Особые решения дифференциальных уравнений
Решение дифференциального уравнения
(1)
называется особым, если в каждой его точке нарушается свойство единственности, т. е. если через каждую его точку кроме этого решения проходит и другое решение, имеющее в точке ту же касательную, что и решение , но не совпадающее с ним в сколь угодно малой окрестности . График особого решения будем называть особой интегральной кривой уравнения (1). Если функция и ее частные производные и непрерывны по всем аргументам , то любое особое решение уравнения (1) удовлетворяет также уравнению
(2)
Значит, чтобы отыскать особые решения (1), надо исключить из уравнений (1) и (2).
Полученное после исключения из (1) и (2) уравнение
(3)
называется p-дискриминантом уравнения (1), а кривая, определяемая уравнением (3), называется p-дискриминантной кривой (коротко ).
Часто бывает так, что распадается на несколько ветвей. Тогда нужно установить, является ли каждая в отдельности ветвь решением уравнения (1), и если является, то будет ли оно особым решением, т.е. нарушается ли единственность в каждой его точке.
Пример 1. Найти особые решения дифференциального уравнения
(4)
Решение.
а) Находим p-дискриминантную кривую. В данном случае и условие (2) принимает вид , отсюда . Подставляя это выражение для в уравнение (4), получаем
(5)
Кривая (5) есть p-дискриминантная кривая уравнения (4): она состоит из одной ветви — параболы.
б) Проверяем, является ли p-дискриминантная кривая решением заданного уравнения. Подставляя (5) и ее производную в (4), убеждаемся, что есть решение уравнения (4).
в) Проверяем, является ли решение (S) особым решением уравнения (4). Для этого найдем общее решение уравнения (4). Перепишем (4) в виде . Это уравнение Клеро. Его общее решение
(6)
Выпишем условие касания двух кривых и в точке с абсциссой :
(7)
Первое равенство выражает совпадение ординат кривых, а второе выражает совпадение угловых коэффициентов касательных к этим кривым в точке с абсциссой .
Полагая , находим, что условия (7) принимают вид
(8)
Подставляя в первое из равенств (8), получаем или т.е. при первое равенство выполняется тождественно, так как есть абсцисса произвольной точки.
Итак, в каждой точке кривой (5) ее касается некоторая другая кривая семейства (6), а именно та, для которой . Значит, есть особое решение уравнения (4).
г) Геометрическое истолкование.
Общее решение уравнения (4) есть семейство прямых (6), а особое решение (5) является огибающей этого семейства прямых (рис. 19).
Огибающей семейства кривых
(9)
называется такая кривая, которая в каждой своей точке касается некоторой кривой семейства (9) и каждого отрезка которой касается бесконечное множество кривых из (9). Будем говорить, что кривые и касаются в точке , если они имеют в этой точке общую касательную.
Если (9) есть общий интеграл уравнения (1), то огибающая семейства кривых (9), если она существует, будет особой интегральной кривой этого уравнения. В самом деле, в точках огибающей значения совпадают со значениями для интегральной кривой, касающейся огибающей в точке , и, следовательно, в каждой точке огибающей значения удовлетворяют уравнению , т.е. огибающая является интегральной кривой.
Далее, в каждой точке огибающей нарушена единственность, так как через точки огибающей по одному направлению проходит, по крайней мере, две интегральные кривые: сама огибающая и касающаяся ее в рассматриваемой точке интегральная кривая семейства (9). Следовательно, огибающая является особой интегральной кривой.
Из курса математического анализа известно, что огибающая входит в состав C-дискриминантной кривой (коротко СДК), определяемой системой уравнений
(10)
Некоторая ветвь СДК заведомо будет огибающей, если на ней:
1) существуют ограниченные по модулю частные производные
(11)
где и — постоянные;
2)
Замечание. Условия 1) и 2) лишь достаточны, а потому ветви СДК, на которых нарушено одно из этих условий, тоже могут быть огибающими.
Пример 2. Найти особые решения дифференциального уравнения
(13)
зная его общий интеграл
(14)
Решение.
а) Находим C-дискриминантную кривую. Имеем , так что отсюда . Подставляя это значение в (14), получаем откуда
(15)
Это и есть C-дискриминантная кривая: она состоит из двух прямых и .
б) Непосредственной подстановкой убеждаемся, что каждая из ветвей СДК является решением уравнения (13).
в) Докажем, что каждое из решений (15) является особым решением уравнения (13). В самом деле, так как и , то на каждой ветви СДК имеем (предполагаем, что решение уравнения (13) рассматривается на отрезке ).
здесь
где — область допустимых значений .
Заметим, что на любой из ветвей СДК в области , так дх что выполняется одно из условий (12). Значит, условия (11) и (12) выполняются, а, следовательно, прямые (15) являются огибающими парабол (14).
Итак, установлено, что каждое из решений (15) есть особое решение.
В вопросах отыскания особых решений оказываются полезными следующие символические схемы:
(16)
(17)
Схема (16) означает, что уравнение p-дискриминантной кривой может распадаться на три уравнения:
1) — уравнение огибающей;
2) — уравнение геометрического места точек заострения (возврата);
3) — уравнение геометрического места точек прикосновения интегральных линий, причем множитель входит в в квадрате.
Схема (17) означает, что уравнение C-дискриминантной кривой может распадаться на три уравнения:
1) — уравнение огибающей;
2) — уравнение геометрического места узловых точек, причем множитель входит в в квадрате;
3) — уравнение геометрического места точек заострения, причем множитель входит в в кубе.
Не обязательно, чтобы для каждой задачи все составные части и фигурировали в соотношениях (16) и (17).
Из всех геометрических мест только огибающая есть особое решение дифференциального уравнения. Отыскание огибающей упрощается тем, что в схемы (16) и (17) она входит в первой степени.
В отношении других геометрических мест (точек заострения, узловых точек и точек прикосновения) требуется дополнительный анализ в каждом конкретном случае. То обстоятельство, что некоторый множитель входит в в квадрате (и совсем не входит в ) указывает на то, что здесь может быть геометрическое место точек прикосновения интегральных линий. Аналогично, если некоторый множитель входит в в квадрате (и совсем не входит в ), то здесь может быть геометрическое место узловых точек. Наконец, если множитель входит в в первой степени, а в — в третьей, то возможно наличие геометрического места точек заострения.
Пример 3. Найти особое решение дифференциального уравнения
(18)
Решение. Особое решение, если оно существует, определяется системой
(19)
где второе уравнение (19) получено из (18) дифференцированием его по . Исключив , получим p-дискриминантную кривую , которая распадается на две ветви
(20)
(21)
Подстановкой убеждаемся, что обе функции являются решениями уравнения (18).
Чтобы установить, являются ли решения (20) и (21) особыми или нет, найдем огибающую семейства
(22)
являющегося общим интегралом для (18).
Выпишем систему для определения C-дискриминантной кривой откуда, исключая , получаем , или и , что совпадает с (20) и (21). В силу того, что на линиях (20) и (21) условия (11) и (12) выполняются, заключаем, что линии и являются огибающими, а значит (20) и (21) есть особые решения заданного уравнения.
Интегральные кривые (22) суть параболы , а линии – огибающие этого семейства парабол (рис. 20).
Пример 4. Найти особые решения дифференциального уравнения
(23)
Решение. Дифференцируем (23) по
(24)
Исключая из (23) и (24), получим . Дискриминантная кривая есть ось ординат. Она не является интегральной кривой уравнения (23), но согласно схеме (16) может быть геометрическим местом точек прикосновения интегральных кривых.
Решениями уравнения (23) являются параболы и те гладкие кривые, которые можно составить из их частей (рис. 21).
Из чертежа видно, что прямая действительно есть геометрическое место точек прикосновения интегральных кривых уравнения (23).
Пример 5. Найти особые решения дифференциального уравнения
(25)
Решение. Найдем . Исключая из системы уравнений получаем
(26)
Преобразовав уравнение (25) к виду , находим его общий интеграл .
