Расчет средней величины в интервальных вариационных рядах немного отличается от расчета в рядах дискретных. Как рассчитать среднюю арифметическую и среднюю гармоническую в дискретных рядах можно посмотреть вот ЗДЕСЬ. Такое различие вполне объяснимо – это связано с особенностью интервальных рядов, в которых изучаемый признак приведен в интервале от и до.
Итак, посмотрим особенности расчета на примере.
Пример 1. Имеются данные о дневном заработке рабочих предприятия.
Дневной заработок рабочего, руб. | Число рабочих, чел. |
500-1000 | 15 |
1000-1500 | 30 |
1500-2000 | 80 |
2000-2500 | 60 |
2500-3000 | 25 |
Итого | 210 |
Нам необходимо рассчитать среднедневную заработную плату рабочего.
Начало решения задачи будет аналогичным правилам расчета средней величины, которые можно посмотреть в этой статье.
Начинаем мы с определения варианты и частоты, поскольку ищем мы средний заработок за день, то варианта это первая колонка, а частота вторая. Данные у нас заданы явным количеством, поэтому расчет проведем по формуле средней арифметической взвешенной (так как данные приведены в табличном виде). Но на этом сходства заканчиваются и появляются новые действия.
Дневной заработок рабочего, руб. х | Число рабочих, чел. f |
500-1000 | 15 |
1000-1500 | 30 |
1500-2000 | 80 |
2000-2500 | 60 |
2500-3000 | 25 |
Итого | 210 |
Дело в том, что интервальный рад представляет осредняемую величину в виде интервала. 500-1000, 2000-2500 и так далее. Чтобы решить эту проблему необходимо провести промежуточные действия, и только потом подсчитать среднюю величину по основной формуле.
Что же требуется в данном случае сделать. Все достаточно просто, чтобы провести расчет нам нужно, чтобы варианта была представлена одним числом, а не интервалом. Для получения такого значения находят так называемое ЦЕНТРАЛЬНОЕ ЗНАЧЕНИЕ ИНТЕРВАЛА (или середину интервала). Определяется оно путем сложение верхней и нижней границ интервала и делением на два.
Проведем необходимые расчеты и подставим данные в таблицу.
И так далее по всем интервалам рассчитываем центральное значение. В итоге получаем следующие результаты.
Дневной заработок рабочего, руб. х | Число рабочих, чел. f | х’ | |
500-1000 | 15 | 750 | |
1000-1500 | 30 | 1250 | |
1500-2000 | 80 | 1750 | |
2000-2500 | 60 | 2250 | |
2500-3000 | 25 | 2750 | |
Итого | 210 | — |
После того как мы рассчитали центральные значения далее проведем расчеты в таблицы и подставим итоговые данные в формулу, аналогично тому как мы уже рассматривали ранее.
Дневной заработок рабочего, руб. х | Число рабочих, чел. f | х’ | x’f |
500-1000 | 15 | 750 | 11250 |
1000-1500 | 30 | 1250 | 37500 |
1500-2000 | 80 | 1750 | 140000 |
2000-2500 | 60 | 2250 | 135000 |
2500-3000 | 25 | 2750 | 68750 |
Итого | ∑f = 210 | — | ∑ x’f = 392500 |
В итоге получаем, что среднедневная заработная плата одного рабочего составляет 1869 рублей.
Это пример решения, если интервальный ряд представлен со всеми закрытыми интервалами. Но достаточно часто бывает, когда два интервала открытые, первый и последний. В таких ситуациях прямой расчет центрального значения невозможен, но есть два варианта как это сделать.
Пример 2. Имеются данные о продолжительности производственного стажа персонала предприятия. Рассчитать среднюю продолжительность стада одного сотрудника.
Длительность производственного стажа, лет | Число сотрудников, человек |
до 3 | 19 |
3-6 | 21 |
6-9 | 15 |
9-12 | 10 |
12 и более | 5 |
Итого | 70 |
В данном случае принцип решения останется точно таким же. Единственно, что поменялось в этой задаче, так это первый и последний интервалы. До 3 лет и 12 лет и более это и есть те самые открытые интервалы. Именно тут возникнет вопрос, а как же найти центральное значение интервала для таких интервалов.
