Как найти остатки при делении куба

Содержание

  1. Как найти остатки при делении куба
  2. Решение
  3. Замечания
  4. math4school.ru
  5. Делимость целых чисел и остатки
  6. Немного теории
  7. Задачи с решениями
  8. Задачи без решений

Как найти остатки при делении куба

Докажите, что число
а) 97 97 ,
б) 1997 17
нельзя представить в виде суммы кубов нескольких идущих подряд натуральных чисел.

Решение

а) Куб числа, кратного 3, делится на 9. Если же число не делится на 3, то его можно записать в виде n = 3k ± 1. Тогда n³ = 9(3k³ ± 3k² + k) ± 1, то есть даёт остаток ±1 при делении на 9 (мы рассматриваем остаток –1 вместо остатка 8). Поэтому остатки при делении на 9 кубов последовательных натуральных чисел образуют последовательность 1, –1, 0, 1, –1, 0, . Отсюда сразу видно, что сумма любых трёх последовательных кубов делится на 9 и вообще сумма любого количества последовательных кубов может давать только остатки 0 и ±1 при делении на 9.
97 97 ≡ (–2) 97 ≡ (–2) 6·16+1 ≡ –2 (mod 9), так как 2 6 = 64 ≡ 1 (mod 9). Следовательно, 97 97 при делении на 9 даёт остаток –2, то есть не может быть суммой последовательных кубов.

б) Будем рассматривать остатки при делении кубов на 7. Снова воспользуемся отрицательными остатками (–3, –2, –1 вместо, соответственно, 4, 5, 6). Имеем: (±1)³ = ±1, (±2)³ = ±8, (±3)³ = ±27. Поэтому последовательность остатков при делении кубов натуральных чисел на 7 выглядит так: 1, 1, –1, 1, –1, –1, 0, 1, . Отсюда видно, что сумма последовательных кубов может давать при делении на 7 только остатки 0, ±1 и ±2.
1997 17 ≡ 2 17 ≡ 2 3·5+2 ≡ 4 (mod 7), так как 2³ ≡ 1 (mod 7). Следовательно, 1997 17 при делении на 7 даёт остаток 4 и не может быть суммой последовательных кубов.

Замечания

2. Ср. с задачей М1592 из Задачника «Кванта».

Источник

math4school.ru

Делимость целых чисел и остатки

Немного теории

В разнообразных задачах про целые числа используются основные понятия и теоремы, связанные с делимостью. Приведём некоторые из них.

Каждое целое число а можно разделить на натуральное число m с остатком, то есть представить в виде а = mq + r, где q и r – целые числа и r (остаток) не меньше 0, но меньше q.

Среди любых m последовательных целых чисел найдется ровно одно число, делящееся на m.

Различные натуральные числа при делении на натуральное m могут давать любой из остатков 0, 1, 2, . m–1. Однако степени натуральных чисел с фиксированным натуральным показателем n>1 не обязательно снова могут давать при делении на m любой из этих остатков. Так при делении на 3, 4, 5 и 8 четвёртые степени целых чисел могут давать остатки только 0 и 1. Ниже приведена таблица возможных остатков при делении квадратов, кубов, четвертых и пятых степеней на числа от 3 до 10.

Если два числа а и b при делении на число m дают одинаковые остатки, то говорят, что а сравнимо с b по модулю m. Записывают это так

Если a > b, то наибольший общий делитель a и b равен наибольшему общему делителю a – b и b.

Если а и b – натуральные числа и а = bq + r (r – остаток), то наибольший общий делитель d этих чисел равен наибольшему общему делителю b и r; пользуясь этим утверждением несколько раз, можно найти его как последний не равный нулю остаток в цепочке делений с остатком:

(алгоритм Евклида); отсюда следует, что существуют целые числа х и у, такие, что d = ах + by. В частности, если числа а и b взаимно просты, то есть не имеют общих делителей, больших 1, то существуют целые х и у, для которых ах + by = 1.

Каждое натуральное число единственным образом представляется в виде произведения простых чисел (основная теорема арифметики).