Найдем . Исключая из системы уравнений будем иметь
(27)
Итак, из (26) и (27) имеем
Множитель входит в p-дискриминант и в C-дискриминант в первой степени и дает огибающую, т. е. функция есть особое решение дифференциального уравнения (25). Непосредственной подстановкой убеждаемся, что действительно удовлетворяет уравнению.
Уравнение , входящее во второй степени в p-дискриминант и совсем не входящее в C-дискриминант, дает место точек прикосновения .
Наконец, уравнение , входящее в C-дискриминант во второй степени и совсем не входящее в p-дискриминант, дает место узловых точек (рис.22).
Пример 6. Найти особые решения дифференциального уравнения
(28)
Решение.
а) Ищем p-дискриминантную кривую. Дифференцируя (28) по , получаем , откуда
(29)
Подставляя (29) в (28), найдем уравнение :
(30)
б) Ищем общий интеграл уравнения (28). Обозначив у’ через р, перепишем (28) в виде
(31)
Дифференцируя обе части (28) по и учитывая, что , будем иметь
откуда
Приравнивая нулю первый множитель , получаем (29), а соотношение дает
(32)
Исключая параметр из уравнений (31) и (32), найдем общее решение уравнения (28):
(33)
в) Находим C-дискриминантную кривую. Дифференцируя (33) по C, будем иметь
(34)
Подставляя (34) в (33), получаем уравнение .
Согласно символическим схемам (16) и (17) заключаем, что есть огибающая семейства полукубических парабол (33), а есть геометрическое место точек заострения (множитель входит в уравнение в кубе) (рис. 23). Подстановкой в уравнение (28) убеждаемся, что есть решение, а решением не является (при уравнение (28) не имеет смысла). Таким образом, решение есть особое (огибающая семейства интегральных линий).
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
Особые решения дифференциального уравнения
2. Особые решения дифференциального уравнения.
Пусть рассматривается дифференциальное уравнение первого порядка общего вида F(x,y,y/)=0.
Тогда существование его особого решения прежде всего может быть связано с условием , не обеспечивающим представление y/ как неявной функции переменных x и y, задаваемой уравнением F(x,y,y/)=0.
Таким образом, формируя систему уравнений
,
и исключая из нее переменную y/, получаем функцию y=y(x), которая может дать особое решение дифференциального уравнения F(x,y,y/)=0.
Определение. Кривая, получаемая исключением параметра p из системы уравнений
,
называется дискретной кривой уравнения F(x,y,y/)=0.
Для того, чтобы дискретная кривая давала особое решение дифференциального уравнения, остается проверить, что она удовлетворяет уравнению F(x,y,y/)=0, и что через каждую ее точку проходит хотя бы одна интегральная кривая общего решения этого уравнения, т.е. проверить, что в точках дискретной кривой нарушается свойство единственности решения дифференциального уравнения.
Пример 1. Дано уравнение .
Как было указано выше его особое решение дается уравнениями y=x+c и y=-x+c. Опреляя для него дискретную кривую имеем систему уравнений
.
Очевидно, данная система решения не имеет, поэтому рассматриваемое дифференциальное уравнение особых решений не имеет.
Пример 2. Рассмотрим решение уравнения
Его общее решение имеет вид . Выписывая систему уравнений
или , (где p=y/)
и исключая из нее переменную p, получаем уравнение дискретной кривой y=0 (ось Ox). Очевидно, она является решением дифференциального уравнения, так как из y=0=const следует y/=0. Кроме того через любую точку M(x0;0) этой кривой проходит частное решение дифференциального уравнения, получаемое из общего при c=-x0. Не трудно убедиться, что касательные в точке M(x0;0) дискретной кривой и частного решения совпадают. Таким образом, дискретная кривая y=0 является особым решением исходного дифференциального уравнения.
Ниже на рис. 3 изображено семейство интегральных кривых этого уравнения, являющееся семейством парабол.
Из рисунка видно, что дискретная кривая y=0, являющаяся осью Ox, касается в каждой точке некоторой кривой семейства.
Выше была рассмотрена ситуация, когда уравнение F(x,y,y/)=0 не определяло y/ как неявную функцию переменных x и y, так как выполнялось условие .
Предположим теперь, что в области D, где ищется решение дифференциального уравнения, выполняется условие . В этом случае уравнение F(x,y,y/)=0 определяет y/ как неявную функцию от x и y, т.е. можно считать y/=f(x,y) или даже явно выразить y/ через x и y в виде y/=f(x,y). Тогда особое решение будет связано с нарушением условий приведенной выше в параграфе 3, теоремы Коши существования и единственности решения дифференциального уравнения.
Таким невыполнимым условием, обычно, берется условие Липшица, и геометрическое место точек, в которых оно нарушается, задается условием или, считая , условием .
Пример 3. Рассматривается дифференциальное уравнение (сравните с примером 2). Здесь . Так как , то дискретная кривая отсутствует. Из и условия , находим, что в точках кривой y=0, являющейся осью Ox, нарушается условие теоремы Коши. Следовательно, эта кривая y=0 может быть особым решением. Остается проверить, что она удовлетворяет исходному дифференциальному уравнению и что в ее точках нарушается условие единственности прохождения интегральной кривой. Общее решение данного уравнения имеет вид , т.е. такой же, как и в примере 2. Разбирая пример 2, выполнимость обоих условий была проверена. Следовательно, решение y=0 действительно является особым.
Пример 4. Дано уравнение .
Для него , т.е. дискретной кривой нет. Из и условия , получаем точки кривой y=0, в которых нарушены условия теоремы Коши.
Однако, в данном случае кривая y=0 не удовлетворяет дифференциальному уравнению. Следовательно, это уравнение особых решений не имеет.
Особым решением дифференциального уравнения довольно часто бывают огибающие семейства его интегральных кривых.
Определение. Кривая y=y(x) называется огибающей семейства интегральных кривых интегрального уравнения, задаваемого общим решением Ф(x,y,c)=0, если в каждой точке она касается одной из кривых данного семейства, т.е. имеет с ней в этой точке общую касательную.
Для нахождения огибающей может быть использован следующий подход.
Пусть огибающая задана параметрически уравнениями x=x(t),y=y(t).
Со значением параметра t можно связать значение постоянной c, отвечающей той интегральной кривой семейства Ф(x,y,c)=0, которая касается огибающей в точке M(x(t),y(t)), т.е. величину c можем рассматривать как функцию параметра t, а именно c=c(t).
Подставляя функции x=x(t),y=y(t) и c=c(t) в Ф(x,y,c)=0, получаем тождество
.
Предполагая, что Ф(x,y,c) имеет непрерывные частные производные первого порядка, из тождества вытекает .
Покажем, что . Действительно, k-угловой коэффициент касательной для огибающей в точке x0=x(t0), y0=y(t0) при t=t0 равен
.
Уравнение Ф(x,y,c0)=0, где c0=c(t0), задает интегральную кривую семейства, проходящую через точку M0(x0, y0). Угловой коэффициент касательной к данной интегральной кривой в точке M0(x0, y0) равен , где уравнение данной кривой. Рассматривая уравнение Ф(x,y,c0)=0, как неявное задание уравнения интегральной кривой, значение найдем из соотношения , предполагая .
Из получаем и
или
.
Таким образом, для произвольного значения t0 параметра t выполняется .
Следовательно, из с учетом доказанного соотношения получаем
.
Но так как , ибо , то из последнего вытекает, что в точках огибающей должно выполняться условие .
Таким образом, для нахождения огибающей надо рассмотреть систему уравнений
.
Исключая из нее параметр c, найдем уравнение y=y(x) или Y(x,y)=0 огибающей (исключая точки, где одновременно и ). Окончательно убеждаясь в том, что поперечная кривая является огибающей, проверяя условие касания в каждой ее точке интегральной кривой семейства.
Пример 5. Снова рассмотрим уравнение из примера 2 . Его общее решение имеет вид , т.е. .
Для нахождения огибающей рассмотрим систему
.
Из нее получаем уравнение огибающей y=0. Далее убеждаемся, что y=0 действительно является огибающей, так как через каждую ее точку M(x0;0) проходит интегральная кривая со значением параметра c=-x0.
