Как найти острый угол в тупоугольном треугольнике

Тупые углы: описание и особенности

Треугольник – это геометрическая фигура, имеющая три соединенные между собой линиями точки, которые лежат не на единой прямой в плоскости. Вершины треугольника – точки в основании углов, а линии, соединяющие их, называют сторонами треугольника. Чтобы определить площадь такой фигуры, часто используют внутреннее пространство треугольника.

Классификация

Кроме треугольников, имеющих неодинаковые стороны, существуют равнобедренные, то есть обладающие двумя одинаковыми сторонами. Их называют боковыми, а еще одну сторону – основанием фигуры. Существует еще один вид таких многоугольников – равносторонние. Все три их стороны имеют одинаковую длину.

Для треугольников присуща градусная система измерения. Эти фигуры могут иметь разные углы, поэтому их классифицируют так:

  • Прямоугольные – имеющие угол 90 градусов. Две стороны, прилежащие к этому углу, называют катетами, а третью – гипотенузой;
  • Остроугольные – это треугольники, обладающие всеми острыми углами, не превышающими 90 градусов;
  • Тупоугольные – один угол больше 90 градусов.

Определение и параметры треугольника

Как уже было отмечено, треугольник – это один из видов многоугольников, имеющий три вершины и столько же прямых, их объединяющих. Обозначают линии, как правило, одинаково: углы – маленькими латинскими буквами, а противоположные стороны каждого – соответствующей большой буквой.

Если сложить все углы какого-либо треугольника, получится сумма в 180 градусов. Чтобы узнать внутренний угол, нужно из 180 градусов вычесть величину внешнего угла треугольника. Для того чтобы узнать, чему равняется угол, находящийся снаружи, стоит сложить два раздельных от него угла внутри.

В каждом треугольнике, имеет он острые или тупые углы, противоположно большому углу находится наибольшая сторона. Если же прямые между вершинами одинаковы, то, соответственно, и каждый угол равняется 60 градусам.

Тупоугольный треугольник

Тупой угол треугольника всегда больше 90-градусного угла, но меньше развернутого. Таким образом, тупой угол равен от 90 до 180 градусов.

Возникает вопрос: бывает ли более одного тупого угла в такой фигуре? Ответ находится на поверхности: нет, потому что сумма углов должна быть менее 180 0 . Если два угла будут иметь, например, по 95 градусов, то третьему просто не найдется места.

Два тупоугольных многоугольника равны:

  • если равны обе их стороны и угол, находящийся между ними;
  • если одна сторона и два угла, находящиеся рядом с ней, равны;
  • если три стороны тупоугольных треугольников имеют равенство.

Замечательные линии тупоугольного треугольника

Во всех треугольниках, имеющих тупые углы, есть линии, называемые замечательными. Первая из них – высота. Она представляет собой перпендикуляр из одной из вершин на соответствующую ей сторону. Все высоты сталкиваются в точке, которая именуется как ортоцентр. В треугольнике с тупыми углами он будет находиться за пределами самой фигуры. Что касается острых углов, то центр там находится в самом треугольнике.

Еще одна линия – медиана. Это черта, проведенная от вершины к центру соответствующей стороны. Все медианы сходятся в треугольнике, а место их совмещения – это центр тяжести такого многоугольника.

Биссектриса – линия, делящая пополам как тупые углы, так и остальные. Пересечение трех таких линий всегда бывает только в самой фигуре и определяется как центр круга, вписанного в треугольник.

В свою очередь, центр круга, описанного вокруг фигуры, можно получить из трех срединных перпендикуляров. Это линии, которые были опущены из середин прямых, соединяющих вершины. Место пересечения трех срединных перпендикуляров в треугольнике, имеющем тупые углы, находится снаружи фигуры.

Тупоугольный треугольник

Что такое тупоугольный треугольник

Тупоугольный треугольник — геометрическая фигура на плоскости, которая представляет собой треугольник, один из углов которого является тупым, то есть больше 90º.

Такой треугольник не может быть прямоугольным и равносторонним, но может быть равнобедренным.

Сумма углов треугольника равна 180º. Именно поэтому только один из них может быть больше 90º, два других всегда острые. Это единственная особенность данной фигуры. Подход к решению задач с такой фигурой не отличается от решения задач с треугольниками других типов.

Элементы тупоугольного треугольника

Помимо сторон и углов, тупоугольный треугольник имеет следующие элементы:

  1. Внешний угол — тот, который смежен с внутренним, всего их шесть, по два на один внутренний. Внешний угол тупого всегда будет острым, острого — тупым.
  2. Медиана — отрезок, который соединяет вершину треугольника с противолежащей стороной и делит ее пополам. Все медианы пересекаются друг с другом в одной точке (центроиде). Эта точка делит медианы в соотношении 2:1, считая от вершины.
  3. Высота — перпендикуляр, который проведен из высоты треугольника на противоположную сторону. В тупоугольном треугольнике может лежать за пределами фигуры.
  4. Биссектриса — прямая, делящая угол пополам. Делит противоположную сторону на отрезки, которые пропорциональны прилежащим сторонам фигуры. Точка, которая является пересечением биссектрис, также является центром вписанной окружности.

Формулы площади тупоугольного треугольника

Для нахождения площади, периметра и других показателей тупоугольного треугольника используются те же формулы, что и для вычисления любого произвольного треугольника.

Площадь данной фигуры можно найти при помощи следующих формул:

S = ½ * x * h , где х — сторона;

S = √ p * ( p – x ) * ( p – y ) * ( p – z ) ,

p — полупериметр, p = ( x + y + z ) / 2

S = x * y * z / 4 * R , R — радиус описанной окружности;

S = p * r , p — полупериметр, r — радиус вписанной окружности.

Пример решения задачи

Найти площадь тупоугольного треугольника, у которого стороны равны x=9, y=5, z=6.

Для решения задачи стоит использовать формулу площади с полупериметром.

p = ( x + y + z ) / 2 , p = ( 9 + 5 + 6 ) / 2 = 20 / 2 = 10 .

S = √ p * ( p – x ) * ( p – y ) * ( p – z ) , S = √ 10 * ( 10 – 9 ) * ( 10 – 5 ) * ( 10 – 6 ) = √ 10 * 1 * 5 * 4 = √ 200 = 10 √ 2

Остроугольный, прямоугольный и тупоугольный треугольники.

Виды треугольников

Остроугольный треугольник — это треугольник,
в котором все углы острые.

Прямоугольный треугольник — это треугольник,
в котором один из углов прямой.

Тупоугольный треугольник — это треугольник,
в котором один из углов тупой.

Как определить вид треугольника

Для того, чтобы понять какой треугольник — остроугольный, прямоугольный или тупоугольный
нужно знать какая градусная мера у углов в треугольнике.

Если один из углов в треугольнике прямой, значит треугольник прямоугольный. Все углы острые в треугольнике — значит треугольник остроугольный. Если в треугольнике один из углов тупой, значит треугольник тупоугольный.

В произвольном треугольнике все углы острые, или два угла острые, а третий прямой или тупой. Если в треугольнике вам известно, что один углов тупой или прямой, значит сумма двух других углов не больше 90 градусов.

В прямоугольном треугольнике стороны напротив острых углов называются катетами, а сторона напротив прямого угла называется гипотенузой.

