями другой).
Кроме того, при решении логарифмических систем можно применить те же способы, что и при решении других видов систем (способ алгебраического сложения, подстановка некоторого выражения из одного уравнения в другое, замена переменных).
Решим данную систему с помощью систем-следствий. Для этого достаточно гарантировать, что если данная система состоит из верных равенств, каждая следующая система также будет содержать верные равенства. Как и для уравнений, при использовании систем-следствий необходимо выполнить проверку полученных решений подстановкой в исходную систему.
Замечание. Данную систему можно было решить и с помощью равносильных преобразований систем. При этом пришлось бы учесть ОДЗ данной системы следить за равносильностью выполненных у – х > 0 , преобразований (в данном случае все написанные преобразования являются равносильными на ОДЗ), а в конце проверить, удовлетворяют ли полученные решения условиям ОДЗ (пара чисел удовлетворяет условиям ОДЗ, а пара не удовлетворяет условиям ОДЗ).
Пример №19
Решите систему уравнений
Решение:
Тогда из первого уравнения имеем Замена дает уравнения
Обратная замена дает то есть Тогда из второго уравнения системы имеем (не принадлежит ОДЗ), (принадлежит ОДЗ). Таким образом, решение данной системы
Ответ: (5; 5).
Комментарий:
Решим данную систему с помощью равносильных преобразований. Для этого достаточно учесть ее ОДЗ и гарантировать, что на каждом шагу были выполнены именно равносильные преобразования уравнения или всей системы. В первом уравнении системы все логарифмы приведем к одному основанию (на ОДЗ
На ОДЗ следовательно, Тогда после замены имеем и поэтому переход в решении от дробного уравнения к квадратному является равносильным. Поскольку замена (вместе с обратной заменой) является равносильным преобразованием, то, заменяя первое уравнение системы равносильным ему (на ОДЗ) уравнением получаем систему, равносильную данной (на ее ОДЗ).
Решение логарифмических неравенств
1. График функции
2. Равносильные преобразования простейших логарифмических неравенств
Знак неравенства не меняется, и учитывается ОДЗ.
Знак неравенства меняется, и учитывается ОДЗ.
Примеры:
Функция возрастающая, тогда
Учитывая ОДЗ, имеем
Ответ:
Функция убывающая, тогда
Учитывая ОДЗ, имеем
Ответ:
3. Решение более сложных логарифмических неравенств
Ориентир:
I. С помощью равносильных преобразований данное неравенство приводится к неравенству известного вида.
Схема равносильных преобразований неравенства:
- 1. Учитываем ОДЗ данного неравенства (и избегаем преобразований, приводящих к сужению ОДЗ).
- 2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было вы полнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.
II. Применяется метод интервалов (данное неравенство приводится к неравенству ) и используется схема:
Пример №20
1)
ОДЗ: На этой ОДЗ данное неравенство равносильно неравенствам: Замена Тогда то есть Решение этого неравенства
Обратная замена дает
Тогда
Учитывая, что функция возрастающая, получаем:
С учетом ОДЗ имеем:
Ответ:
Пример №21
2) Решим неравенство методом интервалов. Оно равносильно неравенству Обозначим
1.
2. Нули функции: Тогда На ОДЗ это уравнение равносильно уравнению (полученному по определению логарифма). То есть В ОДЗ входит только Итак, имеет единственный нуль функции 3. Отмечаем нули функции на ОДЗ, находим знак на каждом из промежутков, на которые разбивается ОДЗ, и записываем решения неравенства
Ответ:
Объяснение и обоснование:
Решение простейших логарифмических неравенств
Простейшими логарифмическими неравенствами обычно считают неравенства вида
Для решения такого неравенства можно применять равносильные преобразования. Для этого необходимо учесть его ОДЗ:
и рассмотреть два случая: основание логарифма больше 1 и основание меньше 1 (но больше 0).
I. При логарифмическая функция возрастает на всей своей области определения (при ), поэтому большему значению функции соответствует большее значение аргумента. Таким образом, переходя в неравенстве (1) от значений функции к значениям аргумента (в данном случае переходя к выражениям, стоящим под знаком логарифма), мы должны оставить тот же знак неравенства, то есть
Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (большему положительному значению аргумента соответствует большее значение функции), получаем, что на ОДЗ неравенство (1) равносильно неравенству (2). Коротко это можно записать так:
II. При логарифмическая функция убывает на всей области определения (при ), поэтому большему значению функции соответствует меньшее значение аргумента. Следовательно, переходя в неравенстве (1) от значений функции к значениям аргумента, мы должны знак неравенства изменить на противоположный, то есть
Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (меньшему положительному значению аргумента соответствует большее значение функции), получаем, что при неравенство (1) на его ОДЗ равносильно неравенству (5). Коротко это можно записать так:
Суммируя полученные результаты, отметим, что для решения неравенства вида с помощью равносильных преобразований необходимо учесть его ОДЗ, а при переходе от значений функции к значениям аргумент а (выражениям, стоящим под знаком логарифма) — значение : при знак неравенства не меняется, при знак неравенства меняется на противоположный
Примеры использования этих ориентиров приведены в табл. 24. Замечание. Системы неравенств, полученные для случаев I и II, можно несколько упростить. Например, если в системе выполняются неравенство (2): и неравенство (4): то из этих неравенств следует, что Следовательно, неравенство (3) этой системы выполняется автоматически, когда выполняются неравенства (2) и (4), и его можно не записывать в эту систему (см. п. 2 табл. 24). Аналогично обосновывается, что в случае II неравенство (4) в системе является следствием неравенств (3) и (5), и его также можно не записывать в систему. Например, решим неравенство
(ОДЗ данного неравенства учтено автоматически, поскольку, если то выполняется и неравенство ) Решаем неравенство Тогда отсюда (см. рисунок) или — решение данного неравенства (его можно записать и так:
Решение более сложных логарифмических неравенств выполняется или с помощью равносильных преобразований данного неравенства (и приведения его к известному виду неравенств), или с помощью метода интервалов
Схема равносильных преобразований логарифмических неравенств полностью аналогична схеме равносильных преобразований логарифмических уравнений:
- учитываем ОДЗ данного неравенства;
- следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.
В этом случае на ОДЗ каждое решение данного неравенства будет решением второго и, наоборот, каждое решение второго неравенства будет решением первого, то есть эти неравенства равносильны (на ОДЗ). Примеры решения логарифмических неравенств с помощью равносильных преобразований и методом интервалов и оформления такого решения приведены в табл. 24. Рассмотрим еще несколько примеров.
Примеры решения задач:
Пример №22
Решите неравенство
Комментарий:
Решим данное неравенство с помощью равносильных преобразований. Как и для уравнений, для этого достаточно учесть ОДЗ данного неравенства и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства. Поскольку на ОДЗ выражения, стоящие под знаком логарифмов, положительны, то формулу для положительных и можно применить как в прямом, так и в обратном направлениях. Таким образом, выполняя преобразование неравенства по этой формуле, получим неравенство, равносильное данному (на его ОДЗ). Чтобы применить свойства логарифмической функции, запишем число (-1 ) как значение логарифмической функции: (разумеется, эту формулу можно применить как в прямом, так и в обратном направлениях) и учтем, что
Решение:
На этой ОДЗ данное неравенство равносильно неравенству
Функция убывающая, поэтому
Получаем Последнее неравенство имеет решения:
(см. рисунок).
Учитывая ОДЗ, получаем
Ответ:
Пример №23
Решите неравенство
Решение:
Учитывая ОДЗ данного неравенства и то, что функция убывающая, получаем
то есть
Тогда
Так как функция возрастающая, получаем
Это неравенство равносильно системе
которая равносильна системе
Решаем неравенства (4) и (5) методом интервалов и находим их общее решение (см. рисунок)
Для неравенства (4) ОДЗ:
нуль функции
Для неравенства (5) ОДЗ:
нуль функции
Ответ:
Комментарий:
ОДЗ данного неравенства задается системой
При выполнении равносильных преобразований главное — учесть ОДЗ в ходе решения. При переходе от неравенства (1) к неравенству (2) в записи последнего остается выражение для которого ОДЗ:
Следовательно, при таком переходе ограничение (7) будет неявно учтено, поэтому достаточно учесть только ограничение (6) (что и сделано в левой части неравенства (2)). Чтобы применить свойства соответствующих логарифмических функций, записываем сначала (и учитываем, что а затем —
При переходе от неравенства (2) к неравенству (3) получаем таким образом, и в этом случае не равенство (7) учтено автоматически. Для нахождения общих решений неравенств (4) и (5) удобно их решения методом интервалов разместить одно над другим так, чтобы одинаково обозначенные точки находились одна над другой. Тогда из приведенного рисунка легко увидеть общее решение системы неравенств.
Определение логарифмической функции
Если величины и связаны уравнением , то называют логарифмической функцией от . Возьмем и будем придавать независимому переменному значения, равные целым положительным числам. Составим для значений таблицу:
Заметим, что в этой таблице значения растут в геометрической прогрессии, в то время как значения растут в арифметической прогрессии. Это будет иметь место во всех случаях, когда а больше единицы. Если давать значения, образующие убывающую геометрическую прогрессию с положительными членами, то будет принимать значения убывающей арифметической прогрессии, как это видно из таблицы:
Напомним, что отрицательные числа и нуль не имеют логарифмов, точнее, они не имеют действительных логарифмов.
При график функции имеет вид, указанный на рис. 33 ().
Логарифм числа. Исследование
1)Запишите вместо х такие числа, чтобы равенства были верными.
а) 2х = 16 б) 3х = 9 в) 4х = 64
2)При каких значениях аргумента функция у = 2х получает значение равное 6? Является ли это значение х единственным?
3)Между какими двумя целыми числами находятся значения х удовлетворяющие равенствам? а) 2х = 24 б) 3х = 18 в) 4 х = 56
Что такое логарифм
Логарифмом по основанию а числа b, называется такое число, что
при возведении числа а в эту степень получится число b .
Это записывается так . Здесь, при число а и b положительные действительные числа. Запись является логарифмической записью равенства и наоборот запись
является экспоненциальной записью для равенства .
То есть записи и эквивалентны.
Равенство называется основным логарифмическим тождеством.
Пример №24
Заменим логарифмическую запись экспоненциальности.
Решение:
логарифмическая запись: экспоненциальная запись:
Пример №25
Найдём значение логарифмического выражения.
Решение:
Логарифм чисел по основанию 10 и е соответственно обозначаются как . Логарифм по основанию 10 называется десятичным логарифмом, по основанию е – натуральным логарифмом.
При вычислении логарифмов можно пользоваться калькулятором. Например, виртуальным калькулятором по адресу http://web2.0calc.com
Исследование. Постройте в тетради таблицу значений и график функций обратной ей функции . Запишите своё мнение о полученных функциях.
Логарифмическая функция
Для каждого значения области определения функции соответствует единственное значение из области значений, т.е. для функции существует обратная функция .
Значит, если график функции отразить симметрично относительно прямой у = х, то получим график функции .
1)Область определения логарифмической функции все
положительные числа:
2)Множество значений логарифмической функции множество всех действительных чисел:
3)При логарифмическая функция является возрастающей, при убывающей.
4)График функции пересекает ось абсцисс в точке (1; 0). В качестве примера для на рисунке даны графики .
Постройте графики в тетради.
Если , то при логарифмическая функция принимает отрицательные значения, при принимает положительные значения.
В качестве примера для на рисунке даны графики функций у = log_i_ х, у .
Постройте графики в тетради.Если , то при логарифмическая функция принимает положительные значения, при принимает отрицательные значения.
Логарифмическая шкала и решение задач
В химии: Показатель рН-мера активности ионов водорода в растворе, количественно выражающая его кислотность. Для вычисления уровня рН в растворах используется формула
Здесь, Н+ концентрация ионов в мол/л. Из формулы следует, что при увеличении показателя рН па 1 единицу, концентрация ионов в растворе увеличивается в 10 раз. По шкале рН значения показателя рН изменяются от 0 до 14. Если рН равно 7, то раствор считается нейтральным, меньше 7 – кислым, больше 7 – щелочным.
В физике: Громкость звука измеряется в децибелах и вычисляется по формуле . Здесь I – интенсивность звука (ватт/м2), I0 – наименьшая интенсивность звука, которую различает человеческое ухо (принято 10-12 ватт/м2). Человеческое ухо может различать звуки в очень большом диапазоне от 0 dB (тишина) до 180 dB.
Землетрясение. В 1935 году американский сейсмолог Чарлз Рихтер вывел формулу и создал логарифмическую шкалу определения силы землетрясения (она называется шкалой Рихтера). Здесь М -сила землетрясения (в баллах), А – максимальная амплитуда волны (в микронах), зарегистрированная на сейсмографе, Ао– амплитуда (принято 1 микрон (10 -6 м)) самой маленькой сейсмической волны зарегистрированной сейсмографом (её называют “нулём землетрясения”). Формулу можно записать иначе, как . Таким образом, по шкале Рихтера, амплитуда сейсмической волны в 4 балла в 10 раз больше амплитуды сейсмической волны в 3 балла.
