Как найти основные свойства оксидов

Оксиды — это сложные вещества, состоящие из атомов двух элементов, один из которых —  кислород со степенью окисления -2.  При этом кислород связан только с менее электроотрицательным элементом.

В зависимости от второго элемента оксиды проявляют разные химические свойства. В школьном курсе оксиды традиционно делят на солеобразующие и несолеобразующие. Некоторые оксиды относят к солеобразным (двойным).

Двойные оксиды — это некоторые оксиды , образованные элементом с разными степенями окисления.

Солеобразующие оксиды делят на основные, амфотерные и кислотные.

Основные оксиды — это оксиды, обладающие характерными основными свойствами. К ним относят оксиды, образованные атомами металлов со степень окисления +1 и +2.

Кислотные оксиды — это оксиды, характеризующиеся кислотными свойствами. К ним относят оксиды, образованные атомами металлов со степенью окисления +5, +6 и +7, а также атомами неметаллов.

Амфотерные оксиды — это оксиды, характеризующиеся и основными, и кислотными свойствами. Это оксиды металлов со степенью окисления +3 и +4, а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO.

Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N2O и SiO.

Классификация оксидов

Тренировочные тесты по теме Классификация оксидов.

Получение оксидов

Общие способы получения оксидов:

1. Взаимодействие простых веществ с кислородом:

1.1. Окисление металлов: большинство металлов окисляются кислородом до оксидов с устойчивыми степенями окисления.

Например, алюминий взаимодействует с кислородом с образованием оксида:

4Al + 3O2 → 2Al2O3

Не взаимодействуют с кислородом золото, платина, палладий.

Натрий при окислении кислородом воздуха образует преимущественно пероксид Na2O2,

2Na + O2 → Na2O2

Калий, цезий, рубидий образуют преимущественно надпероксиды состава MeO2:

K + O2  →  KO2

Примечания: металлы с переменной степенью окисления окисляются кислородом воздуха, как правило, до промежуточной степени окисления (+3):

4Fe + 3O2 → 2Fe2O3

4Cr + 3O2 → 2Cr2O3

Железо также горит с образованием железной окалины — оксида железа (II, III):

3Fe + 2O2 → Fe3O4

1.2. Окисление простых веществ-неметаллов.

Как правило, при окислении неметаллов образуется оксид неметалла с высшей степенью окисления, если кислород в избытке, или оксид неметалла с промежуточной степенью окисления, если кислород в недостатке.

Например, фосфор окисляется избытком кислорода до оксида фосфора (V), а под действием недостатка кислорода до оксида фосфора (III):

4P + 5O2(изб.) → 2P2O5

4P + 3O2(нед.) → 2P2O3

Но есть некоторые исключения.

Например, сера сгорает только до оксида серы (IV):

S + O2 → SO2

Оксид серы (VI) можно получить только окислением оксида серы (IV) в жестких условиях в присутствии катализатора:

2SO2 + O= 2SO3

Азот окисляется кислородом только при очень высокой температуре (около 2000оС), либо под действием электрического разряда, и только до оксида азота (II):

N2 + O2 = 2NO

Не окисляется кислородом фтор F2 (сам фтор окисляет кислород). Не взаимодействуют с кислородом прочие галогены (хлор Cl2, бром и др.), инертные газы (гелий He, неон, аргон, криптон).

2. Окисление сложных веществ (бинарных соединений): сульфидов, гидридов, фосфидов и т.д.

При окислении кислородом сложных веществ, состоящих, как правило, из двух элементов, образуется смесь оксидов этих элементов в устойчивых степенях окисления.

Например, при сжигании пирита FeS2 образуются  оксид железа (III) и оксид серы (IV):

4FeS2 + 11O2 → 2Fe2O3 + 8SO2

Сероводород горит с образованием оксида серы (IV)  при избытке кислорода и с образованием серы при недостатке кислорода:

2H2S + 3O2(изб.) → 2H2O + 2SO2

2H2S + O2(нед.) → 2H2O + 2S

А вот аммиак горит с образованием простого вещества N2, т.к. азот реагирует с кислородом только в жестких условиях:

4NH3 + 3O2 →2N2 + 6H2O

А вот в присутствии катализатора аммиак окисляется кислородом до оксида азота (II):

4NH3 + 5O2 → 4NO + 6H2O

3. Разложение гидроксидов. Оксиды можно получить также из гидроксидов — кислот или оснований. Некоторые гидроксиды неустойчивы, и самопроизвольную распадаются на оксид и воду; для разложения некоторых других (как правило, нерастворимых в воде) гидроксидов необходимо их нагревать (прокаливать).

гидроксид → оксид + вода

Самопроизвольно разлагаются в водном растворе угольная кислота, сернистая кислота, гидроксид аммония, гидроксиды серебра (I), меди (I):

H2CO3 → H2O + CO2

H2SO3 → H2O + SO2

NH4OH → NH3 + H2O

2AgOH → Ag2O + H2O

2CuOH → Cu2O + H2O

При нагревании разлагаются на оксиды большинство нерастворимых гидроксидов — кремниевая кислота, гидроксиды тяжелых металлов — гидроксид железа (III) и др.:

H2SiO3 → H2O + SiO2

2Fe(OH)3 → Fe2O3 + 3H2O

4. Еще один способ получения оксидов — разложение сложных соединений — солей.

Например, нерастворимые карбонаты и карбонат лития при нагревании разлагаются на оксиды:

Li2CO3 → CO2 + Li2O

CaCO3 →  CaO + CO2

Соли, образованные сильными кислотами-окислителями (нитраты, сульфаты, перхлораты и др.), при нагревании, как правило, разлагаются с с изменением степени окисления:

2Zn(NO3)2 → 2ZnO + 4NO2 + O2

Более подробно про разложение нитратов можно прочитать в статье Окислительно-восстановительные реакции.

Химические свойства оксидов

Значительная часть химических свойств оксидов описывается схемой взаимосвязи основных классов неорганических веществ.

Химические свойства основных оксидов

Подробно про химические свойства оксидов можно прочитать в соответствующих статьях:

Химические свойства основных оксидов.

Химические свойства кислотных оксидов.

Химические свойства амфотерных оксидов.

2.4. Характерные химические свойства оксидов: основных, амфотерных, кислотных.

Прежде чем начать говорить про химические свойства оксидов, нужно вспомнить о том, что все оксиды делятся на 4 типа, а именно основные, кислотные, амфотерные и несолеобразующие. Для того чтобы определить тип какого-либо оксида, прежде всего нужно понять — оксид металла или неметалла перед вами, а затем воспользоваться алгоритмом (его надо выучить!), представленным в следующей таблице:

Оксид неметалла Оксид металла
1) Степень окисления неметалла +1 или +2 Вывод: оксид несолеобразующий Исключение: Cl2O не относится к несолеобразующим оксидам 1) Степень окисления металла +1 или +2 Вывод: оксид металла — основный Исключение: BeO, ZnO и PbO не относятся к основным оксидам
2) Степень окисления больше либо равна +3 Вывод: оксид кислотный Исключение: Cl2O относится к кислотным оксидам, несмотря на степень окисления хлора +1 2) Степень окисления металла +3 или +4 Вывод: оксид амфотерный Исключение: BeO, ZnO и PbO амфотерны, несмотря на степень окисления +2 у металлов 3) Степень окисления металла +5, +6, +7 Вывод: оксид кислотный

Помимо типов оксидов, указанных выше, введем также еще два подтипа основных оксидов, исходя из их химической активности, а именно активные основные оксиды и малоактивные основные оксиды.