Количество простых чисел бесконечно; доказательство этого утверждения по Евклиду основано на том, что произведение нескольких простых чисел, сложенное с единицей, имеет отличные от всех этих простых чисел множители.

Если числа b1, b2, … , bn попарно взаимно просты, то для любых остатков r1, r2, … , rn (ri меньше bi) найдется число а, которое при делении на bi дает остаток ri (китайская теорема об остатках).

Задачи с решениями

1. Сколько существует натуральных чисел, меньших 1000, которые не делятся ни на 5, ни на 7?

Вычёркиваем из 999 чисел, меньших 1000, числа, кратные 5: их [999/5]=199. Далее вычёркиваем числа, кратные 7: их [999/7]=142. Но среди чисел, кратных 7, имеется [999/35]=28 чисел, одновременно кратных 5; они будут вычеркнуты дважды. Итого, нами должно быть вычеркнуто 199+142–28=313 чисел. Остаётся 999–313=686.

2. Номер автобусного билета – шестизначное число. Билет называется счастливым, если сумма трёх первых цифр номера равна сумме последних трёх цифр. Докажите, что сумма всех номеров счастливых билетов делится на 13.

Если счастливый билет имеет номер А, то билет с номером В=999999–А также счастливый, при этом А и В различны. Поскольку А+В=999999=1001·999=13·77·99 делится на 13, то и сумма номеров всех счастливых билетов делится на 13.

3. Докажите, что сумма квадратов трёх целых чисел не может при делении на 8 дать в остатке 7.

Любое целое число при делении на 8 имеет остатком одно из следующих восьми чисел 0, 1, 2, 3, 4, 5, 6, 7, поэтому квадрат целого числа имеет остатком при делении на 8 одно из трёх чисел 0, 1, 4. Чтобы при делении на 8 сумма квадратов трёх чисел имела остаток 7, необходимо, чтобы выполнялся один из двух случаев: либо один из квадратов, либо все три при делении на 8 имеют нечётные остатки.

В первом случае нечётный остаток есть 1, а сумма двух чётных остатков равна 0, 2, 4, то есть сумма всех остатков равна 1, 3, 5. Остатка 7 в этом случае получить нельзя. Во втором случае три нечётных остатка это три 1, и остаток всей суммы равен 3. Итак, 7 не может быть остатком при делении на 8 суммы квадратов трёх целых чисел.

4. Докажите, что при любом натуральном n:

а) число 5 5n+1 + 4 5n+2 + 3 5n делится на 11.

б) число 2 5n+3 + 5 n ·3 n+2 делится на 17.

а) Первоначально выполним следующее преобразование заданного выражения:

5 5n+1 +4 5n+2 +3 5n = 5(3125) n + 16(1024) n + (243) n = 5(11·284+1) n + 16(11·93+1) n + (11·22+1) n .

Принимая во внимание бином Ньютона n-й степени, можно записать: (х+1) n = Ах+1, где А – некоторое целое число при целых х. Тогда приведённое выше выражение принимает вид 11В+5+16+1 = 11С, очевидно делящееся на 11, где В и С – некоторые целые числа.

б) Выполним следующие преобразования, из которых следует доказываемое утверждение:

2 5n+3 + 5 n ·3 n+2 = 8·32 n + 9·15 n = 8(17+15) n + 9·15 n = 17А + 8·15 n + 9·15 n = 17А + 17·15 n = 17В,

где А, В – целые положительные числа.

а) если х 2 +у 2 делится на 3 и числа х, у целые, то х и у делятся на 3;

б) если сумма трёх целых чисел делится на 6, то и сумма кубов этих чисел делится на 6;

в) если p и q простые числа и p>3, q>3, то p 2 –q 2 делится на 24;

г) если a, b, c – любые целые числа, то найдутся такие взаимно простые k и t, что ak+bt делится на c.