Биология. Биологи по длине следа слона, могут, приблизительно, определить его возраст ( а). Для этого они используют формулу .
Свойства логарифмов
- произведение степеней:
- отношение степеней:
- возведение степени в степень:
1. Логарифм произведения:
Логарифм произведения двух положительных чисел равен сумме логарифмов множителей. Здесь и , х и у – положительные действительные числа.
2. Логарифм частного:
Логарифм частного двух положительных чисел равен разности логарифмов. Здесь и , х и у – положительные действительные числа.
3. Логарифм степени:
Логарифм степени числа равен произведению степени и логарифма этого числа. Здесь и , х – положительное действительное число.
Свойство 1.
Доказательство свойства 1:
Обозначим
Свойство 2.
Доказательство свойства 2:
Обозначим .
Свойство 3.
Доказательство свойства 3:
Обозначим
Используя свойства логарифмов, запишите данные выражения через логарифмы положительных чисел х, у и z.
Пример:
Используя свойства логарифмов запишите в виде логарифма какого-либо числа вида .
Пример:
Запишите в виде логарифма следующие выражения, зная, что переменные могут принимать только положительные значения.
Пример:
Переход к новому основанию:
По основному логарифмическому тождеству и свойству степени логарифма имеем:
Отсюда:
В частном случае при
На многих калькуляторах существуют кнопки для вычисления только десятичного логарифма (lg) и натурального логарифма (In). Поэтому, возникает необходимость представлять логарифмы в виде десятичных и натуральных логарифмов.
Пример:
Запишите в виде : а) десятичного; б) натурального логарифма и вычислите.
Логарифм числа и его свойства
Логарифм числа:
Логарифмом положительного числа b по основанию называется показатель степени, в которую необходимо возвести а, чтобы получить b. Обозначение:
поскольку
так как
поскольку
Десятичный логарифм — это логарифм по основанию 10. Обозначение:
Натуральный логарифм — это логарифм по основанию — иррациональное число, приближенное значение которого:
Обозначение:
2. Основное логарифмическое тождество
3. Свойства логарифмов и формулы логарифмирования
Логарифм единицы по любому основанию равен нулю.
Логарифм произведения положительных чисел равен сумме логарифмов множителей.
Логарифм частного положительных чисел равен разности логарифмов делимого и делителя.
Логарифм степени положительного числа равен произведению показателя степени на логарифм основания этой степени.
4. Формула перехода к логарифмам с другим основанием
Следствия
Объяснение и обоснование:
Логарифм числа в высшей математике
Если рассмотреть равенство то, зная любые два числа из этого равенства, мы можем найти третье:
Первые две операции, представленные в этой таблице (возведение в степень и извлечение корня степени), нам уже известны, а с третьей — логарифмированием, то есть нахождением логарифма данного числа — мы познакомимся в этом параграфе.
В общем виде операция логарифмирования позволяет из равенства (где найти показатель Результат выполнения этой операции обозначается Таким образом, логарифмом положительного числа по основанию называется показатель степени, в которую необходимо возвести чтобы получить
2) Например: 1) поскольку поскольку
3) поскольку
Отметим, что при положительных уравнение всегда имеет единственное решение, поскольку функция принимает все значения из промежутка является возрастающей, а при — убывающей (рис. 126).
Итак, каждое свое значение функция принимает только при одном значении Следовательно, для любых положительных чисел уравнение имеет единственный корень
При уравнение не имеет корней, таким образом, при значение выражения не существует.
Например, не существуют значения
Отметим, что логарифм по основанию 10 называется десятичным логарифмом и обозначается
Например,
В недалеком прошлом десятичным логарифмам отдавали предпочтение и составляли очень подробные таблицы их значений, которые использовались в разных вычислениях. В эпоху всеобщей компьютеризации десятичные логарифмы утратили свою ведущую роль. В современной науке и технике широко используются логарифмы, основанием которых является особенное число (такое же знаменитое, как и число Число как и число — иррациональное, Логарифм по основанию называется натуральным логарифмом и обозначается
Например,
Основное логарифмическое тождество
По определению логарифма, если Подставляя в последнее равенство вместо его значение, получаем равенство, которое называется основным логарифмическим тождеством:
где
Например:
Свойства логарифмов и формулы логарифмирования
Во всех приведенных ниже формулах
1) Из определения логарифма получаем, что
поскольку Таким образом, логарифм единицы по любому основанию равен нулю.
2) Поскольку то
3) Чтобы получить формулу логарифма произведения обозначим Тогда по определению логарифма
Перемножив почленно два последних равенства, имеем По определению логарифма и с учетом введенных обозначений из последнего равенства получаем Таким образом,
Логарифм произведения положительных чисел равен сумме логарифмов множителей.
4) Аналогично, чтобы получить формулу логарифма частного достаточно разделить почленно равенства (1). Тогда По определению логарифма и с учетом введенных обозначений из последнего равенства получаем Таким образом,
Логарифм частного положительных чисел равен разности логарифмов делимого и делителя.
5) Чтобы получить формулу логарифма степени обозначим По определению логарифма Тогда и по определению логарифма с учетом обозначения для имеем Таким образом,
Логарифм степени положительного числа равен произведению показателя степени на логарифм основания этой степени.
Учитывая, что при по формуле (4) имеем: To есть при можно пользоваться формулой (можно не запоминать эту формулу, а каждый раз записывать корень из положительного числа как соответствующую степень).
Замечание. Иногда приходится находить логарифм произведения и в том случае, когда числа оба отрицательные Тогда и существует, но формулой (2) воспользоваться нельзя — она обоснована только для положительных значений В случае имеем и теперь
Таким образом, для логарифма произведения можно воспользоваться формулой (2). Поэтому при можем записать:
Отметим, что полученная формула справедлива и при поскольку в этом случае Таким образом, при
Аналогично можно обобщить и формулы (3) и (4):
при при
Формула перехода к логарифмам с другим основанием
Пусть Тогда по определению логарифма Прологарифмируем обе части последнего равенства по основанию Получим
Используя в левой части этого равенства формулу логарифма степени, имеем Тогда Учитывая, что получаем где
Таким образом, логарифм положительного числа по одному основанию а равен логарифму этого же числа по новому основанию деленному на логарифм прежнего основания а по новому основанию
С помощью последней формулы можно получить следующие следствия.
- Учитывая, что имеем где
- Аналогично, учитывая формулу перехода от одного основания логарифма к другому и формулу логарифма степени, получаем (при
Записав полученную формулу справа налево, имеем где
Примеры решения задач:
Пример №26
Вычислите:
Решение:
1) поскольку
2) так как
Комментарий:
Учитывая определение логарифма, необходимо подобрать такой показатель степени, чтобы при возведении основания логарифма в эту степень получить число, стоящее под знаком логарифма.
Пример №27
Запишите решение простейшего показательного уравнения:
Комментарий:
Для любых положительных чисел уравнение имеет единственный корень. Показатель степени в которую необходимо возвести основание чтобы получить называется логарифмом по основанию поэтому
Решение:
По определению логарифма:
Пример №28
Выразите логарифм по основанию 3 выражения (где и
через логарифмы по основанию 3 чисел (Коротко говорят так «Прологарифмируйте заданное выражение по основанию 3».)
Комментарий:
Сначала запишем выражения, стоящие в числителе и знаменателе данного выражения, как степени чисел и букв. Далее учтем, что логарифм частного положительных чисел равен разности логарифмов числителя и знаменателя, а затем то, что логарифм произведения равен сумме логарифмов множителей.
После этого учтем, что каждый из логарифмов степеней равен произведению показателя степени на логарифм основания этой степени, а также то, что
Решение:
Пример №29
Известно, что Выразите через
Решение:
Комментарий Сначала представим число 700 как произведение степеней данных чисел 5 и 7 и основания логарифма 2, а далее используем свойства логарифмов и подставим в полученное выражение значения
Пример №30
Прологарифмируйте по основанию 10 выражение
Комментарий:
Поскольку логарифмы существуют только для положительных чисел, то мы можем прологарифмировать данное выражение только в случае когда Из условия не следует, что в данном выражении значения с положительны. Поэтому будем пользоваться обобщенными формулами логарифмирования а также учтем, что
Решение:
Иногда приходится искать выражение, зная его логарифм. Такую операцию называют потенцированием.
Пример №31
Найдите х по его логарифму:
Решение:
Комментарий:
Пользуясь формулами логарифмирования справа налево, запишем правые части данных равенств в виде логарифма какого-то выражения.
Из полученного равенства получаем (значение удовлетворяющее равенству (1), — единственное).
Пример №32
Вычислите значение выражения
Комментарий:
Попытаемся привести показатель степени данного выражения к виду чтобы можно было воспользоваться основным логарифмическим тождеством:
Для этого перейдем в показателе степени к одному основанию логарифма (к основанию 5).
Решение:
Поскольку то
Кроме того,
Тогда
Итак
Логарифмическая функция, ee свойства и график
Определение. Логарифмической функцией называется функция вида
График логарифмической функции:
Функции — взаимно обратные функции, поэтому их графики симметричны относительно прямой
Свойства логарифмической функции:
1. Область определения:
2. Область значений:
3. Функция ни четная, ни нечетная.
4. Точки пересечения с осями координат: с осью с осью
5. Промежутки возрастания и убывания:
функция возрастает при на всей области определения
функция убывает при на всей области определения
6. Промежутки знакопостоянства:
7. Наибольшего и наименьшего значений функция не имеет.
8.
Объяснение и обоснование:
Понятие логарифмической функции и ее график
Логарифмической функцией называется функция вида
Покажем, что эта функция является обратной к функции Действительно, показательная функция возрастает на множестве а при — убывает на множестве . Область значений функции — промежуток Таким образом, функция обратима (с. 141) и имеет обратную функцию с областью определения и областью значений Напомним, что для записи формулы обратной функции достаточно из равенства выразить через и в полученной формуле аргумент обозначить через а функцию — через Тогда из уравнения по определению логарифма получаем — формулу обратной функции, в которой аргумент обозначен через а функция — через Изменяя обозначения на традиционные, имеем формулу — функции, обратной к функции
Как известно, графики взаимно обратных функций симметричны относительно прямой Таким образом, график функции можно получить из графика функции у = ах симметричным отображением относительно прямой На рисунке 127 приведены графики логарифмических функций при и при График логарифмической функции называют логарифмической кривой.
Свойства логарифмической функции
Свойства логарифмической функции, указанные в пункте 8 таблицы 54. Другие свойства функции прочитаем из полученного графика этой функции или обоснуем, опираясь на свойства функции
Поскольку область определения прямой функции является областью значений обратной, а область значений прямой функции — областью определения обратной, то, зная эти характеристики для функции получаем соответствующие характеристики для функции
- Областью определения функции является множество всех положительных чисел
- Областью значений функции является множество всех действительных чисел (тогда функция не имеет ни наибольшего, ни наименьшего значений).
- Функция не может быть ни четной, ни нечетной, поскольку ее область определения не симметрична относительно точки 0.
- График функции не пересекает ось поскольку на оси а это значение не принадлежит области определения функции График функции пересекает ось в точке поскольку при всех значениях
- Из графиков функции приведенных на рисунке 127, видно, что прu функция возрастает на всей области определения, а при — убывает на всей области определения. Это свойство можно обосновать, опираясь не на вид графика, а только на свойства функции Например, при возьмем По основному логарифмическому тождеству можно записать: Тогда, учитывая, что имеем Поскольку при функция является возрастающей, то из последнего неравенства получаем А это и означает, что при функция возрастает на всей области определения. Аналогично можно обосновать, что при функция убывает на всей области определения.
- Промежутки знакопостоянства. Поскольку график функции пересекает ось в точке то, учитывая возрастание функции при и убывание при имеем:
Примеры решения задач:
Пример №33
Найдите область определения функции:
Решение:
- Область определения функции задается неравенством Отсюда То есть
- Область определения функции задается неравенством Это неравенство выполняется при всех действительных значениях Таким образом,
- Область определения функции задается неравенством Решая это квадратное неравенство, получаем или (см. рисунок).
То есть
Комментарий:
Поскольку выражение, стоящее под знаком логарифма, должно быть положительным, то для нахождения области определения заданной функции необходимо найти те значения аргумента при которых выражение, стоящее под знаком логарифма, будет положительным.
Пример №34
Изобразите схематически график функции:
Комментарий:
Область определения функции — значения следовательно, график этой функции всегда расположен справа от оси Этот график пересекает ось в точке
При логарифмическая функция возрастает, таким образом, графиком функции будет логарифмическая кривая, точки которой при увеличении аргумента поднимаются.
При логарифмическая функция убывает, таким образом, графиком функции будет логарифмическая кривая, точки которой при увеличении аргумента опускаются.
Чтобы уточнить поведение графиков данных функций, найдем координаты нескольких дополнительных точек.
Решение:
Пример №35
Изобразите схематически график функции
Решение:
Последовательно строим графики:
Комментарий:
Составим план последовательного построения графика данной функции с помощью геометрических преобразований.