  • К активным основным оксидам отнесем оксиды щелочных и щелочноземельных металлов (все элементы IA и IIA групп, кроме водорода H, бериллия Be и магния Mg). Например, Na2O, CaO, Rb2O, SrO и т.д.
  • К малоактивным основным оксидам отнесем все основные оксиды, которые не попали в список активных основных  оксидов. Например, FeO, CuO, CrO и т.д.

Логично предположить, что активные основные оксиды часто вступают в те реакции, в которые не вступают малоактивные.

Следует отметить, что несмотря на то что фактически вода является оксидом неметалла (H2O), обычно ее свойства рассматривают в отрыве от свойств иных оксидов. Обусловлено это ее специфически огромным распространением в окружающем нас мире, в связи с чем в большинстве случаев вода является не реагентом, а средой, в которой может осуществляться бесчисленное множество химических реакций. Однако нередко она принимает и непосредственное участие в различных превращениях, в частности, некоторые группы оксидов с ней реагируют.

Какие оксиды реагируют с водой?

Из всех оксидов с водой реагируют только:

1) все активные основные оксиды (оксиды ЩМ и ЩЗМ);

2) все кислотные оксиды, кроме диоксида кремния (SiO2);

т.е. из вышесказанного следует, что с водой точно не реагируют:

1) все малоактивные основные оксиды;

2) все амфотерные оксиды;

3) несолеобразующие оксиды (NO, N2O, CO, SiO).

Примечание:

Оксид магния медленно реагирует с водой при кипячении. Без сильного нагревания реакция MgO с H2O не протекает.

Способность определить то, какие оксиды могут реагировать с водой даже без умения писать соответствующие уравнения реакций, уже позволяет получить баллы за некоторые вопросы тестовой части ЕГЭ.

Теперь давайте разберемся, как же все-таки те или иные оксиды реагируют с водой, т.е. научимся писать соответствующие уравнения реакций.

Активные основные оксиды, реагируя с водой, образуют соответствующие им гидроксиды. Напомним, что соответствующим оксиду металла является такой гидроксид, который содержит металл в той же степени окисления, что и оксид. Так, например, при реакции с водой активных основных оксидов K+12O и Ba+2O образуются соответствующие им гидроксиды K+1OH и Ba+2(OH)2:

K2O + H2O = 2KOH – гидроксид калия

BaO + H2O = Ba(OH)2 – гидроксид бария

Все гидроксиды, соответствующие активным основным оксидам (оксидам ЩМ и ЩЗМ), относятся к щелочам. Щелочами называют все хорошо растворимые в воде гидроксиды металлов, а также малорастворимый гидроксид кальция Ca(OH)2 (как исключение).

Взаимодействие кислотных оксидов с водой так же, как и реакция активных основных оксидов с водой, приводит к образованию соответствующих гидроксидов. Только в случае кислотных оксидов им соответствуют не основные, а кислотные гидроксиды, чаще называемые кислородсодержащими кислотами. Напомним, что соответствующей кислотному оксиду является такая кислородсодержащая кислота, которая содержит кислотообразующий элемент в той же степени окисления, что и в оксиде.

Таким образом, если мы, например, хотим  записать уравнение взаимодействия кислотного оксида SO3 с водой, прежде всего мы должны вспомнить основные, изучаемые в рамках школьной программы, серосодержащие кислоты. Таковыми являются сероводородная H2S, сернистая H2SO3 и серная H2SO4 кислоты. Cероводородная кислота H2S, как легко заметить, не является кислородсодержащей, поэтому ее образование при взаимодействии SO3 с водой можно сразу исключить. Из кислот H2SO3 и H2SO4 серу в степени окисления +6, как в оксиде SO3, содержит только серная кислота H2SO4. Поэтому именно она и будет образовываться в реакции SO3 с водой:

H2O + SO3 = H2SO4

Аналогично оксид N2O5, содержащий азот в степени окисления +5, реагируя с водой, образует азотную кислоту HNO3, но ни в коем случае не азотистую HNO2, поскольку  в азотной кислоте степень окисления азота, как и в N2O5, равна +5, а в азотистой — +3:

N+52O5 + H2O = 2HN+5O3

Исключение:

Оксид азота (IV) (NO2) является оксидом неметалла в степени окисления +4, т.е. в соответствии с алгоритмом, описанным в таблице в самом начале данной главы, его нужно отнести к кислотным оксидам. Однако не существует такой кислоты, которая содержала бы азот в степени окисления +4.

В случае оксида NO2 принято считать, что ему соответствуют сразу две кислоты, поскольку его взаимодействие с водой приводит к одновременному образованию двух кислот:

2NO2 + H2O = HNO2 + HNO3

Взаимодействие оксидов друг с другом

Прежде всего нужно четко усвоить тот факт, что среди солеобразующих оксидов (кислотных, основных, амфотерных) практически никогда не протекают реакции между оксидами одного класса, т.е. в подавляющем большинстве случаев невозможно взаимодействие:

1) основный оксид + основный оксид ≠

2) кислотный оксид + кислотный оксид  ≠

3) амфотерный оксид + амфотерный оксид  ≠

В то время, как практически всегда возможно взаимодействие между оксидами, относящимися к разным типам, т.е. практически всегда протекают реакции между:

1) основным оксидом и кислотным оксидом;

2) амфотерным оксидом и кислотным оксидом;

3) амфотерным оксидом и основным оксидом.

В результате всех таких взаимодействий всегда продуктом является средняя (нормальная) соль.

Рассмотрим все указанные пары взаимодействий более детально.

В результате взаимодействия:

MexOy + кислотный оксид, где MexOy – оксид металла (основный или амфотерный)

образуется соль, состоящая из катиона металла Me (из исходного MexOy) и кислотного остатка кислоты, соответствующей кислотному оксиду.

Для примера попробуем записать уравнения взаимодействия следующих пар реагентов:

Na2O + P2O5   и    Al2O3 + SO3

В первой паре реагентов мы видим основный оксид (Na2O) и кислотный оксид (P2O5). Во второй – амфотерный оксид (Al2O3) и кислотный оксид (SO3).

Как уже было сказано, в результате взаимодействия основного/амфотерного оксида с кислотным образуется соль, состоящая из катиона металла (из исходного основного/амфотерного оксида) и кислотного остатка кислоты, соответствующей исходному кислотному оксиду.