Поступить в этой ситуации можно двумя способами:
- Предположить какой бы мог быть интервал, учитывая, что нам приведены интервалы равные, то это вполне возможно. Интервал до 3 мог бы выглядеть как 0-3, и тогда его центральное значение будет (0+3)/2 = 1,5 года. Интервал 12 и более мог бы выглядеть как 12-15, и тогда его центральное значение было бы (12+15)/2 = 13,5 года. Все оставшиеся центральные значения интервала рассчитываются аналогично. В результате получаем следующее.
Длительность производственного стажа, лет х | Число сотрудников, человек f | х’ | x’f |
до 3 | 19 | 1,5 | 28,5 |
3-6 | 21 | 4,5 | 94,5 |
6-9 | 15 | 7,5 | 112,5 |
9-12 | 10 | 10,5 | 105,0 |
12 и более | 5 | 13,5 | 67,5 |
Итого | ∑f = 70 | — | ∑ x’f = 408,0 |
Средняя продолжительность стажа 5,83 года.
- Принять за центральное значение, то данное которое имеется в интервале, без дополнительных расчетов. В нашем случае в интервале до 3 это будет 3, а в интервале 12 и более это будет 12. Такой способ больше подходит для ситуаций, когда интервалы неравные и предположить какой интервал мог бы быть сложно. Рассчитаем нашу задачу по таким данным далее.
Длительность производственного стажа, лет х | Число сотрудников, человек f | х’ | x’f |
до 3 | 19 | 3 | 57,0 |
3-6 | 21 | 4,5 | 94,5 |
6-9 | 15 | 7,5 | 112,5 |
9-12 | 10 | 10,5 | 105,0 |
12 и более | 5 | 12 | 60,0 |
Итого | ∑f = 70 | — | ∑ x’f = 429,0 |
Средняя продолжительность стажа 6,13 года.
Домашнее задание
- Рассчитать средний размер посевной площади на одно фермерское хозяйство по следующим данным.
Размер посевной площади, га | Количество фермерских хозяйств |
0-20 | 64 |
20-40 | 58 |
40-60 | 32 |
60-80 | 21 |
80-100 | 12 |
Итого | 187 |
- Рассчитайте средний возраст работника предприятия по следующим данным
Возраст персонала, лет | Число сотрудников, человек |
до 18 | 7 |
18-25 | 68 |
25-40 | 79 |
40-55 | 57 |
55 и старше | 31 |
Итого | 242 |
Теперь Вы умеете рассчитывать среднюю в интервальном вариационном ряду!
Может еще поучимся? Загляни сюда!
Как найти середину открытого интервала по статистике?!
Знаток
(371),
закрыт
14 лет назад
заУчка
Мудрец
(19674)
14 лет назад
в статистике в случае открытых интервалов принято считать ширину последнего интервала равной ширине предпоследнего, а ширину первого – равной ширине второго. поэтому у вас при закрытии интервала получается 201-300, а середина соответственно 250.
Анна
Гуру
(3285)
14 лет назад
Вообще, чтобы найти середину интервала, надо найти длину и поделить пополам. Сложите начальное значение с конечным и разделите на 2….
Группировка
– это распределение множества единиц
исследуемой совокупности по группам в
соответствии с существенным для данной
группы признаком. Метод группировки
позволяет обеспечивать первичное
обобщение данных, представление их в
более упорядоченном виде. Благодаря
группировке можно соотнести сводные
показатели по совокупности в целом со
сводными показателями по группам.
Появляется возможность сравнивать,
анализировать причины различий между
группами, изучать взаимосвязи между
признаками. Группировка позволяет
делать вывод о структуре совокупности
и о роли отдельных групп этой совокупности.
Признаки,
по которым проводится группировка,
называют группировочными
признаками.
Группировочные признаки могут иметь
как количественное
выражение (объем, доход, курс валюты,
возраст и т.д.), так и качественное
(форма собственности предприятия, пол
человека, отраслевая принадлежность,
семейное положение и т.д.).