Пример №36
Сравните положительные числа зная, что:
Решение:
Комментарий:
В каждом задании данные выражения — это значения логарифмической функции в точках
Используем возрастание или убывание соответствующей функции:
Пример №37
Сравните с единицей положительное число зная, что
Решение:
Поскольку а из условия получаем, что (то есть то функция убывающая, поэтому
Комментарий:
Числа — это два значения функции Исходя из данного неравенства, выясняем, является эта функция возрастающей или убывающей, и учитываем, что она возрастает при и убывает при
- Заказать решение задач по высшей математике
Решение логарифмических уравнении и неравенств
Основные определения и соотношения:
Определение: Логарифмом положительного числа b по основанию называется показатель степени, в которую необходимо возвести чтобы получить
График функции
– возрастает
– убывает
Решение простейших логарифмических уравнений:
Если — число то (используем определение логарифма)
Пример №38
Ответ: 10.
Если из предположения, что первое равенство верно, следует, что каждое следующее верно, то гарантируем, что получаем уравнения следствия. При использовании уравнений”следствий не происходит потери корней исходного уравнения, но возможно появление по” сторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составной частью решения.
Пример №39
По определению логарифма получаем
Проверка. — посторонний корень (в основании логарифма получаем отрицательное число);
— корень
Ответ: 2.
Равносильные преобразования логарифмических уравнений:
Если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).
Пример №40
Замена переменных:
Замена:
Следовательно, Тогда
Ответ:
Пример №41
Уравнение вида
(учитываем ОДЗ и приравниваем выражения, стоящие под знаками логарифмов)
ОДЗ:
На этой ОДЗ данное уравнение равносильно уравнениям:
— посторонний корень (не удовлетворяет условиям ОДЗ);
— корень (удовлетворяет условиям ОДЗ).
Ответ: 3.
1. Учитываем ОДЗ данного уравнения (и избегаем преобразований, приводящих к сужению ОДЗ);
2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и обратном направлениях с сохранением верного равенства
ОДЗ:
На этой ОДЗ данное уравнение равносильно уравнениям:
— корень (удовлетворяет условиям ОДЗ);
— посторонний корень (не удовлетворяет условиям ОДЗ).
Ответ:1.
Объяснение и обоснование:
Решение простейших логарифмических уравнений
Простейшим логарифмическим уравнением обычно считают уравнение
Логарифмическая функция возрастает (или убывает) на всей своей области определения, то есть при (см. графики в пункте 1 табл. 55), и поэтому каждое свое значение принимает только при одном значении аргумента. Учитывая, что логарифмическая функция принимает все действительные значения, уравнение всегда имеет единственный корень, который можно записать, исходя из определения логарифма:
Если рассмотреть уравнение и выполнить замену переменной: то получим простейшее логарифмическое уравнение имеющее единственный корень Выполняя обратную замену, получаем, что решения уравнения (2) совпадают с корнями уравнения
Следовательно, уравнения (2) и (3) — равносильны. Таким образом, мы обосновали, что для равносильного преобразования простейшего логарифмического уравнения (1) или уравнения (2) (которое мы также будем относить к простейшим при условии, что основание — число) достаточно применить определение логарифма. Если обозначить равносильность уравнений значком то коротко этот результат можно записать так:
Напомним, что все равносильные преобразования уравнения выполняются на его области допустимых значений (ОДЗ). Для уравнения (2) ОДЗ задается условием Но для всех корней уравнения (3) это условие выполняется автоматически (потому что Поэтому в явном виде ОДЗ для простейших логарифмических уравнений можно не записывать (поскольку оно учитывается автоматически при переходе от уравнения (2) к уравнению (3)).
Например, уравнение равносильно уравнению корень которого и является корнем заданного уравнения.
Аналогично записано и решение простейшего уравнения в таблице 55.
Использование уравнений-следствий при решении логарифмических уравнений
При решении уравнения главное — не потерять его корни, и поэтому важно следить за тем, чтобы каждый корень первого уравнения оставался корнем следующего уравнения — в этом случае получаем уравнения-следствия. Напомним, что каждый корень заданного уравнения обращает его в верное числовое равенство. Используя это определение, можно обосновать, что в случае, когда преобразования уравнений проводятся так: если из предположения, что первое равенство верно, следует, что каждое следующее верно, то мы получаем уравнения-следствия (поскольку каждый корень первого уравнения будет и корнем следующего уравнения). Напомним, что хотя при использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составной частью решения при использовании уравнений-следствий.
Пример решения логарифмического уравнения с помощью уравнений-следствий и оформление такого решения приведены в пункте 3 таблицы 55.
Равносильные преобразования логарифмических уравнений
Одним из часто используемых способов равносильных преобразований уравнений является замена переменной.
Напомним общий ориентир, которого мы придерживались при решении уравнений из других разделов: если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).
Например, в уравнение переменная входит только в виде поэтому для его решения целесобразно применить замену получить квадратное уравнение имеющее корни а затем выполнить обратную замену и получить простейшие логарифмические уравнения: Тогда, по определению логарифма, корнями данных уравнений являются
Принимая во внимание то, что замена переменной (вместе с обратной заменой) является равносильным преобразованием уравнения на любом множестве, для выполнения замены не обязательно находить ОДЗ данного уравнения. После выполнения обратной замены мы получили простейшие логарифмические уравнения, ОДЗ которых (как было показано выше) учитываются автоматически и могут также не записываться. Таким образом, в приведенном решении ОДЗ данного уравнения учтена автоматически, и поэтому в явном виде ОДЗ можно не записывать в решение. Именно так и оформлено решение этого уравнения в пункте 4 таблицы 55.
Рассмотрим также равносильные преобразования уравнения вида
Как уже говорилось, все равносильные преобразования уравнения выполняются на его области допустимых значений. Для уравнения (4) ОДЗ задается системой неравенств Поскольку логарифмическая функция возрастает (при или убывает (при на всей своей области определения и каждое свое значение принимает только при одном значении аргумента, то равенство (4) может выполняться (на ОДЗ) тогда и только тогда, когда Учитывая ОДЗ, получаем, что уравнение (4) равносильно системе Символично полученный результат зафиксирован в пункте 4 таблицы 55, а коротко его можно сформулировать так:
- чтобы решить уравнение с помощью равносильных преобразований, учитываем ОДЗ этого уравнения и приравниваем выражения, стоящие под знаками логарифмов.
Пример использования этого ориентира приведен в таблице 55.
Замечание 1. Полученную систему (5)-(7) можно несколько упростить. Если в этой системе выполняется равенство (5), то значения между собой равны, поэтому, если одно из этих значений будет положительным, то второе также будет положительным. Таким образом, уравнение (4) равносильно системе, состоящей из уравнения (5) и одного из неравенств (6) или (7) (обычно выбирают простейшее из этих неравенств).
Например, уравнение рассмотренное в таблице 55, равносильно системе Но, учитывая, что ограничения ОДЗ этого уравнения: мы не решали, а только проверяли, удовлетворяют ли найденные корни этим ограничениям, то приведенное упрощение не дает существенного выигрыша при решении этого уравнения.
Замечание 2. Как было обосновано выше, если выполняется равенство (4), то обязательно выполняется и равенство (5). Таким образом, уравнение (5) является следствием уравнения (4), и поэтому для нахождения корней уравнения (4): достаточно найти корни уравнения-следствия (5): и выполнить проверку найденных корней подстановкой в данное уравнение. (При таком способе решения ОДЗ уравнения (4) будет учтено опосредствованно, в момент проверки полученных корней, и его не придется явно записывать.)
Выполняя равносильные преобразования логарифмических уравнений в более сложных случаях, можно придерживаться следующего ориентира (он следует из определения равносильных уравнений):
- Учитываем ОДЗ данного уравнения.
- Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.
Например, решим уравнение с помощью равносильных преобразований.
Для этого достаточно учесть ОДЗ уравнения а затем, выполняя каждое преобразование уравнения, все время следить за тем, можно ли на ОДЗ выполнить это преобразование и в обратном направлении. Если ответ положителен, то выполненные преобразования равносильны. Если же какое-то преобразование для всех значений переменной из ОДЗ можно выполнить только в одном направлении (от исходного уравнения к следующему), а для его выполнения в обратном направлении необходимы какие-то дополнительные ограничения, то мы получим только уравнение-следствие, и полученные корни придется проверять подстановкой в исходное уравнение.
Применим этот план к решению уравнения (8).
Чтобы привести это уравнение к простейшему, перенесем все члены уравнения с логарифмами влево. Получим равносильное уравнение
(Равносильность уравнений (8) и (9) следует из известной теоремы: если из одной части уравнения перенести в другую слагаемые с противоположным знаком, то получим уравнение, равносильное данному на любом множестве. Равносильность этих уравнений следует также из того, что мы можем перейти не только от равенства (8) к равенству (9), но и выполнить обратное преобразование, пользуясь свойствами числовых равенств.)
Учитывая, что сумма логарифмов положительных (на ОДЗ) чисел равна логарифму произведения, получаем уравнение
На ОДЗ данного уравнения можно выполнить и обратное преобразование: поскольку то логарифм произведения положительных чисел равен сумме логарифмов множителей. Таким образом, от равенства (10) можно вернуться к равенству (9), то есть этот переход также приводит к равносильному уравнению. Уравнение (10) — это простейшее логарифмическое уравнение. Оно равносильно уравнению, которое получается по определению логарифма:
Выполняя равносильные преобразования полученного уравнения, имеем:
Поскольку все равносильные преобразования выполнялись на ОДЗ данного уравнения, учтем ее, подставляя полученные корни в ограничения ОДЗ: — корень, потому что удовлетворяет условиям ОДЗ; не является корнем (посторонний корень), потому что не удовлетворяет условиям ОДЗ. Таким образом, данное уравнение имеет только один корень
Замечание. Рассмотренное уравнение можно было решить и с использованием уравнений-следствий.
Примеры решения задач:
Пример №42
Решите уравнение
Решение:
Проверка. — посторонний корень (под знаком логарифма получаем 0),
— корень, поскольку имеем
Ответ: 14
Комментарий:
Решим данное уравнение с помощью уравнений-следствий. Напомним, что при использовании уравнений-следствий главное — гарантировать, что в случае, когда первое равенство будет верным, то и все последующие также будут верными.
Чтобы избавиться от дробного коэффициента, умножим обе части уравнения (1) на 2 (если равенство (1) верно, то и равенство (2) также верно). Если равенства (1) и (2) верны (при тех значениях которые являются корнями этих уравнений), то при таких значениях существуют все записанные логарифмы, и тогда выражения — положительны. Следовательно, для положительных можно воспользоваться формулами: таким образом, равенства (3) и (4) также будут верны. Учитывая, что функция является возрастающей и, следовательно, каждое свое значение принимает только при одном значении аргумента, из равенства логарифмов (4) получаем равенство соответствующих аргументов (5).
Если равенство (5) верно, то знаменатель дроби не равен нулю, и после умножения обеих ее частей на получаем верное равенство (6) (а значит, и верное равенство (7)). Поскольку мы пользовались уравнениями-следствиями, то в конце необходимо выполнить проверку.
Пример №43
Решите уравнение
Комментарий:
Решим данное уравнение с помощью равносильных преобразований. Напомним, что для этого достаточно учесть ОДЗ данного уравнения и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.
Заметим, что на ОДЗ выражение может быть как положительным, так и отрицательным, и поэтому мы не имеем права применять к выражению формулу: (это приведет к потере корня). Применение обобщенной формулы логарифмирования приведет к уравнению с модулем. Используем другой способ преобразований, учтя, что Поскольку на ОДЗ все выражения, стоящие под знаками логарифмов, положительны, то все преобразования от уравнения (1) к уравнению (2) будут равносильными. Выполнить равносильные преобразования уравнения (2) можно с использованием ориентира, приведенного на с. 377. Также равносильность уравнений (2) и (3) может быть обоснована через возрастание функции которая каждое свое значение принимает только при одном значении аргумента.
Решение:
ОДЗ: Тогда
На этой ОДЗ данное уравнение равносильно уравнениям:
Учитывая ОДЗ, получаем, что входит в ОДЗ, таким образом, является корнем;
не входит в ОДЗ, следовательно, не является корнем данного уравнения. Ответ: 1.
Пример №44
Решите уравнение
Комментарий:
Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ Поскольку в уравнение входят логарифмы с разными основаниями, то приведем их к одному основанию (желательно числовому, иначе можно потерять корни уравнения). В данном случае приводим к основанию 4 по формуле
После приведения логарифмов к одному основанию переменная входит в уравнение только в одном виде Выполним замену Поскольку по ограничениям ОДЗ Тогда полученное дробное уравнение (1) равно-сильно квадратному уравнению (2).
Поскольку замена и обратная замена являются равносильными преобразованиями на ОДЗ, то для полученных решений достаточно проверить, входят ли они в ОДЗ.
Решение:
ОДЗ: На ОДЗ данное уравнение равносильно уравнению
Замена: Получаем:
(оба корня входят в ОДЗ).
Ответ: 16; 64.