Градусные меры острого, тупого, прямого углов в треугольниках

Чтобы понять как называется угол и как называется треугольник с этими углами — надо знать его градусную меру:

  1. Острый угол в любом из треугольников не больше 90 градусов.
  2. Прямой угол в любом из треугольников равен 90 градусам.
  3. Тупой угол в любом из треугольников больше 90 градусов, но меньше 180 градусов.

[spoiler title=”источники:”]

http://wika.tutoronline.ru/geometriya/class/7/tupougolnyj-treugolnik

http://colibrus.ru/ostrougolnyy-pryamougolnyy-i-tupougolnyy-treugolniki/

[/spoiler]

Тупоугольный треугольник, элементы, свойства, признаки и формулы.

Тупоугольный треугольник – это треугольник, у которого один угол тупой.

Тупоугольный треугольник (понятие и определение)

Элементы тупоугольного треугольника

Свойства тупоугольного треугольника

Формулы тупоугольного треугольника

Остроугольный треугольник, прямоугольный треугольник, равнобедренный треугольник, равносторонний треугольник, тупоугольный треугольник

Тупоугольный треугольник (понятие и определение): 

Тупоугольный треугольник – это треугольник, у которого один угол тупой, т.е. один из его углов лежит в пределах между 90° и 180°.

Тупоугольный треугольник – это треугольник, у которого один угол тупой, а два других – острые. В свою очередь, тупой угол – это угол, градусная мера которого составляет 90° до 180°, а острый угол – это угол, градусная мера которого составляет менее 90 градусов

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 1. Тупоугольный треугольник

BАC– тупой угол треугольника,

АВС, BСA – острые углы треугольника

По определению, тупоугольным треугольником не может быть правильный (равносторонний) треугольник, т.к. у него каждый угол составляет 60°.

Рис. 2. Равносторонний треугольник

АВ = ВС = АС – стороны треугольника,

АВС = BАC = BСA = 60° – углы треугольника 

По определению, тупоугольным треугольником не может быть прямоугольный треугольник , т.к. у него один угол составляет 90° и сумма двух других углов также составляет 90°.

Рис. 8. Прямоугольный треугольник

Рис. 3. Прямоугольный треугольник

Тупоугольный треугольник также может быть одновременно равнобедренным треугольником. Но не всякий равнобедренный треугольник тупой.

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 4. Равнобедренный треугольник

АВ = AС – боковые стороны, BС – основание,

ВАС – вершинный угол, АBC и BСA – углы при основании

Хотя в тупоугольном треугольнике тупой угол больше 90 градусов, сумма углов в треугольнике всегда равна 180 градусам.

Элементы тупоугольного треугольника:

Кроме сторон и углов у тупоугольного треугольника также имеются внешние углы. Внешний угол это угол, смежный с внутренним углом треугольника. У любого треугольника, в т.ч. тупоугольного, 6 внешних углов, по 2 на каждый внутренний. Внешний угол тупого угла тупоугольного треугольника всегда будет острым углом. Внешний угол острого угла тупоугольного треугольника всегда будет тупым углом.

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 5. Тупоугольный треугольник и внешний угол

ВAD – острый угол

Медиана тупоугольного треугольника (как и любого другого треугольника), соединяющая вершину треугольника с противоположной стороной, делит ее пополам, т.е. на два одинаковых отрезка.

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 6. Тупоугольный треугольник и медиана тупоугольного треугольника

MA – медиана тупоугольного треугольника

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 7. Тупоугольный треугольник и высота тупоугольного треугольника

MС – высота тупоугольного треугольника

Высота тупоугольного треугольника может лежать за пределами треугольника.

Биссектриса в тупоугольном треугольнике (как и в любом другом треугольнике) делит угол пополам. Биссектрисы  пересекаются в точке, которая является центром вписанной окружности.

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 8. Тупоугольный треугольник и биссектриса угла тупоугольного треугольника

MA – биссектриса тупого угла тупоугольного треугольника

Кроме того, биссектриса тупоугольного треугольника (как и любого другого треугольника) делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Свойства тупоугольного треугольника:

Свойства тупоугольного треугольника аналогичны свойствам обычного треугольника:

1. Против большей стороны лежит больший угол, и наоборот.

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 9. Тупоугольный треугольник

2. Против равных сторон лежат равные углы, и наоборот.

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 10. Тупоугольный треугольник с равными боковыми сторонами

АВ = АС

3. Сумма углов тупоугольного треугольника равна 180°.

4. Любая сторона тупоугольного треугольника меньше суммы двух других сторон и больше их разности:

    • a < b + c;
    • a > b – c;
    • b < a + c,
    • b > a – c;
    • c < a + b;
    • c > a – b.

Квадрат

Овал

Остроугольный треугольник

Полукруг

Прямой угол

Прямоугольник

Прямоугольный треугольник

Равнобедренный треугольник

Равносторонний треугольник

Ромб

Трапеция

Тупой угол

Тупоугольный треугольник

Шестиугольник

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Коэффициент востребованности
20 676

Содержание

  1. Виды треугольников
  2. Как определить вид треугольника
  3. Градусные меры острого, тупого, прямого углов в треугольниках
  4. Примеры остроугольного, прямоугольного и

    тупоугольного треугольника

Виды треугольников

Остроугольный треугольник — это треугольник,
в котором все углы острые.

Прямоугольный треугольник — это треугольник,
в котором один из углов прямой.

Тупоугольный треугольник — это треугольник,
в котором один из углов тупой.

Как определить вид треугольника

Для того, чтобы понять какой треугольник — остроугольный, прямоугольный или тупоугольный
нужно знать какая градусная мера у углов в треугольнике.

Если один из углов в треугольнике прямой, значит треугольник прямоугольный. Все углы острые в треугольнике — значит треугольник остроугольный. Если в треугольнике один из углов тупой, значит треугольник тупоугольный.

В произвольном треугольнике все углы острые, или два угла острые, а третий прямой или тупой. Если в треугольнике вам известно, что один углов тупой или прямой, значит сумма двух других углов не больше 90 градусов.

В прямоугольном треугольнике стороны напротив острых углов называются катетами, а сторона напротив прямого угла называется гипотенузой.

Градусные меры острого, тупого, прямого углов в треугольниках

Чтобы понять как называется угол и как называется треугольник с этими углами — надо знать его градусную меру:

  1. Острый угол в любом из треугольников не больше 90 градусов.
  2. Прямой угол в любом из треугольников равен 90 градусам.
  3. Тупой угол в любом из треугольников больше 90 градусов, но меньше 180 градусов.

Примеры остроугольного, прямоугольного и
тупоугольного треугольника

Остроугольный, прямоугольный и тупоугольный треугольники.

Остроугольный, прямоугольный и тупоугольный треугольники.

Остроугольный, прямоугольный и тупоугольный треугольники.

Треугольник

Треугольник — фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами.

Треугольник

  • типы треугольников
  • вершины углы и стороны треугольника
  • медианы треугольника
  • биссектрисы треугольника
  • высоты треугольника
  • окружность вписанная в треугольник
  • окружность описанная вокруг треугольника
  • связь между вписанной и описанной окружностями треугольника
  • средняя линия треугольника
  • периметр треугольника
  • формулы площади треугольника
  • равенство треугольников
  • подобие треугольников
  • прямоугольные треугольники

Типы треугольников

Типы треугольников

По величине углов

Остроугольный треугольник

остроугольный треугольник

— все углы треугольника острые.

Тупоугольный треугольник

тупоугольный треугольник

— один из углов треугольника тупой (больше 90°).