Таким образом, при взаимодействии Na2O и P2O5 должна образоваться соль, состоящая из катионов Na+ (из Na2O) и кислотного остатка PO43-, поскольку оксиду P+52O5 соответствует кислота H3P+5O4. Т.е. в результате такого взаимодействия образуется фосфат натрия:

3Na2O + P2O5 = 2Na3PO4 — фосфат натрия

В свою очередь, при взаимодействии Al2O3 и SO3 должна образоваться соль, состоящая из катионов Al3+ (из Al2O3) и кислотного остатка SO42-, поскольку оксиду S+6O3 соответствует кислота H2S+6O4. Таким образом, в результате данной реакции получается сульфат алюминия:

Al2O3 + 3SO3 = Al2(SO4)3 — сульфат алюминия

Более специфическим является взаимодействие  между амфотерными и основными оксидами. Данные реакции осуществляют при высоких температурах, и их протекание возможно благодаря тому, что амфотерный оксид фактически берет на себя роль кислотного. В результате такого взаимодействия образуется соль специфического состава, состоящая из катиона металла, образующего исходный основный оксид и «кислотного остатка»/аниона, в состав которого входит металл из амфотерного оксида. Формулу такого «кислотного остатка»/аниона в общем виде можно записать как MeO2x, где Me – металл из амфотерного оксида, а х = 2 в случае амфотерных оксидов с общей формулой вида Me+2O (ZnO, BeO, PbO) и x = 1 – для амфотерных оксидов с общей формулой вида Me+32O3 (например, Al2O3, Cr2O3 и Fe2O3).

Попробуем записать в качестве примера уравнения взаимодействия

ZnO + Na2O и Al2O3 + BaO

В первом случае ZnO является амфотерным оксидом с общей формулой Me+2O, а Na2O – типичный основный оксид. Согласно сказанному выше, в результате их взаимодействия должна образоваться соль, состоящая из катиона металла, образующего основный оксид, т.е. в нашем случае Na+ (из Na2O) и «кислотного остатка»/аниона c формулой ZnO22-, поскольку амфотерный оксид имеет общую формулу вида Me+2O. Таким образом, формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Na2ZnO2:

ZnO + Na2O =to=> Na2ZnO2

В случае взаимодействующей пары реагентов Al2O3 и BaO первое вещество является амфотерным оксидом с общей формулой вида Me+32O3, а второе — типичным основным оксидом. В этом случае образуется соль, содержащая катион металла из основного оксида, т.е. Ba2+ (из BaO) и «кислотного остатка»/аниона AlO2. Т.е. формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Ba(AlO2)2, а само уравнение взаимодействия запишется как:

Al2O3 + BaO =to=> Ba(AlO2)2

Как мы уже писали выше, практически всегда протекает реакция:

MexOy + кислотный оксид,

где MexOy – либо основный, либо амфотерный оксид металла.

Однако следует запомнить два «привередливых» кислотных оксида – углекислый газ (CO2) и сернистый газ (SO2). «Привередливость» их заключается в том, что несмотря на явные кислотные свойства, активности CO2 и SO2 недостаточно для их взаимодействия с малоактивными основными и амфотерными оксидами. Из оксидов металлов они реагируют только с активными основными оксидами (оксидами ЩМ и ЩЗМ). Так, например, Na2O и BaO, являясь активными основными оксидами, могут с ними реагировать:

CO2 + Na2O = Na2CO3

SO2 + BaO = BaSO3

В то время, как оксиды CuO и Al2O3, не относящиеся к активным основным оксидам, в реакцию с CO2 и SO2 не вступают:

CO2 + CuO

CO2 + Al2O3 

SO2 + CuO

SO2 + Al2O3 

Взаимодействие оксидов с кислотами

С кислотами реагируют основные и амфотерные оксиды. При этом образуются соли и вода:

FeO + H2SO4 = FeSO4 + H2O

Несолеобразующие оксиды не реагируют с кислотами вообще, а кислотные оксиды не реагируют с кислотами в большинстве случаев.

Когда все-таки кислотный оксид реагирует с кислотой?

Решая часть ЕГЭ с вариантами ответа, вы должны условно считать, что кислотные оксиды не реагируют ни с кислотными оксидами, ни с кислотами, за исключением следующих случаев:

1) диоксид кремния, будучи кислотным оксидом, реагирует с плавиковой кислотой, растворяясь в ней. В частности, благодаря этой реакции в плавиковой кислоте можно растворить стекло. В случае избытка HF уравнение реакции имеет вид:

SiO2 + 6HF = H2[SiF6] + 2H2O,

а в случае недостатка HF:

SiO2 + 4HF = SiF4 + 2H2O

2) SO2, будучи кислотным оксидом, легко реагирует с сероводородной кислотой H2S по типу сопропорционирования:

S+4O2 + 2H2S-2 = 3S0 + 2H2O

3) Оксид фосфора (III) P2O3 может реагировать с кислотами-окислителями, к которым относятся концентрированная серная кислота и азотная кислота любой концентрации. При этом степень окисления фосфора повышается от значения +3 до +5:

P2O3 + 2H2SO4 + H2O =to=> 2SO2 + 2H3PO4
    (конц.)            
3P2O3 + 4HNO3 + 7H2O =to=> 4NO↑ + 6H3PO4
    (разб.)            
P2O3 + 4HNO3 + H2O =to=> 2H3PO4 + 4NO2
    (конц.)            

4) Оксид серы (IV) SO2 может быть окислен азотной кислотой, взятой в любой концентрации. При этом степень окисления серы повышается с +4 до +6.

2HNO3 + SO2 =to=> H2SO4 + 2NO2
(конц.)            
2HNO3 + 3SO2 + 2H2O =to=> 3H2SO4 + 2NO↑
(разб.)                

Взаимодействие оксидов с гидроксидами металлов

С гидроксидами металлов как основными, так и амфотерными реагируют кислотные оксиды. При этом образуется соль, состоящая из катиона металла (из исходного гидроксида металла) и кислотного остатка кислоты, соответствующей кислотному оксиду.

SO3 + 2NaOH = Na2SO4 + H2O

Кислотные оксиды, которым соответствуют многоосновные кислоты, с щелочами могут образовывать как нормальные, так и кислые соли:

CO2 + 2NaOH = Na2CO3 + H2O

CO2 + NaOH = NaHCO3

P2O5 + 6KOH = 2K3PO4 + 3H2O

P2O5 + 4KOH = 2K2HPO4 + H2O

P2O5 + 2KOH + H2O = 2KH2PO4

«Привередливые» оксиды CO2 и SO2, активности которых, как уже было сказано, не хватает для протекания их реакции с малоактивными основными и амфотерными оксидами, тем не менее, реагируют с большей частью соответствующих им гидроксидов металлов. Точнее, углекислый и сернистый газы взаимодействуют с нерастворимыми гидроксидами  в виде их суспензии в воде. При этом образуются только основные соли, называемые гидроксокарбонатами и гидроксосульфитами, а образование средних (нормальных) солей невозможно:

2Zn(OH)2 + CO2 = (ZnOH)2CO3 + H2O (в растворе)

2Cu(OH)2 + CO2 = (CuOH)2CO3 + H2O (в растворе)

Однако с гидроксидами металлов в степени окисления +3, например, такими, как Al(OH)3, Cr(OH)3 и т.д., углекислый и сернистый газ не реагируют вовсе.