Пример №45
Решите уравнение
Решение:
ОДЗ:
На ОДЗ данное уравнение равносильно уравнениям:
Замена:
Получаем:
Обратная замена дает
Отсюда или
Ответ: 0,1; 1000.
Комментарий:
Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ и используем ориентир: если переменная входит и в основание, и в показатель степени, то для решения такого уравнения можно попытаться прологарифмировать обе части уравнения (только если они положительны). В запись уравнения уже входит десятичный логарифм, поэтому прологарифмируем обе части по основанию 10 (на ОДЗ обе части данного уравнения положительны).
Поскольку функция является возрастающей, то каждое свое значение она принимает только при одном значении аргумента. Следовательно, если выполняется равенство (1), то выполняется и равенство (2), и наоборот: если выполняется равенство (2), то выполняется и равенство (1). Таким образом, уравнения (1) и (2) равносильны на ОДЗ. При применение формулы является равносильным преобразованием, а значит, уравнения (2) и (3) также равносильны.
Обоснование равносильности дальнейших преобразований полностью совпадает с аналогичным обоснованием в предыдущей задаче.
Пример №46
Решите уравнение
Решение:
Замена: Получаем
Обратная замена дает – корней нет.
Ответ: 2
Комментарий:
Если сначала рассмотреть данное уравнение как простейшее логарифмическое, то по определению логарифма оно равносильно уравнению Как уже отмечалось (с. 376), ОДЗ данного уравнения для всех корней уравнения (1) учитывается автоматически, поскольку всегда. После этого уравнение (1) решается по схеме решения показательных уравнений.
Поскольку и поэтому уравнение (2) равносильно уравнению (3).
Пример №47
Решите систему уравнений
Решение:
По определению логарифма имеем Из второго уравнения последней системы получаем и подставляем в первое уравнение:
Тогда:
Проверка: решение заданной системы.
– постороннее решение
(под знаком логарифма получаем отрицательные числа).
Ответ: (1; 4).
Комментарий:
Как и логарифмические уравнения, системы логарифмических уравнений можно решать как с помощью систем-следствий (каждое решение первой системы является решением второй), так и с помощью равносильных преобразований систем (все решения каждой из них являются решениями другой).
Кроме того, при решении логарифмических систем можно применить те же способы, что и при решении других видов систем (способ алгебраического сложения, подстановка некоторого выражения из одного уравнения в другое, замена переменных).
Например, решим данную систему с помощью систем-следствий. Для этого достаточно гарантировать, что в случае, когда заданная система состоит из верных равенств, каждая следующая система также будет содержать верные равенства. Как и для уравнений, при использовании систем-следствий необходимо выполнить проверку полученных решений подстановкой в исходную систему.
Замечание. Данную систему можно было решить и с помощью равносильных преобразований систем. При этом пришлось бы учесть ОДЗ данной системы следить за равносильностью выполненных преобразований (в данном случае все написанные преобразования являются равносильными на ОДЗ), а в конце проверить, удовлетворяют ли полученные решения условиям ОДЗ (пара чисел удовлетворяет условиям ОДЗ, а не удовлетворяет условиям ОДЗ).
Пример №48
Решите систему уравнений
Решение:
ОДЗ:
Тогда из первого уравнения имеем
Замена дает уравнения
Обратная замена дает
Тогда из второго уравнения системы имеем
(не принадлежит ОДЗ),
(принадлежит ОДЗ).
Таким образом, решение данной системы
Ответ: (5:5)
Комментарий:
Решим данную систему с помощью равносильных преобразований. Для этого достаточно учесть ее ОДЗ и гарантировать, что на каждом шагу были выполнены именно равносильные преобразования уравнения или всей системы. В первом уравнении системы все логарифмы приведем к одному основанию
На ОДЗ следовательно, Тогда после замены имеем и поэтому переход в решении от дробного уравнения к квадратному является равносильным.
Поскольку замена (вместе с обратной заменой) является равносильным преобразованием, то, заменяя первое уравнение системы равносильным ему (на ОДЗ) уравнением получаем систему, равносильную данной (на ее ОДЗ).
Решение логарифмических неравенств
График функции :
Равносильные преобразования простейших логарифмических неравенств:
Знак неравенства не меняется, и учитывается ОДЗ:
Знак неравенства меняется, и учитывается ОДЗ:
ОДЗ:
Функция возрастающая, тогда
Учитывая ОДЗ, имеем
Ответ:
ОДЗ:
Функция убывающая, тогда Учитывая ОДЗ, имеем
Ответ:
Решение более сложных логарифмических неравенств:
I. С помощью равносильных преобразований данное неравенство приводится к неравенству известного вида.
Схема равносильных преобразований неравенства:
1. Учитываем ОДЗ заданного неравенства (и избегаем преобразований, приводящих к сужению ОДЗ).
2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.
ОДЗ: На этой ОДЗ данное неравенство равносильно неравенствам: Замена Тогда то есть Решение этого неравенства (см. рисунок).
Обратная замена дает Тогда Учитывая, что функция является возрастающей, получаем: С учетом ОДЗ имеем:
Ответ:
II. Применяется общий метод интервалов (данное неравенство приводится к неравенству и используется схема:
- Найти ОДЗ;
- Найти нули
- Отметить нули функции на ОДЗ и найти знак на каждом из промежутков, на которые разбивается ОДЗ;
- Записать ответ, учитывая знак неравенства.
Решим неравенство методом интервалов. Оно равносильно неравенству Обозначим
1. ОДЗ:
2. Нули функции: Тогда На ОДЗ это уравнение равносильно уравнению (полученному по определению логарифма). То есть В ОДЗ входит только x = 3. Итак, f(x) имеет единственный нуль функции
3. Отмечаем нули функции на ОДЗ, находим знак на каждом из промежутков, на которые разбивается ОДЗ, и записываем решения неравенства
Ответ:
Объяснение и обоснование:
Решение простейших логарифмических неравенств
Простейшими логарифмическими неравенствами обычно считают неравенства вида
Для решения такого неравенства можно применять равносильные преобразования. Для этого необходимо учесть его ОДЗ: и рассмотреть два случая: основание логарифма больше 1 и основание меньше 1 (но больше 0).
I. При логарифмическая функция возрастает на всей своей области определения (то есть при и поэтому большему значению функции соответствует большее значение аргумента. Таким образом, переходя в неравенстве (1) от значений функции к значениям аргумента (в данном случае переходя к выражениям, стоящим под знаком логарифма), мы должны оставить тот же знак неравенства, то есть
Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (большему положительному значению аргумента соответствует большее значение функции), получаем, что на ОДЗ неравенство (1) равносильно неравенству (2). Коротко это можно записать так:
II. При логарифмическая функция убывает на всей своей области определения (то есть при и поэтому большему значению функции соответствует меньшее значение аргумента. Следовательно, переходя в неравенстве (1) от значений функции к значениям аргумента, мы должны знак неравенства изменить на противоположный, то есть
Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (меньшему положительному значению аргумента соответствует большее значение функции), получаем, что при неравенство (1) на его ОДЗ равносильно неравенству (5). Коротко это можно записать так:
Суммируя полученные результаты, отметим, что для решения неравенства вида с помощью равносильных преобразований необходимо учесть его ОДЗ, а при переходе от значений функции к значениям аргумента (то есть к выражениям, стоящим под знаком логарифма) — значение
- при знак неравенства не меняется,
- при знак неравенства меняется на противоположный.
Примеры использования этих ориентиров приведены в таблице 56.
Замечание. Системы неравенств, полученные для случаев I и II, можно несколько упростить. Например, если в системе выполняются неравенство (2): и неравенство (4): то из этих неравенств следует, что Следовательно, неравенство (3) этой системы выполняется автоматически, когда выполняются неравенства (2) и (4), и его можно не записывать в эту систему (см. пункт 2 табл. 56).
Аналогично обосновывается, что в случае II в системе неравенство (4) является следствием неравенств (3) и (5), и его также можно не записывать в систему.
Например, решим неравенство
(ОДЗ данного неравенства учтено автоматически, поскольку, если то выполняется и неравенство
Решаем неравенство Тогда отсюда (см. рисунок) — решение заданного неравенства (его можно записать и так:
Решение более сложных логарифмических неравенств
Решение более сложных логарифмических неравенств выполняется или с помощью равносильных преобразований данного неравенства (и приведения его к известному виду неравенств), или с помощью метода интервалов.
Схема равносильных преобразований логарифмических неравенств полностью аналогична схеме равносильных преобразований логарифмических уравнений:
- учитываем ОДЗ данного неравенства;
- следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.
В этом случае на ОДЗ каждое решение данного неравенства будет и решением второго и, наоборот, каждое решение второго неравенства будет решением первого, то есть эти неравенства будут равносильными (на ОДЗ).
Примеры решения логарифмических неравенств с помощью равносильных преобразований и методом интервалов и оформления такого решения приведены в таблице 56. Рассмотрим еще несколько примеров.
Примеры решения задач:
Пример №49
Решите неравенство
Комментарий:
Решим данное неравенство с помощью равносильных преобразований. Как и для уравнений, для этого достаточно учесть ОДЗ данного неравенства и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства. Поскольку на ОДЗ выражения, стоящие под знаком логарифмов, положительны, то формулу для положительных можно применить как в прямом, так и в обратном направлениях. Таким образом, выполняя преобразование неравенства по этой формуле, получим неравенство, равносильное данному (на его ОДЗ).
Чтобы применить свойства логарифмической функции, запишем число (-1) как значение логарифмической функции: (понятно, что эту формулу можно применить как в прямом, так и в обратном направлении и учтем, что
Решение:
ОДЗ: Тогда
На этой ОДЗ данное неравенство равносильно неравенству
Функция убывающая, таким образом,
Получаем Последнее неравенство имеет решения:
(см. рисунок).
Учитывая ОДЗ, получаем
Ответ:
Пример №50
Решите неравенство
Решение:
Учитывая ОДЗ данного неравенства и то, что функция убывающая, получаем
то есть
Тогда
Учитывая, что функция возрастающая, получаем
Это неравенство равносильно системе которая равносильна системе
Решаем неравенства (4) и (5) методом интервалов и находим их общее решение (см. рисунок).
Для неравенства (4) ОДЗ: нули функции
Для неравенства (5) ОДЗ: нули функции
Ответ:
Комментарий:
ОДЗ данного неравенства задается системой
При выполнении равносильных преобразований главное не записать ОДЗ, а учесть ее в ходе решения. При переходе от неравенства (1) к неравенству (2) в записи последнего неравенства остается выражение
для которого ОДЗ:
Следовательно, при таком переходе ограничение (7) будет неявно учтено и поэтому достаточно учесть только ограничение (6) (что и сделано в левой части неравенства (2)). Чтобы применить свойства соответствующих логарифмических функций, записываем сначала (и учитываем, что а затем — При переходе от неравенства (2) к неравенству (3) получаем таким образом, и в этом случае неравенство (7) учтено автоматически. Для нахождения общих решений неравенств (4) и (5) удобно их решения методом интервалов разместить одно над другим так, чтобы одинаково обозначенные точки находились одна над другой. Тогда из приведенного рисунка легко увидеть общее решение системы неравенств.
Логарифмические функции и их нахождение
Как известно, если то каждому положительному значению соответствует единственное значение Поэтому равенство задаёт некоторую функцию с областью определения
Функцию, заданную формулой называют логарифмической функцией с основанием
Примеры логарифмических функций:
Как связаны между собой функции
Равенство выражает ту же зависимость между что и этим двум равенствам отвечает один и тот же график {рис. 29). Чтобы от равенства перейти к нужно поменять местами переменные Поэтому и на графике следует поменять местами оси (рис. 30). Этот рисунок –
график функции только его оси размещены не так, как принято. Чтобы изобразить график функции в общепринятой системе координат, нужно весь рисунок отразить симметрично относительно прямой (рис. 31).
Итак, графики функций построенные в одной системе координат, симметричны относительно прямой
Последовательность описанных преобразований рассматриваемых функций для схематически изображена на рисунке 32.
Функции, графики которых симметричны относительно прямой являются взаимно обратными. В частности, функция обратная для функции
Если две функции взаимно обратные, то область определения одной из них является областью значений другой и наоборот.
Следует обратить внимание и на такое. Если одна из двух взаимно обратных функций на всей области определения возрастает, то и другая возрастает. Например, если функция
возрастает, то большему значению соответствует большее значение а большему значению — большее значение Тогда и в соотношениях большему значению соответствует большее значение т. е. функция также возрастает.
Из всего сказанного вытекают следующие свойства функции
- Область определения — промежуток
- Область значений — множество
- Функция возрастает на всей области определения, если а если убывает.
- Функция ни чётная, ни нечётная, ни периодическая.
- Если то значения функции положительные при и отрицательные при
- Если то значения функции положительные при и отрицательные при
- График функции всегда проходит через точку
Несколько графиков логарифмических функций показано на рисунке 33.
Если известно значение основания логарифма, то график логарифмической функции можно построить по точкам, составив предварительно таблицу значений. Постройте таким образом графики функций и убедитесь, что первая из них — возрастающая, а вторая — убывающая.