Прямоугольный треугольник

прямоугольный треугольник

— один из углов треугольника прямой (равен 90°).

По числу равных сторон

Разносторонний треугольник

разносторонний треугольник

— все три стороны не равны.

Равнобедренный треугольник

равнобедренный треугольник

— две стороны равны.

Равносторонний (правильный) треугольник

равносторонний треугольник

— все три стороны равны.

Вершины, углы и стороны треугольника

Вершины, углы и стороны треугольника

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°

α + β + γ = 180°

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы

  • если α > β, тогда a > b
  • если α = β, тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

asinα = bsinβ = csinγ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведение этих сторон на косинус угла между ними.

a2 = b2 + c2 – 2bc·cos α
b2 = a2 + c2 – 2ac·cos β
c2 = a2 + b2 – 2ab·cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β
b = a cos γ + c cos α;
c = a cos β + b cos α;

Формулы для вычисления длин сторон треугольника

Формулы сторон через медианы

a = 232mb2+mc2-ma2b = 232ma2+mc2-mb2c = 232ma2+mb2-mc2

Медиана треугольника — отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Медианы треугольника

Свойства медиан треугольника

  1. Медианы треугольника пересекаются в одной точке. Точка пересечения медиан называется центроидом.
  2. В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)
    AOOD=
    BOOE=COOF=21
  3. Медиана треугольника делит треугольник на две равновеликие частиS∆ABD=S∆ACDS∆BEA=S∆BECS∆CBF=S∆CAF
  4. Треугольник делится тремя медианами на шесть равновеликих треугольниковS∆AOF=S∆AOE=S∆BOF=S∆BOD=S∆COD=S∆COE
  5. Из векторов, образующих медианы, можно составить треугольник

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 122b2+2c2-a2mb = 122a2+2c2-b2mc = 122a2+2b2-c2

Биссектрисы треугольника

Биссектриса угла — луч с началом в вершине угла, делящий угол на два равных угла.

Биссектрисы треугольника

Свойства биссектрис треугольника

  1. Биссектрисы треугольника пересекаются в одной точке, равноудаленной от трех сторон треугольника, – центре вписанной окружности.
  2. Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника
    AEAB=
    ECBC
  3. Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°

    Угол между

    lc и lc’ = 90°

  4. Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны

la = 2bcpp-ab+clb = 2acpp-ba+clc = 2abpp-ca+b

где p = a+b+c2 — полупериметр треугольника.

Формулы биссектрис треугольника через две стороны и угол

la = 2bc cosα2b+clb = 2ac cosβ2a+clc = 2ab cosγ2a+b

Высоты треугольника

Высоты треугольника

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на прямую содержащую противоположную сторону.

В зависимости от типа треугольника высота может содержаться:

  • внутри треугольника — для остроугольного треугольника;
  • совпадать с его стороной — для катета прямоугольного треугольника;
  • проходить вне треугольника — для острых углов тупоугольного треугольника.

Свойства высот треугольника

  1. Высоты треугольника пересекаются в одной точке, называемой ортоцентром треугольника.
  2. Если в треугольнике две высоты равны, то треугольник — равнобедренный.
  3. ha:hb:hc=1a:1b:1c=
    BC:AC:AB
  4. 1ha:1hb:1hc=1r

Формулы высот треугольника

Формулы высот треугольника через сторону и угол

ha = b sin γ = c sin βhb = c sin α = a sin γhc = a sin β = b sin α

Формулы высот треугольника через сторону и площадь

ha = 2Sahb = 2Sbhc = 2Sc

Формулы высот треугольника через две стороны и радиус описанной окружности

ha = bc2Rhb = ac2Rhc = ab2R

Окружность вписанная в треугольник

Окружность называется вписанной в треугольник, если она касается всех трех его сторон.

Окружность вписанная в треугольник

Свойства окружности вписанной в треугольник

  • Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
  • В любой треугольник можно вписать окружность, и только одну.

Формулы радиуса окружности вписанной в треугольник

Радиус вписанной в треугольник окружности равен отношению площади треугольника к его полупериметру

r = Sp

Радиус вписанной в треугольник окружности через три стороны

r = a+b-cb+c-ac+a-b4a+b+c

Формулы высот треугольника через две стороны и радиус описанной окружности

1r=1ha+1hb+1hc

Окружность описанная вокруг треугольника

Окружность называется описанной вокруг треугольника, если она содержит все вершины треугльника.

Окружность описанная вокруг треугольника

Свойства окружности описанной вокруг треугольника

  • Центр описанной вокруг треугольника окружности лежит на пересечении серединных перпендикуляров к его сторонам.
  • Вокруг любого треугольника можно описать окружность, и только одну.

Свойства углов

Центр описанной окружности лежит внутри остроугольного треугольника, снаружи тупоугольнго треугольника, на середине гипотенузы прямоугольного треугольника.

Формулы радиуса окружности описанной вокруг треугольника

Радиус описанной окружности через три стороны и площадь

R = abc4S

Радиус описанной окружности через площадь и три угла

R = S2 sinα sinβ sinγ

Радиус описанной окружности через сторону и противоположный угол (теорема синусов)

R =a2 sinα+b2 sinβ+c2 sinγ

Связь между вписанной и описанной окружностями треугольника

Связь между вписанной и описанной окружностями треугольника

Формулы радиуса окружности описанной вокруг треугольника

Если d — расстояние между центрами вписанной и описанной окружностей, то

d2 = R2 – 2Rr

Радиус описанной окружности через площадь и три угла

rR = 4sinα2 sinβ2 sinγ2 = cosα + cosβ + cosγ

2Rr =abca+b+c

Средняя линия треугольника

Средняя линия треугольника — отрезок, соединяющий середины двух сторон треугольника.

Средняя линия треугольника

Свойства средней линии треугольника

  • Любой треугольник имеет три средних линии.
  • Средняя линия треугольника параллельна основанию и равна его половине.
    MN= 12AC; KN= 12AB; KM= 12BCMN || AC; KN || AB; KM || BC
  • Средняя линия отсекает треугольник, подобный данному, площадь которого равна четвёрти площади исходного треугольника.
    S∆MBN = 14S∆ABC; S∆MAK = 14S∆ABC;
    S∆NCK = 14S∆ABC
  • При пересечении всех трёх средних линий образуются 4 равных треугольника, подобных (даже гомотетичных) исходному с коэффициентом 1/2.
    ∆MBN ~ ∆ABC;
    ∆AMK ~ ∆ABC;
    ∆KNC ~ ∆ABC;
    ∆NKM ~ ∆ABC

Признаки

Если отрезок параллелен одной из сторон треугольника и соединяет середину стороны треугольника с точкой, лежащей на другой стороне треугольника, то этот отрезок — средняя линия.

Периметр треугольника

Периметр треугольника

Периметр треугольника ∆ABC равен сумме длин его сторон.

P = a + b + c

Формулы площади треугольника

формулы площади треугольника

Формула площади треугольника по стороне и высоте

формула площади треугольника по стороне и высоте

Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты.

S = 12 a · ha

,

S = 12 b · hb

,

S = 12 c · hc

,

где a, b, c — стороны треугольника,
ha, hb, hc — высоты, проведенные к сторонам a, b, c треугольника.

Формула площади треугольника по трем сторонам

формула площади треугольника по трем сторонам

Формула Герона формула для вычисления площади треугольника S по длинам его сторон a, b, c.