Следует отметить также особую инертность диоксида кремния (SiO2), в природе наиболее часто встречаемого в виде обычного песка. Данный оксид является кислотным, однако из гидроксидов металлов способен реагировать только с концентрированными (50-60%) растворами щелочей,  а также с чистыми (твердыми) щелочами при сплавлении. При этом образуются силикаты:

2NaOH + SiO2 =to=> Na2SiO3 + H2O

Амфотерные оксиды из гидроксидов металлов реагируют только со щелочами (гидроксидами щелочных и щелочноземельных металлов). При этом при проведении реакции в водных растворах образуются растворимые комплексные соли:

ZnO + 2NaOH + H2O = Na2[Zn(OH)4] — тетрагидроксоцинкат натрия

BeO + 2NaOH + H2O = Na2[Be(OH)4] — тетрагидроксобериллат натрия

Al2O3 + 2NaOH + 3H2O = 2Na[Al(OH)4] — тетрагидроксоалюминат натрия

А при сплавлении этих же амфотерных оксидов со щелочами получаются соли, состоящие из катиона щелочного или щелочноземельного металла и аниона вида MeO2x, где x = 2 в случае амфотерного оксида типа Me+2O и x = 1 для амфотерного оксида вида Me2+2O3:

ZnO + 2NaOH =to=> Na2ZnO2 + H2O

BeO + 2NaOH =to=> Na2BeO2 + H2O

Al2O3 + 2NaOH =to=> 2NaAlO2 + H2O

Cr2O3 + 2NaOH =to=> 2NaCrO2 + H2O

Fe2O3 + 2NaOH =to=> 2NaFeO2 + H2O

Следует отметить, что соли, получаемые сплавлением амфотерных оксидов с твердыми щелочами, могут быть легко получены из растворов соответствующих комплексных солей их упариванием и последующим прокаливанием:

Na2[Zn(OH)4] =to=> Na2ZnO2 + 2H2O

Na[Al(OH)4] =to=> NaAlO2 + 2H2O

Взаимодействие оксидов со средними солями

Чаще всего средние соли с оксидами не реагируют.

Однако следует выучить следующие исключения из данного правила, часто встречающиеся на экзамене.

Одним из таких исключений является то, что амфотерные оксиды, а также диоксид кремния (SiO2) при их сплавлении с сульфитами и карбонатами вытесняют из последних сернистый (SO2) и углекислый (CO2) газы соответственно. Например:

Al2O3 + Na2CO3 =to=> 2NaAlO2 + CO2

SiO2 + K2SO3 =to=> K2SiO3 + SO2

Также к реакциям оксидов с солями можно условно отнести взаимодействие сернистого и углекислого газов с водными растворами или взвесями соответствующих солей — сульфитов и карбонатов, приводящее к образованию кислых солей:

Na2CO3 + CO2 + H2O = 2NaHCO3

CaCO3 + CO2 + H2O = Ca(HCO3)2

Также сернистый газ при пропускании его через водные растворы или взвеси карбонатов вытесняет из них углекислый газ благодаря тому, что сернистая кислота является более сильной и устойчивой кислотой, чем угольная:

K2СO3 + SO2 = K2SO3 + CO2

ОВР с участием оксидов

Восстановление оксидов металлов и неметаллов

Аналогично тому, как металлы могут реагировать с растворами солей менее активных металлов, вытесняя последние в свободном виде, оксиды металлов при нагревании также способны реагировать с более активными металлами.

Напомним, что сравнить активность металлов можно либо используя ряд активности металлов, либо, если одного или сразу двух металлов нет в ряду активности, по их положению относительно друг друга в таблице Менделеева: чем ниже и левее металл, тем он более активен. Также полезно помнить, что любой металл из семейства ЩМ и ЩЗМ будет всегда активнее металла, не являющегося представителем ЩМ или ЩЗМ.

В частности, на взаимодействии металла с оксидом менее активного металла основан метод алюмотермии, используемый в промышленности для получения таких  трудновосстанавливаемых металлов, как хром и ванадий:

Cr2O3 + 2Al =to=> Al2O3 + 2Cr

При протекании процесса алюмотермии образуется колоссальное количество тепла, а температура реакционной смеси может достигать более 2000oC.

Также оксиды практически всех металлов, находящихся в ряду активности правее алюминия, могут быть восстановлены до свободных металлов водородом (H2), углеродом (C) и угарным газом (CO) при нагревании. Например:

Fe2O3 + 3CO =to=> 2Fe + 3CO2

CuO + C =to=> Cu + CO

FeO + H2 =to=> Fe + H2O

Следует отметить, что в случае, если металл может иметь несколько степеней окисления, при недостатке используемого восстановителя возможно также неполное восстановление оксидов.  Например:

Fe2O3 + CO =to=> 2FeO + CO2

4CuO + C  =to=> 2Cu2O + CO2

Оксиды активных металлов (щелочных, щелочноземельных, магния и алюминия) с водородом и угарным газом не реагируют.

Однако оксиды активных металлов реагируют с углеродом, но иначе, чем оксиды менее активных металлов.

В рамках программы ЕГЭ, чтобы не путаться, следует считать, что в результате реакции оксидов активных металлов (до Al включительно) с углеродом образование свободного ЩМ, ЩЗМ, Mg, а также Al невозможно. В таких случаях происходит образование карбида металла и угарного газа. Например:

2Al2O3 + 9C  =to=> Al4C3 + 6CO

CaO + 3C  =to=> CaC2 + CO

Оксиды неметаллов нередко могут быть восстановлены металлами до свободных неметаллов. Так, например, оксиды углерода и кремния при нагревании реагируют с щелочными,  щелочноземельными металлами и магнием:

CO2 + 2Mg =to=> 2MgO + C

SiO2 + 2Mg =to=> Si + 2MgO

При избытке магния последнее взаимодействие может приводить также к образованию силицида магния Mg2Si:

SiO2 + 4Mg =to=> Mg2Si + 2MgO

Оксиды азота могут быть относительно легко восстановлены даже менее активными металлами, например, цинком или медью:

Zn + 2NO =to=> ZnO + N2

2NO2 + 4Cu =to=> 4CuO + N2

Взаимодействие оксидов с кислородом

Для того чтобы в заданиях реального ЕГЭ суметь ответить на вопрос, реагирует ли какой-либо оксид с кислородом (O2), прежде всего нужно запомнить, что оксиды, способные реагировать с кислородом (из тех, что могут попасться вам на самом экзамене) могут образовать только химические элементы из списка:

углерод С, кремний Si, фосфор P, сера S, медь Cu, марганец Mn, железо Fe, хром Cr, азот N

Встречающиеся в реальном ЕГЭ оксиды любых других химических элементов с кислородом  реагировать не будут (!).

Для более наглядного удобного запоминания перечисленных выше списка элементов, на мой взгляд, удобна следующая иллюстрация:

Все химические элементы, способные образовывать оксиды, реагирующие с кислородом (из встречающегося на экзамене)

В первую очередь, среди перечисленных элементов следует рассмотреть азот N, т.к. отношение его оксидов к кислороду заметно отличается от оксидов остальных элементов приведенного выше списка.