Пример 6. Рассмотрим дифференциальное уравнение . Его общее решение имеет вид (x-c)2+y2=1 получаем . Подставляя и (x-c)2+y2=1 в левую часть уравнения, получим тождество .
Нетрудно видеть, что семейством интегральных кривых являются окружности единичного радиуса с центром в точках (c,0), лежащих на оси Ox.
На рис. 4 изображено семейство этих окружностей.
Из рисунка видно, что семейство интегральных кривых имеет две огибающие y=1 и y=-1, удовлетворяющих диффренциальному уравнению и, следовательно, дающих его два особых решения.
Найдем уравнения огибающих аналитически. Из Ф(x,y,c)=(x-c)2+y2-1, получаем следующую систему уравнений
.
Исключая из уравнения параметр c, получаем y2=1. Данное уравнение дает две огибающих y=1 и y=-1.
Пример 7. Дано уравнение .
Его общее решение будет , представляющем семейство гипербол, изображенных на рис. 5.
Из для нахождения предполагаемых огибающих получаем систему уравнений
.
Исключая из уравнений параметр c получаем уравнение кривой y=0, являющейся осью Ox.
Кривая y=0 удовлетворяет дифференциальному уравнению и, следовательно, является его решением. Однако, она не является огибающей, так как не имеет общих точек с интегральными кривыми семейства. Таким образом, являясь решением уравнения, она не является его особым решением.
Далее будут рассмотрены методы решения отдельных типов дифференциальных уравнений.
3. Дифференциальное уравнение первого порядка с разделяющимися переменными.
Определение. Дифференциальное уравнение первого порядка
называется уравнением с разделяющимися переменными, если оно может быть представлено в виде или .
Разнося переменные x и y и их дифференциалы в разные стороны такого уравнения, оно может быть записано в виде
(отсюда происходит название данного типа уравнения).
Можно следующую интерпретацию происхождения данного уравнения.
Пусть величина Z является с одной стороны функцией величины y, т.е. z=M(y). С другой стороны величина Z является функцией величины x, т.е. z=g(x). Например, если Z-объем выпуска продукции, то с одной стороны z зависит от величины y – объема основных фондов, с другой стороны z может рассматриваться зависимой от величины x – объема затрачиваемых трудовых ресурсов. Таким образом, через соотношения z=H(y) и z=G(x) одна из величин y или x представляется функцией другой величины x или, соответственно, y. Исходное дифференциальное уравнение отображает эту функциональную связь через дифференциалы функций H(y) и G(x), уравнивая их, т.е. dz=dH(y)=dG(x). Отсюда можно считать, что .
Таким образом, чтобы найти эту функциональную связь в виде y=y(x),x=x(y) или f(x,y)=0, надо проинтегрировать каждую из частей дифференциального уравнения, получая
, и затем приравнять их H(y)+c1=G(x)+c2 (имея в виду z=H(y)+c1, z=G(x)+c2, и затем z исключается). Вместо двух постоянных c1 и c2 обычно берется одна c=c2-c1, и тогда общее решение дифференциального уравнения записывается в виде
Если это возможно, из него одна из величин может быть представлена явно функцией другой y=y(x) или x=x(y).
Пример 1. Рассмотрим дифференциальное уравнение получаемое при моделировании процесса распространения информации о новом товаре
.
Данное уравнение, очевидно, относится к уравнению с разделяющимися переменными. Разнеся переменные x и t и их дифференциалы по разные стороны, уравнение запишем в виде
или .
Проинтегрируем каждую из сторон этого уравнения:
Приравнивая найденные интегралы получаем
или ,
где c=N(c1-c2). Отсюда далее , где . Так как по смыслу задачи , то , и тогда . Окончательно общее решение дифференциального уравнения получает вид
, где >0.
Нетрудно проверить, что дискретной и огибающей кривых дифференциальное уравнение не имеет. Однако беря крайние значения для равные , получаем кривые x=N и x=0, являющиеся решениями уравнения, но не особыми.
Пример 2. Возьмем дифференциальное уранение
или ,
геометрическая иллюстрация решений которого рассматривается в параграфе 2.
Данное уравнение является с разделяющимися переменными> Разнося переменные в разные стороны, записываем уравнение в виде
.
Интегрирование левой и правой частей уравнения, дает общее решение вида , где постоянная взята в виде lnc,c>0. Далее несложно преобразовать данное уравнение к виду
или , где постоянная уже не имеет ограничений на знак.
Как видно получилось семейство гипербол.
Пусть из данного семейства интегральных кривых (гипербол) необходимо выделить кривую (решение) проходящую через точку M(1,1), т.е. выделить решение, удовлетворяющее начальному условию y(1)=1. Для этого в общее решение уравнения подставим значения x=1, y=1, и найдем, отвечающее искомой кривой, значение постоянной . Очевидно, это значение равно . Следовательно, искомое частное решение определяется уравнением
Yx=1 или .
Пример 3. Рассмотрим уравнение , приведенное в параграфе 3. Разрешая его относительно y/, получаем два уравнения y/=1 и y/=-1 или и .
Оба являются с разделяющимися переменными и приводятся к виду dy=dx и dx=-dx. Интегрирование левых и правых частей уравнений дает следующие их общие решения y=x+c и y=-x+c.
Пример 4. Следующим уравнением возьмем уарвнение из примера в параграфе 4.
Разрешая его относительно y/ получаем
или .
Разделяя переменные имеем
.
Найдем интегралы от левой и правой частей уравнения:
.
.
Приравнивая интегралы и заменяя две постоянных на одну получаем следующий вид общего решения уравнения
.
Возводя в квадрат обе части данного уравнения, получаем окончательный вид общего решения
Пример 5. Решить дифференциальное уравнение ,
Найти его частное решение при условии .
Разрешая уравнение относительно y/, видим, что оно является уравнением с разделяющимися переменными
.
Разнося переменные по разные стороны уравнения получаем
.
Интегрируя каждую из частей этого уравнения, получаем следующее общее решение исходного дифференциального уравнения
или .
Используя начальное условие , определяем значение константы c для искомого частного решения . Искомое частное решение дается уравнением .
4. Однородное дифференциальное уравнение первого порядка.
Функция f(x,y) называется однородной степени m, если .
Функция f(x,y) называется однородной нулевой степени, если .
Например, функция является однородной второй степени. Действительно, . Функция однородная нулевой степени, так как .
Всякая однородная функция нулевой степени может быть представлена в виде функции от отношения y/x (или отношения x/y). Действительно, пусть f(x,y) – однородная функция нулевой степени, тогда, взяв в качестве , имеем может рассматриваться как функция отношения y/x, т.е. .
Определение. Дифференциальное уравнение первого порядка F(x,y,y/)=0, называется однородным, если оно может быть представлено в виде y/=f(x,y) или ., где f(x,y) – однородная функция нулевой степени.
Решение однородного дифференциального уравнения сводится к решению уравнения с разделяющимися переменными заменой y/x=u или y=ux, где u-функция от x.
Подставляя в исходное уравнение и , получаем уравнение вида или , являющиеся с разделяющимися переменными. Если u=g(x,c) или Ф(x,u,c)=0 является его общим решением, то y=xg(x,c) или Ф(x,y/x,c)=0 будет общим решением исходного уравнения.
Пример 1. Рассматривается уравнение
Перепишем его в виде . Справа стоит функция однородная нулевой степени. Действительно, . Итак, преобразованное уравнение является однородным дифференциальным уравнением. Решаем его заменой y=ux. Получаем
или , т.е. .
Разделяя переменные приходим к уравнению
.
Интегрируем левую и правую части этого уравнения:
.
Приравнивая найденные интегралы, получаем общее решение вспомогательного дифференциального уравнения относительно переменных x и u
или , где c>0.
Потенциируя последнее выражение, общее решение получает вид , где c – произвольная постоянная.
Заменяя u=y/x, получаем общий интеграл исходного дифференциального уравнения или y2+x2=cx,
Последнее выражение приводится к виду
.
