Как найти основание трапеции если известен тангенс

Тангенс острого угла прямоугольной трапеции равен 1/2. Найдите её большее основание, если меньшее основание равно высоте и равно 55.

Проведённая из вершины тупого угла данной трапеции высота отсекает от трапеции прямоугольный треугольник, и в нём эта высота является катетом противолежащим острому углу, тангенс которого равен 1/2. Значит, второй катет получившегося прямоугольного треугольника равен высоте трапеции, делённой на этот тангенс:

55/(1/2) = 110.

И так как трапеция прямоугольная, её проведённая из вершины тупого угла высота параллельна боковой стороне трапеции, перпендикулярной основаниям трапеции. Значит, высота делит большее основание на два отрезка, из которых один равен найденной длине катета (110), другой равен длине верхнего основания трапеции (55). Таким образом, искомое большее основание трапеции:

110+55 = 165.

Ответ: 165.

Найди верный ответ на вопрос ✅ «Тангенс острого угла прямоугольной трапеции равен 2/5. Найдите ее большее основание, если меньшее основание равно высоте и равно 14 …» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

Искать другие ответы

Главная » Геометрия » Тангенс острого угла прямоугольной трапеции равен 2/5. Найдите ее большее основание, если меньшее основание равно высоте и равно 14

Всего: 71    1–20 | 21–40 | 41–60 | 61–71

Добавить в вариант

Тип 15 № 89

i

Найдите больший угол равнобедренной трапеции ABCD, если диагональ AC образует с основанием AD и боковой стороной AB углы, равные 30° и 45° соответственно.

Источники:

Банк за­да­ний ФИПИ.


В трапеции АВСD боковые стороны AB и CD равны, CH  — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 16, а меньшее основание BC равно 4.

Источники:

Банк за­да­ний ФИПИ.


В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 2. Найдите площадь трапеции.


Сумма двух углов равнобедренной трапеции равна 140°. Найдите больший угол трапеции. Ответ дайте в градусах.


Найдите меньший угол равнобедренной трапеции, если два ее угла относятся как 1:2. Ответ дайте в градусах.


Основания трапеции равны 4 см и 10 см. Диагональ трапеции делит среднюю линию на два отрезка. Найдите длину большего из них.

Источник: ГИА-2013. Ма­те­ма­ти­ка. Тре­ни­ро­воч­ная ра­бо­та № 1 (1 вар.)


Средняя линия трапеции равна 11, а меньшее основание равно 5. Найдите большее основание трапеции.

Источник: ГИА-2013. Ма­те­ма­ти­ка. Тре­ни­ро­воч­ная ра­бо­та № 3. (1 вар)


Тангенс острого угла прямоугольной трапеции равен  дробь: числитель: 5, знаменатель: 6 конец дроби . Найдите её большее основание, если меньшее основание равно высоте и равно 15.


В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 1. Найдите площадь трапеции.

Источник: Банк за­да­ний ФИПИ


В трапеции АВСD боковые стороны AB и CD равны, СН  — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 16, а меньшее основание BC равно 6.

Источник: Банк за­да­ний ФИПИ


В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60° , сторона AB равна 4. Найдите площадь трапеции.

Источник: Банк за­да­ний ФИПИ


В трапеции АВСD боковые стороны AB и CD равны, СН  — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 10, а меньшее основание BC равно 4.

Источник: Банк за­да­ний ФИПИ


В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 2. Найдите площадь трапеции.

Источник: Банк за­да­ний ФИПИ


В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 6. Найдите площадь трапеции.

Источник: Банк за­да­ний ФИПИ


В трапеции АВСD боковые стороны AB и CD равны, CH  — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 12, а меньшее основание BC равно 4.

Источник: Банк за­да­ний ФИПИ


Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 25° и 40° соответственно.

Источник: Банк за­да­ний ФИПИ


В равнобедренной трапеции известны высота, меньшее основание и угол при основании. Найдите большее основание.


Основания трапеции равны 4 и 10. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей.


Тангенс острого угла прямоугольной трапеции равен 2. Найдите её большее основание, если меньшее основание равно высоте и равно 78.


Наклонная крыша установлена на трёх вертикальных опорах, расположенных на одной прямой. Средняя опора стоит посередине между малой и большой опорами (см. рис.). Высота малой опоры 1,8 м, высота большой опоры 2,8 м. Найдите высоту средней опоры.

Всего: 71    1–20 | 21–40 | 41–60 | 61–71

chet

   Углы равнобедренной трапеции. Здравствуйте! В этой статье речь пойдёт о решении задач с трапецией. Данная группа заданий входит в состав экзамена, задачки простые. Будем вычислять углы трапеции, основания и высоты. Решение ряда задач сводится к решению прямоугольного треугольника, как говориться: куда мы без теоремы Пифагора, синуса и косинуса?

Работать будем с равнобедренной трапецией. У неё равны боковые стороны и углы при основаниях. О трапеции есть статья на блоге, посмотрите.