а) Пусть х=3а+r1, у=3b+r2, где r1 и r2 – остатки от деления на 3, то есть какие-то из чисел 0, 1, 2. Тогда х 2 +у 2 =3(3а 2 +3b 2 +2аr1+2br2)+(r1) 2 +(r2) 2 . Так как х 2 +у 2 делится на 3, первое слагаемое последней суммы делится на 3, то (r1) 2 +(r2) 2 делится на 3, что возможно, с учётом вышесказанного, только при r1=r2=0.

Таким образом, х=3а и у=3b, то есть х и у делятся на 3, что и требовалось доказать.

б) Достаточно показать, что x 3 +y 3 +z 3 –(x+y+z) делится на 6. Это так и есть, ведь каждое из слагаемых x 3 –x, y 3 –y и z 3 –z делится на 6, поскольку а 3 –а=а(а–1)(а+1) – произведение трёх последовательных целых чисел, которое обязательно делится на 2, 3, а, значит, и 6.

в) Кратность p 2 –q 2 числу 3 можно доказать так. При делении на 3 квадраты целых чисел дают остатки 0 или 1. Так как p и q простые числа больше 3, то это p 2 и q 2 при делении на 3 имеют одинаковые остатки – единицу. Тогда p 2 –q 2 делится на 3.

С другой стороны, p 2 –q 2 =(p+q)(p–q). Так как p и q нечётные и при делении на 4 имеют остатки 1 или 3, то выражение в одних скобках делится на 4, а в других – на 2, а разность квадратов p и q – на 8.

Так как p 2 –q 2 делится на взаимно простые числа 3 и 8, то p 2 –q 2 делится на 3·8=24, что и требовалось доказать.

г) Пусть наибольший общий делитель чисел b и c–a равен d, b=k·d и c–a=t·d. Тогда числа k и t взаимно просты.

а) наибольший общий делитель чисел 2n+3 и n+7;

б) все пары натуральных чисел х, у таких, что 2х+1 делится на у и 2у+1 делится на х;

в) все целые k, для которых k 5 +3 делится на k 2 +1;

г) хотя бы одно натуральное число n такое, что каждое из чисел n, n+1, n+2, . , n+20 имеет с числом 30030=2·3·5·7·11·13 общий делитель, больший единицы.

а) Заметим, что если m > n, то НОД (m; n) = НОД (m – n; n).

Иначе говоря, наибольший общий делитель двух натуральных чисел равен наибольшему общему делителю модуля их разности и меньшего числа. Легко доказать это свойство.

Пусть k – общий делитель m u n (m > n). Это значит, что m = ak, n = bk, где a, b – натуральные числа, причем a > b. Тогда m – n = k(a – b), откуда следует, что k – делитель числа m – n. Значит, все общие делители чисел m и n являются делителями их разности m – n, в том числе и наибольший общий делитель.

НОД (2n+3; n+7) = НОД (n+7; 2n+3 – (n+7)) = НОД (n+7; n–4) = НОД (n–4; 11).

Так как 11 – простое число, то искомый наибольший общий делитель равен 1 либо 11. Если n–4 = 11d, то есть n = 4+11d, то наибольший общий делитель равен 11, в противном случае – 1.

Ответ: НОД (2n+3; n+7) = 11, при n равных 4+11d; НОД (2n+3; n+7) = 1, при n не равных 4+11d.

б) Число 2х+1 нечётное и делится на у, поэтому у тоже нечётное. Аналогично х – нечётное.

Числа х и у взаимно простые. Действительно, пусть k – общий делитель х и у, тогда 2х делится на k, и (2х+1) тоже делится на k (k – делитель у, а у – делитель 2х+1). Значит, 1 делится на k, то есть k=1.

Число 2х+2у+1 делится и на х и на у, а значит, – на ху. Тогда 2х+2у+1 не меньше ху.

Пусть х 5 +3 = (k 3 –k)( k 2 +1) + (k+3), то k 5 +3 делится на k 2 +1, если k+3 делится на k 2 +1. Когда это возможно? Рассмотрим варианты:

2) k+3 = k 2 +1; решая, находим k = –1, k = 2;

3) проверим целые k при которых k+3 > k 2 +1; после проверки: k = 0, k = 1.