Таким образом, семейством интегральных кривых исходного уравнения является семейство окружностей с центрами в точках , лежащих на оси x, и радиусами . Очевидно, все эти окружности касаются оси y в точке начала координат. На рис. 6 изображено семейство этих окружностей.
Пример 2. Требуется найти частное решение уравнения ,
Удовлетворяющих начальному условию y(1)=0.
Нетрудно видеть (убедиться), что справа стоит однородная функция нулевой степени. Итак, исходное дифференциальное уравнение является однородным. Выполняя замену y=ux, приводим его к виду
или .
Разделяем переменные, получаем
.
Интегрируя обе части этого уравнения, получаем общее решение вспомогательного дифференциального уравнения
или .
Подставим в него и получим . Логарифмируя обе части этого уравнения получаем и далее .
Последнее соотношение дает общее решение исходного дифференциального уравнения. Чтобы найти частное решение, воспользуемся начальными условиями x=1,y=0. Подставим их в общее решение , отсюда и .
Таким образом, искомое частное решение имеет вид .
5. Линейное дифференциальное уравнение первого порядка.
Определение. Линейным дифференциальным уравнением первого порядка называется уравнение вида y/+g(x)y=h(x).
Такое название ему дано в связи с тем, что относительно переменных y и y/ его можно рассматривать как линейное.
Если , то уравнение принимает простой вид y/=h(x), и сводится к нахождению неопределенного интеграла . Его общее решение тогда имеет вид .
Если , то уравнение называется однородным линейным. Оно приобретает вид , и, как нетрудно видеть, сводится к решению уравнения с разделяющимися переменными и далее .
Его общее решение имеет вид , где – некоторая первообразная для функции g(x).
Предположим теперь, что , функции g(x) и h(x) являются непрерывными. Пусть y=f(x,c) – искомое общее решение линейного дифференциального уравнения.
Представим исходное уравнение в виде
,
и подставим в выражение, стоящее в квадратных скобках, , т.е. как бы полагая в общем решении . Тогда вышеприведенное уравнение примет вид
,
являясь линейным однородным дифференциальным уравнением (в нем вместо y взята для удобства переменная z, чтобы не возникло путаницы решений этого уравнения с исходным).
Общее решение этого уравнения, как уже отмечалось ранее, может быть представлено в виде
,
где A – произвольная постоянная. Очевидно, является его частным решением, и, следовательно, может быть получено при некотором значении , т.е.
.
Если теперь освободиться от условия фиксирования постоянной , то получаем, что общее решение исходного уравнения имеет вид
.
В нем второй множитель функция является, как нетрудно видеть, частным решением при c=1 однородного линейного уравнения . Первый множитель функция представляет общее решение дифференциального уравнения u/v(x)=h(x).
Действительно, подставляя в это уравнение u/x(x,c), получаем тождество
.
Таким образом, показано, что общее решение линейного дифференциального уравнения
Представляется в виде y=u(x,c)v(x), где v(x) – частное решение однородного уравнения , решаемое при c=1, u(x,c) – общее решение уравнения u/v(x)=h(x).
Нетрудно видеть, что в обоих случаях приходится решать уравнение с разделяющимися переменными.
Заметим, что хотя при решении однородного уравнения бралось частное решение V(x) однородного уравнения v/+g(x)v=0,
Являющегося уравнением с разделяющимися переменными.
На втором этапе определяется решение u(x,c) дифференциального уравнения u/v(x)=h(x),
Также являющегося уравнением с разделяющимися переменными. После их решений общее решение исходного линейного уравнения представляется в виде
Пример 1. Решить уравнение
Сначала решаем однородное уравнение v/+2v=0.
Из него получаем
или .
Интегрируя его левую и правую части, получаем его общий интеграл (решение) вида
.
Полагая в нем c=0 и потенциируя его, получаем следующее его нетривиальное частное решение .
Далее решаем уравнение вида
или .
Разнося переменные в разные части уравнения и интегрируя их, получаем общее решение этого уравнения
.
.
Рассматривая данное уравнение, как уравнение относительно интеграла, находим его вид
.
Следовательно, .
Тогда общее решение исходного уравнения будет
.
Предположим теперь, что требуется выделить частное решение, проходящее через точку M(0,0), т.е. решение, удовлетворяющее начальному условию y(0)=0. Для этого подставим значения x=0, y=0 в общее решение и найдем соответствующее значение постоянной c:
, отсюда c=0,2.
Искомым частным решением является
.
Пример 2. Решить уравнение
,
являющееся линейным дифференциальным уравнением.
На первом этапе найдем решение соответствующего линейного однородного уравнения
, или .
Разделяя переменные по разные стороны уравнения, имеем
.
Интегрируя обе части данного уравнения, получаем следующее его частное решение
.
На втором этапе решаем уравнение вида
.
Делая замену , сокращая обе части уравнения на и разделяя переменные, имеем du=x2dx.
Интегрируя правую и левую части уравнения, получаем его общее решение
.
Общее решение исходного дифференциального уравнения имеет вид
.
6. Дифференциальное уравнение первого порядка в полных дифференциалах.
Определение. Пусть дифференциальное уравнение первого порядка представлено в виде
Где M(x,y) и N(x,y) – функции двух переменных x и y. Тогда, если левая часть уравнения есть полный дифференциал некоторой функции U(x,y), т.е.
то такое уравнение называется уравнением в полных дифференциалах.
Уравнение в полных дифференциалах кратко можно представить в виде
а поэтому общий интеграл (решение) такого уравнения имеет вид U(x,y)=0.
Дифференциальное уравнение такого типа возникает, когда поведение системы подчинено условию сохранения некоторой величины U(энергии, массы, стоимости и т.д.).
Отметим следующий признак, позволяющий определить является ли рассматриваемое уравнение уравнением в полных дифференциалах.
dU(x,y)=M(x,y)dx+N(x,y)dy, тогда функции M(x,y) и N(x,y) должны быть для U(x,y) частными производными первого порядка, соответственно, по переменным x и y, т.е.
.
Предполагая функции M(x,y) и N(x,y) непрерывными и имеющими непрерывные частные производные, соответственно, по y и x, т.е. выполнение соотношений
,
получаем, что для M(x,y) и N(x,y) должно выполняться условие
.
Полученное условие является не только необходимым, но и достаточным для того, чтобы уравнение M(x,y)dx+N(x,y)dy=0
Было уравнением в полных дифференциалах.
Нахождение общего решения уравнения в полных дифференциалах проводится в два этапа.
На первом этапе функция U(x,y) рассматривается как функция только аргумента x, переменная y получает как бы фиксированное значение . Тогда соотношению
ставится в соответствие дифференциальное уравнение
.
Пусть его общее решение представляется в виде
.
Но так как решение уравнения зависит от y, то в общем решении постоянная c является функцией y, т.е. c=h(y). Следовательно, общее решение предыдущего дифференциального уравнения, снимая с y условие закрепления его значения, имеет вид
На втором этапе находится вид функции h(y). Для этого обратимся к соотношению
,
в котором уже закрепляется как бы значение переменной x.
Используя данное соотношение и вид функции U(x,y), получаем дифференциальное уравнение, связывающее переменные h и y:
или .
Интегрируя это уравнение, находим его общее решение
.
Из , получаем окончательный вид функции U(x,y), а именно
В последнем двойном интеграле вместо можно взять функцию (т.к. ). Тогда функция U(x,y) получает вид
.
Так как общее решение исходного дифференциального уравнения записывается в виде U(x,y)=c=const, то, заменяя две постоянных на одну, получаем следующий вид общего решения уравнения
или
.
Пример 1. Дано дифференциальное уравнение
В нем M(x,y)=6x2y2+6xy-1, N(x,y)=4x3y+3x2y+2y. Из и тождества ,
Следует, что данное уравнение является уравнением в полных дифференциалах. Проведем его решение в два этапа.
На первом решаем уравнение
или dU=(6x2y2+6xy-1)dx,
в котором переменная y считается закрепленной. Интегрируя это уравнение, получаем
На втором этапе определяем вид функции h(y), используя для этого соотношение
и дифференциальное уравнение для h и y
4x3y+3×2+h/(y)=4x3y+3×2+2y или .
