Автор – Лада Борисовна Есакова.
Перед тем, как приступить к решению задач, нам нужно понять несколько несложных моментов.
Рассмотрим десятичное число 875. Последняя цифра числа (5) – это остаток от деления числа 875 на 10. Последние две цифры образуют число 75 – это остаток от деления числа 875 на 100. Аналогичные утверждения справедливы для любой системы счисления:
Последняя цифра числа – это остаток от деления этого числа на основание системы счисления.
Последние две цифры числа – это остаток от деления числа на основание системы счисления в квадрате.
Например, . Разделим 23 на основание системы 3, получим 7 и 2 в остатке (2 – это последняя цифра числа в троичной системе). Разделим 23 на 9 (основание в квадрате), получим 18 и 5 в остатке (5 = ).
Вернемся опять к привычной десятичной системе. Число = 100000. Т.е. 10 в степени k– это единица и k нулей.
Аналогичное утверждение справедливо для любой системы счисления:
Основание системы счисления в степени k в этой системе счисления записывается как единица и k нулей.
Например, .
1. Поиск основания системы счисления
Пример 1.
В системе счисления с некоторым основанием десятичное число 27 записывается в виде 30. Укажите это основание.
Решение:
Обозначим искомое основание x. Тогда .Т.е. x = 9.
Ответ: 9
Пример 2.
В системе счисления с некоторым основанием десятичное число 13 записывается в виде 111. Укажите это основание.
Решение:
Обозначим искомое основание x. Тогда
Решаем квадратное уравнение, получаем корни 3 и -4. Поскольку основание системы счисления не может быть отрицательным, ответ 3.
Ответ: 3
Пример 3
Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 29 оканчивается на 5.
Решение:
Если в некоторой системе число 29 оканчивается на 5, то уменьшенное на 5 число (29-5=24) оканчивается на 0. Ранее мы уже говорили, что число оканчивается на 0 в том случае, когда оно без остатка делится на основание системы. Т.е. нам нужно найти все такие числа, которые являются делителями числа 24. Эти числа: 2, 3, 4, 6, 8, 12, 24. Заметим, что в системах счисления с основанием 2, 3, 4 нет числа 5 (а в формулировке задачи число 29 оканчивается на 5), значит остаются системы с основаниями: 6, 8, 12,
Ответ: 6, 8, 12, 24
Пример 4
Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 71 оканчивается на 13.
Решение:
Если в некоторой системе число оканчивается на 13, то основание этой системы не меньше 4 (иначе там нет цифры 3).
Уменьшенное на 3 число (71-3=68) оканчивается на 10. Т.е. 68 нацело делится на искомое основание системы, а частное от этого при делении на основание системы дает в остатке 0.
Выпишем все целые делители числа 68: 2, 4, 17, 34, 68.
2 не подходит, т.к. основание не меньше 4. Остальные делители проверим:
68:4 = 17; 17:4 = 4 (ост 1) – подходит
68:17 = 4; 4:17 = 0 (ост 4) – не подходит
68:34 = 2; 2:17 = 0 (ост 2) – не подходит
68:68 = 1; 1:68 = 0 (ост 1) – подходит
Ответ: 4, 68
2. Поиск чисел по условиям
Пример 5
Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 25, запись которых в системе счисления с основанием четыре оканчивается на 11?
Решение:
Для начала выясним, как выглядит число 25 в системе счисления с основанием 4.
. Т.е. нам нужно найти все числа, не больше , запись которых оканчивается на 11. По правилу последовательного счета в системе с основанием 4,
получаем числа и . Переводим их в десятичную систему счисления:
Ответ: 5, 21
3. Решение уравнений
Пример 6
Решите уравнение:
Ответ запишите в троичной системе (основание системы счисления в ответе писать не нужно).
Решение:
Переведем все числа в десятичную систему счисления:
Квадратное уравнение имеет корни -8 и 6. (т.к. основание системы не может быть отрицательным). .
Ответ: 20
4. Подсчет количества единиц (нулей) в двоичной записи значения выражения
Для решения этого типа задач нам нужно вспомнить, как происходит сложение и вычитание «в столбик»:
При сложении происходит поразрядное суммирование записанных друг под другом цифр, начиная с младших разрядов. В случае, если полученная сумма двух цифр больше или равна основанию системы счисления, под суммируемыми цифрами записывается остаток от деления этой суммы на основание системы, а целая часть от деления этой суммы на основание системы прибавляется к сумме следующих разрядов.
При вычитании происходит поразрядное вычитание записанных друг под другом цифр, начиная с младших разрядов. В случае, если первая цифра меньше второй, мы «занимаем» у соседнего (большего) разряда единицу. Занимаемая единица в текущем разряде равна основанию системы счисления. В десятичной системе это 10, в двоичной 2, в троичной 3 и т.д.