S = pp-ap-bp-c

,

где p — полупериметр треугольника: p = a + b + c2
a, b, c — стороны треугольника.

Формула площади треугольника по двум сторонам и углу между ними

формула площади треугольника по двум сторонам и углу между ними

Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

S = 12 a · b · sinγ

,

S = 12 b · c · sinα

,

S = 12 a · c · sinβ

,

где a, b, c — стороны треугольника,
γ — угол между сторонами a и b,
α — угол между сторонами b и c,
β — угол между сторонами a и c.

Формула площади треугольника по трем сторонам и радиусу описанной окружности

формула площади треугольника по трем сторонам и радиусу описанной окружности

S = a · b · c4R

,

a, b, c — стороны треугольника,
R – радиус описанной окружности.

Формула площади треугольника по трем сторонам и радиусу вписанной окружности

формула площади треугольника по трем сторонам и радиусу вписанной окружности

Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

S = p · r

,

где S — площадь треугольника,
r – радиус вписанной окружности,
p — полупериметр треугольника: p = a + b + c2

Равенство треугольников

Равенство треугольников

Определение

Если два треугольника АВС и А1В1С1 можно совместить наложением, то они равны.

Свойства

У равных треугольников равны и их соответствующие элементы. (В равных треугольниках против равных сторон лежат равные углы, против равных углов лежат равные стороны).

Признаки равенства треугольников

По двум сторонам и углу между ними

Теорема.

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

По стороне и двум прилежащим углам

Теорема.

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

По трем сторонам

Теорема.

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Подобие треугольников

Подобие треугольников

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

∆АВС~∆MNK=> α=α1

,

β=β1

,

γ=γ1

и

ABMN=BCNK=ACMK=k

где k — коэффициент подобия.

Признаки подобия треугольников

  1. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
  2. Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
  3. Если две стороны одного треугольника пропорциональны двум сторонам другого, а углы, между этими сторонами, равны, то такие треугольники подобны.

Свойства

Площади подобных треугольников относятся как квадрат коэффициента подобия:

S∆АВСS∆MNK=k2

Прямоугольные треугольники

Прямоугольный треугольник — треугольник, в котором один угол прямой (то есть равен 90˚).

Свойства прямоугольного треугольника

  • Свойства прямоугольного треугольника: сумма двух острых углов прямоугольного треугольника равна 90°
    Сумма двух острых углов прямоугольного треугольника равна 90°.
    Сумма углов треугольника равна 180°, а прямой угол равен 90°, поэтому сумма двух острых углов прямоугольного треугольника ∠ 1+∠ 2=90°.
  • Свойства прямоугольного треугольника: катет прямоугольного треугольника, лежащий против угла в  30°, равен половине гипотенузы

    Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы (гипотенуза в два раза длиннее катета, лежащего против угла в 30°).

    Рассмотрим прямоугольный треугольник ABC, в котором ∠ A — прямой, ∠ B = 30°, и значит, что ∠ C = 60°.

    Докажем, что BC=2AC.
    Приложим к треугольнику ABC равный ему треугольник ABD , как показано на рисунке.
    Получим треугольник BCD, в котором ∠ B = ∠ D = 60° , поэтому DC = BC. Но DC = 2AC. Следовательно, BC = 2AC.

    Справедливо и обратное суждение: Если катет прямоугольного треугольника равен половине гипотенузы (или гипотенуза в два раза длиннее катета), то угол, лежащий против этого катета, равен 30°.

Признаки равенства прямоугольных треугольников

Так как в прямоугольном треугольнике угол между двумя катетами — прямой, а любые два прямых угла равны, то из общих признаков равенства треугольников для прямоугольных треугольников можно сформулировать свои признаки равенства.

  1. Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.
  2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны.
  3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.
  4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.

Свойства

Площади подобных треугольников относятся как квадрат коэффициента подобия:

S∆АВСS∆MNK=k2

  • Коротко о важном
  • Таблицы
  • Формулы
  • Формулы по геометрии
  • Теория по математике

Исторический термин «решение треугольников» (лат. solutio triangulorum) обозначает решение следующей тригонометрической задачи: найти остальные стороны и/или углы треугольника по уже известным[1]. Существуют также обобщения этой задачи на случай, когда заданы другие элементы треугольника (например, медианы, биссектрисы, высоты, площадь и т. д.), а также на случай, когда треугольник располагается не на евклидовой плоскости, а на сфере (сферический треугольник), на гиперболической плоскости (гиперболический треугольник) и т. п. Данная задача часто встречается в тригонометрических приложениях — например, в геодезии, астрономии, строительстве, навигации.

Решение плоских треугольников[править | править код]

Стандартные обозначения в треугольнике

У треугольника[2] общего вида имеется 6 основных элементов: 3 линейные (длины сторон a,b,c) и 3 угловые (alpha ,beta ,gamma ). Сторону, противолежащую углу при вершине, традиционно обозначают той же буквой, что и эта вершина, но не заглавной, а строчной (см. рисунок). В классической задаче плоской тригонометрии заданы 3 из этих 6 характеристик, и нужно определить 3 остальные. Очевидно, если известны только 2 или 3 угла, однозначного решения не получится, так как любой треугольник, подобный данному, тоже будет решением, поэтому далее предполагается, что хотя бы одна из известных величин — линейная[3].

Алгоритм решения задачи зависит от того, какие именно характеристики треугольника считаются известными. Поскольку вариант «заданы три угла» исключён из рассмотрения, остаются 5 различных вариантов[4]:

  • три стороны;
  • две стороны и угол между ними;
  • две стороны и угол напротив одной из них;
  • сторона и два прилежащих угла;
  • сторона, противолежащий угол и один из прилежащих.

Основные теоремы[править | править код]

Стандартным методом решения задачи является использование нескольких фундаментальных соотношений, выполняющихся для всех плоских треугольников[5]:

Теорема косинусов
{displaystyle a^{2}=b^{2}+c^{2}-2bccdot cos alpha }
{displaystyle b^{2}=a^{2}+c^{2}-2accdot cos beta }
{displaystyle c^{2}=a^{2}+b^{2}-2abcdot cos gamma }
Теорема синусов
{frac {a}{sin alpha }}={frac {b}{sin beta }}={frac {c}{sin gamma }}
Сумма углов треугольника
alpha +beta +gamma =180^{circ }

Из других иногда полезных на практике универсальных соотношений следует упомянуть теорему тангенсов, теорему котангенсов, теорему о проекциях и формулы Мольвейде.

Замечания[править | править код]

  1. Для нахождения неизвестного угла надёжнее использовать теорему косинусов, а не синусов, потому что значение синуса угла при вершине треугольника не определяет однозначно самого угла, поскольку смежные углы имеют один и тот же синус[6]. Например, если sin beta =0{,}5, то угол beta может быть как 30^{circ }, так и 150^{circ }, потому что синусы этих углов совпадают. Исключением является случай, когда заранее известно, что в данном треугольнике тупых углов быть не может — например, если треугольник прямоугольный. С косинусом такие проблемы не возникают: в интервале от 0^{circ } до 180^{circ } значение косинуса определяет угол однозначно.
  2. При построении треугольников важно помнить, что зеркальное отражение построенного треугольника тоже будет решением задачи. Например, три стороны однозначно определяют треугольник с точностью до отражения.
  3. Все треугольники подразумеваются невырожденными, то есть длина стороны не может быть нулевой, а величина угла — положительное число, меньшее, чем 180^{circ }.