Следует четко запомнить тот факт, что всего азот способен образовать пять оксидов, а именно:

Из всех оксидов азота с кислородом может реагировать только NO. Данная реакция протекает очень легко при смешении NO как с чистым кислородом, так и с воздухом. При этом наблюдается быстрое изменение окраски газа с бесцветной (NO) на бурую (NO2):

2NO + O2 = 2NO2
бесцветный       бурый

Для того чтобы дать ответ на вопрос — реагирует ли с кислородом какой-либо оксид любого другого из перечисленных выше химических элементов (т.е. С, Si, P, S, Cu, Mn, Fe, Cr) — прежде всего обязательно нужно запомнить их основные степени окисления (СО). Вот они:

элемент С Si P S Cu Cr Mn Fe
его основные положительные СО +2, +4 +2, +4 +3, +5 +4, +6 +1, +2 +2, +3, +6 +2, +4, +6, +7 +2, +3, +6

Далее нужно запомнить тот факт, что из возможных оксидов указанных выше химических элементов, с кислородом будут реагировать только те, которые содержат элемент в минимальной, среди указанных выше, степени окисления. При этом степень окисления элемента повышается до ближайшего положительного значения из возможных:

элемент

Отношение его оксидов  к кислороду

С

Минимальная среди основных положительных степеней окисления углерода равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из оксидов C+2O и C+4O2 реагирует только CO. При этом протекает реакция:

2C+2O + O2 =to=>  2C+4O2

CO2 + O2 — реакция невозможна в принципе, т.к. +4 – высшая степень окисления углерода.

Si

Минимальная среди основных положительных степеней окисления кремния равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из оксидов Si+2O и Si+4O2 реагирует только SiO. Из-за некоторых особенностей оксидов SiO и SiO2 возможно окисление лишь части атомов кремния в оксиде Si+2O. Т.е. в результате его взаимодействия с кислородом, образуется смешанный оксид, содержащий как кремний в степени окисления +2, так и кремний в степени окисления +4, а именно Si2O3 (Si+2O·Si+4O2):

4Si+2O + O2 =to=> 2Si+2,+42O3 (Si+2O·Si+4O2)

SiO2 + O2 — реакция невозможна в принципе, т.к. +4 – высшая степень окисления кремния.

P

Минимальная среди основных положительных степеней окисления фосфора равна +3, а ближайшая к нему положительная — +5. Таким образом, с кислородом из оксидов P+32O3 и P+52O5  реагирует только P2O3. При этом протекает реакция доокисления фосфора кислородом от степени окисления +3 до степени окисления +5:

P+32O3 + O2 =to=> P+52O5

P+52O5 + O2 — реакция невозможна в принципе, т.к. +5 – высшая степень окисления фосфора.

S

Минимальная среди основных положительных степеней окисления серы равна +4, а ближайшая к ней по значению положительная — +6. Таким образом, с кислородом из оксидов S+4O2, S+6O3 реагирует только SO2. При этом протекает реакция:

2S+4O2 + O2 =to=> 2S+6O3

2S+6O3 + O2 — реакция невозможна в принципе, т.к. +6 – высшая степень окисления серы.

Cu

Минимальная среди положительных степеней окисления меди равна +1, а ближайшая к ней по значению — положительная (и единственная) +2. Таким образом, с кислородом из оксидов Cu+12O, Cu+2O реагирует только Cu2O. При этом протекает реакция:

2Cu+12O + O2 =to=>  4Cu+2O

CuO + O2 — реакция невозможна в принципе, т.к. +2 – высшая степень окисления меди.

Cr

Минимальная среди основных положительных степеней окисления хрома равна +2, а ближайшая к ней по значению положительная равна +3. Таким образом, с кислородом из оксидов Cr+2O, Cr+32O3 и  Cr+6O3 реагирует только CrO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +3:

4Cr+2O + O2 =to=>  2Cr+32O3

Cr+32O3 + O2 — реакция не протекает, несмотря на то что существует оксид хрома и в большей, чем +3, степени окисления (Cr+6O3). Невозможность протекания данной реакции связана с тем, что требуемый для ее гипотетического осуществления нагрев сильно превышает температуру разложения оксида CrO3.

Cr+6O3 + O2 ≠ — данная реакция не может протекать в принципе, т.к. +6 – высшая степень окисления хрома.

Mn

Минимальная среди основных положительных степеней окисления марганца равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из возможных оксидов Mn+2O, Mn+4O2, Mn+6O3 и Mn+72O7 реагирует только MnO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +4:

2Mn+2O + O2 =to=> 2Mn+4O2

в то время, как:

Mn+4O2 + O2и Mn+6O3 + O2 — реакции не протекают, несмотря на то что существует оксид марганца Mn2O7, содержащий Mn в большей, чем +4 и +6, степени окисления. Связанно это с тем, что требуемый для дальнейшего гипотетического окисления оксидов Mn+4O2 и Mn+6O3 нагрев существенно превышает температуру разложения получаемых оксидов MnO3 и Mn2O7.

Mn+72O7 + O2 — данная реакция невозможна  в принципе, т.к. +7 – высшая степень окисления марганца.

Fe

Минимальная среди основных положительных степеней окисления железа равна +2, а ближайшая к ней среди возможных — +3. Несмотря на то что для железа существует степень окисления +6, кислотного оксида FeO3, впрочем, как и соответствующей ему «железной» кислоты не существует.

Таким образом, из оксидов железа с кислородом могут реагировать только те оксиды, которые содержат Fe в степени окисления +2. Это либо оксид Fe+2O, либо смешанный оксид железа Fe+2,+33O4 (железная окалина):

4Fe+2O + O2 =to=> 2Fe+32O3 или

6Fe+2O + O2 =to=> 2Fe+2,+33O4

смешанный оксид Fe+2,+33O4 может быть доокислен до Fe+32O3:

4Fe+2,+33O4 + O2 =to=> 6Fe+32O3

Fe+32O3 + O2≠ — протекание данной реакции невозможно в принципе, т.к. оксидов, содержащих железо в степени окисления выше, чем +3, не существует.

Химические свойства оксидов

Взаимодействие оксидов с водой

Правило Комментарий
Основный оксид + H2O → Щелочь

Реакция идет, если образуется растворимое основание, а также Ca(OH)2:
Li2O + H2O → 2LiOH
Na2O + H2O → 2NaOH
K2O + H2O → 2KOH

CaO + H2O → Ca(OH)2
SrO + H2O → Sr(OH)2
BaO + H2O → Ba(OH)2

MgO + H2O → Реакция не идет, ак как Mg(OH)2 нерастворим*
FeO + H2O → Реакция не идет, так как Fe(OH)2 нерастворим
CrO + H2O → Реакция не идет, так как Cr(OH)2 нерастворим
CuO + H2O → Реакция не идет, так как Cu(OH)2 нерастворим

Амфотерный оксид Амфотерные оксиды, также как и амфотерные гидроксиды, с водой не взаимодействуют
Кислотный оксид + H2O → Кислота

Все реакции идут за исключением SiO2 (кварц, песок):
SO3 + H2O → H2SO4
N2O5 + H2O → 2HNO3
P2O5 + 3H2O → 2H3PO4 и т.д.