Интегрируя последнее, получаем h=y2+c. Общий интеграл исходного уравнения тогда можно записать в виде
Пример 2. Найти решение уравнения
Проверяем, является ли оно уравнением в полных дифференциалах? Для этого из M(x,y)=2xsiny, N(x,y)=3y2+x2cosy
.
Так как, очевидно, выполняется условие
,
то уравнение есть уравнение в полных дифференциалах.
Сначала решаем уравнение
или dU=2xsinydx,
считая y постоянной. Интегрирование уравнения дает
Затем находим функцию h(y), используя соотношения
, с одной стороны, и , с другой стороны. Соотношения приводят к дифференциальному уравнению
или .
Интегрируя последнее уравнение, получаем h=y3+c.
Тогда общий интеграл исходного дифференциального уравнения записывается в виде
Далее рассмотрим понятие интегрирующего множителя. Ранее отмечалось, что уравнение в полных дифференциалах возникает, когда поведение системы сохраняет некоторую величину U, т.е. удовлетворяет соотношению
Дифференциальным аналогом его является уравнение dU(x,y)=0 или
Где .
Предположим теперь, что частные производные функции U(x,y) представимы в виде
.
Тогда соотношению U(x,y)=e будет соответствовать уравнение в полных дифференциалах вида
Если теперь данное уравнение разделить на общий множитель слагаемых g(x,y), то получим уравнение M(x,y)dx+N(x,y)dy=0.
Решение последнего уравнения эквивалентно решению предыдущего, из которого оно получено, однако оно может уже не являться уравнением в полных дифференциалах, также для него возможно будет
.
В то же время после умножения его на множитель g(x,y), оно становится уравнением в полных дифференциалах.
Определение. Функция g(x,y) называется интегрирующим множителем дифференциального уравнения
Если после умножения его на эту функцию оно становится уравнением в полных дифференциалах.
Данный способ решения дифференциального уравнения называется методом интегрирующего множителя.
Найдем условие, которому должен подчиняться интегрирующий множитель g(x,y). Из предложения, что уравнение
Становится уравнением в полных дифференциалах следует выполнение условия
.
Разверернув левую и правую части этого тождества
,
заключаем, что функция g(x,y) должна являться решением уравнения
.
В общем случае решение данного уравнения вызывает затруднения. Отметим два случая, когда его решение становится проще.
Случай первый. Пусть
.
Тогда интегрирующий множитель можно искать в виде функции зависящей только от x.
Действительно, пусть g=g(x). Тогда в виду ; получаем, что искомая функция g(x) является решением дифференциального уравнения
или ,
интегрируя которое, находим
, т.е. .
Второй слуяай относится к аналогичной ситуации, когда
.
Тогда интегрирующий множитель ищется в виде функции только от y, т.е. g=g(y).
Аналогично предыдущему, не трудно видеть, что функция g(y) является решением уравнения
и представляется в виде
.
Пример 3. Дано уравнение
Из M(x,y)=y2-3xy-2×2, N(x,y)=xy-x2, , следует , т.е. уравнение не является в полных дифференциалах.
Однако из соотношения
вытекает, что можно найти такой интегрирующий множитель g=g(x), после умножения на который исходное уравнение становится уравнением в полных дифференциалах.
Указанный множитель находим из уравнения
,
интегрируя которое получаем , или g=xc. Так как в качестве множителя достаточно взять одну из функций, то положим c=1 и, тогда, g=x.
Умножая исходное уравнение на множитель g=x, получаем
являющееся уже уравнением в полных дифференциалах. Интегрируя его, находим
,
,
затем из U/y=x2y-x3+h/(x) и U/y=N(x,y)=x2y-x3
получаем x2y-x3+h/=x2y-x3, т.е. и,
следовательно, h=c=const. Таким образом, общее решение имеет вид
.
Пример 4. Требуется решить уравнение
Из M(x,y)=2xy2-y, N(x,y)=y2+x+y, следует
.
Однако из соотношения
,
вытекает, что для исходного дифференциального уравнения существует интегрирующий множитель g=g(y), с помощью которого уравнение становится уравнением в полных дифференциалах.
Интегрирующий множитель находится из уравнения
.
Интегрируя его, получаем .
Умножая исходное уравнение на множитель , приходим к уравнению
.
Это уравнение является уже уравнением в полных дифференциалах. Решаем его
,
,
затем из
или .
Интегрируя последнее уравнение, имеем .
Таким образом, общий интеграл исходного уравнения имеет вид
.
7. Дифференциальные уравнения второго порядка.
Обыкновенное дифференциальное уравнение второго порядка имеет следующий общий вид
F(x,y,y/,y//)=0 или .
Наше знакомство с дифференциальными уравнениями второго порядка будет ограничено рассмотрением линейного дифференциального уравнения второго порядка с постоянными коэффициентами.
Определение. Линейным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида
где p и q – числа, h(x) – некоторая функция от x.
Если в этом уравнении , то оно называется однородным линейным дифференциальным уравнением второго порядка.
Рассмотрим решение однородного уравнения
.
Этому явлению может быть поставлено в соответствие квадратное уравнение вида ,
Называемое характеристическим. Его корни, как известно, определяются формулами
.
Возможны следующие три случая для вида корней этого уравнения:
1) корни уравнения – действительные и различные;
2) корни – действительные и равные;
3) корни уравнения – комплексно-сопряженные.
Для каждого из этих случаев однородное дифференциальное уравнение имеет свой вид общего интеграла.
Случай 1. Дискриминант характеристического уравнения положителен, т.е. p2-4q>0. Тогда оба корня действительные и различные. В этом случае общее решение однородного уравнения имеет вид
,
где c1, c2 – произвольные постоянные.
Действительно, если , то , .
Подставляя выражения для y,y/ и y// в уравнение получим
.
Случай 2. Дискриминант характеристического квадратного уравнения равен нулю, т.е p2-4q=0.
Тогда оба корня действительные и равные, т.е. .
В этом случае общее решение однородного уравнения имеет вид
.
Особые решения дифференциальных уравнений
Решение дифференциального уравнения
называется особым , если в каждой его точке нарушается свойство единственности, т. е. если через каждую его точку кроме этого решения проходит и другое решение, имеющее в точке ту же касательную, что и решение , но не совпадающее с ним в сколь угодно малой окрестности . График особого решения будем называть особой интегральной кривой уравнения (1). Если функция и ее частные производные и непрерывны по всем аргументам , то любое особое решение уравнения (1) удовлетворяет также уравнению
Значит, чтобы отыскать особые решения (1), надо исключить из уравнений (1) и (2).
Полученное после исключения из (1) и (2) уравнение
Часто бывает так, что распадается на несколько ветвей . Тогда нужно установить, является ли каждая в отдельности ветвь решением уравнения (1), и если является, то будет ли оно особым решением, т.е. нарушается ли единственность в каждой его точке.
Пример 1. Найти особые решения дифференциального уравнения
а) Находим p-дискриминантную кривую. В данном случае и условие (2) принимает вид , отсюда . Подставляя это выражение для в уравнение (4), получаем
Кривая (5) есть p-дискриминантная кривая уравнения (4): она состоит из одной ветви — параболы.
б) Проверяем, является ли p-дискриминантная кривая решением заданного уравнения. Подставляя (5) и ее производную в (4), убеждаемся, что есть решение уравнения (4).
в) Проверяем, является ли решение (S) особым решением уравнения (4). Для этого найдем общее решение уравнения (4). Перепишем (4) в виде . Это уравнение Клеро. Его общее решение
Выпишем условие касания двух кривых и в точке с абсциссой :
Первое равенство выражает совпадение ординат кривых, а второе выражает совпадение угловых коэффициентов касательных к этим кривым в точке с абсциссой .
Полагая , находим, что условия (7) принимают вид
Подставляя в первое из равенств (8), получаем или т.е. при первое равенство выполняется тождественно, так как есть абсцисса произвольной точки.
Итак, в каждой точке кривой (5) ее касается некоторая другая кривая семейства (6), а именно та, для которой . Значит, есть особое решение уравнения (4).