Обратите внимание на такие утверждения:
- если
- если
- если
Вы уже знаете, что графики функций симметричны относительно прямой А как расположены графики функций
Поскольку то понятно, что функции для одинаковых значений аргументов принимают противоположные значения. Это означает, что их графики симметричны относительно оси Примером являются графики функций изображённые на рисунке 34.
Показательные и логарифмические функции удобны для моделирования процессов, связанных с ростом населения, капитала, размножением бактерий, изменением атмосферного давления, радиоактивным распадом и т. п.
Пример №51
Найдите область определения функции
Решение:
Областью определения логарифмической функции является промежуток поэтому Корни уравнения равны поэтому множество решений неравенства такое:
Ответ.
Пример №52
Сравните числа:
Решение:
а) Функция убывающая, ибо Поскольку б) Приведём второй логарифм к основанию 0,5:
Из последнего неравенства следует, что Поскольку
- Логарифмические выражения
- Показательная функция, её график и свойства
- Производные показательной и логарифмической функций
- Показательно-степенные уравнения и неравенства
- Дифференциал функции
- Дифференцируемые функции
- Техника дифференцирования
- Дифференциальная геометрия
Тема 10.
Задачи на свойства графиков функций
10
.
06
График логарифмической функции
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами – ЛЕГКО!
Подтемы раздела
задачи на свойства графиков функций
Решаем задачи
На рисунке изображён график функции Найдите
Показать ответ и решение
По картинке видим, что целые точки и принадлежат графику
функции поэтому можем составить систему:
Теперь мы можем найти коэффициент
Значит, функция имеет вид
Осталось найти
На рисунке изображен график функции вида Найдите значение
Показать ответ и решение
По картинке видно, что график функции проходит через точку Тогда мы можем составить
уравнение:
Отсюда уравнение функции имеет вид
Тогда
Ha рисунке изображён график функции Найдите
Показать ответ и решение
По картинке видим, что целые точки и принадлежат графику функции , поэтому можем составить систему (сразу
заметим, что , иначе неопределён):
Значит, функция имеет вид
Осталось найти
На рисунке изображён график функции
Найдите
Показать ответ и решение
Сразу заметим, что иначе не определён. По картинке видим, что целые точки и
принадлежат графику функции поэтому можем составить систему:
Можем приравнять правые части уравнений последней системы:
Теперь можем найти коэффициент
Значит, функция имеет вид
Осталось найти
На рисунке изображен график функции Найдите
Показать ответ и решение
По картинке видим, что целые точки и принадлежат графику функции поэтому можем составить
систему:
Теперь мы можем найти коэффициент
Значит, функция имеет вид
Осталось найти
На рисунке изображен график функции Найдите значения
и Запишите эти значения подряд без пробелов.
Показать ответ и решение
Найдем коэффициент подставив в уравнение функции точку через которую проходит график. Тогда
Теперь найдем основание подставив в уравнение точку через которую проходит график. Тогда
Теперь мы полностью восстановили нашу функцию, она имеет вид
На рисунке изображен график функции Найдите значение
при котором
Показать ответ и решение
По картинке видим, что целые точки и принадлежат графику функции Тогда можем составить
систему:
Здесь во второй системе из второго уравнения вычли первое.
Тогда функция имеет вид
Осталось найти при котором значение функции равно
На рисунке изображен график функции Найдите значение
при котором
Показать ответ и решение
По картинке видим, что целые точки и принадлежат графику функции Тогда можем составить
систему:
Значит, функция имеет вид
Осталось найти при котором значение функции равно -3:
На рисунке изображен график функции Найдите значение
при котором
Показать ответ и решение
По графику видно, что:
1) значение функции в точке равно 0, то есть
2) значение в точке равно то есть
Значение логарифма будет равно 0 тогда и только тогда, когда то есть Подставив в
выражение для получим:
Тогда функция имеет вид
Осталось найти значение при которых значение функции равно -5:
На рисунке изображен график функции Найдите значение
при котором
Показать ответ и решение
По картинке видим, что целые точки и принадлежат графику функции поэтому можем составить
систему:
Значит, функция имеет вид
Осталось найти при котором значение функции равно
На рисунке изображен график функции
Найдите
Показать ответ и решение
Заметим, что данный нам график «прижимается» к прямой которая выделенна на картинке как асимптота, тогда
Теперь определим Поймем как выглядел бы график функции В точке значение функции бы
обнулялось, значит, график бы проходил через точку Рассматриваемый график проходит через точку
следовательно
Тогда уравнение нашей функции теперь выглядит так:
По картинке видно, что график рассматриваемой функции проходит через точку значит, ее координаты обращают
уравнение функции в верное равенство, то есть
Значит, теперь мы полностью восстановили нашу функцию, она имеет вид
Тогда
На рисунке изображен график функции Найдите значение
при котором
Показать ответ и решение
Заметим, что — уравнение вертикальной асимптоты графика функции Это значит, что Также на
картинке видно, что целые точки и принадлежат графику функции поэтому можем составить систему
из двух уравнений:
Значит, функция имеет вид
Осталось найти , при котором значение функции равно 3:
На рисунке изображен график функции Найдите значение
при котором
Показать ответ и решение
Заметим, что — уравнение вертикальной асимптоты графика функции Это значит, что Также на картинке
видно, что целые точки и принадлежат графику функции поэтому можем составить систему из двух
уравнений:
Значит, функция имеет вид
Осталось найти при котором значение функции равно 4:
14
Май 2013
Категория: Справочные материалыФункции и графики
Логарифмическая функция
2013-05-14
2019-08-13
Функция (где , ) называется логарифмической функцией с основанием .
Конечно, хорошо бы вспомнить сначала определение логарифма.
График логарифмической функции можно построить используя тот факт, что функция обратна показательной функции . Поэтому можно построить график показательной функции , после чего отобразить его симметрично относительно прямой .
И все же, как произвести построение, скажем, графика без предварительного построения графика показательной функции?
Мы должны перебирать различные значения и, подставляя в формулу, найти соответствующие значения .
Так вот согласно определению логарифма, например, – это такая степень числа 2, в которую нужно возвести это основание 2, чтобы получить 8, то есть так как .
Руководствуясь этим правилом мы и заполняем всю таблицу (можно бы в эту таблицу дописать и такие значения , как 8, 16,…):
Получаем следующий график функции:
Если мы возьмем функцию , то график будет выглядеть так:
Свойства логарифмической функции
Свойства логарифмов смотрим здесь
Автор: egeMax |
комментария 3
| Метки: графики функций, функции
Функцию, заданную формулой
y=logax
, называют логарифмической функцией с основанием (a).
Основные свойства логарифмической функции:
1) область определения
D(f)=0;+∞
;
2) множество значений
E(f)=−∞;+∞
;
3) если (a>1), то функция возрастает на всей области определения;
если (0<a<1), то функция убывает на всей области определения.
Обрати внимание!
Логарифмическая функция не является ни чётной, ни нечётной;
не имеет ни наибольшего, ни наименьшего значений;
не ограничена сверху, не ограничена снизу;
график любой логарифмической функции
y=logax
проходит через точку ((1; 0)).
Построим графики двух функций.
Пример:
1.
y=log2x
, основание (2>1)
(x) | 14 | 12 | (1) | (2) | (4) | (8) |
y=log2x | (-2) | (-1) | (0) | (1) | (2) | (3) |
Пример:
2.
y=log13x
основание (0<)
13
(<1)
(x) | (9) | (3) | (1) | 13 | 19 |
y=log13x | (-2) | (-1) | (0) | (1) | (2) |
Логарифмическая функция
y=logax
и показательная функция
y=ax
, где
(a>0,a≠1)
, взаимно обратны.
Логари́фм числа по основанию (от др.-греч. λόγος, «отношение» + ἀριθμός «число»[1]) определяется[2] как показатель степени, в которую надо возвести основание , чтобы получить число . Обозначение: , произносится: «логарифм по основанию ».
Из определения следует, что нахождение равносильно решению уравнения . Например, , потому что .
Вычисление логарифма называется логарифми́рованием. Числа и чаще всего вещественные, но существует также теория комплексных логарифмов.
Логарифмы обладают уникальными свойствами, которые определили их широкое использование для существенного упрощения трудоёмких вычислений[3]. При переходе «в мир логарифмов» умножение заменяется на значительно более простое сложение, деление — на вычитание, а возведение в степень и извлечение корня преобразуются соответственно в умножение и деление на показатель степени. Лаплас говорил, что изобретение логарифмов, «сократив труд астронома, удвоило его жизнь»[4].
Определение логарифмов и таблицу их значений (для тригонометрических функций) впервые опубликовал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, расширенные и уточнённые другими математиками, повсеместно использовались для научных и инженерных расчётов более трёх веков, пока не появились электронные калькуляторы и компьютеры.
Со временем выяснилось, что логарифмическая функция незаменима и во многих других областях человеческой деятельности: решение дифференциальных уравнений, классификация значений величин (например, частота и интенсивность звука), аппроксимация различных зависимостей, теория информации, теория вероятностей и т. д. Эта функция относится к числу элементарных, она обратна по отношению к показательной функции. Чаще всего используются вещественные логарифмы с основаниями (двоичный), число Эйлера e (натуральный) и (десятичный логарифм).
Вещественный логарифм[править | править код]
Логарифм вещественного числа по определению есть решение уравнения . Случай интереса не представляет, поскольку тогда при это уравнение не имеет решения, а при любое число является решением; в обоих случаях логарифм не определён. Аналогично заключаем, что логарифм не существует при нулевом или отрицательном ; кроме того, значение показательной функции всегда положительно, поэтому следует исключить также случай отрицательного . Окончательно получаем[5]:
Вещественный логарифм имеет смысл при
Как известно, показательная функция (при выполнении указанных условий для ) существует, монотонна и каждое значение принимает только один раз, причём диапазон её значений содержит все положительные вещественные числа[6]. Отсюда следует, что значение вещественного логарифма положительного числа всегда существует и определено однозначно.
Наиболее широкое применение нашли следующие виды логарифмов:
Свойства[править | править код]
Основное логарифмическое тождество[править | править код]
Из определения логарифма следует основное логарифмическое тождество[7]:
Следствие: из равенства двух вещественных логарифмов следует равенство логарифмируемых выражений. В самом деле, если , то , откуда, согласно основному тождеству: .
Логарифмы единицы и числа, равного основанию[править | править код]
Два равенства, очевидных из определения логарифма:
Логарифм произведения, частного от деления, степени и корня[править | править код]
Приведём сводку формул в предположении, что все значения положительны[8]:
Формула | Пример | Доказательство | |
---|---|---|---|
Произведение | |||
Частное от деления | |||
Степень |
Доказательство
|
||
Степень в основании |
Доказательство
|
||
Корень |
Доказательство
|
||
Корень в основании |
Доказательство
|
Существует очевидное обобщение приведённых формул на случай, когда допускаются отрицательные значения переменных, например:
Формулы для логарифма произведения без труда обобщаются на произвольное количество сомножителей:
Вышеописанные свойства объясняют, почему применение логарифмов (до изобретения калькуляторов) существенно облегчало вычисления. Например, умножение многозначных чисел с помощью логарифмических таблиц[⇨] производилось по следующему алгоритму:
- найти в таблицах логарифмы чисел ;
- сложить эти логарифмы, получая (согласно первому свойству) логарифм произведения ;
- по логарифму произведения найти в таблицах само произведение.
Деление, которое без помощи логарифмов намного более трудоёмко, чем умножение, выполнялось по тому же алгоритму, лишь с заменой сложения логарифмов на вычитание. Аналогично упрощались возведение в степень и извлечение корня.
Замена основания логарифма[править | править код]
Логарифм по основанию можно преобразовать[5] в логарифм по другому основанию :
Следствие (при ) — перестановка основания и логарифмируемого выражения:
См. пример такой перестановки в разделе десятичный логарифм.
Коэффициент в формуле замены основания называется модулем перехода от одного основания к другому[9].
Неравенства[править | править код]
Значение логарифма положительно тогда и только тогда, когда числа лежат по одну сторону от единицы (то есть либо оба больше единицы, либо оба меньше). Если же лежат по разные стороны от единицы, то логарифм отрицателен[10].
Любое неравенство для положительных чисел можно логарифмировать. При этом, если основание логарифма больше единицы, то знак неравенства сохраняется, а если основание меньше единицы, знак неравенства меняется на противоположный[10].
Другие тождества и свойства[править | править код]
Если выражения для основания логарифма и для логарифмируемого выражения содержат возведение в степень, для упрощения можно применить следующее тождество:
- где — вещественные числа,
Это тождество сразу получается, если в логарифме слева заменить основание на по вышеприведённой формуле замены основания. Следствия:
Ещё одно полезное тождество:
Для его доказательства заметим, что логарифмы левой и правой частей по основанию совпадают (равны ), а тогда, согласно следствию из основного логарифмического тождества, левая и правая части тождественно равны. Прологарифмировав предыдущее тождество по произвольному основанию , получаем ещё одно тождество «обмена основаниями»:
Логарифмическая функция[править | править код]
Основные характеристики[править | править код]
Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию . Она определена при . Область значений: . Эта кривая часто называется логарифмикой[11]. Из формулы замены основания логарифма видно, что графики логарифмических функций с разными основаниями, бо́льшими единицы, отличаются один от другого только масштабом по оси ; графики для оснований, меньших единицы, являются их зеркальным отражением относительно горизонтальной оси.