Если
для построения группировки используется
только один признак, то такую группировку
называются простой, если группировка
проводится по нескольким признакам, ее
называют сложной. Сложная группировка
бывает или комбинационная, или многомерная.
Комбинационная
группировка
выполняется последовательно: группы,
выделенные по одному признаку, затем
выделяются в подгруппы по другому
признаку, которые, в свою очередь, могут
выделяться по следующему другому
признаку. В этом случае число групп
будет равно произведению числа выделенных
групп на число группировочных признаков.
Процедура определения оптимального
числа групп основана на применении
формулы Стерджесса
где
n – число групп; N – число единиц совокупности.
Из
формулы видно, что выбор числа групп
зависит от объема совокупности. Если
групп оказывается много и они включают
малое число единиц, то групповые
показатели могут стать ненадежными.
Поэтому альтернативой комбинационной
группировке является многомерная
группировка,
которая осуществляется по комплексу
признаков одновременно. Ее применение
требует использования электронной
вычислительной техники. С помощью
специально разработанных электронных
программ формируются однородные группы
на основании близости по всему комплексу
признаков.
Определение
числа групп тесно связано с понятием
величина
интервала:
чем больше число групп, тем меньше
величина интервала, и наоборот. Интервал
– разница между максимальным и минимальным
значениями признака в каждой группе.
Он определяет количественные границы
групп, что для статистической практики
имеет большое значение, особенно когда
нужно образовать качественно однородные
группы. Например, исследуется совокупность
предприятий по выполнению коллективных
договоров. Здесь нельзя объединять
предприятия, которые не выполнили
обязательства, и те, которые их
перевыполнили. Показатель здесь –
величина интервала.
Каждый
интервал имеет нижнюю
(наименьшее значение признака) и верхнюю
(наибольшее значение признака) границы
или одну из них. Поэтому величина
интервала есть разность между верхней
и нижней границами интервала. Если у
интервала указана лишь одна граница (у
первого – верхняя, у последнего – нижняя),
то речь идет об открытых
интервалах.
Если у интервала имеются и нижняя, и
верхняя границы, то речь идет о закрытых
интервалах.
Закрытые интервалы подразделяются на
равные и неравные (прогрессивно
возрастающие, прогрессивно убывающие),
а также специализированные и произвольные.
Группировку
с равными
интервалами
строят тогда, когда исследуются
количественные различия в величине
признака внутри групп одинакового
качества, а также если распределение
носит более или менее равномерный
характер. Если можно заранее установить
определенное количество групп, то
величину равного интервала можно
вычислить по формуле
где
i – величина равного интервала; xmax
, xmin
– наибольшее и наименьшее значения
признака; n – число групп.
Если
не требуется предварительного установления
числа групп, то используется другой
способ определения величины равного
интервала – по формуле Стерджесса
где
n – число наблюдений.
Если
величина равного интервала рассчитывается
по данной формуле, то следует знаменатель
предварительно округлить до целого
числа (как правило, всегда большего),
так как количество групп не может быть
дробным числом.
Чаще
применяются неравные
интервалы
(постепенно возрастающие или постепенно
убывающие). При этом исследуемая
совокупность делится на группы примерно
равного заполнения с большим числом
единиц. Неравные интервалы могут
использоваться, например, в таких
случаях:
а)
при исследовании группировки с применением
нескольких признаков, дающих возможность
составить несколько подгрупп, где
требуются уже и более длинные и более
короткие интервалы;
б)
при образовании крупных групп с новым
качеством на базе мелких групп при
условии сохранения их однородности,
что приводит к увеличению интервалов.
В
статистической практике используются
также специализированные
интервалы.
Интервалы называют специализированными,
если речь идет об установлении границ
интервала в группах, схожих по типу и
по признаку, но имеющих отношение,
скажем, к разным отраслям производства.
21.Показатели
объема производства и реализации
продукции, работы и услуг. Экономическое
содержание и построение показателей.