г) Геометрическое истолкование.
Общее решение уравнения (4) есть семейство прямых (6), а особое решение (5) является огибающей этого семейства прямых (рис. 19).
Огибающей семейства кривых
называется такая кривая, которая в каждой своей точке касается некоторой кривой семейства (9) и каждого отрезка которой касается бесконечное множество кривых из (9). Будем говорить, что кривые и касаются в точке , если они имеют в этой точке общую касательную.
Если (9) есть общий интеграл уравнения (1), то огибающая семейства кривых (9), если она существует, будет особой интегральной кривой этого уравнения. В самом деле, в точках огибающей значения совпадают со значениями для интегральной кривой, касающейся огибающей в точке , и, следовательно, в каждой точке огибающей значения удовлетворяют уравнению , т.е. огибающая является интегральной кривой.
Далее, в каждой точке огибающей нарушена единственность, так как через точки огибающей по одному направлению проходит, по крайней мере, две интегральные кривые: сама огибающая и касающаяся ее в рассматриваемой точке интегральная кривая семейства (9). Следовательно, огибающая является особой интегральной кривой.
Из курса математического анализа известно, что огибающая входит в состав C-дискриминантной кривой (коротко СДК), определяемой системой уравнений
Некоторая ветвь СДК заведомо будет огибающей, если на ней:
1) существуют ограниченные по модулю частные производные
где и — постоянные;
Замечание. Условия 1) и 2) лишь достаточны, а потому ветви СДК, на которых нарушено одно из этих условий, тоже могут быть огибающими.
Пример 2. Найти особые решения дифференциального уравнения
а) Находим C-дискриминантную кривую. Имеем , так что отсюда . Подставляя это значение в (14), получаем откуда
Это и есть C-дискриминантная кривая: она состоит из двух прямых и .
б) Непосредственной подстановкой убеждаемся, что каждая из ветвей СДК является решением уравнения (13).
в) Докажем, что каждое из решений (15) является особым решением уравнения (13). В самом деле, так как и , то на каждой ветви СДК имеем (предполагаем, что решение уравнения (13) рассматривается на отрезке
где — область допустимых значений .
Заметим, что на любой из ветвей СДК в области 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADAAAAAQCAMAAABncAyDAAAAM1BMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbQS4qAAAAEHRSTlMAMRDQiiHowAFBoWFRoLFx3eb7ogAAAMZJREFUKM+1UksSwyAIVUHAX+T+p602mTYkdqZd1AUL5fk+4NzfjiQvv/QXwkz++/6kyblOYfXmMd4vNxglaF//xu0KEeJZdVYXkDFUbhaSDCDqDtDhO3ASgOypGJbMyVh4A3A8bBpQq1URM1exAEcTUHaF4R5ZzFQXDE+FuDIfET4AiqZFe+PykiQHYIbb8rAgTsAM3lvTjvc5DCVeORANFjSxbhfOqn6ux5wPICRojOf2fJ81Uscj+bmEUc5q4jKCXucmPQAaYQaRCPmIUQAAAABJRU5ErkJggg==” />, так дх что выполняется одно из условий (12). Значит, условия (11) и (12) выполняются, а, следовательно, прямые (15) являются огибающими парабол (14).
Итак, установлено, что каждое из решений (15) есть особое решение.
В вопросах отыскания особых решений оказываются полезными следующие символические схемы:
Схема (16) означает, что уравнение p-дискриминантной кривой может распадаться на три уравнения:
1) — уравнение огибающей;
2) — уравнение геометрического места точек заострения (возврата);
3) — уравнение геометрического места точек прикосновения интегральных линий, причем множитель входит в в квадрате.
Схема (17) означает, что уравнение C-дискриминантной кривой может распадаться на три уравнения:
1) — уравнение огибающей;
2) — уравнение геометрического места узловых точек, причем множитель входит в в квадрате;
3) — уравнение геометрического места точек заострения, причем множитель входит в в кубе.
Не обязательно, чтобы для каждой задачи все составные части и фигурировали в соотношениях (16) и (17).
Из всех геометрических мест только огибающая есть особое решение дифференциального уравнения. Отыскание огибающей упрощается тем, что в схемы (16) и (17) она входит в первой степени.
В отношении других геометрических мест (точек заострения, узловых точек и точек прикосновения) требуется дополнительный анализ в каждом конкретном случае. То обстоятельство, что некоторый множитель входит в в квадрате (и совсем не входит в ) указывает на то, что здесь может быть геометрическое место точек прикосновения интегральных линий. Аналогично, если некоторый множитель входит в в квадрате (и совсем не входит в ), то здесь может быть геометрическое место узловых точек. Наконец, если множитель входит в в первой степени, а в — в третьей, то возможно наличие геометрического места точек заострения.
Пример 3. Найти особое решение дифференциального уравнения
Решение. Особое решение, если оно существует, определяется системой
где второе уравнение (19) получено из (18) дифференцированием его по . Исключив , получим p-дискриминантную кривую , которая распадается на две ветви
Подстановкой убеждаемся, что обе функции являются решениями уравнения (18).
Чтобы установить, являются ли решения (20) и (21) особыми или нет, найдем огибающую семейства
являющегося общим интегралом для (18).
Выпишем систему для определения C-дискриминантной кривой откуда, исключая , получаем , или и , что совпадает с (20) и (21). В силу того, что на линиях (20) и (21) условия (11) и (12) выполняются, заключаем, что линии и являются огибающими, а значит (20) и (21) есть особые решения заданного уравнения.
Интегральные кривые (22) суть параболы , а линии – огибающие этого семейства парабол (рис. 20).
Пример 4. Найти особые решения дифференциального уравнения
Решение. Дифференцируем (23) по
Исключая из (23) и (24), получим . Дискриминантная кривая есть ось ординат. Она не является интегральной кривой уравнения (23), но согласно схеме (16) может быть геометрическим местом точек прикосновения интегральных кривых.
Решениями уравнения (23) являются параболы и те гладкие кривые, которые можно составить из их частей (рис. 21).
Из чертежа видно, что прямая действительно есть геометрическое место точек прикосновения интегральных кривых уравнения (23).
Пример 5. Найти особые решения дифференциального уравнения
Решение. Найдем . Исключая из системы уравнений получаем
Преобразовав уравнение (25) к виду , находим его общий интеграл .
Найдем . Исключая из системы уравнений будем иметь
Итак, из (26) и (27) имеем
Множитель входит в p-дискриминант и в C-дискриминант в первой степени и дает огибающую, т. е. функция есть особое решение дифференциального уравнения (25). Непосредственной подстановкой убеждаемся, что действительно удовлетворяет уравнению.
Уравнение , входящее во второй степени в p-дискриминант и совсем не входящее в C-дискриминант, дает место точек прикосновения .
Наконец, уравнение , входящее в C-дискриминант во второй степени и совсем не входящее в p-дискриминант, дает место узловых точек (рис.22).
Пример 6. Найти особые решения дифференциального уравнения
а) Ищем p-дискриминантную кривую. Дифференцируя (28) по , получаем , откуда
Подставляя (29) в (28), найдем уравнение :
б) Ищем общий интеграл уравнения (28). Обозначив у’ через р, перепишем (28) в виде
Дифференцируя обе части (28) по и учитывая, что , будем иметь
Приравнивая нулю первый множитель , получаем (29), а соотношение дает
Исключая параметр из уравнений (31) и (32), найдем общее решение уравнения (28):
в) Находим C-дискриминантную кривую. Дифференцируя (33) по C, будем иметь
Подставляя (34) в (33), получаем уравнение .
Согласно символическим схемам (16) и (17) заключаем, что есть огибающая семейства полукубических парабол (33), а есть геометрическое место точек заострения (множитель входит в уравнение в кубе) (рис. 23). Подстановкой в уравнение (28) убеждаемся, что есть решение, а решением не является (при уравнение (28) не имеет смысла). Таким образом, решение есть особое (огибающая семейства интегральных линий).
Реферат: Особое решение дифференциальных уравнений первого порядка
Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функции и производные (или дифференциалы) этой функции.