Пример 7
Сколько единиц содержится в двоичной записи значения выражения: ?
Решение:
Представим все числа выражения, как степени двойки:
В двоичной записи двойка в степени n выглядит, как 1 и n нулей. Тогда суммируя и , получим число, содержащее 2 единицы:
Теперь вычтем из получившегося числа 10000. По правилам вычитания занимаем у следующего разряда.
Теперь прибавляем к получившемуся числу 1:
Видим, что у результата 2013+1+1=2015 единиц.
Ответ: 2015.
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Задача №16. Поиск основания системы по окончанию числа, уравнения и различные кодировки, арифметические действия в различных системах.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
07.05.2023
Каталог заданий.
Определение основания
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задания Д14 № 2302
i
В системе счисления с некоторым основанием десятичное число 18 записывается в виде 30. Укажите это основание.
Аналоги к заданию № 2302: 2316 2320 2338 … Все
Решение
·
Помощь
2
Задания Д14 № 7673
i
Решите уравнение: 121x + 110 = 1017
Ответ запишите в троичной системе (основание системы счисления в ответе писать не нужно).
Аналоги к заданию № 7673: 4938 4979 6190 … Все
Решение
·
Помощь
3
Задания Д14 № 7927
i
Решите уравнение 121x + 110 = 1019.
Аналоги к заданию № 7927: 7992 Все
Решение
·
Помощь
4
Задания Д14 № 9200
i
Решите уравнение:
101x + 1310 = 101х+1
Аналоги к заданию № 9200: 9308 Все
Решение
·
Помощь
5
Задания Д14 № 2309
i
Чему равно наименьшее основание позиционной системы счисления x, при котором 225x = 405y?
Ответ записать в виде целого числа.
Решение
·
Помощь
Пройти тестирование по этим заданиям
О проекте · Редакция · Правовая информация · О рекламе
© Гущин Д. Д., 2011—2023
Формулировка задания: Решите уравнение, найдите основание системы счисления.
Задание входит в ЕГЭ по информатике для 11 класса под номером 16 (Кодирование чисел. Системы счисления).
Рассмотрим, как решаются подобные задания на примере.
Пример задания:
Решите уравнение: 101x + 1310 = 101х+1
Решение:
Переведем числа 101x и 101х+1 в десятичную систему счисления:
101x = 1 ⋅ x2 + 1
101х+1 = 1 ⋅ (x + 1)2 + 1
И подставим их в уравнение:
x2 + 1 + 13 = (x + 1)2 + 1
x2 + 14 = x2 + 2x + 1 + 1
14 = 2x + 2
2x = 12
x = 6
Ответ: 6
Поделитесь статьей с одноклассниками «Решите уравнение, найдите основание системы счисления – как решать».
При копировании материалов с сайта ссылка на источник обязательна. Уважайте труд людей, которые вам помогают.
Нашли ошибку? Выделите текст и нажмите Ctrl + Enter.
Как найти основание системы счисления из уравнения
В системе счисления с некоторым основанием десятичное число 18 записывается в виде 30. Укажите это основание.
Решение . Составим уравнение: где n — основание этой системы счисления. Исходя из уравнения,
Ответ запишите в троичной системе (основание системы счисления в ответе писать не нужно).
Решение . Преобразуем уравнение:
Основание системы счисления равно 610 = 203.
Решение . Преобразуем уравнение:
Корни квадратного уравнения: 8 и −10. Следовательно, основание системы счисления равно 8.
Решение . Переведём все числа в десятичную систему счисления:
Составим новое уравнение и решим уже его:
Чему равно наименьшее основание позиционной системы счисления x, при котором 225x = 405y?
Ответ записать в виде целого числа.
Решение . Поскольку в левой и в правой частях есть цифра 5, оба основания больше 5, то есть перебор имеет смысл начинать с
Для каждого x вычисляем значение и решаем уравнение , причем нас интересуют только натуральные
Для и нужных решений нет, а для получаем так что
Ответ:
В системе счисления с некоторым основанием десятичное число 27 записывается в виде 30. Укажите это основание.
Решение . Составим уравнение: где n — основание этой системы счисления. Исходя из уравнения,
Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 31 оканчивается на 4.
Решение . 1. Итак, нужно найти все целые числа (цифра 4 присутствует в системах счисления только с таким основанием), такие что остаток от деления 31 на N равен 4, или (что то же самое) , где k — целое неотрицательное число (0, 1, 2, …);
2. Из формулы получаем , так что задача сводится к тому, чтобы найти все делители числа 27, которые больше 4;
3. В этой задаче есть только два таких делителя: и .