г) пусть m = 2·3·5·7·k. Подбирая k так, чтобы m–1 делилось на 11, а m+1 – на 13, получим, что число n = m–10 удовлетворяет условию задачи.

7. Существует ли десятизначное число, делящееся на 11, в записи которого каждая цифра встречается по одному разу?

I способ. Выписывая трёхзначные числа, делящиеся на 11, можно среди них найти три числа, в записи которых участвуют все цифры от 0 до 9. Например, 275, 396,418. С их помощью можно составить десятизначное число, делящееся на 11. Например:

2753964180 = 275·10 7 + 396·10 7 + 418·10 = 11·(25·10 7 + 36·10 4 + 38·10).

II способ. Для нахождения требуемого числа воспользуемся признаком делимости на 11, согласно которому числа n=a1a2a3…a10 (в данном случае аi не множители, а цифры в записи числа n) и S(n)=a1–a2+a3–…–a10 одновременно делятся на 11.

Пусть А – сумма цифр, входящая в S(n) со знаком «+», В – сумма цифр, входящая в S(n) со знаком «–». Число А–В, согласно условию задачи, должно делиться на 11. Положим В–А=11, кроме того, очевидно, А+В=1+2+3+…+9=45. Решая полученную систему В–А=11, А+В=45, находим, А=17, В=28. Подберём группу из пяти различных цифр с суммой 17. Например, 1+2+3+5+6=17. Эти цифры возьмём в качестве цифр с нечётными номерами. В качестве цифр с чётными номерами возьмём оставшиеся – 4, 7, 8, 9, 0.

Мы видим, что условию задачи удовлетворяет, например, число 1427385960.

8. Два двузначных числа, записанных одно за другим, образуют четырёхзначное число, которое делится на их произведение. Найти эти числа.

Пусть a и b – два двузначных числа, тогда 100a+b – четырёхзначное число. По условию 100a+b = k·ab, отсюда b = a(kb–100), то есть b делится на a.

Итак, b = ma, но a и b двузначные числа, поэтому m однозначное.

Так как 100a+b = 100a+ ma = а(100+m) и 100a+b = kab, то а(100+m) = kab,

то есть 100+m = kb или 100+m = kma, откуда 100 = m(ka–1).

Таким образом, m – делитель числа 100, кроме того, m – однозначное число, значит, m = 1, 2, 4, 5.

Так как ka = 1+100/m, причём а двузначно, то отпадают для m значения 1 и 5, ибо

при m = 1 число 100/1+1 = 101 не делится ни на какое двузначное число а;

при m = 5 число 100/5+1 = 21 и имеем а=21, при котором b = ma = 5·21 – трёхзначное число.

При m = 2 имеем, ka = 51, a = 17, b = 17·2 = 34;

при m = 4 имеем, ka = 26, a = 13, b = 13·4 = 52.

9. Докажите, что при любых натуральных k и n число 1 2k+1 + 2 2k+1 + . . . + n 2k+1 не делится на n + 2.

Воспользуемся тем, что сумма одинаковых нечётных степеней двух чисел делится на сумму этих чисел, что следует из известного алгебраического тождества. Можно записать:

3 2k+1 + (n – 1) 2k+1 = (3 + (n – 1))·А2 = (2 + n)·А2,

4 2k+1 + (n – 2) 2k+1 = (4 + (n – 2))·А3 = (2 + n)·А3 и так далее, где Аi – некоторые целые числа.

В зависимости от чётности n возможна нехватка числа для образования последней пары, избежать этого позволит умножение на 2, рассматриваемой в условии суммы. Итак,

2(1 2k+1 + 2 2k+1 +. +n 2k+1 ) = 2·1 2k+1 + (2 2k+1 + n 2k+1 ) + (3 2k+1 + (n – 1) 2k+1 ) +. + (n 2k+1 + 2 2k+1 ) =

= 2 + (n + 2)·А, где А – некоторое целое число.

Одно из слагаемых последней суммы делится на n + 2, другое при любых натуральных n – нет. Итак, рассматриваемая в условии сумма не делится на n при любых натуральных n и k.