SiO2 + H2O → реакция не идет

* Источник: [2] “Я сдам ЕГЭ. Курс самоподготовки”, стр. 143.

Взаимодействие оксидов друг с другом

1. Оксиды одного типа друг с другом не взаимодействуют:

Na2O + CaO → реакция не идет
CO2 + SO3 → реакция не идет

2.  Как правило, оксиды разных типов взаимодействуют друг с другом (исключения: CO2, SO2, о них подробнее ниже):

Na2O + SO3 → Na2SO4
CaO + CO2 → CaCO3
Na2O + ZnO → Na2ZnO2

Взаимодействие оксидов с кислотами

1. Как правило, основные и амфотерные оксиды взаимодействуют с кислотами:

Na2O + HNO3 → NaNO3 + H2O
ZnO + 2HCl → ZnCl2 + H2O
Al2O3 + 3H2SO4 → Al2(SO4)3 + 3H2O

Исключением является очень слабая нерастворимая (мета)кремниевая кислота H2SiO3. Она реагирует только с щелочами и оксидами щелочных и щелочноземельных металлов.  
CuO + H2SiO3 → реакция не идет.

2. Кислотные оксиды не вступают в реакции ионного обмена с кислотами, но возможны некоторые окислительно-восстановительные реакции:

SO2 + 2H2S → 3S + 2H2O
SO3 + H2S → SO2­ + H2O

SiO2 + 4HF(нед.) → SiF4 + 2H2O

С кислотами-окислителями (только если оксид можно окислить):
SO2 + HNO3 + H2O → H2SO4 + NO

Взаимодействие оксидов с основаниями

1. Основные оксиды с щелочами и нерастворимыми основаниями НЕ взаимодействуют.

2. Кислотные оксиды взаимодействуют с основаниями с образованием солей:

SiO2 + 2NaOH → Na2SiO3 +H2O
CO2 + 2NaOH → Na2CO3 + H2O
CO2 + NaOH → NaHCO3 (если CO2 в избытке)

3. Амфотерные оксиды взаимодействуют с щелочами (т.е. только с растворимыми основаниями) с образованием солей или комплексных соединений:

а) Реакциях с растворами щелочей:

ZnO + 2NaOH + H2O → Na2[Zn(OH)4] (тетрагидроксоцинкат натрия)
BeO + 2NaOH + H2O → Na2[Be(OH)4] (тетрагидроксобериллат натрия)
Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4] (тетрагидроксоалюминат натрия)

б) Сплавление с твердыми щелочами:

ZnO + 2NaOH → Na2ZnO2 + H2O (цинкат натрия)
(кислота: H2ZnO2)
BeO + 2NaOH → Na2BeO2 + H2O (бериллат натрия)
(кислота: H2BeO2)
Al2O3 + 2NaOH → 2NaAlO2 + H2O (алюминат натрия)
(кислота: HAlO2)

Взаимодействие оксидов с солями

1. Кислотные и амфотерные оксиды взаимодействуют с солями при условии выделения более летучего оксида, например, с карбонатами или сульфитами все реакции протекают при нагревании:

SiO2 + CaCO3 → CaSiO3 + CO2­
P2O5 + 3CaCO3 → Ca3(PO4)2 + 3CO2­
Al2O3 + Na2CO3 → 2NaAlO2 + CO2
Cr2O3 + Na2CO3 → 2NaCrO2 + CO2
ZnO + 2KHCO3 → K2ZnO2 + 2CO2 + H2O

SiO2 + K2SO3 → K2SiO3 + SO2­
ZnO + Na2SO3 → Na2ZnO2 + SO2­

Если оба оксида являются газообразными, то выделяется тот, который соответствует более слабой кислоте:
K2CO3 + SO2 → K2SO3 + CO2­ (H2CO3 слабее и менее устойчива, чем H2SO3)

2. Растворенный в воде CO2 растворяет нерастворимые в воде карбонаты (с образованием растворимых в воде гидрокарбонатов):
CO2 + H2O + CaCO3 → Ca(HCO3)2
CO2 + H2O + MgCO3 → Mg(HCO3)2

В тестовых заданиях такие реакции могут быть записаны как:
MgCO3 + CO2 (р-р), т.е. используется раствор с углекислым газом и, следовательно, в реакцию необходимо добавить воду.

Это один из способов получения кислых солей.

Восстановление слабых металлов и металлов средней активности из их оксидов возможно с помощью водорода, углерода, угарного газа или более активного металла (все реакции проводятся при нагревании):

1. Реакции с CO, C и H2:

CuO + C →  Cu + CO­  
CuO + CO →  Cu + CO2
CuO + H2 →  Cu + H2O­                     

ZnO + C →  Zn + CO­
ZnO + CO →  Zn + CO2
ZnO + H2 →  Zn + H2O­

PbO + C →  Pb + CO
PbO + CО →  Pb + CO2­
PbO + H2 →  Pb + H2O

FeO + C →  Fe + CO
FeO + CО →  Fe + CO2­
FeO + H2 →  Fe + H2O

Fe2O3 + 3C →  2Fe + 3CO
Fe2O3 + 3CО →  2Fe + 3CO2
Fe2O3 + 3H2 →  2Fe + 3H2O­

WO3 + 3H2 → W + 3H2O

2. Восстановление активных металлов (до Al включительно) приводит к образованию карбидов, а не свободного металла:

CaO + 3C → CaC2 + 3CO
2Al2O3 + 9C → Al4C3 + 6CO

3. Восстановление более активным металлом:

3FeO + 2Al →  3Fe + Al2O3
Cr2O3 + 2Al → 2Cr + Al2O3.

4. Некоторые оксиды неметаллов также возможно восстановить до свободного неметалла:

2P2O5 + 5C → 4P + 5CO2
SO2 + C → S + CO2
2NO + C → N2 + CO2
2N2O + C → 2N2 + CO2
SiO2 + 2C → Si + 2CO

Только оксиды азота и углерода реагируют с водородом:

2NO + 2H2 → N2 + 2H2O
N2O + H2 → N2 + H2O

SiO2 + H2 → реакция не идет.