Из определения следует, что логарифмическая зависимость есть обратная функция для показательной функции , поэтому их графики симметричны относительно биссектрисы первого и третьего квадрантов (см. рисунок). Как и показательная, логарифмическая функция относится к категории трансцендентных функций.
Функция является строго возрастающей при (см. далее графики) и строго убывающей при . График любой логарифмической функции проходит через точку . Функция непрерывна и неограниченно дифференцируема всюду в своей области определения.
Ось ординат () является вертикальной асимптотой, поскольку:
- при ;
- при .
Производная логарифмической функции равна:
С точки зрения алгебры, логарифмическая функция осуществляет (единственно возможный) изоморфизм мультипликативной группы положительных вещественных чисел и аддитивной группы всех вещественных чисел. Другими словами, логарифмическая функция есть единственное (определённое для всех положительных значений аргумента) непрерывное решение функционального уравнения[12]:
Натуральный логарифм[править | править код]
Из приведённой выше общей формулы производной для натурального логарифма получаем особенно простой результат:
По этой причине в математических исследованиях преимущественно используют именно натуральные логарифмы. Они нередко появляются при решении дифференциальных уравнений, исследовании статистических зависимостей (например, распределения простых чисел) и т. п.
Проинтегрировав формулу для производной в интервале от до , мы получаем:
Другими словами, натуральный логарифм равен площади под гиперболой для указанного интервала x.
Неопределённый интеграл от натурального логарифма легко найти интегрированием по частям:
В математическом анализе и теории дифференциальных уравнений большую роль играет понятие логарифмической производной функции :
Разложение в ряд и вычисление натурального логарифма[править | править код]
Разложим натуральный логарифм в ряд Тейлора вблизи единицы:
(Ряд 1) |
Этот ряд, называемый «рядом Меркатора», сходится при . В частности:
Формула ряда 1 непригодна для практического расчёта логарифмов из-за того, что ряд сходится очень медленно и только в узком интервале. Однако нетрудно получить из неё более удобную формулу:
(Ряд 2) |
Этот ряд сходится быстрее, а кроме того, левая часть формулы теперь может выразить логарифм любого положительного числа , ибо тогда по абсолютной величине меньше единицы. Данный алгоритм уже пригоден для реальных численных расчётов значений логарифмов, однако не является наилучшим с точки зрения трудоёмкости. Существуют более эффективные алгоритмы[13].
Десятичный логарифм[править | править код]
Логарифмы по основанию 10 (обозначение: ) до изобретения калькуляторов широко применялись для вычислений. Они обладают преимуществом перед логарифмами с иным основанием: целую часть логарифма числа легко определить[14]:
Кроме того, при переносе десятичной запятой в числе на разрядов значение десятичного логарифма этого числа изменяется на . Например, . Отсюда следует, что для вычисления десятичных логарифмов достаточно составить таблицу логарифмов для чисел в диапазоне от до [14].
Связь с натуральным логарифмом[15]:
Поскольку применение логарифмов для расчётов с появлением вычислительной техники почти прекратилось, в наши дни десятичный логарифм в значительной степени вытеснен натуральным[16]. Он сохраняется в основном в тех математических моделях, где исторически укоренился — например, при построении логарифмических шкал.
Предельные соотношения[править | править код]
Приведём несколько полезных пределов, связанных с логарифмами[17]:
Другие свойства[править | править код]
Комплексный логарифм[править | править код]
Определение и свойства[править | править код]
Для комплексных чисел логарифм определяется так же, как вещественный. На практике используется почти исключительно натуральный комплексный логарифм, который обозначается и определяется как решение уравнения (другие, эквивалентные данному, варианты определения приведены ниже).
В поле комплексных чисел решение этого уравнения, в отличие от вещественного случая, не определено однозначно. Например, согласно тождеству Эйлера, ; однако также . Это связано с тем, что показательная функция вдоль мнимой оси является периодической (с периодом )[19], и одно и то же значение функция принимает бесконечно много раз. Таким образом, комплексная логарифмическая функция является многозначной.
Комплексный нуль не имеет логарифма, поскольку комплексная экспонента не принимает нулевого значения. Ненулевое можно представить в показательной форме:
Тогда находится по формуле[20]:
Здесь — вещественный логарифм, — произвольное целое число. Отсюда вытекает:
Из формулы видно, что у одного и только одного из значений мнимая часть находится в интервале . Это значение называется главным значением комплексного натурального логарифма[11]. Соответствующая (уже однозначная) функция называется главной ветвью логарифма и обозначается . Иногда через также обозначают значение логарифма, лежащее не на главной ветви. Если — вещественное число, то главное значение его логарифма совпадает с обычным вещественным логарифмом.
Из приведённой формулы также следует, что вещественная часть логарифма определяется следующим образом через компоненты аргумента:
На рисунке показано, что вещественная часть как функция компонентов центрально-симметрична и зависит только от расстояния до начала координат. Она получается вращением графика вещественного логарифма вокруг вертикальной оси. С приближением к нулю функция стремится к .
Логарифм отрицательного числа находится по формуле[20]:
Примеры значений комплексного логарифма[править | править код]
Приведём главное значение логарифма () и общее его выражение () для некоторых аргументов:
Следует быть осторожным при преобразованиях комплексных логарифмов, принимая во внимание, что они многозначны, и поэтому из равенства логарифмов каких-либо выражений не следует равенство этих выражений. Пример ошибочного рассуждения:
— ошибка, которая, однако, косвенно указывает на то, что значения, отличающиеся на , являются логарифмами одного и того же числа.
Отметим, что слева стоит главное значение логарифма, а справа — значение из нижележащей ветви (). Причина ошибки — неосторожное использование свойства , которое, вообще говоря, подразумевает в комплексном случае весь бесконечный набор значений логарифма, а не только главное значение.
Комплексная логарифмическая функция и риманова поверхность[править | править код]
В комплексном анализе вместо рассмотрения многозначных функций на комплексной плоскости принято иное решение: рассматривать функцию как однозначную, но определённую не на плоскости, а на более сложном многообразии, которое называется римановой поверхностью[21]. Комплексная логарифмическая функция также относится к этой категории: её образ (см. рисунок) состоит из бесконечного числа ветвей, закрученных в виде спирали. Эта поверхность непрерывна и односвязна. Единственный нуль у функции (первого порядка) получается при . Особые точки: и (точки разветвления бесконечного порядка)[22].
В силу односвязности риманова поверхность логарифма является универсальной накрывающей[23] для комплексной плоскости без точки .
Аналитическое продолжение[править | править код]
Логарифм комплексного числа также может быть определён как аналитическое продолжение вещественного логарифма на всю комплексную плоскость. Пусть кривая начинается в единице, не проходит через нуль и не пересекает отрицательную часть вещественной оси. Тогда главное значение логарифма в конечной точке кривой можно определить по формуле[22]:
Если — простая кривая (без самопересечений), то для чисел, лежащих на ней, логарифмические тождества можно применять без опасений, например:
Главная ветвь логарифмической функции непрерывна и дифференцируема на всей комплексной плоскости, кроме отрицательной части вещественной оси, на которой мнимая часть скачком меняется на . Но этот факт есть следствие искусственного ограничения мнимой части главного значения интервалом . Если рассмотреть все ветви функции, то непрерывность имеет место во всех точках, кроме нуля, где функция не определена. Если разрешить кривой пересекать отрицательную часть вещественной оси, то первое такое пересечение переносит результат с ветви главного значения на соседнюю ветвь, а каждое следующее пересечение вызывает аналогичное смещение по ветвям логарифмической функции[22] (см. рисунок).
Из формулы аналитического продолжения следует, что на любой ветви логарифма[19]:
Для любой окружности , охватывающей точку :
Интеграл берётся в положительном направлении (против часовой стрелки). Это тождество лежит в основе теории вычетов.
Можно также определить аналитическое продолжение комплексного логарифма с помощью вышеприведённых рядов: ряда 1 или ряда 2, — обобщённых на случай комплексного аргумента. Однако из вида этих рядов следует, что в единице сумма ряда равна нулю, то есть ряд относится только к главной ветви многозначной функции комплексного логарифма. Радиус сходимости обоих рядов равен 1.
Связь с обратными тригонометрическими и гиперболическими функциями[править | править код]
Поскольку комплексные тригонометрические функции связаны с экспонентой (формула Эйлера), то комплексный логарифм как обратная к экспоненте функция связан с обратными тригонометрическими функциями[24][25]:
Гиперболические функции на комплексной плоскости можно рассматривать как тригонометрические функции мнимого аргумента, поэтому и здесь имеет место связь с логарифмом[25]:
- — обратный гиперболический синус
- — обратный гиперболический косинус
- — обратный гиперболический тангенс
- — обратный гиперболический котангенс
Исторический очерк[править | править код]
Предшественники[править | править код]
Идейным источником и стимулом применения логарифмов послужил тот факт (известный ещё Архимеду[26]), что при перемножении степеней их показатели складываются[27]: . Индийский математик VIII века Вирасена, исследуя степенные зависимости, опубликовал таблицу целочисленных показателей (то есть, фактически, логарифмов) для оснований 2, 3, 4[28].
Логарифмическая таблица М. Штифеля, «Arithmetica integra», 1544
Решающий шаг был сделан в средневековой Европе. Потребность в сложных расчётах в XVI веке быстро росла, и значительная часть трудностей была связана с умножением и делением многозначных чисел, а также извлечением корней. В конце века нескольким математикам, почти одновременно, пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной[26]. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание, упростятся также возведение в степень и извлечение корня.
Первым эту идею опубликовал в своей книге «Arithmetica integra» (1544) Михаэль Штифель, который, впрочем, не приложил серьёзных усилий для практической реализации своей идеи[29][30]. Главной заслугой Штифеля является переход от целых показателей степени к произвольным рациональным[31] (первые шаги в этом направлении сделали Николай Орем в XIV веке и Никола Шюке в XV веке).
Джон Непер и его «удивительная таблица логарифмов»[править | править код]
В 1614 году шотландский математик-любитель Джон Непер опубликовал на латинском языке сочинение под названием «Описание удивительной таблицы логарифмов» (лат. Mirifici Logarithmorum Canonis Descriptio). В нём было краткое описание логарифмов и их свойств, а также 8-значные таблицы логарифмов синусов, косинусов и тангенсов, с шагом 1′. Термин логарифм, предложенный Непером, утвердился в науке. Теорию логарифмов Непер изложил в другой своей книге «Построение удивительной таблицы логарифмов» (лат. Mirifici Logarithmorum Canonis Constructio), изданной посмертно в 1619 году его сыном Робертом.
Судя по документам, техникой логарифмирования Непер владел уже к 1594 году[32]. Непосредственной целью её разработки было облегчить Неперу сложные астрологические расчёты[33]; именно поэтому в таблицы были включены только логарифмы тригонометрических функций.
Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение; например, логарифм синуса он определил следующим образом[34]:
Логарифм данного синуса есть число, которое арифметически возрастало всегда с той же скоростью, с какой полный синус начал геометрически убывать.
В современных обозначениях кинематическую модель Непера можно изобразить дифференциальным уравнением[35]:
- ,
где M — масштабный множитель, введённый для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10 000 000.
То есть логарифм есть такая функция , скорость роста которой обратно пропорциональна .
Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию , то она связана с натуральным логарифмом следующим образом[35]:
Очевидно, , то есть логарифм «полного синуса» (соответствующего 90°) есть нуль — этого и добивался Непер своим определением. Также он хотел, чтобы все логарифмы были положительны; нетрудно убедиться, что это условие для выполняется. .
Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию, то их логарифмы образуют прогрессию арифметическую. Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма, например:
Дальнейшее развитие[править | править код]
Как вскоре обнаружилось, из-за ошибки в алгоритме все значения таблицы Непера содержали неверные цифры после шестого знака[36]. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики. Кеплер в изданный им астрономический справочник 1620 года вставил восторженное посвящение Неперу (не зная, что изобретатель логарифмов уже скончался). В 1624 году Кеплер опубликовал свой собственный вариант логарифмических таблиц (лат. Chilias Logarithmorum ad totidem numeros rotundos)[37]. Использование логарифмов позволило Кеплеру относительно быстро завершить многолетний труд по составлению Рудольфинских таблиц, которые закрепили успех гелиоцентрической астрономии.