Три стороны[править | править код]

Пусть заданы длины всех трёх сторон a,b,c. Условие разрешимости задачи — выполнение неравенства треугольника, то есть каждая длина должна быть меньше, чем сумма двух других длин:

{displaystyle a<b+c,quad b<a+c,quad c<a+b.}

Чтобы найти углы alpha ,beta , надо воспользоваться теоремой косинусов[7]:

{displaystyle alpha =arccos {frac {b^{2}+c^{2}-a^{2}}{2bc}},quad beta =arccos {frac {a^{2}+c^{2}-b^{2}}{2ac}}.}

Третий угол сразу находится из правила, что сумма всех трёх углов должна быть равна {displaystyle 180^{circ }colon }

{displaystyle gamma =180^{circ }-(alpha +beta ).}

Не рекомендуется второй угол находить по теореме синусов, потому что, как указано в замечании 1, существует опасность спутать тупой угол с острым. Этой опасности не возникнет, если первым определить, по теореме косинусов, наибольший угол (он лежит против наибольшей из сторон) — два других угла точно являются острыми, и применение к ним теоремы синусов безопасно.

Ещё один метод вычисления углов по известным сторонам — использование теоремы котангенсов.

Заданы две стороны и угол между ними

Две стороны и угол между ними[править | править код]

Пусть для определённости известны длины сторон a,b и угол gamma между ними. Этот вариант задачи всегда имеет единственное решение. Для определения длины стороны c применяется теорема косинусов[8]:

{displaystyle c={sqrt {a^{2}+b^{2}-2abcos gamma }}.}

Фактически задача сведена к предыдущему случаю. Далее ещё раз применяется теорема косинусов для нахождения второго угла:

{displaystyle alpha =arccos {frac {b^{2}+c^{2}-a^{2}}{2bc}}=arccos {frac {b-acos gamma }{sqrt {a^{2}+b^{2}-2abcos gamma }}}.}

Третий угол находится из теоремы о сумме углов треугольника: beta =180^{circ }-alpha -gamma .

Заданы две стороны и угол не между ними

Две стороны и угол напротив одной из них[править | править код]

В этом случае решений может быть два, одно или ни одного. Пусть известны две стороны b,c и угол beta . Тогда уравнение для угла gamma находится из теоремы синусов[9]:

{displaystyle sin gamma ={frac {c}{b}}sin beta .}

Для краткости обозначим {displaystyle D={frac {c}{b}}sin beta } (правая часть уравнения). Это число всегда положительно. При решении уравнения возможны 4 случая, во многом зависящие от D[10][11].

  1. Задача не имеет решения (сторона b «не достаёт» до линии BC) в двух случаях: если D>1 или если угол beta geqslant 90^{circ } и при этом bleqslant c.
  2. Если {displaystyle D=1,} существует единственное решение, причём треугольник прямоугольный: {displaystyle gamma =arcsin D=90^{circ }.}

  1. Если {displaystyle D<1,} то возможны 2 варианта.
    1. Если b<c, то угол gamma имеет два возможных значения: острый угол {displaystyle gamma =arcsin D} и тупой угол {displaystyle gamma '=180^{circ }-gamma }. На рисунке справа первому значению соответствуют точка C, сторона b и угол gamma , а второму значению — точка C', сторона {displaystyle b'=b} и угол gamma '.
    2. Если bgeqslant c, то beta geqslant gamma (большей стороне треугольника соответствует больший противолежащий угол). Поскольку в треугольнике не может быть двух тупых углов, тупой угол для gamma исключён и решение {displaystyle gamma =arcsin D} единственно.

Третий угол определяется по формуле {displaystyle alpha =180^{circ }-beta -gamma }. Третью сторону можно найти по теореме синусов:

a=b {frac {sin alpha }{sin beta }}

В данном случае заданы сторона и прилежащие к ней углы. Аналогичные рассуждения имеют смысл, даже если один из известных углов противоположен стороне.

Сторона и два угла[править | править код]

Пусть задана сторона c и два угла. Эта задача имеет единственное решение, если сумма двух углов меньше 180^{circ }. В противном случае задача решения не имеет.

Вначале определяется третий угол. Например, если даны углы alpha ,beta , то {displaystyle gamma =180^{circ }-alpha -beta }. Далее обе неизвестные стороны находятся по теореме синусов[12]:

{displaystyle a=c {frac {sin alpha }{sin gamma }},quad b=c {frac {sin beta }{sin gamma }}.}

Решение прямоугольных треугольников[править | править код]

Прямоугольный треугольник

В этом случае известен один из углов — он равен 90°. Необходимо знать ещё два элемента, хотя бы один из которых — сторона. Возможны следующие случаи:

  • два катета;
  • катет и гипотенуза;
  • катет и прилежащий острый угол;
  • катет и противолежащий острый угол;
  • гипотенуза и острый угол.

Вершину прямого угла традиционно обозначают буквой C, гипотенузу — c. Катеты обозначаются a и b, а величины противолежащих им углов — alpha и beta соответственно.

Расчётные формулы существенно упрощаются, так как вместо теорем синусов и косинусов можно использовать более простые соотношения — теорему Пифагора:

c^{2}=a^{2}+b^{2}

и определения основных тригонометрических функций:

sin alpha =cos beta ={frac {a}{c}},quad cos alpha =sin beta ={frac {b}{c}},
{displaystyle operatorname {tg} alpha =operatorname {ctg} beta ={frac {a}{b}},quad operatorname {ctg} alpha =operatorname {tg} beta ={frac {b}{a}}.}

Ясно также, что углы alpha и beta  — острые, так как их сумма равна 90^{circ }. Поэтому любой из неизвестных углов однозначно определяется по любой из его тригонометрических функций (синусу, косинусу, тангенсу и др.) путём вычисления соответствующей обратной тригонометрической функции.

При корректной постановке задачи (если заданы гипотенуза и катет, то катет должен быть меньше гипотенузы; если задан один из двух непрямых углов, то он должен быть острый) решение всегда существует и единственно.

Два катета[править | править код]

Гипотенуза находится по теореме Пифагора:

c={sqrt {a^{2}+b^{2}}}.

Углы могут быть найдены с использованием функции арктангенса:

{displaystyle alpha =operatorname {arctg} {frac {a}{b}},quad beta =operatorname {arctg} {frac {b}{a}}}

или же по только что найденной гипотенузе:

alpha =arcsin {frac {a}{c}}=arccos {frac {b}{c}},quad beta =arcsin {frac {b}{c}}=arccos {frac {a}{c}}.

Катет и гипотенуза[править | править код]

Пусть известны катет b и гипотенуза c — тогда катет a находится из теоремы Пифагора:

a={sqrt {c^{2}-b^{2}}}.

После этого углы определяются аналогично предыдущему случаю.

Катет и прилежащий острый угол[править | править код]

Пусть известны катет b и прилежащий к нему угол alpha .

Гипотенуза c находится из соотношения

c={frac {b}{cos alpha }}.

Катет a может быть найден либо по теореме Пифагора аналогично предыдущему случаю, либо из соотношения

a=b mathrm {tg} ,alpha .

Острый угол beta может быть найден как

beta =90^{circ }-alpha .

Катет и противолежащий острый угол[править | править код]

Пусть известны катет b и противолежащий ему угол beta .

Гипотенуза c находится из соотношения

c={frac {b}{sin beta }}.