Некоторые читатели могут подумать, что основанием системы счисления может быть также число 17, поскольку при записи числа 31 в этой системе количество единиц равно 14, то есть оканчивается на 4. Но число 14 в системе счисления с основанием 17 будет записано в виде буквы Е, следовательно, число 31 будет иметь вид 1Е.
Как определить основание числа в информатике
Система счисления – это способ записи чисел. Обычно, числа записываются с помощью специальных знаков – цифр (хотя и не всегда). Если вы никогда не изучали данный вопрос, то, по крайней мере, вам должны быть известны две системы счисления – это арабская и римская. В первой используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и это позиционная система счисления. А во второй – I, V, X, L, C, D, M и это непозиционная система счисления.
Подробная инструкция, как быстро научиться считать в двоичной и шестнадцатеричной системах приведена на сайте https://itvdn.com/ru/blog/article/binary-hexadecimal-system.
В позиционных системах счисления количество, обозначаемое цифрой в числе, зависит от ее позиции, а в непозиционных – нет. Например:
11 – здесь первая единица обозначает десять, а вторая – 1.
II – здесь обе единицы обозначают единицу.
345, 259, 521 – здесь цифра 5 в первом случае обозначает 5, во втором – 50, а в третьем – 500.
XXV, XVI, VII – здесь, где бы ни стояла цифра V, она везде обозначает пять единиц. Другими словами, величина, обозначаемая знаком V, не зависит от его позиции.
Сложение, умножение и другие математические операции в позиционных системах счисления выполнить легче, чем в непозиционных, т.к. математические операции осуществляются по несложным алгоритмам (например, умножение в столбик, сравнение двух чисел).
В мире наиболее распространены позиционные системы счисления. Помимо знакомой всем с детства десятичной (где используется десять цифр от 0 до 9), в технике широкое распространение нашли такие системы счисление как двоичная (используются цифры 0 и 1), восьмеричная и шестнадцатеричная.
Следует отметить, важную роль нуля. «Открытие» этой цифры в истории человечества сыграло большую роль в формировании позиционных систем счисления.
Основание системы счисления – это количество знаков, которое используется для записи цифр.
Разряд – это позиция цифры в числе. Разрядность числа – количество цифр, из которых состоит число (например, 264 – трехразрядное число, 00010101 – восьмиразрядное число). Разряды нумеруются справа на лево (например, в числе 598 восьмерка занимает первый разряд, а пятерка – третий).
Итак, в позиционной системе счисления числа записываются таким образом, что каждый следующий (движение справа на лево) разряд больше другого на степень основания системы счисления. (придумать схему)
Одно и тоже число (значение) можно представить в различных системах счисления. Представление числа при этом различно, а значение остается неизменным.
Двоичная система счисления
В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)
Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.
В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.
Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.
Попробуем считать в двоичной системе:
0 – это ноль
1 – это один (и это предел разряда)
10 – это два
11 – это три (и это снова предел)
100 – это четыре
101 – пять
110 – шесть
111 – семь и т.д.
Перевод чисел из двоичной системы счисления в десятичную
Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.
В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:
1476 = 1000 + 400 + 70 + 6
Можно пойти еще дальше и разложить так:
1476 = 1 * 103 + 4 * 102 + 7 * 101 + 6 * 100
Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 – это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.
Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:
10001001 = 1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0
Если посчитать сумму составляющих, то в итоге мы получим десятичное число, соответствующее 10001001:
1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137
Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:
100010012 = 13710
Почему двоичная система счисления так распространена?
Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.
Перевод десятичного числа в двоичное
Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:
77 / 2 = 38 (1 остаток)
38 / 2 = 19 (0 остаток)
19 / 2 = 9 (1 остаток)
9 / 2 = 4 (1 остаток)
4 / 2 = 2 (0 остаток)
2 / 2 = 1 (0 остаток)
1 / 2 = 0 (1 остаток)
Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:
1001101 = 1*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 1*2 2 + 0*2 1 + 1*2 0 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77
Восьмеричная система счисления
Итак, современное «железо понимает» лишь двоичную систему счисления. Однако человеку трудно воспринимать длинные записи нулей и единиц с одной стороны, а с другой – переводит числа из двоичной в десятичную систему и обратно, достаточно долго и трудоемко. В результате, часто программисты используют другие системы счисления: восьмеричную и шестнадцатеричную. И 8 и 16 являются степенями двойки, и преобразовывать двоичное число в них (так же как и выполнять обратную операцию) очень легко.