Оценить состояние, если YВП
>
YВР.
Для
характеристики объема производства и
реализации продукции в стоимостном
выражении используются показатели
валовой и товарной продукции.
Валовая
продукция – это
стоимость всей произведенной продукции
и выполненных работ, включая незавершенное
производство. Выражается обычно в
сопоставимых ценах.
Реализованная
продукция – оплаченная,
если учитывать ее «по оплате». Допускается
также учет реализованной продукции «по
отгрузке» – учитывается продукция,
отправленная в адрес покупателя, но
пока еще не оплаченная.
На
промышленных предприятиях для оценки
объема производства продукции используется
показатель товарной продукции. На основе
данных об объеме товарной продукции
производится построение рядов динамики
показателей производства и реализации
продукции за длительный период, как в
общем объеме, так и по видам продукции.
Исходя из объема товарной продукции
определяются производительность труда,
фондоотдача, фондоемкость продукции.
Товарная
продукция отличается
от валовой
тем,
что в нее не включают остатки
незавершенного производства
и внутрихозяйственный
оборот. Выражается она
в
оптовых
ценах, действующих в отчетном году. По
своему составу на многих предприятиях
валовая продукция совпадает с товарной,
если нет внутрихозяйственного оборота
и незавершенного производства.
Анализ
товарной продукции проводится в двух
направлениях:
а)
оценка выполнения годового плана по
выпуску товарной продукции;
б)
анализ динамики выпуска товарной
продукции за ряд лет.
Выполнение
плана оценивают, сопоставляя отчетные
данные по объему товарной продукции с
плановыми, определяя абсолютное
отклонение от плана, процент выполнения
годового плана и темпы роста к предыдущему
году.
Целесообразно
определять следующие показатели динамики
объема производства продукции:
• абсолютный
прирост объема
производства за анализируемый период
по сравнению с предыдущим годом, который
позволяет дать оценку скорости изменения
и определяется по формуле ∆Qт
= Qт
1
–
Qт0
(в
данном обозначении т определяет выпуск
товарной продукции, но данный способ
оценки может быть применён и к другому
виду продукции).
• общий
прирост продукции
за рассматриваемые годы:
∆ Qто
= я∆
Q
т
i
где
n
–
число лет, за которые рассматривается
динамика объема товарной продукции.
• среднегодовой
абсолютный прирост продукции,
определяемый путем деления общего
прироста продукции на число лет:
• темп
роста (Rq)
(динамический
индекс) и темп
прироста (Rсq)
продукции
(цепной индекс), которые позволяют
измерить интенсивность и направление
изменения выпуска продукции за
рассматриваемые годы:
Rq
= cQ
; Rсq
= Qi-1 – 1
Темп
роста продукции в некоторых методических
разработках по АФХД называют ещё индексом
объёма продукции. Данный
показатель характеризует динамику
развития предприятия. Однако нужно
заметить, что, если исследователь будет
пользоваться только данными внешней
бухгалтерской отчётности, он сможет
рассчитать динамику лишь реализованной
продукции (по данным формы №2): два
индекса – по выручке от реализации и –
по себестоимости реализованной продукции;
• среднегодовой
темп роста R ср.г
и среднегодовой
темп прироста продукции Rс
ср
.
г,
определяемые по формуле средней
геометрической:
Rср.г
= √
Q1/Qб
Rсср.г
= √
Q1/Qб
-1 ,
где
Qб
– выпуск товарной продукции в базовом
году (от которого начинается отсчет n
лет).
Данный показатель имеет смысл рассчитывать
только, если выпуск представлен в
натуральных величинах (штуки, метры,
тонны и т.д.) или в сопоставимых ценах.
Условно-натуральные
показатели
применяются
для характеристики объемов
производства продукции в целях текущего
планирования, например, на консервных
заводах используется такой показатель,
как тысячи условных банок, на полиграфических
предприятиях – тысячи условных печатных
листов, краско-оттисков, на ремонтных
предприятиях – количество условных
ремонтов. Однако обобщающие показатели
объема производства продукции
(товарной и валовой
продукции) получают с помощью
стоимостной
оценки – в оптовых ценах.