Если дифференциальное уравнение имеет одну независимую переменную, то оно называется обыкновенным дифференциальным уравнением, если же независимых переменных две или более, то такое дифференциальное уравнение называется дифференциальным уравнением в частных производных.
Наивысший порядок производных, входящих в уравнение, называется порядком дифференциального уравнения.
1. Задача Коши для дифференциального уравнения первого порядка
Задачей Коши называется нахождение любого частного решения дифференциального уравнения вида у = j(х, С0 ), удовлетворяющего начальным условиям у(х0 ) = у0 .
Теорема Коши . (теорема о существовании и единственности решения дифференциального уравнения 1- го порядка)
Если функция f(x, y) непрерывна в некоторой области D в плоскости XOY и имеет в этой области непрерывную частную производную , то какова бы не была точка (х0 , у0 ) в области D, существует единственное решение уравнения , определенное в некотором интервале, содержащем точку х0 , принимающее при х = х0 значение j(х0 ) = у0 , т.е. существует единственное решение дифференциального уравнения.
1.1. Геометрический смысл
Геометрически речь идет о нахождении интегральной кривой, проходящей через заданную точку М (х ,у ).
Исключительно большое значение для теории дифференциальных уравнений и ее приложений имеет вопрос о существенности решения задачи Коши и о единственности этого решения. Будем говорить, что задача Коши
имеет единственное решение, если можно указать такую окрестность точки х
[spoiler title=”источники:”]
http://mathhelpplanet.com/static.php?p=osobye-resheniya-differentsialnyh-uravnenii
http://www.bestreferat.ru/referat-293059.html
[/spoiler]
Название: Особое решение дифференциальных уравнений первого порядка Раздел: Рефераты по математике Тип: реферат Добавлен 08:58:36 08 июля 2011 Похожие работы Просмотров: 1338 Комментариев: 18 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать |
Осо́бое реше́ние обыкновенного дифференциального уравнения — понятие теории обыкновенных дифференциальных уравнений, чаще всего связанное с уравнениями не разрешенными относительно производной. Существует несколько определений особых решений, не всегда эквивалентных друг другу. Одно из наиболее распространенных в настоящее время определений следующее.
Определение[править | править код]
Рассмотрим уравнение
где — -гладкая функция в некоторой области . Решение называется особым решением уравнения (1), если каждая точка соответствующем ему интегральной кривой является точкой локальной неединственности решения задачи Коши с начальным условием
- .
Другими словами, в каждой точке особое решение касается другого решения, которое не совпадает с ним тождественно ни в какой сколь угодно малой окрестности этой точки[1].
Свойства[править | править код]
- Особое решение (точнее, его график) является огибающей семейства интегральных кривых уравнения (1).
- Из сказанного выше следует, что для практического отыскания особых решений уравнения конкретного уравнения нужно сначала найти его дискриминантную кривую, а затем проверить, является ли она (каждая её ветвь, если их несколько) особым решением уравнения (1), или нет[2].
Примеры[править | править код]
1. Дискриминантная кривая уравнения Чибрарио — координатная ось
— является не решением, а геометрическим местом точек возврата его интегральных кривых.
2. Дискриминантная кривая уравнения — координатная ось
— является решением этого уравнения, но его график не пересекается ни с какими другими интегральными кривыми этого уравнения, поэтому это решение не является особым.
Особые решения дифференциальных уравнений (жирные линии): уравнения Клеро (слева) и уравнения (справа).
3. Простыми примерами дифференциальных уравнений, имеющих особые решения, являются уравнение Клеро и уравнение , неособые решения которого задаются формулой с постоянной интегрирования , а особое решение имеет вид .
4. Дискриминантная кривая уравнения состоит из двух непересекающихся ветвей: и . Обе они являются решениями этого уравнения. Однако первая из них является особым решением, а вторая — нет: в каждой точке линии она касается какой-либо другой интегральной кривой этого уравнения, а к линии интегральные кривые лишь приближаются асимптотически при [3].
Примечания[править | править код]
- ↑ Филиппов А. Ф. Введение в теорию дифференциальных уравнений. — М.: УРСС, 2007, гл. 2, параграф 8, стр. 62.
- ↑ 1 2 3 Филиппов А. Ф. Введение в теорию дифференциальных уравнений. — М.: УРСС, 2007, гл. 2, параграф 8.
- ↑ Филиппов А. Ф. Введение в теорию дифференциальных уравнений. — М.: УРСС, 2007, гл. 2, параграф 8, пример 5.
Литература[править | править код]
- Арнольд В. И. Дополнительные главы теории обыкновенных дифференциальных уравнений. — М.: Наука, 1978.
- Арнольд В. И. Геометрические методы в теории обыкновенных дифференциальных уравнений. — Ижевск: Изд-во Удмуртского гос. ун-та, 2000.
- Романко В. К. Курс дифференциальных уравнений и вариационного исчисления. — М.: Физматлит, 2001.
- Филиппов А. Ф. Введение в теорию дифференциальных уравнений. — М.: УРСС, 2004, 2007.
- Павлова Н.Г., Ремизов А.О. Введение в теорию особенностей. — М.: Изд-во МФТИ, 2022. — 181 с. — ISBN 978-5-7417-0794-4.
-
Особые решения дифференциального уравнения.
Пусть рассматривается дифференциальное
уравнение первого порядка общего вида
F(x,y,y/)=0.
Тогда существование его особого решения
прежде всего может быть связано с
условием
,
не обеспечивающим представление y/
как неявной функции переменных x
и y, задаваемой уравнением
F(x,y,y/)=0.
Таким образом, формируя
систему уравнений
,
и исключая из нее переменную y/,
получаем функцию y=y(x),
которая может дать особое решение
дифференциального уравнения F(x,y,y/)=0.
Определение. Кривая,
получаемая исключением параметра p
из системы уравнений
,
называется дискретной кривой уравнения
F(x,y,y/)=0.
Для того, чтобы дискретная
кривая давала особое решение
дифференциального уравнения,
остается проверить, что
она удовлетворяет уравнению F(x,y,y/)=0,
и что через каждую ее точку проходит
хотя бы одна интегральная кривая общего
решения этого уравнения,
т.е. проверить,
что в точках дискретной кривой нарушается
свойство единственности решения
дифференциального уравнения.
Пример 1. Дано уравнение
.
Как было указано выше его особое решение
дается уравнениями y=x+c и
y=-x+c. Опреляя для него
дискретную кривую имеем систему уравнений
.
Очевидно, данная система
решения не имеет, поэтому
рассматриваемое дифференциальное
уравнение особых решений не имеет.
Пример 2. Рассмотрим
решение уравнения
Его общее решение имеет вид
.
Выписывая систему уравнений
или
,
(где p=y/)
и исключая из нее переменную p,
получаем уравнение дискретной кривой
y=0 (ось Ox).
Очевидно, она является
решением дифференциального уравнения,
так как из y=0=const следует
y/=0.
Кроме того через любую точку M(x0;0)
этой кривой проходит частное решение
дифференциального уравнения,
получаемое из общего при c=-x0.
Не трудно убедиться,
что касательные в точке M(x0;0)
дискретной кривой и частного решения
совпадают. Таким образом,
дискретная кривая y=0 является
особым решением исходного дифференциального
уравнения.
Ниже на рис. 3 изображено
семейство интегральных кривых этого
уравнения, являющееся
семейством парабол.
Из рисунка видно, что
дискретная кривая y=0,
являющаяся осью Ox, касается
в каждой точке некоторой кривой семейства.
Выше была рассмотрена ситуация,
когда уравнение F(x,y,y/)=0
не определяло y/
как неявную функцию переменных x
и y, так как выполнялось
условие
.
Предположим теперь, что
в области D, где ищется
решение дифференциального уравнения,
выполняется условие
.
В этом случае уравнение F(x,y,y/)=0
определяет y/
как неявную функцию от x
и y, т.е.
можно считать y/=f(x,y)
или даже явно выразить y/
через x и y в виде y/=f(x,y).