В восьмеричной системе счисления используется восемь знаков-цифр (от 0 до 7). Каждой цифре соответствуют набор из трех цифр в двоичной системе счисления:
000 – 0
001 – 1
010 – 2
011 – 3
100 – 4
101 – 5
110 – 6
111 – 7
Для преобразования двоичного числа в восьмеричное достаточно разбить его на тройки и заменить их соответствующими им цифрами из восьмеричной системы счисления. Разбивать на тройки нужно начинать с конца, а недостающие цифры в начале заменить нулями. Например:
1011101 = 1 011 101 = 001 011 101 = 1 3 5 = 135
Т.е число 1011101 в двоичной системе счисления равно числу 135 в восьмеричной системе счисления. Или 10111012 = 1358.
Обратный перевод. Допустим, требуется перевести число 1008 (не заблуждайтесь! 100 в восьмеричной системе – это не 100 в десятичной) в двоичную систему счисления.
1008 = 1 0 0 = 001 000 000 = 001000000 = 10000002
Перевод восьмеричного числа в десятичное можно осуществить по уже знакомой схеме:
6728 = 6 * 8 2 + 7 * 8 1 + 2 * 8 0 = 6 * 64 + 56 + 2 = 384 + 56 + 2 = 44210
1008 = 1 * 8 2 + 0 * 8 1 + 0 * 8 0 = 6410
Шестнадцатеричная система счисления
Шестнадцатеричная система счисления, так же как и восьмеричная, широко используется в компьютерной науке из-за легкости перевода в нее двоичных чисел. При шестнадцатеричной записи числа получаются более компактными.
В шестнадцатеричной системе счисления используются цифры от 0 до 9 и шесть первых латинских букв – A (10), B (11), C (12), D (13), E (14), F (15).
При переводе двоичного числа в шестнадцатеричное, первое разбивается на группы по четыре разряда, начиная с конца. В случае, если количество разрядов не делится нацело, то первая четверка дописывается нулями впереди. Каждой четверке соответствует цифра шестнадцатеричной системе счисления:
Например:
10001100101 = 0100 1100 0101 = 4 C 5 = 4C5
Если потребуется, то число 4C5 можно перевести в десятичную систему счисления следующим образом (C следует заменить на соответствующее данному символу число в десятичной системе счисления – это 12):
4C5 = 4 * 162 + 12 * 161 + 5 * 160 = 4 * 256 + 192 + 5 = 1221
Максимальное двухразрядное число, которое можно получить с помощью шестнадцатеричной записи – это FF.
FF = 15 * 161 + 15 * 160 = 240 + 15 = 255
255 – это максимальное значение одного байта, равного 8 битам: 1111 1111 = FF. Поэтому с помощью шестнадцатеричной системы счисления очень удобно кратко (с помощью двух цифр-знаков) записывать значения байтов. Внимание! Состояний у 8-ми битного байта может быть 256, однако максимальное значение – 255. Не забывайте про 0 – это как раз 256-е состояние
118924 в 10 системе счисления = 350214 в х системе счисления, как найти х? если можно то попродобнее
5 ответов 5
Это ж всё брутфорс, это ж несерьезно 🙂
На самом деле, конечно, перебор здесь вполне подходит, и можно дать ему границы сразу — по количеству цифр, по максимальной цифре. Но есть же и аналитический метод.
Это означает, что
3x 5 + 5x 4 + 2x 2 + x – 118920 = 0
Классический многочлен пятой степени. И теперь нужно просто решить полиномиальное уравнение. По основной теореме алгебры у него будет пять комплексных корней, нас, правда, интересует только действительный, хорошо бы положительный, и хорошо бы целый 🙂
Из теоремы Абеля-Руффини известно, что аналитически мы такое уравнение не решим в общем случае, но я бы даже и пробовать не стал: на то придуманы численные методы, которых всяких есть многатыщ — выбрать можно по вкусу, начиная хоть с метода товарища Ньютона. Решаем, и получаем:
x = 8
Хорошо и красиво. Ну можете еще добить преподавателя комплексными корнями, сказав, что это же число записывается точно так же в системе счисления с основанием (-7.07949 – 4.865i) 🙂
1) если нужно проверить может ли быть такое число a в данной системе счисления с основанием b, проверьте что все цифры a меньше основания b
т.е. 2358 не может являться числом в 4-ной СС
2)если вы перевели число a из десятичной СС в p-ичную, то для того, чтобы проверить, верно ли вы это сделали, просто переведите ее обратно в десятичную, и проверьте, получится ли то же число а.
Для того чтобы перевести число из p-ичной СС в десятичную, умножьте первую справа цифру на 1, вторую справа на p, третью на p², и т.д. умножая на степени p, а потом найдите сумму всего этого
Задача №16. Поиск основания системы по окончанию числа, уравнения и различные кодировки, арифметические действия в различных системах.
Перед тем, как приступить к решению задач, нам нужно понять несколько несложных моментов.