10. Докажите, что для любого простого числа р > 2 числитель m дроби

Заметим, что число р–1 чётное, и преобразуем дробь m/n к виду

Приводя полученное выражение к общему знаменателю

из которого вытекает равенство m(p–1)!=pqn. Поскольку ни одно из чисел 1, 2, 3, … , р–1 не делится на простое число р, то последнее равенство возможно лишь в случае, если m делится на р, что и требовалось доказать.

Задачи без решений

1. Докажите, что при любом натуральном n:

а) число 4 n + 15n – 1 делится на 9;

б) число 3 2n+3 + 40n – 27 делится на 64;

в) число 5 n (5 n + 1) – 6 n (3 n + 2 n ) делится на 91.

а) натуральные значения n такие, что n 5 – n делится на 120;

б) наименьшее натуральное число n такое, что n делится на 19, а n + 2 делится на 82.

3. Пусть m, n – различные натуральные числа, причём m – нечётное. Докажите, что 2 m –1 и 2 n +1 взаимно простые.

4. Четыре различных целых трёхзначных числа, начинающиеся с одной и той же цифры, обладают тем свойством, что их сумма делится на три из них без остатка. Найдите эти числа.

5. Докажите, что для каждого натурального n > 1 число n n – n 2 + n – 1 делится на (n – 1) 2 .

Источник

26.05.2016, 12:10. Показов 3459. Ответов 2

Метки нет (Все метки)


Студворк — интернет-сервис помощи студентам

Доказать, что кубы натуральных чисел при делении на 9 могут давать только остатки 0,1 или 8.
Как решала: Рассмотрела кубы чисел от 0 до 9: 0,1,8,27,64,125,216,343,512,729
Заметим, что {0, 27, 216, 729} при делении на 9 r=0
{1,64, 343}при делении на 9 r=1
{8, 125, 512}при делении на 9 r=8
Преположение подтверждается. Но как доказать в общем виде? Вот в чем вопрос



0



Метод анализа остатков

В основе метода анализа остатков, который используется при решении ряда задач с целочисленными неизвестными, лежит формула деления с остатком. Суть метода состоит в рассмотрении случаев различных остатков от деления на заданное число, что позволяет в конечном итоге решить поставленную задачу.

В первых трёх примерах, приведённых ниже, в явном виде ищутся остатки от деления одних целых чисел на другие.

Пример №19.

Найти частное и остаток от деления числа (— 23) на 7.

Решение:

Согласно формуле деления с остатком, получаем:

— 23 = — 4 • 7 + 5 , т.е. частное равно — 4, а остаток равен 5.

Пример №20.

Найти сумму остатков, получающихся при делении числа 7263544587435873 на 2, 4, 5, 9, 10, 25.

Решение:

Используя признаки делимости нацело на числа 2,4,5,9,10 и 25, находим остатки:

  • остаток от деления на 2 равен 1;
  • остаток от деления на 4 равен 1;
  • остаток от деления на 5 равен 3;
  • остаток от деления на 9 равен 0;
  • остаток от деления на 10 равен 3;
  • остаток от деления на 25 равен 23.

Суммируя остатки 1 + 1+3+0+3+23, получаем в ответе 31.

Пример №21.

Пусть остаток от деления натурального числа m на 7 равен 3. Найти остаток от деления на 7 числа Метод анализа остатков

Решение:

Из условия следует, что число m имеет вид: Метод анализа остатков . Тогда

Метод анализа остатков

Таким образом, остаток от деления числа Метод анализа остатков на 7 равен 1.

Пример №22.

Доказать, что при любых целых X число Метод анализа остатков делится нацело на 6.