Спустя несколько лет после книги Непера появились логарифмические таблицы, использующие более близкое к современному понимание логарифма. Лондонский профессор Генри Бригс издал 14-значные таблицы десятичных логарифмов (1617), причём не для тригонометрических функций, а для произвольных целых чисел до 1000 (7 лет спустя Бригс увеличил количество чисел до 20000). В 1619 году лондонский учитель математики Джон Спайделл (англ. John Speidell) переиздал логарифмические таблицы Непера, исправленные и дополненные так, что они фактически стали таблицами натуральных логарифмов. У Спайделла тоже были и логарифмы самих чисел до 1000 (причём логарифм единицы, как и у Бригса, был равен нулю) — хотя масштабирование до целых чисел Спайделл сохранил[38][39].
Вскоре выяснилось, что место логарифмов в математике не ограничивается расчётными удобствами. В 1629 году бельгийский математик Грегуар де Сен-Венсан показал, что площадь под гиперболой меняется по логарифмическому закону[40]. В 1668 году немецкий математик Николас Меркатор (Кауфман) открыл и опубликовал в своей книге Logarithmotechnia разложение логарифма в бесконечный ряд[41]. По мнению многих историков, появление логарифмов оказало сильное влияние на многие математические концепции, в том числе:
- Формирование и признание общего понятия иррациональных и трансцендентных чисел[42].
- Появление показательной функции и общего понятия числовой функции, числа Эйлера, развитие теории разностных уравнений[43].
- Начало работы с бесконечными рядами[41].
- Общие методы решения дифференциальных уравнений различных типов.
- Существенное развитие теории численных методов, требуемых для вычисления точных логарифмических таблиц.
До конца XIX века общепринятого обозначения логарифма не было, основание a указывалось то левее и выше символа log, то над ним. В конечном счёте математики пришли к выводу, что наиболее удобное место для основания — ниже строки, после символа log: . Краткие обозначения наиболее употребительных видов логарифма — для десятичного и натурального — появились намного раньше сразу у нескольких авторов и закрепились окончательно также к концу XIX века[44].
Близкое к современному понимание логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса (1685) и Иоганна Бернулли (1694), а окончательно было узаконено Эйлером[36]. В книге «Введение в анализ бесконечных» (1748) Эйлер дал современные определения как показательной, так и логарифмической функций, привёл разложение их в степенные ряды, особо отметил роль натурального логарифма[45]. Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.
Расширение логарифма на комплексную область[править | править код]
Первые попытки распространить логарифмы на комплексные числа предпринимали на рубеже XVII—XVIII веков Лейбниц и Иоганн Бернулли, однако создать целостную теорию им не удалось — в первую очередь по той причине, что тогда ещё не было ясно определено само понятие логарифма[46]. Дискуссия по этому поводу велась сначала между Лейбницем и Бернулли, а в середине XVIII века — между Д’Аламбером и Эйлером. Бернулли и Д’Аламбер считали, что следует определить , в то время как Лейбниц доказывал, что логарифм отрицательного числа есть мнимое число[46]. Полная теория логарифмов отрицательных и комплексных чисел была опубликована Эйлером в 1747—1751 годах и по существу ничем не отличается от современной[47]. Хотя спор продолжался (Д’Аламбер отстаивал свою точку зрения и подробно аргументировал её в статье своей «Энциклопедии» и в других трудах), подход Эйлера к концу XVIII века получил всеобщее признание.
В XIX веке, с развитием комплексного анализа, исследование комплексного логарифма стимулировало новые открытия. Гаусс в 1811 году разработал полную теорию многозначности логарифмической функции[48], определяемой как интеграл от . Риман, опираясь на уже известные факты об этой и аналогичных функциях, построил общую теорию римановых поверхностей.
Разработка теории конформных отображений показала, что меркаторская проекция в картографии, возникшая ещё до открытия логарифмов (1550), может быть описана как комплексный логарифм[49].
Некоторые практические применения[править | править код]
Логарифмические зависимости в науке и природе[править | править код]
Логарифмические функции распространены чрезвычайно широко как в математике, так и в естественных науках. Часто логарифмы появляются там, где проявляется самоподобие, то есть некоторый объект последовательно воспроизводится в уменьшенном или увеличенном масштабе; см. ниже такие примеры, как рекурсивные алгоритмы, фракталы или раковины моллюсков. Приведём несколько примеров использования логарифмов в разнообразных науках.
Теория чисел[править | править код]
Распределение простых чисел асимптотически подчиняется простым законам[50]:
- Число простых чисел в интервале от 1 до приблизительно равно .
- k-е простое число приблизительно равно .
Ещё более точные оценки используют интегральный логарифм.
Нередко возникает задача грубо оценить очень большое число — например, факториал или число Мерсенна с большим номером. Для этого было бы удобно приближённо записать число в экспоненциальном формате, то есть в виде мантиссы и десятичного порядка.
Задача легко решается с применением логарифмов. Рассмотрим для примера 44-е число Мерсенна .
Следовательно, мантисса результата равна Окончательно получим:
Математический анализ[править | править код]
Логарифмы нередко возникают при нахождении интегралов и при решении дифференциальных уравнений. Примеры:
Теория вероятностей и статистика[править | править код]
В статистике и теории вероятностей логарифм входит в ряд практически важных вероятностных распределений. Например, логарифмическое распределение[51] используется в генетике и физике. Логнормальное распределение часто встречается в ситуациях, когда исследуемая величина есть произведение нескольких независимых положительных случайных переменных[52].
Закон Бенфорда («закон первой цифры») описывает вероятность появления определённой первой значащей цифры при измерении реальных величин.
Для оценки неизвестного параметра широко применяются метод максимального правдоподобия и связанная с ним логарифмическая функция правдоподобия[53].
Флуктуации при случайном блуждании описывает закон Хинчина-Колмогорова.
Информатика и вычислительная математика[править | править код]
В информатике: единица измерения информации (бит). Например, для хранения в компьютере натурального числа (в обычном для компьютера двоичном формате) понадобится битов.
Информационная энтропия — мера количества информации.
Оценка асимптотической сложности рекурсивных алгоритмов, основанных на принципе «разделяй и властвуй»[54] — таких как быстрая сортировка, быстрое преобразование Фурье и т. п.
Обычно числовые значения хранятся в памяти компьютера или специализированного процессора в формате с плавающей запятой. Если, однако, сложение и вычитание для группы данных выполняются редко, а умножение, деление, возведение в степень и извлечение корня — гораздо чаще, тогда имеет смысл рассмотреть возможность хранения таких данных в логарифмическом формате. В этом случае вместо числа хранится логарифм его модуля и знак, и скорость вычислений благодаря свойствам логарифма значительно повышается[55]. Логарифмический формат хранения был использован в нескольких системах, где доказал свою эффективность[56][57].
Фракталы и размерность[править | править код]
Логарифмы помогают выразить размерность Хаусдорфа для фрактала[58]. Например, рассмотрим треугольник Серпинского, который получается из равностороннего треугольника последовательным удалением аналогичных треугольников, линейный размер каждого из которых на каждом этапе уменьшается вдвое (см. рисунок). Размерность результата определяется по формуле:
Механика и физика[править | править код]
Принцип Больцмана в статистической термодинамике — одна из важнейших функций состояния термодинамической системы, характеризующая степень её хаотичности.
Формула Циолковского применяется для расчёта скорости ракеты.
Химия и физическая химия[править | править код]
Уравнение Нернста связывает окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, а также со стандартными электродными потенциалами окислительно-восстановительных пар.
Логарифм используется в определениях таких величин, как показатель константы автопротолиза (самоионизации молекулы) и водородный показатель (кислотности раствора).
Теория музыки[править | править код]
Чтобы решить вопрос о том, на сколько частей делить октаву, требуется отыскать рациональное приближение для . Если разложить это число в непрерывную дробь, то третья подходящая дробь (7/12) позволяет обосновать классическое деление октавы на 12 полутонов[59].
Психология и физиология[править | править код]
Человеческое восприятие многих явлений хорошо описывается логарифмическим законом.
Закон Вебера — Фехнера — эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности стимула[60] — громкости звука[61], яркости света.
Закон Фиттса: чем дальше или точнее выполняется движение организма, тем больше коррекции необходимо для его выполнения и тем дольше эта коррекция исполняется[62].
Время на принятие решения при наличии выбора можно оценить по закону Хика[en][63].
Биология[править | править код]
Ряд биологических форм хорошо соответствует логарифмической спирали[64] — кривой, у которой касательная в каждой точке образует с радиус-вектором в этой точке один и тот же угол, то есть прирост радиуса на единицу длины окружности постоянен:
Разное[править | править код]
Число кругов игры по олимпийской системе равно двоичному логарифму от числа участников соревнований, округлённому до ближайшего большего целого[65].
Логарифмическая шкала[править | править код]
Неравномерная шкала десятичных логарифмов используется во многих областях науки. Для обеспечения вычислений она наносится на логарифмические линейки. Другие примеры:
- Акустика — уровень звукового давления и интенсивность звука (децибелы)[66].
- Отношение сигнал/шум в радиотехнике и электросвязи[67].
- Астрономия — шкала яркости звёзд[68].
- Химия — активность водородных ионов (pH)[69].
- Сейсмология — шкала Рихтера[70].
- Оптическая плотность — мера поглощения света прозрачными объектами или отражения света непрозрачными объектами[71].
- Фотографическая широта — характеристика светочувствительного материала[72].
- Шкала выдержек и диафрагм в фотографии[73].
- Теория музыки — нотная шкала, по отношению к частотам нотных звуков[59].
- Сельское хозяйство — основная гидрофизическая характеристика почвы[74].
- Теория управления — логарифмическая амплитудно-фазовая частотная характеристика[75].
Логарифмическая шкала особенно удобна в тех случаях, когда уровни измеряемой величины образуют геометрическую прогрессию, поскольку тогда их логарифмы распределены с постоянным шагом. Например, 12 полутонов классической октавы образуют (приближённо) такую прогрессию[59] со знаменателем . Аналогично, каждый уровень шкалы Рихтера соответствует в 10 раз большей энергии, чем предыдущий уровень. Даже при отсутствии геометрической прогрессии логарифмическая шкала может пригодиться для компактного представления широкого диапазона значений измеряемой величины.
Логарифмическая шкала также широко применяется для оценки показателя степени в степенных зависимостях и коэффициента в показателе экспоненты. При этом график, построенный в логарифмическом масштабе по одной или двум осям, принимает вид прямой, более простой для исследования.
Графики трёх функций при различном выборе шкал по осям координат:
Верхний ряд – 1) обе линейные; 2) логарифмическая (x) и линейная (y);
Нижний ряд – 1) линейная (x) и логарифмическая (y); 2) обе логарифмические.
Логарифмические таблицы[править | править код]
Из свойств логарифма следует, что вместо трудоёмкого умножения многозначных чисел достаточно найти (по таблицам) и сложить их логарифмы, а потом по тем же таблицам (раздел «Антилогарифмы») выполнить потенцирование, то есть найти значение результата по его логарифму. Выполнение деления отличается только тем, что логарифмы вычитаются.
Первые таблицы логарифмов опубликовал Джон Непер (1614), и они содержали только логарифмы тригонометрических функций, причём с ошибками. Независимо от него свои таблицы опубликовал Йост Бюрги, друг Кеплера (1620). В 1617 году оксфордский профессор математики Генри Бригс опубликовал таблицы, которые уже включали десятичные логарифмы самих чисел, от 1 до 1000, с 8 (позже — с 14) знаками. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Георга Веги (1783) появилось только в 1857 году в Берлине (таблицы Бремикера)[76].
В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого[77]. В СССР выпускались несколько сборников таблиц логарифмов[78]:
- Брадис В. М. Четырёхзначные математические таблицы. М.: Дрофа, 2010, ISBN 978-5-358-07433-0. Таблицы Брадиса, издаваемые с 1921 года, использовались в учебных заведениях и в инженерных расчётах, не требующих большой точности. Они содержали мантиссы десятичных логарифмов чисел и тригонометрических функций, натуральные логарифмы и некоторые другие полезные расчётные инструменты.
- Вега Г. Таблицы семизначных логарифмов, 4-е издание, М.: Недра, 1971. Профессиональный сборник для точных вычислений.
- Бремикер К. Логарифмо-тригонометрические таблицы. М.: Наука, 1962. 664 с. Классические шестизначные таблицы, удобные для расчётов с тригонометрическими функциями.
- Пятизначные таблицы натуральных значений тригонометрических величин, их логарифмов и логарифмов чисел, 6-е издание, М.: Наука, 1972.
- Таблицы натуральных логарифмов, 2-е издание, в 2 томах, М.: Наука, 1971.
- Десятизначные таблицы логарифмов комплексных чисел. М., 1952.
Логарифмическая линейка[править | править код]
В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов служившую незаменимым расчётным орудием инженера[79]. С помощью этого компактного инструмента можно быстро производить все алгебраические операции, в том числе с участием тригонометрических функций[80]. Точность расчётов — около 3 значащих цифр.
Логарифмическая линейка. Умножение 1,3 × 2 или деление 2,6 / 2 (см. шкалы C и D).
Вариации и обобщения[править | править код]
Логарифм как решение уравнения можно определить не только для вещественных и комплексных чисел.