Катет a и второй острый угол alpha могут быть найдены аналогично предыдущему случаю.

Гипотенуза и острый угол[править | править код]

Пусть известны гипотенуза c и острый угол beta .

Острый угол alpha может быть найден как

alpha =90^{circ }-beta .

Катеты определяются из соотношений

a=csin alpha =ccos beta ,
b=csin beta =ccos alpha .

Решение сферических треугольников[править | править код]

Стороны сферического треугольника a,b,c измеряют величиной опирающихся на них центральных углов

Сферический треугольник общего вида полностью определяется тремя из шести своих характеристик (3 стороны и 3 угла). Стороны сферического треугольника a,b,c принято измерять не линейными единицами, а величиной опирающихся на них центральных углов.

Решение треугольников в сферической геометрии имеет ряд отличий от плоского случая. Например, сумма трёх углов alpha +beta +gamma зависит от треугольника; кроме того, на сфере не существует неравных подобных треугольников, и поэтому задача построения треугольника по трём углам имеет единственное решение. Но основные соотношения: две сферические теоремы косинусов и сферическая теорема синусов, — используемые для решения задачи, аналогичны плоскому случаю.

Из других соотношений могут оказаться полезными формулы аналогии Непера[13] и формула половины стороны[14].

Три стороны[править | править код]

Если даны (в угловых единицах) стороны a,b,c, то углы треугольника определяются из теоремы косинусов[15]:

alpha =arccos left({frac {cos a-cos b cos c}{sin b sin c}}right),
beta =arccos left({frac {cos b-cos c cos a}{sin c sin a}}right),
gamma =arccos left({frac {cos c-cos a cos b}{sin a sin b}}right),

Заданы две стороны и угол между ними

Две стороны и угол между ними[править | править код]

Пусть заданы стороны a,b и угол gamma между ними. Сторона c находится по теореме косинусов[15]:

c=arccos left(cos acos b+sin asin bcos gamma right)

Углы alpha ,beta можно найти так же, как в предыдущем случае, можно также использовать формулы аналогии Непера:

{displaystyle alpha =operatorname {arctg}  {frac {2sin a}{operatorname {tg} ({frac {gamma }{2}})sin(b+a)+operatorname {ctg} ({frac {gamma }{2}})sin(b-a)}},}
{displaystyle beta =operatorname {arctg}  {frac {2sin b}{operatorname {tg} ({frac {gamma }{2}})sin(a+b)+operatorname {ctg} ({frac {gamma }{2}})sin(a-b)}}.}

Заданы две стороны и угол не между ними

Две стороны и угол не между ними[править | править код]

Пусть заданы стороны b,c и угол beta . Чтобы решение существовало, необходимо выполнение условия:

{displaystyle b>arcsin(sin c,sin beta ).}

Угол gamma получается из теоремы синусов:

{displaystyle gamma =arcsin left({frac {sin c,sin beta }{sin b}}right).}

Здесь, аналогично плоскому случаю, при b<c получаются два решения: gamma и {displaystyle 180^{circ }-gamma }.

Остальные величины можно найти из формул аналогии Непера[16]:

a=2operatorname {arctg} left{operatorname {tg} left({frac {1}{2}}(b-c)right){frac {sin left({frac {1}{2}}(beta +gamma )right)}{sin left({frac {1}{2}}(beta -gamma )right)}}right},
alpha =2operatorname {arcctg} left{operatorname {tg} left({frac {1}{2}}(beta -gamma )right){frac {sin left({frac {1}{2}}(b+c)right)}{sin left({frac {1}{2}}(b-c)right)}}right}.

Заданы сторона и прилежащие углы

Сторона и прилежащие углы[править | править код]

В этом варианте задана сторона c и углы alpha ,beta . Угол gamma определяется по теореме косинусов[17]:

{displaystyle gamma =arccos(sin alpha sin beta cos c-cos alpha cos beta ).}

Две неизвестные стороны получаются из формул аналогии Непера:

a=operatorname {arctg} left{{frac {2sin alpha }{operatorname {ctg} (c/2)sin(beta +alpha )+operatorname {tg} (c/2)sin(beta -alpha )}}right}
b=operatorname {arctg} left{{frac {2sin beta }{operatorname {ctg} (c/2)sin(alpha +beta )+operatorname {tg} (c/2)sin(alpha -beta )}}right}

или, если использовать вычисленный угол gamma , по теореме косинусов:

{displaystyle a=arccos left({frac {cos alpha +cos beta cos gamma }{sin beta sin gamma }}right),}
{displaystyle b=arccos left({frac {cos beta +cos gamma cos alpha }{sin gamma sin alpha }}right).}

Заданы два угла и сторона не между ними

Два угла и сторона не между ними[править | править код]

В отличие от плоского аналога данная задача может иметь несколько решений.

Пусть заданы сторона a и углы alpha ,beta . Сторона b определяется по теореме синусов[18]:

{displaystyle b=arcsin left({frac {sin a,sin beta }{sin alpha }}right).}

Если угол для стороны a острый и alpha >beta , существует второе решение:

{displaystyle b=pi -arcsin left({frac {sin a,sin beta }{sin alpha }}right).}

Остальные величины определяются из формул аналогии Непера:

{displaystyle c=2operatorname {arctg} left{operatorname {tg} left({frac {1}{2}}(a-b)right){frac {sin left({frac {1}{2}}(alpha +beta )right)}{sin left({frac {1}{2}}(alpha -beta )right)}}right}.}
{displaystyle gamma =2operatorname {arcctg} left{operatorname {tg} left({frac {1}{2}}(alpha -beta )right){frac {sin left({frac {1}{2}}(a+b)right)}{sin left({frac {1}{2}}(a-b)right)}}right}.}

Три угла[править | править код]

Если заданы три угла, стороны находятся по теореме косинусов:

a=arccos left({frac {cos alpha +cos beta cos gamma }{sin beta sin gamma }}right),
b=arccos left({frac {cos beta +cos gamma cos alpha }{sin gamma sin alpha }}right),
c=arccos left({frac {cos gamma +cos alpha cos beta }{sin alpha sin beta }}right).

Другой вариант: использование формулы половины угла[19].

Решение прямоугольных сферических треугольников[править | править код]

Изложенные алгоритмы значительно упрощаются, если известно, что один из углов треугольника (например, угол C) прямой. Прямоугольный сферический треугольник полностью определяется двумя элементами, остальные три находятся при помощи мнемонического правила Непера или из нижеприведённых соотношений[20]:

{displaystyle sin a=sin ccdot sin alpha =operatorname {tg} bcdot operatorname {ctg} beta ,}
{displaystyle sin b=sin ccdot sin beta =operatorname {tg} acdot operatorname {ctg} alpha ,}
{displaystyle cos c=cos acdot cos b=operatorname {ctg} alpha cdot operatorname {ctg} beta ,}
{displaystyle operatorname {tg} a=sin bcdot operatorname {tg} alpha ,}
{displaystyle operatorname {tg} b=operatorname {tg} ccdot cos alpha ,}
{displaystyle cos alpha =cos acdot sin beta =operatorname {tg} bcdot operatorname {ctg} c,}
{displaystyle cos beta =cos bcdot sin alpha =operatorname {tg} acdot operatorname {ctg} c.}

Вариации и обобщения[править | править код]

Во многих практически важных задачах вместо сторон треугольника задаются другие его характеристики — например, длина медианы, высоты, биссектрисы, радиус вписанного или описанного круга и т. д. Аналогично вместо углов при вершинах треугольника в задаче могут фигурировать иные углы. Алгоритмы решения подобных задач чаще всего комбинируются из рассмотренных выше теорем тригонометрии.