1

Отметим небольшой и важный нюанс, который в процессе решения самих заданий подробно расписывать не будем. Посмотрите, если у нас дано два основания, то большее основание высотами, опущенными к нему, разбивается на три отрезка – один равен меньшему основанию (это противолежащие стороны прямоугольника), два других равны друг другу (это катеты равных прямоугольных треугольников):

2

Простой пример: дано два основания равнобедренной трапеции 25 и 65. Большее основание разбивается на отрезки следующим образом:

3

*И ещё! В задачах не введены буквенные обозначения. Это сделано умышленно, чтобы не перегружать решение алгебраическими изысками. Согласен, что это математически неграмотно, но цель донести суть. А обозначения вершин и прочих элементов вы всегда можете сделать сами и записать математически корректное решение.

Рассмотрим задачи:

zadacha

27439. Основания равнобедренной трапеции равны 51 и 65. Боковые стороны равны 25. Найдите синус острого угла трапеции.

Для того чтобы найти угол необходимо построить высоты. На эскизе обозначим данные в условии величины. Нижнее основание равно 65, высотами оно разбивается на отрезки 7, 51 и 7:

4

В прямоугольном треугольнике нам известна гипотенуза и катет, можем найти второй катет (высоту трапеции) и далее уже вычислить синус угла.

По теореме Пифагора указанный катет равен:

5

Таким образом:

6

Ответ: 0,96

zadacha

27440. Основания равнобедренной трапеции равны 43 и 73. Косинус острого угла трапеции равен 5/7. Найдите боковую сторону.

Построим высоты и отметим данные в условии величины, нижнее основание разбивается на отрезки 15, 43 и 15:

7

Ответ: 21

zadacha

27441. Большее основание равнобедренной трапеции равно 34. Боковая сторона равна 14. Синус острого угла равен (2√10)/7. Найдите меньшее основание.

Построим высоты. Для того чтобы найти меньшее основание нам необходимо найти чему равен отрезок являющийся катетом в прямоугольном треугольнике (обозначен синим):

8

Можем вычислить высоту  трапеции, а затем найти катет:

9

По теореме Пифагора вычисляем катет:

10

Таким образом, меньшее основание равно:

11

Ответ: 22

zadacha

27442. Основания равнобедренной трапеции равны 7 и 51. Тангенс острого угла равен 5/11. Найдите высоту трапеции.

Построим высоты и отметим данные в условии величины. Нижнее  основание разбивается на отрезки:

1010

Что делать? Выражаем тангенс известного нам угла при основании в прямоугольном треугольнике:

1011

Ответ: 10

zadacha

27443. Меньшее основание равнобедренной трапеции равно 23. Высота трапеции равна 39. Тангенс острого угла равен 13/8. Найдите большее основание.

Строим высоты и вычисляем чему равен катет:

12

Таким образом большее основание будет равно:

13

Ответ: 71

zadacha

27444. Основания равнобедренной трапеции равны 17 и 87. Высота трапеции равна 14. Найдите тангенс острого угла.

Строим высоты и отмечаем известные величины на эскизе. Нижнее основание разбивается на отрезки 35, 17, 35:

14

По определению тангенса:

15

Ответ: 0,4

zadacha

77152. Основания равнобедренной трапеции равны 6 и 12. Синус острого угла трапеции равен 0,8. Найдите боковую сторону.

Построим эскиз, построим высоты и отметим известные величины, большее основание разбивается на отрезки 3, 6 и 3:

16

Выразим гипотенузу обозначенную как х через косинус:

17

Из основного тригонометрического тождества найдём cosα

18

Таким образом:

19

Ответ: 5

zadacha

27818. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна 500? Ответ дайте в градусах.

20

Из курса геометрии нам известно, что если имеем две параллельные прямые и секущую, что сумма внутренних односторонних углов равна 1800.  В нашем случае это

21

C условии сказано, что разность противолежащих углов равна 500, то есть

22

Так как у равнобедренной трапеции углы  при основании равны, то есть угол А равен углу В, то можем записать

23

Имеем два уравнения с двумя  неизвестными, можем решить систему:

24

*Конечно, эту задачу можно было легко решить просто перебирая пары углов )

zadacha

27833. В равнобедренной трапеции большее основание равно 25, боковая сторона равна 10, угол между ними 600. Найдите меньшее основание.

25

Построим высоты DE и CF:

27

Меньшее основание равно отрезку EF, так как DC и EF это противолежащие стороны прямоугольника. Отрезок EF мы можем найти если вычислим АЕ. Выразим этот катет прямоугольного треугольника ADE через функцию косинуса:

26

Так как AE=FB=5, то EF=25–5–5=15. Следовательно и DC=15.

Ответ: 15

zadacha

27837. Основания равнобедренной трапеции равны 15 и 9, один из углов равен 450. Найдите высоту трапеции.

28

Из точек D и C опустим две высоты:

29

Как уже сказано выше они разбивают большее основание на три отрезка: один равен меньшему основанию, два других равны друг другу.

В данном случае они равны 3, 9 и 3 (в сумме 15). Кроме того, отметим что высотами отсекаются прямоугольные треугольники, причём они являются равнобедренными, так как углы при основании равны по 450. Отсюда следует, что высота трапеции будет равна 3.

Ответ: 3

На этом всё! Успеха вам!

С уважением, Александр.

P.S: Расскажите о сайте в социальных сетях!

Добавить комментарий