В случае углерода восстановления до простого вещества не происходит:
CO + 2H2 <=> CH3OH (t, p, kt)

Особенности свойств оксидов CO2 и SO2

1. Не реагируют с амфотерными гидроксидами:

CO2 + Al(OH)3 → реакция не идет

2. Реагируют с углеродом:

CO2 + C → 2CO­
SO2 + C → S + CO2­

3. С сильными восстановителями SO2 проявляет свойства окислителя:

SO2 + 2H2S → 3S + 2H2O
SO2 + 4HI → S + 2I2 + 2H2O
SO2 + 2C → S + CO2
SO2 + 2CO → S + 2CO2 (Al2O3, 500°C)

4. Сильные окислители окисляют SO2:

SO2 + Cl2 <=> SO2Cl2
SO2 + Br2 <=> SO2Br2
SO2 + NO2 →  SO3 + NO
SO2 + H2O2 →  H2SO4

5SO2 + 2KMnO4 +2H2O →  2MnSO4 + K2SO4 + 2H2SO4
SO2 + 2KMnO4 + 4KOH →  2K2MnO4 +K2SO4 + 2H2O

SO2 + HNO3 + H2O → H2SO4 + NO

6. Оксид углерода (IV) CO2 проявляет менее выраженные окислительные свойства, реагируя только с активными металлами, например:

CO2 + 2Mg → 2MgO + C (t)

Особенности свойств оксидов азота (N2O5, NO2, NO, N2O)

1. Необходимо помнить, что все оксиды азота являются сильными окислителями. Совсем необязательно помнить какие продукты образуются в подобных реакциях, так как подобные вопросы возникают только в тестах. Нужно лишь знать основные восстановители, такие как C, CO, H2, HI и йодиды, H2S и сульфиды, металлы (и т.д.) и знать, что оксиды азота их с большой вероятностью окислят.

2NO2 + 4CO  → N2 + 4CO2
2NO2 + 2S → N2 + 2SO2
2NO2 + 4Cu → N2 + 4CuO

N2O5 + 5Cu → N2 + 5CuO
2N2O5 + 2KI → I2 + 2NO2 + 2KNO3
N2O5 + H2S → 2NO2 + S + H2O

2NO + 2H2 → N2 + 2H2O
2NO + C → N2 + CO2
2NO + Cu → N2 + 2Cu2O
2NO + Zn → N2 + ZnO
2NO + 2H2S → N2 + 2S + 2H2O

N2O + H2 → N2 + H2O
2N2O + C → 2N2 + CO2
N2O + Mg → N2 + MgO

2. Могут окисляться сильными окислителями (кроме N2O5, так как степень окисления уже максимальная):
2NO + 3KClO + 2KOH →  2KNO3 + 3KCl + H2O
8NO + 3HClO4 + 4H2O →  8HNO3 + 3HCl
14NO + 6HBrO4 + 4H2O →  14HNO3 + 3Br2
NO + KMnO4 + H2SO4 →  HNO3 + K2SO4 + MnSO4 + H2O
5N2O + 2KMnO4 + 3H2SO4 →  10NO + 2MnSO4 + K2SO4 + 3H2O.

3. Несолеобразующие оксиды N2O и NO не реагируют ни с водой, ни с щелочами, ни с обычными кислотами (кислотами-неокислителями).

Химические свойства CO как сильного восстановителя

1. Реагирует с некоторыми неметаллами:

2CO + O2 → 2CO2
CO + 2H2 <=> CH3OH (t, p, kt)
CO + Cl2 <=> COCl2 (фосген)

2. Реагирует с некоторыми сложными соединениями:

CO + KOH → HCOOK
CO + Na2O2 → Na2CO3
CO + Mg → MgO + C (t)

3. Восстанавливает некоторые металлы (средней и малой активности) и неметаллы из их оксидов:

CO + CuO → Cu + CO2
3CO + Fe2O3 → 2Fe + 3CO2
3CO + Cr2O3 → 2Cr + 3CO2

2CO + SO2 → S + 2CO2­ (Al2O3, 500°C)
5CO + I2O5 → I2 + 5CO2­
4CO + 2NO2 → N2 + 4CO2

3. С обычными кислотами и водой CO (также как и другие несолеобразующие оксиды) не реагирует.

Химические свойства SiO2

1. Взаимодействует с активными металлами:

SiO2 + 2Mg → 2MgO + Si
SiO2 + 2Ca → 2CaO + Si
SiO2 + 2Ba → 2BaO + Si

2. Взаимодействует с углеродом:

SiO2 + 2C → Si + 2CO
(Согласно пособию “Курс самоподготовки” Каверина, SiO2 + CO → реакция не идет)

3  С водородом SiO2 не взаимодействует.

4. Реакции с растворами или расплавами щелочей, с оксидами и карбонатами активных металлов:

SiO2 + 2NaOH → Na2SiO3 +H2O
SiO2 + CaO → CaSiO3
SiO2 + BaO → BaSiO3
SiO2 + Na2CO3 → Na2SiO3 + CO2
SiO2 + CaCO3 → CaSiO3 + CO2

SiO2 + Cu(OH)2 → реакция не идет (из оснований оксид кремния реагирует только с щелочами).

5. Из кислот SiO2 взаимодействует только с плавиковой кислотой:

SiO2 + 4HF → SiF4 + 2H2O.

Свойства оксида P2O5 как сильного водоотнимающего средства

HCOOH + P2O5 → CO + H3PO4
2HNO3 + P2O5 → N2O5 + 2HPO3
2HClO4 + P2O5 → Cl2O7 + 2HPO3.

Термическое разложение некоторых оксидов

В вариантах экзамена такое свойство оксидов не встречается, но рассмотрим его для полноты картины:
Основные:
4CuO → 2Cu2O + O2 (t)
2HgO → 2Hg + O2 (t)

Кислотные:
2SO3 → 2SO2 + O2 (t)
2N2O → 2N2 + O2 (t)
2N2O5 → 4NO2 + O2 (t)

Амфотерные:
4MnO2 → 2Mn2O3 + O2 (t)
6Fe2O3 → 4Fe3O4 + O2 (t).

Особенности оксидов NO2, ClO2 и Fe3O4

1. Диспропорционирование: оксидам NO2 и ClO2 соответствуют две кислоты, поэтому при взаимодействии с щелочами или карбонатами щелочных металлов образуются две соли: нитрат и нитрит соответствующего металла в случае NO2 и хлорат и хлорит в случае ClO2:

2N+4O2 + 2NaOH → NaN+3O2 + NaN+5O3 + H2O

4NO2 + 2Ba(OH)2 → Ba(NO2)2 + Ba(NO3)2 + 2H2O

2NO2 + Na2CO3 →  NaNO3 + NaNO2 + CO2

В аналогичных реакциях с кислородом образуются только соединения с N+5, так как он окисляет нитрит до нитрата:

4NO2 + O2 + 4NaOH → 4NaNO3 + 2H2O

4NO2 + O2 + 2H2O → 4HNO3              (растворение в избытке кислорода)

2Cl+4O2 + H2O → HCl+3O2 + HCl+5O3
2ClO2 + 2NaOH → NaClO2 + NaClO3 + H2O 

2. Оксид железа (II,III) Fe3O4 (FeO·Fe2O3) содержит железо в двух степенях окисления: +2 и +3, поэтому в реакциях с кислотами образуются две соли:

Fe3O4 + 8HCl → FeCl2 + 2FeCl3 4H2O.

1. Основные оксиды, образованные щелочными и щелочноземельными металлами, взаимодействуют с водой, образуя растворимое в воде основание — щёлочи.

Основный оксид + вода → основание.

Например, при взаимодействии оксида кальция с водой образуется гидроксид кальция:

2. Основные оксиды взаимодействуют с кислотами, образуя соль и воду.