Примеры:

Примеры практического применения[править | править код]

Триангуляция[править | править код]

Чтобы определить расстояние d от берега до недоступной точки — например, до удалённого корабля,— нужно отметить на берегу две точки, расстояние l между которыми известно, и измерить углы alpha и beta между линией, соединяющей эти точки, и направлением на корабль. Из формул варианта «сторона и два угла» можно найти длину высоты треугольника[23]:

d={frac {sin alpha ,sin beta }{sin(alpha +beta )}},l={frac {operatorname {tg} alpha ,operatorname {tg} beta }{operatorname {tg} alpha +operatorname {tg} beta }},l

Этот метод используется в каботажном судоходстве. Углы alpha ,beta при этом оцениваются наблюдениями с корабля известных ориентиров на земле. Аналогичная схема используется в астрономии, чтобы определить расстояние до близкой звезды: измеряются углы наблюдения этой звезды с противоположных точек земной орбиты (то есть с интервалом в полгода) и по их разности (параллаксу) вычисляют искомое расстояние[23].

Другой пример: требуется измерить высоту h горы или высокого здания. Известны углы alpha ,beta наблюдения вершины из двух точек, расположенных на расстоянии l. Из формул того же варианта, что и выше, получается[24]:

h={frac {sin alpha ,sin beta }{sin(beta -alpha )}},l={frac {operatorname {tg} alpha ,operatorname {tg} beta }{operatorname {tg} beta -operatorname {tg} alpha }},l

Расстояние между двумя точками на поверхности земного шара[править | править код]

Distance on earth.png

Надо вычислить расстояние между двумя точками на земном шаре[25]:

Точка A: широта lambda _{mathrm {A} }, долгота L_{mathrm {A} },
Точка B: широта lambda _{mathrm {B} }, долгота L_{mathrm {B} },

Для сферического треугольника ABC, где C — северный полюс, известны следующие величины:

{displaystyle a=90^{mathrm {o} }-lambda _{mathrm {B} }}
{displaystyle b=90^{mathrm {o} }-lambda _{mathrm {A} }}
{displaystyle gamma =L_{mathrm {A} }-L_{mathrm {B} }}

Это случай «две стороны и угол между ними». Из приведенных выше формул получается:

mathrm {AB} =Rarccos left{sin lambda _{mathrm {A} },sin lambda _{mathrm {B} }+cos lambda _{mathrm {A} },cos lambda _{mathrm {B} },cos left(L_{mathrm {A} }-L_{mathrm {B} }right)right},

где R — радиус Земли.

История[править | править код]

Зачатки тригонометрических знаний можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. Главным достижением этого периода стало соотношение, позже получившее имя теоремы Пифагора; Ван дер Варден считает, что вавилоняне открыли его между 2000 и 1786 годами до н. э.[26]

Общая постановка задачи решения треугольников (как плоских, так и сферических) появилась в древнегреческой геометрии[27]. Во второй книге «Начал» Евклида теорема 12 представляет собой словесный аналог теоремы косинусов для тупоугольных треугольников[28]:

В тупоугольных треугольниках квадрат на стороне, стягивающей тупой угол, больше [суммы] квадратов на сторонах, содержащих тупой угол, на дважды взятый прямоугольник, заключённый между одной из сторон при тупом угле, на которую падает перпендикуляр, и отсекаемым этим перпендикуляром снаружи отрезком при тупом угле.

Следующая за ней теорема 13 — вариант теоремы косинусов для остроугольных треугольников. Аналога теоремы синусов у греков не было, это важнейшее открытие было сделано гораздо позднее[29]: древнейшее из дошедших до нас доказательств теоремы синусов на плоскости описано в книге Насир ад-Дин Ат-Туси «Трактат о полном четырёхстороннике», написанной в XIII веке[30].

Первые тригонометрические таблицы составил, вероятно, Гиппарх в середине II века до н. э. для астрономических расчётов. Позднее астроном II века Клавдий Птолемей в «Альмагесте» дополнил результаты Гиппарха. Первая книга «Альмагеста» — самая значимая тригонометрическая работа всей античности. В частности, «Альмагест» содержит обширные тригонометрические таблицы хорд для острых и тупых углов, с шагом 30 угловых минут. В таблицах Птолемей приводит значение длин хорд с точностью до трех шестидесятиричных знаков[31]. Такая точность примерно соответствует пятизначной десятичной таблице синусов с шагом 15 угловых минут[1].

Птолемей явно не формулирует теорему синусов и косинусов для треугольников. Тем не менее он всегда справляется с задачей решения треугольников, разбивая треугольник на два прямоугольных[32].

Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию[33]. Решающим этапом в развитии теории стала монография «Сферика» в трёх книгах, которую написал Менелай Александрийский (около 100 года н. э.). В первой книге он изложил теоремы о сферических треугольниках, аналогичные теоремам Евклида о плоских треугольниках (см. I книгу «Начал»). По сообщению Паппа, Менелай первым ввёл понятие сферического треугольника как фигуры, образованной отрезками больших кругов[34]. Несколько десятилетий спустя Клавдий Птолемей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике.

В IV веке, после упадка античной науки, центр развития математики переместился в Индию. Сочинения индийских математиков (сиддханты) показывают, что их авторы были хорошо знакомы с трудами греческих астрономов и геометров[35]. Чистой геометрией индийцы интересовались мало, но их вклад в прикладную астрономию и расчётные аспекты тригонометрии очень значителен. В частности, индийцы первыми ввели в использование косинус[36]. Кроме того, индийцы знали формулы для кратных углов sin nvarphi , cos nvarphi для n=2,3,4,5. В «Сурья-сиддханте» и в трудах Брахмагупты при решении задач фактически используется сферический вариант теоремы синусов, однако общая формулировка этой теоремы в Индии так и не появилась[37].

В VIII веке учёные стран Ближнего и Среднего Востока познакомились с трудами древнегреческих и индийских математиков и астрономов. Их астрономические трактаты, аналогичные индийским сиддхантам, назывались «зиджи»; типичный зидж представлял собой сборник астрономических и тригонометрических таблиц, снабжённый руководством по их использованию и (не всегда) изложением общей теории[38]. Сравнение зиджей периода VIII—XIII веков показывает быструю эволюцию тригонометрических знаний. Самые ранние из сохранившихся трудов принадлежат ал-Хорезми и ал-Марвази (IX век), которые рассмотрели, наряду с известными ещё индийцам синусом и косинусом, новые тригонометрические функции: тангенс, котангенс, секанс и косеканс[36].

Сабит ибн Курра (IX век) и ал-Баттани (X век) первыми открыли фундаментальную теорему синусов для частного случая прямоугольного сферического треугольника. Для произвольного сферического треугольника доказательство было найдено (разными способами и, вероятно, независимо друг от друга) Абу-л-Вафой, ал-Худжанди и ибн Ираком в конце X века[29]. В другом трактате ибн Ирака сформулирована и доказана теорема синусов для плоского треугольника[39]. Сферическая теорема косинусов в общем виде сформулирована в странах ислама не была, однако в трудах Сабита ибн Курры, ал-Баттани и других астрономов имеются эквивалентные ей утверждения[40].