- Можно ввести логарифмическую функцию для кватернионов (см. функции кватернионного переменного). Однако большинство алгебраических свойств логарифма при этом теряется[81] — например, логарифм произведения не равен сумме логарифмов, и это снижает практическую ценность такого обобщения.
- Если — элементы конечной абелевой мультипликативной группы, то логарифм в указанном смысле (если он существует) называется дискретным. Чаще всего он рассматривается для конечной группы кольца вычетов по некоторому модулю, где называется индексом по этому модулю[82] и играет важную роль в криптографии. В циклических группах логарифм существует, если его основание является первообразным корнем этой группы.
- Матричный логарифм: можно определить логарифмы также для матриц[83].
- Можно определить p-адический логарифм[en] для некоторых p-адических чисел[84].
- Для работы с очень большими числами вводится понятие суперлогарифма, связанное не с возведением в степень, а с операцией более высокого порядка: тетрацией.
См. также[править | править код]
- Антилогарифм
- Логарифмический вычет
- Логарифмический признак сходимости
- Логарифмическая бумага
- Полилогарифм
- Порядок величины
- Список интегралов от логарифмических функций
Примечания[править | править код]
- ↑ Краткий словарь иностранных слов. М.: Русский язык, 1984.
- ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 186.
- ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 184—186.
- ↑ Швецов К. И., Бевз Г. П. Справочник по элементарной математике. Арифметика, алгебра. Киев: Наукова Думка, 1966. § 40. Исторические сведения о логарифмах и логарифмической линейке.
- ↑ 1 2 Корн Г., Корн Т. Справочник по математике, 1973, с. 34.
- ↑ Алгебра и начала анализа. Учебник для 10-11 классов. 12-е издание, М.: Просвещение, 2002. Стр. 229.
- ↑ Алгебра и начала анализа. Учебник для 10-11 классов. 12-е издание, М.: Просвещение, 2002. Стр. 233.
- ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 187.
- ↑ Элементарная математика, 1976, с. 93f.
- ↑ 1 2 Элементарная математика, 1976, с. 89.
- ↑ 1 2 Логарифмическая функция. // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. Архивировано 16 октября 2013 года.
- ↑ Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том I, стр. 159-160.
- ↑ Sasaki T., Kanada Y. Practically fast multiple-precision evaluation of log(x) (англ.) // Journal of Information Processing. — 1982. — Vol. 5, iss. 4. — P. 247—250. Архивировано 29 июля 2011 года.
- ↑ 1 2 Элементарная математика, 1976, с. 94—100.
- ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 189.
- ↑ Клейн Ф. Элементарная математика с точки зрения высшей, 1987, с. 406.
- ↑ Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том I, стр. 164.
- ↑ Baker, Alan (1975), Transcendental number theory, Cambridge University Press, ISBN 978-0-521-20461-3, p. 10.
- ↑ 1 2 Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том II, стр. 520-522.
- ↑ 1 2 Корн Г., Корн Т. Справочник по математике, 1973, с. 623.
- ↑ Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной, 1967, с. 92—94.
- ↑ 1 2 3 Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной, 1967, с. 45—46, 99-100.
- ↑ Болтянский В. Г., Ефремович В. А. Наглядная топология. — М.: Наука, 1982. — С. 112. — (Библиотечка Квант, выпуск 21). Архивировано 2 марта 2022 года.
- ↑ Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том II, стр. 522-526.
- ↑ 1 2 Корн Г., Корн Т. Справочник по математике, 1973, с. 624.
- ↑ 1 2 Успенский Я. В. Очерк истории логарифмов, 1923, с. 9.
- ↑ Клейн Ф. Элементарная математика с точки зрения высшей, 1987, с. 206.
- ↑ Gupta, R. C. (2000), History of Mathematics in India, in Hoiberg, Dale & Ramchandani, Students’ Britannica India: Select essays, New Delhi: Popular Prakashan, с. 329 Архивная копия от 17 марта 2018 на Wayback Machine
- ↑ История математики, том II, 1970, с. 54—55.
- ↑ Vivian Shaw Groza, Susanne M. Shelley (1972), Precalculus mathematics, New York: Holt, Rinehart, Winston, с. 182, ISBN 978-0-03-077670-0, <https://books.google.com/?id=yM_lSq1eJv8C&pg=PA182&dq=%22arithmetica+integra%22+logarithm&q=stifel>
- ↑ Клейн Ф. Элементарная математика с точки зрения высшей, 1987, с. 210.
- ↑ Успенский Я. В. Очерк истории логарифмов, 1923, с. 13.
- ↑ История математики, том II, 1970, с. 56.
- ↑ Хрестоматия по истории математики. Математический анализ. Теория вероятностей / Под ред. А. П. Юшкевича. — М.: Просвещение, 1977. — С. 40. — 224 с.
- ↑ 1 2 История математики, том II, 1970, с. 59.
- ↑ 1 2 История математики, том II, 1970, с. 61.
- ↑ Успенский Я. В. Очерк истории логарифмов, 1923, с. 39.
- ↑ История математики, том II, 1970, с. 63.
- ↑ Charles Hutton. Mathematical Tables. Архивная копия от 11 сентября 2016 на Wayback Machine London, 1811, p. 30.
- ↑ История математики, том II, 1970, с. 133.
- ↑ 1 2 Успенский Я. В. Очерк истории логарифмов, 1923, с. 52.
- ↑ Клейн Ф. Элементарная математика с точки зрения высшей, 1987, с. 51, 286, 352.
- ↑ Клейн Ф. Элементарная математика с точки зрения высшей, 1987, с. 213, 217.
- ↑ Florian Cajori. A History of Mathematics, 5th ed (англ.). — AMS Bookstore, 1991. — P. 152. — ISBN 0821821024.
- ↑ Рыбников К. А. История математики. В двух томах. — М.: Изд. МГУ, 1963. — Т. II. — С. 25.
- ↑ 1 2 История математики, том III, 1972, с. 325—328.
- ↑ Рыбников К. А. История математики. В двух томах. — М.: Изд. МГУ, 1963. — Т. II. — С. 27, 230—231.
- ↑ Математика XIX века. Том II: Геометрия. Теория аналитических функций, 1981, с. 122—123.
- ↑ Клейн Ф. Элементарная математика с точки зрения высшей. — М.: Наука, 1987. — Т. II. Геометрия. — С. 159—161. — 416 с. Архивировано 16 октября 2015 года.
- ↑ Дербишир, Джон. Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — Астрель, 2010. — 464 с. — ISBN 978-5-271-25422-2.
- ↑ Weisstein, Eric W. Log-Series Distribution (англ.). MathWorld. Дата обращения: 26 апреля 2012. Архивировано 11 мая 2012 года.
- ↑ Логарифмически нормальное распределение // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. Архивировано 16 октября 2013 года.
- ↑ Максимального правдоподобия метод // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. Архивировано 16 октября 2013 года.
- ↑ Harel, David; Feldman, Yishai A. Algorithmics: the spirit of computing. — New York: Addison-Wesley, 2004. — P. 143. — ISBN 978-0-321-11784-7.
- ↑ N. G. Kingsburg, P. J. W. Rayner. Digital filtering using logarithmic arithmetic (англ.) // Electronics Letters (англ.) (рус. : journal. — 1971. — 28 January (vol. 7). — P. 55.
- ↑ R. C. Ismail and J. N. Coleman. ROM-less LNS (англ.) // 2011 20th IEEE Symposium on Computer Arithmetic (ARITH). — 2011. — July. — P. 43—51. — doi:10.1109/ARITH.2011.15.
- ↑ Haohuan Fu, Oskar Mencer, Wayne Luk. Comparing Floating-point and Logarithmic Number Representations for Reconfigurable Acceleration (англ.) // IEEE Conference on Field Programmable Technology : journal. — 2006. — December. — P. 337. — doi:10.1109/FPT.2006.270342. Архивировано 19 января 2012 года.
- ↑ Иванов М. Г. Размер и размерность // «Потенциал», август 2006.
- ↑ 1 2 3 Шилов Г. Е. Простая гамма. Устройство музыкальной шкалы. Архивная копия от 22 февраля 2014 на Wayback Machine М.: Физматгиз, 1963. 20 с. Серия «Популярные лекции по математике», выпуск 37.
- ↑ Головин С. Ю. ЗАКОН ВЕБЕРА-ФЕХНЕРА // Словарь практического психолога. Дата обращения: 17 апреля 2012. Архивировано 11 июня 2013 года.
- ↑ Ирина Алдошина. Основы психоакустики // Звукорежиссёр. — 1999. — Вып. 6. Архивировано 24 апреля 2012 года.
- ↑ Закон Фиттса // Психологическая энциклопедия. Дата обращения: 17 апреля 2012. Архивировано 2 июля 2015 года.
- ↑ Welford, A. T. Fundamentals of skill. — London: Methuen, 1968. — P. 61. — ISBN 978-0-416-03000-6.
- ↑ Логарифмическая спираль // Математический энциклопедический словарь / Гл. ред. Ю. В. Прохоров. — М.: Советская энциклопедия, 1988. — С. 328. — 847 с. — ISBN 5-85270-278-1. Архивировано 10 сентября 2014 года.
- ↑ Харин А. А. Организация и проведение соревнований. Методическое пособие. — Ижевск: УдГУ, 2011. — С. 27. Архивировано 24 июля 2020 года.
- ↑ Децибел // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ Учебно-методический комплекс: Методы и средства обработки сигналов. Дата обращения: 28 апреля 2012. Архивировано из оригинала 19 марта 2012 года.
- ↑ Звёздная величина // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ Бейтс Р. Определение рН. Теория и практика. — 2 изд. — Л.: Химия, 1972.
- ↑ Горкин А. П. Шкала Рихтера // География. — М.: Росмэн-Пресс, 2006. — 624 с. — (Современная иллюстрированная энциклопедия). — 10 000 экз. — ISBN 5-353-02443-5.
- ↑ Оптическая плотность // Фотокинотехника: Энциклопедия / Гл. ред. Е. А. Иофис. — М.: Советская энциклопедия, 1981. — 447 с.
- ↑ Фотографическая широта // Фотокинотехника: Энциклопедия / Гл. ред. Е. А. Иофис. — М.: Советская энциклопедия, 1981. — 447 с.
- ↑ Кулагин С. В. Выдержка // Фотокинотехника: Энциклопедия / Гл. ред. Е. А. Иофис. — М.: Советская энциклопедия, 1981. — 447 с.
- ↑ Шеин Е. В. Курс физики почв. М.: Изд-во МГУ, 2005. — 432 с. ISBN 5-211-05021-5.
- ↑ Понятие частотных характеристик. Дата обращения: 28 апреля 2012. Архивировано 24 апреля 2012 года.
- ↑ История математики, том II, 1970, с. 62.
- ↑ Гнеденко Б. В. Очерки по истории математики в России, издание 2-е. — М.: КомКнига, 2005. — С. 66. — 296 с. — ISBN 5-484-00123-4.
- ↑ Логарифмические таблицы // Большая советская энциклопедия : [в 51 т.] / гл. ред. С. И. Вавилов. — 2-е изд. — М. : Советская энциклопедия, 1949—1958.
- ↑ История математики, том II, 1970, с. 65—66.
- ↑ Березин С. И. Счётная логарифмическая линейка. — М.: Машиностроение, 1968.
- ↑ David Eberly. Quaternion algebra and calculus (англ.) (2 марта 1999). Дата обращения: 12 апреля 2012. Архивировано 15 сентября 2012 года.
- ↑ Виноградов И. М. Основы теории чисел. — М.—Л.: ГИТТЛ, 1952. — С. 97. — 180 с. Архивировано 4 ноября 2011 года.
- ↑ Гантмахер Ф. Р. Теория матриц. — М.: Наука, 1967. — 576 с.
- ↑ p-adic exponential and p-adic logarithm (англ.) // PlanetMath.org. Архивировано 20 июня 2010 года.
Литература[править | править код]
- Теория логарифмов
- Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
- Переиздание: АСТ, 2003, ISBN 5-17-009554-6.
- Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
- Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с.
- Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной. — М.: Наука, 1967. — 304 с.
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — изд. 6-е. — М.: Наука, 1966. — 680 с.
- Шахмейстер А. Х. Логарифмы. Пособие для школьников, абитуриентов и преподавателей. — изд. 5-е. — СПб.: МЦНМО, 2016. — 288 с. — ISBN 978-5-4439-0648-5.
- История логарифмов
- Абельсон И. Б. Рождение логарифмов. — М.—Л.: Гостехиздат, 1948. — 231 с.
- Гиршвальд Л. Я. История открытия логарифмов. — Харьков: Изд-во Харьковского университета, 1952. — 33 с.
- Клейн Ф. Элементарная математика с точки зрения высшей. — М.: Наука, 1987. — Т. I. Арифметика. Алгебра. Анализ. — 432 с.
- Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
- Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
- Колмогоров А. Н., Юшкевич А. П. (ред.). Математика XIX века. Геометрия. Теория аналитических функций. — М.: Наука, 1981. — Т. II.
- Успенский Я. В. Очерк истории логарифмов. — Петроград: Научное книгоиздательство, 1923. — 78 с.