Решение:

Разобьём множество всех целых X на 6 групп в зависимости от остатка при делении на 6, т.е. рассмотрим 6 случаев:

Метод анализа остатков

1) Пусть Метод анализа остатков , тогда Метод анализа остатков

2) Пусть Метод анализа остатков, тогда Метод анализа остатковМетод анализа остатковМетод анализа остатковМетод анализа остатковМетод анализа остатковМетод анализа остатков

3) Пусть Метод анализа остатков , тогда Метод анализа остатковМетод анализа остатковМетод анализа остатковМетод анализа остатковМетод анализа остатков

4) Пусть Метод анализа остатков, тогда Метод анализа остатковМетод анализа остатковМетод анализа остатковМетод анализа остатков

Метод анализа остатков

5) Пусть Метод анализа остатков тогда Метод анализа остатков

Метод анализа остатков

6) Пусть Метод анализа остатков , тогда Метод анализа остатков

Метод анализа остатков

Таким образом, мы рассмотрели все целые числа X и доказали, что всегда (в каждом из шести случаев) выражение Метод анализа остатков кратно 6.

Замечание. Эту задачу можно было решить иначе. Преобразуем данное в условии задачи выражение:

Метод анализа остатков

Каждое из двух слагаемых делится нацело на 6 (первое как произведение трёх последовательных целых чисел), поэтому их сумма кратна 6.

Пример №23.

Учительница принесла в класс счётные палочки. Дети раскладывали их в пакетики. Когда разложили по 2 палочки в каждый пакетик, то осталась 1 лишняя палочка. Затем разложили по 13 штук в пакетик, и тогда осталось 7 лишних палочек. Когда же палочки разложили по 9 штук в пакетик, то лишних не осталось. Сколько, самое меньшее, было счётных палочек?

Решение:

Пусть всего было n счётных палочек. Тогда условия задачи приводят к системе

Метод анализа остатков

Таким образом, требуется найти наименьшее натуральное нечётное число п , делящееся на 9 и дающее при делении на 13 остаток 7. Заметим, что в силу нечётности Метод анализа остатков число k должно быть чётным, т.е. Метод анализа остатков Метод анализа остатков причём меньшему n соответствует меньшее р , но тогда имеем Метод анализа остатков Поскольку числа п и Метод анализа остатковделятся нацело на 9, то, следовательно, число Метод анализа остатков также должно быть кратно 9 (и при этом быть минимальным). Наименьшее целое неотрицательное р , для которого выполняются эти условия, равно 7, откуда находим

Метод анализа остатков

Ответ: самое меньшее — 189 счётных палочек.

Пример №24.

После деления некоторого двузначного числа на сумму его цифр получается 7 и в остатке 6. После деления этого же двузначного числа на произведение его цифр в частном получается 3 и в остатке 11. Найти это двузначное число.

Решение:

Обозначим Метод анализа остатков — искомое число Метод анализа остатков Тогда, по условию, имеем систему уравнений

Метод анализа остатков

Решая систему методом подстановки, находим единственное решение, удовлетворяющее всем условиям задачи: x= 8, y = 3 . Ответ: 83.

Пример №25.

Целые числа m, n,k не делятся нацело на 3. Доказать, что число Метод анализа остатков делится на 3.

Доказательство. Если Метод анализа остатков то возможны два случая: Метод анализа остатковиМетод анализа остатков . В первом случае Метод анализа остатков— делится на 3 с остатком 1, а значит, Метод анализа остатков , также делится на 3 с остатком 1. Аналогично во втором случае: Метод анализа остатков делится на 3 с остатком Метод анализа остатков делится на 3 с остатком 1. Таким образом, если целое число не делится нацело на 3, то его квадрат (любая чётная степень) при делении на 3 дают остаток 1. Но тогда сумма трёх таких чётных степеней кратна 3.

Пример №26.

Доказать, что если Метод анализа остатков — простые числа, то Метод анализа остатков — тоже простое число.

Доказательство. Если Метод анализа остатков, то остаток от деления Метод анализа остатков на 3 равен 1. Но тогда Метод анализа остатков делилось бы на 3, что противоречит условию. Следовательно, Метод анализа остатковМетод анализа остатков, тогда действительно Метод анализа остатков — простое число, и при этом Метод анализа остатков тоже является простым.

Пример №27.