Основный оксид + кислота → соль + вода.

Например, при взаимодействии оксида меди((II)) с серной кислотой образуются сульфат меди((II)) и вода:

3. Основные оксиды могут взаимодействовать с оксидами, принадлежащими к другим классам, образуя соли.

Основный оксид + кислотный оксид → соль.

Например, при взаимодействии оксида магния с углекислым газом образуется карбонат магния:

Химические свойства кислотных оксидов

1. Кислотные оксиды могут взаимодействовать с водой, образуя кислоты.

Кислотный оксид + вода → кислота.

Например, при взаимодействии оксида серы((VI)) с водой образуется серная кислота:

Обрати внимание!

Оксид кремния 

SiO2

с водой не реагирует.

2. Кислотные оксиды взаимодействуют со щелочами, образуя соль и воду.

Кислотный оксид + основание → соль + вода.

Например, при взаимодействии оксида серы((IV)) с гидроксидом натрия образуются сульфит натрия и вода:

3. Кислотные оксиды могут реагировать с основными оксидами, образуя соли.

Кислотный оксид + основный оксид → соль.

Например, при взаимодействии оксида углерода((IV)) с оксидом кальция образуется карбонат кальция:

Химические свойства амфотерных оксидов

1. Амфотерные оксиды при взаимодействии с кислотой или кислотным оксидом проявляют свойства, характерные для основных оксидов. Так же, как основные оксиды, они взаимодействуют с кислотами, образуя соль и воду.

Например, при взаимодействии оксида цинка с соляной кислотой образуется хлорид цинка и вода:

2. Амфотерные оксиды при взаимодействии со щёлочью или с оксидом щелочного или щелочноземельного металла проявляют кислотные свойства. При сплавлении их со щелочами протекает химическая реакция, в результате которой образуются соль и вода.

Например, при сплавлении оксида цинка с гидроксидом калия образуется цинкат калия и вода: 

Если же с гидроксидом калия сплавить оксид алюминия, кроме воды образуется алюминат калия:

Al2O3+2KOH→2KAlO2+H2O

.

В уроке 32 «Химические свойства оксидов» из курса «Химия для чайников» узнаем о всех химических свойствах кислотных и основных оксидов, рассмотрим с чем они реагируют и что при этом образуется.

Так как химический состав кислотных и основных оксидов различен, они отличаются своими химическими свойствами.

1. Химические свойства кислотных оксидов

а) Взаимодействие с водой
Вы уже знаете, что продукты взаимодействия оксидов с водой называются «гидроксиды»:

Поскольку оксиды, вступающие в эту реакцию, делятся на кислотные и основные, то и образующиеся из них гидроксиды также делятся на кислотные и основные. Таким образом, кислотные оксиды (кроме SiO2) реагируют с водой, образуя кислотные гидроксиды, которые являются кислородсодержащими кислотами:

Каждому кислотному оксиду соответствует кислородсодержащая кислота, относящаяся к кислотным гидроксидам. Несмотря на то что оксид кремния SiO2 с водой не реагирует, ему тоже соответствует кислота H2SiO3, но ее получают другими способами.

б) Взаимодействие с щелочами
Все кислотные оксиды реагируют со щелочами по общей схеме:

В образующейся соли валентность атомов металла такая же, как и в исходной щелочи. Кроме того, в состав соли входит остаток той кислоты, которая соответствует данному кислотному оксиду.

Например, если в реакцию вступает кислотный оксид CO2, которому соответствует кислота H2CO3 (указана в квадратных скобках), то в состав соли будет входить остаток этой кислоты — CO3, валентность которого, как вы уже знаете, равна II:

Если же в реакцию вступает кислотный оксид N2О5, которому соответствует кислота HNO3 (указана в квадратных скобках), то в составе образующейся соли будет остаток этой кислоты — NO3 с валентностью, равной I:

Поскольку все кислотные оксиды реагируют со щелочами с образованием солей и воды, этим оксидам можно дать другое определение.

Кислотными называются оксиды, реагирующие со щелочами с образованием солей и воды.

в) Реакции с основными оксидами

Кислотные оксиды реагируют с основными оксидами с образованием солей в соответствии с общей схемой:

В образующейся соли валентность атомов металла такая же, как и в исходном основном оксиде. Следует запомнить, что в состав соли входит остаток той кислоты, которая соответствует кислотному оксиду, вступающему в реакцию. Например, если в реакцию вступает кислотный оксид SO3, которому соответствует кислота H2SO4 (указана в квадратных скобках), то в состав соли будет входить остаток этой кислоты — SO4, валентность которого равна II:

Если же в реакцию вступает кислотный оксид Р2О5, которому соответствует кислота Н3РО4, то в составе образующейся соли будет остаток этой кислоты — РO4 с валентностью, равной III.

2. Химические свойства основных оксидов

а) Взаимодействие с водой

Вы уже знаете, что в результате взаимодействия основных оксидов с водой образуются основные гидроксиды, которые иначе называются основаниями:

К таким основным оксидам относятся оксиды: Li2O, Na2O, K2O, CaO, BaO.

При написании уравнений соответствующих реакций следует помнить, что валентность атомов металла в образующемся основании равна его валентности в исходном оксиде.

Основные оксиды, образованные такими металлами, как Cu, Fe, Cr, с водой не реагируют. Соответствующие им основания получают другими способами.

б) Взаимодействие с кислотами

Практически все основные оксиды реагируют с кислотами с образованием солей по общей схеме:

Следует помнить, что в образующейся соли валентность атомов металла такая же, как в исходном оксиде, а валентность кислотного остатка такая же, как в исходной кислоте.

Поскольку все основные оксиды реагируют с кислотами с образованием солей и воды, этим оксидам можно дать другое определение.

Основными называются оксиды, реагирующие с кислотами с образованием солей и воды.

в) Взаимодействие с кислотными оксидами

Основные оксиды реагируют с кислотными оксидами с образованием солей в соответствии с общей схемой:

В образующейся соли валентность атомов металла такая же, как и в исходном основном оксиде. Кроме того, следует запомнить, что в состав соли входит остаток той кислоты, которая соответствует кислотному оксиду, вступающему в реакцию. Например, если в реакцию вступает кислотный оксид N2O5, которому соответствует кислота HNO3, то в состав соли будет входить остаток этой кислоты — NO3, валентность которого, как вы уже знаете, равна I.

Поскольку рассмотренные нами кислотные и основные оксиды в результате различных реакций образуют соли, их называют солеобразующими. Существует, однако, небольшая группа оксидов, которые в аналогичных реакциях не образуют солей, поэтому их называют несолеобразующими.

Краткие выводы урока:

  1. Все кислотные оксиды реагируют со щелочами с образованием солей и воды.
  2. Все основные оксиды реагируют с кислотами с образованием солей и воды.
  3. Кислотные и основные оксиды являются солеобразующими. Несолеобразующие оксиды — CO, N2О, NO.
  4. Основания и кислородсодержащие кислоты являются гидроксидами.

Надеюсь урок 32 «Химические свойства оксидов» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Добавить комментарий