Рассмотрим десятичное число 875. Последняя цифра числа (5) – это остаток от деления числа 875 на 10. Последние две цифры образуют число 75 – это остаток от деления числа 875 на 100. Аналогичные утверждения справедливы для любой системы счисления:
Последняя цифра числа – это остаток от деления этого числа на основание системы счисления.
Последние две цифры числа – это остаток от деления числа на основание системы счисления в квадрате.
Например, . Разделим 23 на основание системы 3, получим 7 и 2 в остатке (2 – это последняя цифра числа в троичной системе). Разделим 23 на 9 (основание в квадрате), получим 18 и 5 в остатке (5 = ).
Вернемся опять к привычной десятичной системе. Число = 100000. Т.е. 10 в степени k– это единица и k нулей.
Аналогичное утверждение справедливо для любой системы счисления:
Основание системы счисления в степени k в этой системе счисления записывается как единица и k нулей.
1. Поиск основания системы счисления
Пример 1.
В системе счисления с некоторым основанием десятичное число 27 записывается в виде 30. Укажите это основание.
Решение:
Обозначим искомое основание x. Тогда .Т.е. x = 9.
Пример 2.
В системе счисления с некоторым основанием десятичное число 13 записывается в виде 111. Укажите это основание.
Решение:
Обозначим искомое основание x. Тогда
Решаем квадратное уравнение, получаем корни 3 и -4. Поскольку основание системы счисления не может быть отрицательным, ответ 3.
Ответ: 3
Пример 3
Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 29 оканчивается на 5.
Решение:
Если в некоторой системе число 29 оканчивается на 5, то уменьшенное на 5 число (29-5=24) оканчивается на 0. Ранее мы уже говорили, что число оканчивается на 0 в том случае, когда оно без остатка делится на основание системы. Т.е. нам нужно найти все такие числа, которые являются делителями числа 24. Эти числа: 2, 3, 4, 6, 8, 12, 24. Заметим, что в системах счисления с основанием 2, 3, 4 нет числа 5 (а в формулировке задачи число 29 оканчивается на 5), значит остаются системы с основаниями: 6, 8, 12,
Ответ: 6, 8, 12, 24
Пример 4
Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 71 оканчивается на 13.
Если в некоторой системе число оканчивается на 13, то основание этой системы не меньше 4 (иначе там нет цифры 3).
Уменьшенное на 3 число (71-3=68) оканчивается на 10. Т.е. 68 нацело делится на искомое основание системы, а частное от этого при делении на основание системы дает в остатке 0.
Выпишем все целые делители числа 68: 2, 4, 17, 34, 68.
2 не подходит, т.к. основание не меньше 4. Остальные делители проверим:
68:4 = 17; 17:4 = 4 (ост 1) – подходит
68:17 = 4; 4:17 = 0 (ост 4) – не подходит
68:34 = 2; 2:17 = 0 (ост 2) – не подходит
68:68 = 1; 1:68 = 0 (ост 1) – подходит
2. Поиск чисел по условиям
Пример 5
Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 25, запись которых в системе счисления с основанием четыре оканчивается на 11?
Решение:
Для начала выясним, как выглядит число 25 в системе счисления с основанием 4.
. Т.е. нам нужно найти все числа, не больше , запись которых оканчивается на 11. По правилу последовательного счета в системе с основанием 4,
получаем числа и . Переводим их в десятичную систему счисления:
3. Решение уравнений
Пример 6
Ответ запишите в троичной системе (основание системы счисления в ответе писать не нужно).
Переведем все числа в десятичную систему счисления:
Квадратное уравнение имеет корни -8 и 6. (т.к. основание системы не может быть отрицательным). .
Ответ: 20
4. Подсчет количества единиц (нулей) в двоичной записи значения выражения
Для решения этого типа задач нам нужно вспомнить, как происходит сложение и вычитание «в столбик»:
При сложении происходит поразрядное суммирование записанных друг под другом цифр, начиная с младших разрядов. В случае, если полученная сумма двух цифр больше или равна основанию системы счисления, под суммируемыми цифрами записывается остаток от деления этой суммы на основание системы, а целая часть от деления этой суммы на основание системы прибавляется к сумме следующих разрядов.
При вычитании происходит поразрядное вычитание записанных друг под другом цифр, начиная с младших разрядов. В случае, если первая цифра меньше второй, мы «занимаем» у соседнего (большего) разряда единицу. Занимаемая единица в текущем разряде равна основанию системы счисления. В десятичной системе это 10, в двоичной 2, в троичной 3 и т.д.
Пример 7
Сколько единиц содержится в двоичной записи значения выражения: ?
Представим все числа выражения, как степени двойки:
В двоичной записи двойка в степени n выглядит, как 1 и n нулей. Тогда суммируя и , получим число, содержащее 2 единицы:
Теперь вычтем из получившегося числа 10000. По правилам вычитания занимаем у следующего разряда.