Решить уравнение в целых числах

Метод анализа остатков

Решение:

Перепишем уравнение в виде: Метод анализа остатков . Заметим, что правая часть уравнения при любом целом Y делится нацело на 7. Выясним, какие остатки при делении на 7 даёт левая часть данного уравнения. Для этого разобьём множество всех целых X на 7 групп в зависимости от остатка при делении на 7: Метод анализа остатков где Метод анализа остатков, и рассмотрим каждый из этих случаев в отдельности.

1) Если Метод анализа остатков

2) если Метод анализа остатков

3) если Метод анализа остатков

4) если Метод анализа остатков

5) если Метод анализа остатков

6) если Метод анализа остатков

7) если Метод анализа остатков

Итак, правая часть уравнения делится на 7 нацело (т.е. с остатком 0), а левая часть при этом — с остатками 2, 3, 4, 6. Однако равные числа при делении на одно и то же целое число 7 должны давать одинаковые остатки. Полученное противоречие говорит о том, что данное уравнение не имеет решений в целых числах.

Пример №28.

Найти все пары целых чисел (x;y), удовлетворяющие уравнению

Метод анализа остатков

и доказать, что для каждой такой пары сумма Метод анализа остатков является нечётным числом.

Решение:

Заметим, что левая часть уравнения кратна 3, следовательно, и правая часть должна делиться на 3 нацело. Разобьём множество всех целых y на три группы в зависимости от остатка при делении на 3:

Метод анализа остатков

1) Если Метод анализа остатков , то уравнение примет вид Метод анализа остатков . Это равенство невозможно, так как его левая часть кратна 3, а правая — нет.

2) Если Метод анализа остатков, то получим аналогичную ситуацию.

3) Наконец, если Метод анализа остатков, то, подставляя в уравнение, получим

Метод анализа остатков

Следовательно, общий вид решений:Метод анализа остатковОсталось показать, что Метод анализа остатков — нечётно. В самом деле, если Метод анализа остатковчётно, то Метод анализа остатков— чётно и, значит, Метод анализа остатков — нечётно. Если, наоборот, Метод анализа остатков — нечётно, то Метод анализа остатков также нечётно, а значит, Метод анализа остатков— чётно. Таким образом, числа Метод анализа остатков и Метод анализа остатков, а значит и их кубы, имеют всегда разную чётность, поэтому их сумма есть нечётное число.

Ответ: Метод анализа остатков

Пример №29.

Решить в целых числах уравнение

Метод анализа остатков

Решение:

Так как произвольное целое число Метод анализа остатков представимо в виде Метод анализа остатков, Метод анализа остатков или Метод анализа остатков где Метод анализа остатков , а

Метод анализа остатков

то любое число в кубе или делится нацело на 9, или даёт при делении на 9 в остатке 1 или 8. Аналогично, так как Метод анализа остатков даёт при делении на 9 остаток 0 или 3. Итак, правая часть уравнения может делиться на 9 с остатками 2 или 5, а левая — 0, 1 или 8. Следовательно, уравнение не имеет решений в целых числах.

Эта лекция взята со страницы, где размещён подробный курс лекций по предмету математика:

Предмет математика

Эти страницы возможно вам будут полезны:

Сообщения без ответов | Активные темы

Автор Сообщение

Lana67

Заголовок сообщения: Количество остатков

СообщениеДобавлено: 21 ноя 2016, 15:56 

Не в сети
Начинающий


Зарегистрирован:
17 окт 2016, 14:10
Сообщений: 35
Cпасибо сказано: 24
Спасибо получено:
8 раз в 8 сообщениях
Очков репутации: 4

Добавить очки репутацииУменьшить очки репутации

Здравствуйте! Подскажите, пожалуйста, для этой задачи существует какая-либо формула или нужно применить метод перебора, т.е. просто возвести в куб и узнать какой остаток, а в результате и сколько их: (13q)[math]^{3}[/math], (13q+1)[math]^{3}[/math], …, (13q+12)[math]^{3}[/math]? Задача такая:
Сколько различных остатков получится при делении куба целого числа на 13?