Фундаментальное изложение тригонометрии как самостоятельной науки (как плоской, так и сферической) дал персидский математик и астроном Насир ад-Дин ат-Туси в 1260 году[41]. Его «Трактат о полном четырёхстороннике» содержит практические способы решения типичных задач, в том числе труднейших, решенных самим ат-Туси — например, построение сторон сферического треугольника по заданным трём углам[42]. Таким образом, к концу XIII века были открыты базовые теоремы, необходимые для эффективного решения треугольников.

В Европе развитие тригонометрической теории стало чрезвычайно важным в Новое время, в первую очередь для артиллерии, оптики и навигации при дальних морских путешествиях. В 1551 году появились 15-значные тригонометрические таблицы Ретика, ученика Коперника, с шагом 10″[43]. Потребность в сложных тригонометрических расчётах вызвала в начале XVII века открытие логарифмов, причём первые логарифмические таблицы Джона Непера содержали только логарифмы тригонометрических функций. Среди других открытий Непера — эффективный алгоритм решения сферических треугольников, получивший название «формулы аналогии Непера»[44]. Алгебраизация тригонометрии, начатая Франсуа Виетом, была завершена Леонардом Эйлером в XVIII веке, после чего алгоритмы решения треугольников приобрели современный вид.

См. также[править | править код]

  • Признаки подобия треугольников
  • Площадь треугольника
  • Сферическая тригонометрия
  • Сферический треугольник
  • Триангуляция
  • Тригонометрические тождества
  • Тригонометрические функции
  • Формулы Мольвейде

Примечания[править | править код]

  1. 1 2 Выгодский М. Я., 1978, с. 266—268.
  2. Плоский треугольник иногда называют прямолинейным.
  3. Элементарная математика, 1976, с. 487.
  4. Solving Triangles. Maths is Fun. Дата обращения: 23 Jule 2012. Архивировано 30 июня 2019 года.
  5. Элементарная математика, 1976, с. 488.
  6. Степанов Н. Н., 1948, с. 133.
  7. Solving SSS Triangles. Maths is Fun. Дата обращения: 23 Jule 2012. Архивировано 30 сентября 2012 года.
  8. Solving SAS Triangles. Maths is Fun. Дата обращения: 24 Jule 2012. Архивировано 30 сентября 2012 года.
  9. Solving SSA Triangles. Maths is Fun. Дата обращения: 24 Jule 2012). Архивировано 30 сентября 2012 года.
  10. Выгодский М. Я., 1978, с. 294.
  11. Элементарная математика, 1976, с. 493—496.
  12. Solving ASA Triangles. Maths is Fun. Дата обращения: 24 Jule 2012. Архивировано 30 сентября 2012 года.
  13. Степанов Н. Н., 1948, с. 87—90.
  14. Степанов Н. Н., 1948, с. 102—104.
  15. 1 2 Энциклопедия элементарной математики, 1963, с. 545.
  16. Степанов Н. Н., 1948, с. 121—128.
  17. Степанов Н. Н., 1948, с. 115—121.
  18. Степанов Н. Н., 1948, с. 128—133.
  19. Степанов Н. Н., 1948, с. 104—108.
  20. Основные формулы физики, 1957, с. 14—15.
  21. Цейтен Г. Г., 1932, с. 223—224.
  22. Цейтен Г. Г., 1938, с. 126—127.
  23. 1 2 Геометрия: 7—9 классы, 2009, с. 260—261.
  24. Геометрия: 7—9 классы, 2009, с. 260.
  25. Степанов Н. Н., 1948, с. 136—137.
  26. van der Waerden, Bartel Leendert. Geometry and Algebra in Ancient Civilizations. — Springer, 1983. — ISBN 3-540-12159-5.
  27. Глейзер Г. И., 1982, с. 77.
  28. Глейзер Г. И., 1982, с. 94—95.
  29. 1 2 Матвиевская Г. П., 2012, с. 92—96.
  30. Berggren, J. Lennart. Mathematics in Medieval Islam // The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook (англ.). — Princeton University Press, 2007. — P. 518. — ISBN 9780691114859.
  31. История математики, том I, 1970, с. 143.
  32. Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. — М.: Наука, 1959. — С. 366. — 456 с.
  33. Матвиевская Г. П., 2012, с. 25—27.
  34. Матвиевская Г. П., 2012, с. 33—36.
  35. Матвиевская Г. П., 2012, с. 40—44.
  36. 1 2 Сираждинов С. Х., Матвиевская Г. П., 1978, с. 79.
  37. Юшкевич А. П. История математики в Средние века. — М.: ГИФМЛ, 1961. — С. 160. — 448 с.
  38. Матвиевская Г. П., 2012, с. 51—55.
  39. Матвиевская Г. П., 2012, с. 111.
  40. Матвиевская Г. П., 2012, с. 96—98.
  41. Туси Насирэддин. Трактат о полном четырёхстороннике. Баку, Изд. АН АзССР, 1952.
  42. Рыбников К. А., 1960, с. 105.
  43. История математики, том I, 1970, с. 320.
  44. Степанов Н. Н. § 42. Формулы «аналогии Непера» // Сферическая тригонометрия. — М.Л.: ОГИЗ, 1948. — С. 87—90. — 154 с.

Литература[править | править код]

Теория и алгоритмы
  • Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. Геометрия: 7—9 классы. Учебник для общеобразовательных учреждений. — 19-е изд. — М.: Просвещение, 2009. — 384 с. — ISBN 978-5-09-021136-9.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
  • Гельфанд И. М., Львовский С. М., Тоом А. Л. Тригонометрия, учебник для 10 класса. — М.: МЦНМО, 2002. — ISBN 5-94057-050-X.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
  • Мензел Д. (ред.). Основные формулы физики. Глава 1. Основные математические формулы. — М.: Изд. иностранной литературы, 1957. — 658 с.
  • Основные понятия сферической геометрии и тригонометрии // Энциклопедия элементарной математики (в 5 томах). — М.: Физматгиз, 1963. — Т. 4. — С. 518—557. — 568 с.
  • Степанов Н. Н. Сферическая тригонометрия. — М.Л.: ОГИЗ, 1948.
История
  • Глейзер Г. И. История математики в школе. VII-VIII классы. Пособие для учителей. — М.: Просвещение, 1982. — С. 76—95. — 240 с.
  • Глейзер Г. И. История математики в школе. IX-X классы. Пособие для учителей. — М.: Просвещение, 1983. — 352 с.
  • История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука.
    • История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
    • Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
    • Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
  • Матвиевская Г. П. Очерки истории тригонометрии: Древняя Греция. Средневековый Восток. Позднее Средневековье. — Изд. 2-е. — М.: Либроком, 2012. — 160 с. — (Физико-математическое наследие: математика (история математики)). — ISBN 978-5-397-02777-9.
  • Рыбников К. А. История математики в двух томах. — М.: Изд. МГУ, 1960. — Т. I.
  • Сираждинов С. Х., Матвиевская Г. П. Абу Райхан Беруни и его математические труды. Пособие для учащихся. — М.: Просвещение, 1978. — 95 с. — (Люди науки).
  • Цейтен Г. Г. История математики в древности и в средние века. — М.Л.: ГТТИ, 1932. — 230 с.
  • Цейтен Г. Г. История математики в XVI и XVII веках. — М.Л.: ОНТИ, 1938. — 456 с.

Добавить комментарий