Тогда особое решение будет связано с
нарушением условий приведенной выше в
параграфе 3, теоремы Коши
существования и единственности решения
дифференциального уравнения.
Таким невыполнимым условием,
обычно, берется условие
Липшица, и геометрическое
место точек, в которых
оно нарушается, задается
условием
или, считая
,
условием
.
Пример 3. Рассматривается
дифференциальное уравнение
(сравните с примером 2).
Здесь
.
Так как
,
то дискретная кривая отсутствует.
Из
и условия
,
находим, что в точках
кривой y=0, являющейся осью
Ox, нарушается условие
теоремы Коши. Следовательно,
эта кривая y=0 может быть
особым решением. Остается
проверить, что она
удовлетворяет исходному дифференциальному
уравнению и что в ее точках нарушается
условие единственности прохождения
интегральной кривой.
Общее решение данного уравнения имеет
вид
,
т.е. такой
же, как и в примере 2.
Разбирая пример 2,
выполнимость обоих условий была
проверена. Следовательно,
решение y=0 действительно
является особым.
Пример 4. Дано уравнение
.
Для него
,
т.е. дискретной
кривой нет. Из
и условия
,
получаем точки кривой y=0,
в которых нарушены условия теоремы
Коши.
Однако, в данном случае
кривая y=0 не удовлетворяет
дифференциальному уравнению.
Следовательно, это
уравнение особых решений не имеет.
Особым решением дифференциального
уравнения довольно часто бывают огибающие
семейства его интегральных кривых.
Определение. Кривая y=y(x)
называется огибающей семейства
интегральных кривых интегрального
уравнения, задаваемого
общим решением Ф(x,y,c)=0, если
в каждой точке она касается одной из
кривых данного семейства,
т.е. имеет
с ней в этой точке общую касательную.
Для нахождения огибающей может быть
использован следующий подход.
Пусть огибающая задана параметрически
уравнениями x=x(t),y=y(t).
Со значением параметра t
можно связать значение постоянной c,
отвечающей той интегральной кривой
семейства Ф(x,y,c)=0, которая
касается огибающей в точке M(x(t),y(t)),
т.е. величину
c можем рассматривать как
функцию параметра t, а
именно c=c(t).
Подставляя функции x=x(t),y=y(t)
и c=c(t) в Ф(x,y,c)=0,
получаем тождество
.
Предполагая, что Ф(x,y,c)
имеет непрерывные частные производные
первого порядка, из
тождества вытекает
.
Покажем, что
.
Действительно, k-угловой
коэффициент касательной для огибающей
в точке x0=x(t0),
y0=y(t0)
при t=t0
равен
.
Уравнение Ф(x,y,c0)=0,
где c0=c(t0),
задает интегральную кривую семейства,
проходящую через точку M0(x0,
y0).
Угловой коэффициент касательной к
данной интегральной кривой в точке
M0(x0,
y0)
равен
,
где
уравнение данной кривой.
Рассматривая уравнение Ф(x,y,c0)=0,
как неявное задание уравнения
интегральной кривой, значение
найдем из соотношения
,
предполагая
.
Из
получаем
и
или
.
Таким образом, для
произвольного значения t0
параметра t выполняется
.
Следовательно, из
с учетом доказанного соотношения
получаем
.
Но так как
,
ибо
,
то из последнего вытекает,
что в точках огибающей должно выполняться
условие
.
Таким образом, для
нахождения огибающей надо рассмотреть
систему уравнений
.
Исключая из нее параметр c,
найдем уравнение y=y(x) или
Y(x,y)=0 огибающей (исключая
точки, где одновременно
и
).
Окончательно убеждаясь в том,
что поперечная кривая является огибающей,
проверяя условие касания в каждой ее
точке интегральной кривой семейства.
Пример 5. Снова рассмотрим
уравнение из примера 2
.
Его общее решение имеет вид
,
т.е.
.
Для нахождения огибающей рассмотрим
систему
.
Из нее получаем уравнение огибающей
y=0. Далее убеждаемся,
что y=0 действительно
является огибающей, так
как через каждую ее точку M(x0;0)
проходит интегральная кривая со
значением параметра c=-x0.
Пример 6. Рассмотрим
дифференциальное уравнение
.
Его общее решение имеет вид (x-c)2+y2=1
получаем
.
Подставляя
и (x-c)2+y2=1
в левую часть уравнения, получим
тождество
.
Нетрудно видеть, что
семейством интегральных кривых являются
окружности единичного радиуса с центром
в точках (c,0), лежащих на
оси Ox.
На рис. 4 изображено
семейство этих окружностей.
Из рисунка видно, что
семейство интегральных кривых имеет
две огибающие y=1 и y=-1,
удовлетворяющих диффренциальному
уравнению и, следовательно,
дающих его два особых решения.
Найдем уравнения огибающих аналитически.
Из Ф(x,y,c)=(x-c)2+y2-1,
получаем следующую систему уравнений
.
Исключая из уравнения параметр c,
получаем y2=1.
Данное уравнение дает две огибающих
y=1 и y=-1.
Пример 7. Дано уравнение
.
Его общее решение будет
,
представляющем семейство гипербол,
изображенных на рис. 5.
Из
для нахождения предполагаемых огибающих
получаем систему уравнений
.
Исключая из уравнений параметр c
получаем уравнение кривой y=0,
являющейся осью Ox.
Кривая y=0 удовлетворяет
дифференциальному уравнению
и, следовательно,
является его решением.
Однако, она не является
огибающей, так как не
имеет общих точек с интегральными
кривыми семейства. Таким
образом, являясь решением
уравнения, она не является
его особым решением.
Далее будут рассмотрены методы решения
отдельных типов дифференциальных
уравнений.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
По теореме Коши, если правая часть уравнения
непрерывна в некоторой области G и имеет в ней непрерывную производную , то через каждую внутреннюю точку области G проходит единственная интегральная кривая. Однако условия теоремы Коши могут оказаться не выполненными в точках, лежащих на границе области G. Такие точки, где не выполняются условия теоремы Коши, мы назвали особыми (см. стр. 567).
Если — особая точка, то может оказаться, что через нее либо не проходит ни одной интегральной кривой, либо проходит несколько интегральных кривых. Так, мы видели (см. п. 2, пример 2), что для дифференциального уравнения у вся ось Оу состоит из особых точек. При этом через начало координат проходит бесконечное множество интегральных кривых, а через особые точки, отличные от начала координат, не проходит ни одной интегральной кривой.
Если линия состоит только из особых точек и является интегральной кривой дифференциального уравнения, то функция у называется особым решением.
Условия теоремы Коши являются достаточными условиями для того, чтобы в некоторой области G не существовало особого решения. Поэтому для существования особого решения необходимо, чтобы не выполнялись условия теоремы Коши. Следовательно, для того чтобы найти особое решение дифференциального уравнения , надо найти линию , в каждой точке которой терпят разрыв или , и проверить, является ли функция решением уравнения. Если функция окажется решением дифференциального уравнения, то она и будет особым решением.
Пример 1. Рассмотрим уравнение Правая часть этого уравнения непрерывна при всех значениях у, однако производная терпит разрыв при , т. е. во всех точках оси Таким образом, каждая точка прямой является особой. Очевидно, что функция является решением данного уравнения. Следовательно, решение будет особым.
Рис. 273
Найдем теперь общее решение данного уравнения.
Разделяя переменные, находим 0 = х. Интегрируя, получаем общее решение:
Семейство интегральных кривых, соответствующих найденному общему решению, состоит из кубических парабол. Так как через каждую точку особого решения (оси Ох) проходит еще одна интегральная кривая данного уравнения (кубическая парабола), то в каждой точке оси Ох нарушается свойство единственности (рис. 273).
Заметим, что особое решение, вообще говоря, не содержится о общем решении и не может быть выделено из него ни при каком конкретном значении постоянной С.
Пример 2, Рассмотрим уравнение . Как и в предыдущем примере, геометрическим местом особых точек является прямая у = 0 (ось Ох). Однако функция у = 0, как легко проверить, не является решением данного уравнения. Поэтому данное уравнение особых решений не имеет.