Вернуться к началу

Профиль  

Cпасибо сказано 

Lana67

Заголовок сообщения: Re: Количество остатков

СообщениеДобавлено: 21 ноя 2016, 16:25 

michel,да, нет не трудно, я их уже перебрала. Просто стало интересно, может быть это можно сделать по какой-то формуле?

Вернуться к началу

Профиль  

Cпасибо сказано 

За это сообщение пользователю Lana67 “Спасибо” сказали:
Andy

Lana67

Заголовок сообщения: Re: Количество остатков

СообщениеДобавлено: 21 ноя 2016, 17:07 

Andy, их оказалось пять: 0, 1, 5, 8, 12.

Вернуться к началу

Профиль  

Cпасибо сказано 

За это сообщение пользователю Lana67 “Спасибо” сказали:
Andy

Lana67

Заголовок сообщения: Re: Количество остатков

СообщениеДобавлено: 21 ноя 2016, 17:22 

Я вот, что нашла в интернете.
“Оказывается, что для любого натурального числа n > 2 верен следующий
факт: при делении целого числа на n возможно n различных остатков 0, 1, . . . , n − 1,
а квадраты целых чисел при делении на n дают меньше, чем n различных остатков.
Если быть еще точнее, то остатков от деления квадратов целых чисел не более [math]frac{ n }{ 2 }[/math]+1.
Оказывается, что подобным свойством обладают и остатки от деления кубов целых чисел
на натуральное число n при некоторых значениях n.”
Интересно, при каких :(

Вернуться к началу

Профиль  

Cпасибо сказано 

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Найти количество остатков от деления

в форуме Теория чисел

taxol

7

654

11 фев 2021, 14:37

Сумма остатков

в форуме Ряды

Volodislavir

2

291

23 фев 2018, 23:28

Регрессия при автокорреляции остатков

в форуме Математическая статистика и Эконометрика

kuzojlberg

9

323

18 апр 2019, 18:26

Уравнение из равенства остатков

в форуме Теория чисел

math_user

13

445

17 авг 2019, 17:30

Вычислить интеграл с помощью остатков

в форуме Комплексный анализ и Операционное исчисление

Daria1999

0

123

22 окт 2019, 19:48

Теорема 75 теория чисел – равность остатков

в форуме Теория чисел

afraumar

5

671

23 авг 2013, 19:40

Количество способов

в форуме Комбинаторика и Теория вероятностей

tovarz

1

514

03 апр 2014, 18:58

Количество отношений

в форуме Дискретная математика, Теория множеств и Логика

lolliker228

7

132

23 ноя 2020, 02:40

Найти количество n

в форуме Алгебра

Mathnew

12

778

21 янв 2015, 02:23

Количество способов

в форуме Дискретная математика, Теория множеств и Логика

sedlitskas

3

210

16 апр 2020, 17:04

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 4

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group

Вы можете создать форум бесплатно PHPBB3 на Getbb.Ru, Также возможно сделать готовый форум PHPBB2 на Mybb2.ru

Русская поддержка phpBB

x equiv {0, 1, 2, 3, 4, 5, 6, 7, 8 } mod 9

Значит, x^3 даёт кубы этих остатков: { 0, 1, 8}.

Действительно,

0^3,mathrm{mod},9 = 0 ,mathrm{mod},9 = 0\1^3 ,mathrm{mod},9 = 1 ,mathrm{mod},9 = 1\2^3 ,mathrm{mod},9 = 8 ,mathrm{mod},9 = 8\3^3 ,mathrm{mod},9 = 27 ,mathrm{mod},9 = 0\4^3 ,mathrm{mod},9 = 64 ,mathrm{mod},9 = 1\5^3 ,mathrm{mod},9 = 125 ,mathrm{mod},9 = 8\6^3 ,mathrm{mod},9 = 216 ,mathrm{mod},9 = 0\7^3 ,mathrm{mod},9 = 343 ,mathrm{mod},9 = 1\8^3 ,mathrm{mod},9 = 512 ,mathrm{mod},9 = 8

Для отрицательных чисел можно заметить, что xmod a = b Rightarrow (-x) mod a= (a - b)mod a. Тогда остатки будут аналогичные.

Добавить комментарий