Теперь прибавляем к получившемуся числу 1:
Видим, что у результата 2013+1+1=2015 единиц.
[spoiler title=”источники:”]
http://4systems.ru/inf/kak-opredelit-osnovanie-chisla-v-informatike/
http://ege-study.ru/ru/ege/materialy/informatika/zadacha-16-razbor-razlichnyx-tipov-zadach/
[/spoiler]
На уроке рассматривается 14 задание, решение и объяснение ЕГЭ по информатике
Содержание:
- Объяснение заданий 14 ЕГЭ по информатике
- Перевод числа из любой системы счисления в десятичную
- Особенности при переводах в разные системы счисления
- Решение заданий 14 ЕГЭ по информатике
- Определите наибольшее/наименьшее значение x, y
- Сколько цифр или сумма цифр
- Найти основание системы счисления и уравнения
14-е задание: «Операции в системах счисления»
Уровень сложности
— повышенный,
Требуется использование специализированного программного обеспечения
— нет,
Максимальный балл
— 1,
Примерное время выполнения
— 5 минут.
Проверяемые элементы содержания: Знание позиционных систем счисления
До ЕГЭ 2021 года — это было задание № 16 ЕГЭ
Типичные ошибки и рекомендации по их предотвращению:
“Основные ошибки связаны с невнимательностью при выполнении арифметических действий
в недесятичных системах счисления. Например, вычитания единицы в ситуации типа: 10100002 – 1”
ФГБНУ “Федеральный институт педагогических измерений”
С основами темы можно ознакомиться в теории к заданию 1.
Перевод числа из любой системы счисления в десятичную
Чтобы перевести, например, 10045N
, из системы счисления с основанием N
в десятичную систему, нужно умножить значение каждой цифры на N
в степени, равной разряду этой цифры:
Особенности при переводах в разные системы счисления
Некоторые правила, которые нужно знать, при работе с системами счисления:
- последняя цифра (крайняя справа) в записи числа в системе счисления с основанием
N
– представляет собой остаток от деления этого числа наN
:
710 = 1112 7/2 = остаток 1
N
– это остаток от деления этого числа на N²
, и так далее:710 = 1112 112=310 7/22 = остаток 310 (112)
10N
записывается как единица и N
нулей:
2N
в двоичной системе записывается как единица и N
нулей:3N
записывается в троичной системе в виде единицы и N
нулей:a
; общее правило:10N-1
записывается как N
девяток:2N-1
в двоичной системе записывается как N
единиц:3N-1
записывается в троичной системе как N
двоек:aN-1
в системе счисления с основанием a
записывается как N
старших цифр этой системы, то есть, цифр (a-1)
10N-10M
= 10M * (10N-M – 1)
записывается как N-M
девяток, за которыми стоят M
нулей:2N – 2K
при K < N
в двоичной системе записывается как N – K
единиц и K
нулей:
Решение заданий 14 ЕГЭ по информатике
Плейлист видеоразборов задания на YouTube:
Задание демонстрационного варианта 2022 года ФИПИ
Определите наибольшее/наименьшее значение x, y
14_14:
Операнды арифметического выражения записаны в системе счисления с основанием 15.
82x19₁₅ – 6x073₁₅
В записи чисел переменной x
обозначена неизвестная цифра из алфавита 15-ричной системы счисления. Определите наименьшее значение x
, при котором значение данного арифметического выражения кратно 11. Для найденного значения x
вычислите частное от деления значения арифметического выражения на 11 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.
✍ Решение:
-
✎ Решение с использованием программирования:
PascalABC.net:
|
||
Python: | ||
С++: |
Ответ: 7806
Сколько цифр или сумма цифр
14_12:
Значение арифметического выражения
43∙7103 – 21∙757 + 98
записали в системе счисления с основанием 7.
Найдите сумму цифр получившегося числа и запишите её в ответе в десятичной системе счисления.
✍ Решение:
✎ Решение с использованием программирования:
PascalABC.net, Решение 1:
|
||
PascalABC.net, Решение 2:
|
||
Python:
|
||
С++: |
Результат: 276
✍ Решение:
✎ Решение с использованием программирования:
PascalABC.net, Решение 1:
|
||
PascalABC.net, Решение 2:
|
||
Python:
|
||
С++: |
✎ Решение теоретическое:
- Существует правило:
- Чтобы воспользоваться этим правилом, преобразуем общее выражение к степеням двойки:
2N = 10..02(1
единица и N
нулей)
21024 + (22)64 - 26 = 21024 + 2128 - 26
10...0 (1024 нуля) + 10...0 (128 нулей) - 10...0 (6 нулей)
10....00000 - 1024 нуля + 10..0 - 128 нулей _________________________ 10....10..0
10....00000 - 1024 нуля + 10..0 - 128 нулей _________________________ 10....10..0 - запомним единицу
2N – 2K = 1…1 (N - K
единиц)0…0(K
нулей)
10..0000000 - 128 нулей - 1000000 _________________________ 11..1000000 - 122 единицы и 6 нулей
122 + 1 = 123 единицы
Результат: 123
Также можно посмотреть видео решения 14 задания ЕГЭ по информатике (аналитическое решение):
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
14_3: 14 задание. Демоверсия ЕГЭ 2018 информатика:
Значение арифметического выражения:
4910 + 730 – 49
записали в системе счисления с основанием 7.
Сколько цифр «6» содержится в этой записи?
Типовые задания для тренировки
✍ Решение:
✎ Решение с использованием программирования:
PascalABC.net, решение 1:
|
||
PascalABC.net, решение 2:
|
||
Python:
|
||
С++: |
✎ Решение теоретическое:
- Приведем все числа к степеням 7:
720 + 730 - 72
730 + 720 - 72
1. an = 10..0a n 2. an - am = (a-1)..(a-1)0..0a n-m m
730 = 10..0 30
0 + (20 - 2) = 18
Результат: 18
Подробное решение 14 задания демоверсии ЕГЭ смотрите на видео (аналитическое решение):
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
14_2:
Значение арифметического выражения:
4500 + 3*42500 + 16500 – 1024
записали в системе счисления с основанием 4.
Сколько цифр “3” содержится в этой записи?
Типовые задания для тренировки
✍ Решение:
✎ Решение с использованием программирования:
PascalABC.net:
|
||
Python:
|
||
С++: |
Результат: 496
Подробное решение данного 14 задания ЕГЭ по информатике можно посмотреть на видео (аналитическое решение):
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
14_5:
Значение арифметического выражения: 81024 + 832 – 65 – записали в системе счисления с основанием 8. Сколько цифр «7» содержится в этой записи?
Типовые задания для тренировки
✍ Решение:
✎ Решение с использованием программирования:
PascalABC.net:
|
||
Python:
|
||
С++: |
✎ Решение теоретическое:
- Приведем все числа к степеням восьмерки:
65 = 64 + 1 = 82 + 80;
81024 + 832 - (82 + 80); 81024 + 832 - 82 - 80
1. an = 10..0a n 2. an - am = (a-1)..(a-1)0..0a n-m m
81024 = 10..0 1024
3.-2n = -2n+1 + 2n
! Формула предназначена для чисел в двоичной системе счисления, но для подсчета цифр "7" в 8-й (или "6" в 7-й и т.п.) ее можно использовать (для поиска единиц или нулей она не подходит!!!)
-82 = -83 + 82
! обратите внимание, что тождество неверно, но
при поиске количества "7" этой формулой можно воспользоваться
(для поиска единиц или нулей она не подходит!)
Получаем:
81024 + 832 - 83 + 82- 80
0 + (32 - 3) + (2 - 0) = 31
Результат: 31
14_13:
Сколько значащих нулей в двоичной записи числа 4350 + 8340 – 2320 – 12
?
✍ Решение:
✎ Решение с использованием программирования:
PascalABC.net, решение 1:
|
||
PascalABC.net, решение 2:
|
||
Python:
|
||
С++: |
✎ Решение теоретическое:
- По возможности приведем каждое слагаемое к степеням 2. Получим:
4350 + 8340 – 2320 – 12
(22)350 + (23)340 - 2320 - 3*22 = (22)350 + (23)340 - 2320 - 12 = 2700 + 21020 - 2320 - (23 + 22)
21020 + 2700 - 2320 - 23 - 22
-2n = -2n+1+2n
и преобразуем выражение:21020 + 2700 - 2321+ 2320- 24 + 23 - 22
21020 -> один не ноль 2700 - 2321 -> 379 не нулей 2320- 24 -> 316 не нулей 23 - 22 -> один не ноль Итого: 1+ 379+316 +1 = 697
1021 - 697 = 324
Результат: 324
Найти основание системы счисления и уравнения
14_7:
Укажите, сколько всего раз встречается цифра 2 в записи чисел 13, 14, 15, …, 23 в системе счисления с основанием 3.
Типовые задания для тренировки
✍ Решение:
- Для начала достаточно перевести первое и последнее число предложенного интервала в троичную систему счисления. Сделаем это:
1. 13 | 3 12 4 | 3 1 3 1 1 1310 = 1113 2. 23 | 3 21 7 | 3 2 6 2 1 2310 = 2123
111, 112, 120, 121, 122, 200, 201, 202, 210, 211, 212
111, 112, 120, 121, 122, 200, 201, 202, 210, 211, 212
Ответ: 13
✍ Решение:
- Разделим уравнение на три части и вычислим каждую часть отдельно (выделим части разным цветом):
204N+1 = 204N + 2616 1 2 3
1.
210
204N+1
По формуле получаем:
2*(N+1)2 + 0*(N+1)1 + 4*(N+1)0 =
= 2*(N2 + 2N + 1) + 0 + 4 = 2N2 + 4N + 6
2.
210
204N
По формуле получаем:
2*N2 + 0*N1 + 4*N0 =
= 2N2 + 4
3. 2616 = 3810
2N2 + 4N + 6 = 2N2 + 4 + 38; 4N = 36; N = 9
Результат: 9
✍ Решение:
- Вместо обозначения искомой системы счисления введем неизвестное x:
144x + 24x = 201x
144 + 24 = 201 1*x2 + 4*x1 + 4*x0 + 2*x1 + 4*x0 = 2*x2 + 0*x1 + 1*x0
x2 - 6x - 7 = 0
D = b2 - 4ac = 36 - 4*1*(-7) = 64
x = (-b ± √D)/2a
x1 = (6 + 8)/2 = 7
x2 = (6 - 8)/2 - не подходит
x = 7
Ответ: 7
14_9:
В некоторой системе счисления записи десятичных чисел 68 и 94 заканчиваются на 3. Определите основание системы счисления.
Типовые задания для тренировки
✍ Решение:
- Вспомним правило:
- Примем искомую систему счисления за x. Тогда, исходя из приведенного правила имеем:
Последняя цифра записи числа в системе счисления с основанием X – это остаток от деления этого числа на X
94 / x = некоторое число и остаток 3 и 68 / x = некоторое число и остаток 3
91/x 65/x
91 - 65 = 26 65 - 26 = 39 39 - 26 = 13 26 - 13 = 13
Ответ: 13
14_10:
Некоторое число X из десятичной системы счисления перевели в системы счисления с основаниями 16, 8. Часть символов при записи утеряна. Позиции утерянных символов обозначены *
:
X = *516 = *0*8
Сколько чисел соответствуют условию задачи?
Типовые задания для тренировки
✍ Решение:
- Данные числа с утерянными символами переведем из 16-й и из 8-й системы счисления в двоичную. Перевод будем делать триадами и тетрадами, неизвестные позиции оставим пустыми:
1. *516 * | 5 16 * * * * | 0 1 0 1 2 2. *0*8 * | 0 | * 8 * * *|0 0 0|* * * 2
* * 0 0 0 1 0 1
1. 01000101 2. 10000101 3. 11000101
Ответ: 3
Предлагаем посмотреть видео решения данного 14 задания ЕГЭ (аналитическое решение):
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
14_4:
Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 75 оканчивается на 13.
Типовые задания для тренировки
✍ Решение:
- Так как 75 должно оканчиваться на 13, то имеем два общих случая:
1. 7510 = 13N 2. 7510 = ...13N (число оканчивается на 13)
1 случай:
75|N N|1 отсюда имеем => 75 - N = 3; т.е. N = 72 3
2 случай:
75|N 72|y отсюда имеем => 75 = Ny + 3, где N - целое, неотриц. 3
75|N 72| y |N => y = Nz + 1, где z - целое, неотриц. 3 y-1|z 1
75 = Ny + 3 y = Nz + 1
75 = N (Nz + 1) + 3; 75 = N2z + N + 3; 75 = N2z + N
z = (72 - N)/N2
72 - 5 / 52 = 67 / 25 не делится, - не подходит!
75 | 4
72 | 18| 4
3 16| 2
2 => не подходит! должна быть единица
75 | 6
72 | 12| 6
3 12| 1
0 => не подходит! должна быть единица
75 | 7
70
5 => не подходит! должна быть 3
75 | 8
72 | 9| 8
3 8| 1
1 => подходит!
Результат: 8,72
Видеоразбор решения (аналитический способ):
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
14_11:
Выражение 25*325 записано в троичной системе счисления. Определите, сколько в этой записи цифр 0, 1 и 2.
✍ Решение:
-
Рассмотрим каждый сомножитель отдельно.
- Первый сомножитель:
25 = 32 Переведем в троичную систему счисления (делением на 3, переписываем остатки). Результат: 3210 = 10123
325 = 10..0{25 нулей}3
1000 x 1012 = ---- 2000 1000 0000 1000 ------- 1012000
Ответ: “0”=26, “1”=2, “2”=1
Смотрите видео разбора на нашем канале (аналитическое решение):
📹 YouTube здесь
📹 Видеорешение на RuTube здесь