Система
показателей, характеризующих объем
производства,
включает в себя, помимо объема товарной
продукции в сопоставимых ценах,
фондоотдачу, а также выпуск продукции
на 1 рубль стоимости предметов труда.
Фондоотдача – важнейший обобщающий
показатель использования всей совокупности
основных средств. он характеризует
выпуск продукции на единицу стоимости
промышленно-производственных средств.
При планировании и учете производственной
деятельности промышленных предприятий
показатель
фондоотдачи (F)
определяется отношением товарной
продукции в договорных
ценах к балансовой
стоимости основных
промышленно-производственных средств.
К
относительным величинам относятся
изменения названных величин.
Задача
анализа производства и реализации
продукции состоит также в том, чтобы
определить каким образом ключевой
показатель – объем товарной продукции
(выручка от реализации) зависит от того
или иного параметра, и принять
соответствующее управленческое решение
с целью повышения эффективности
производства.
Коэффициенты
рентабельности реализации:
К1
= Валовая
прибыль
/ Выручка
от реализации
х 100%
Первый
коэффициент (отношение валовой прибыли
к выручке от реализации продукции)
отражает:
1)
способность предприятия контролировать
себестоимость реализованной продукции,
а именно часть денежных средств,
необходимых для оплаты текущих расходов,
возникающих в процессе его производственной
деятельности;
2)
политику ценообразования.
Как
известно, выручка от реализации включает
два укрупненных показателя —
себестоимость реализованной продукции
и валовую прибыль, т.е.:
Выручка
от реализации = себестоимость реализованной
продукции + валовая прибыль.
Исходя
из этого утверждения:
Себестоимость
реализованной продукции = выручка от
реализации – валовая прибыль.
Таким
образом, чем выше значение коэффициента
рентабельности реализации как
отношения валовой прибыли к выручке
от реализации, тем меньше доля себестоимости
продукции в составе выручки от реализации.
Динамика данного коэффициента может
свидетельствовать о необходимости
пересмотра цен, а также усиления контроля
над расходованием материально-производственных
запасов. На значение данного коэффициента
существенное влияние оказывают
применяемые на предприятии методы
оценки материально-производственных
запасов. Как известно, метод ФИФО
позволяет искусственно завышать, а
метод ЛИФО — искусственно занижать
прибыль предприятия.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание курса лекций «Статистика»
Статистическая сводка и группировка. В результате проведения статистического наблюдения получают данные о признаках каждой обследованной единицы статистической совокупности. Однако эти массивы данных, содержащие подробные сведения о каждой единице совокупности, собирают не для того, чтобы получить характеристики каждой из них, а с целью изучить совокупность в целом, выявить ее характерные группы и закономерности. Для этого необходимо обобщить и систематизировать сведения, полученные в ходе статистического наблюдения.
Обобщение и систематизация первичных статистических данных – это самостоятельный этап статистического исследования, основная задача которого получить полную и всестороннюю характеристику как совокупности в целом, так и отдельных ее частей и представить полученную информацию об изучаемой совокупности в наиболее удобной для пользователей форме. В статистической практике данный этап статистического исследования называют этапом сводки и группировки статистических данных.
Статистическая сводка
Сводка – это научная обработка первичных данных с целью получения обобщенных характеристик изучаемого социально-экономического явления по ряду существенных для него признаков с целью выявления типичных черт и закономерностей, присущих изучаемому явлению в целом.
По глубине и точности обработки материала различают простую сводку и сложную сводку.
Простая сводка – это операция по подсчету общих итогов по совокупности единиц наблюдения и оформление этого материала в статистических таблицах.
Сложная сводка – это комплекс последовательных операций, включающих группировку полученных при наблюдении материалов, составление системы показателей для характеристики типичных групп и подгрупп изучаемой совокупности явлений, подсчет числа единиц и итогов по каждой группе и подгруппе, и по всему объекту и представление результатов в виде статистических таблиц.
Этапы проведение сводки
- Выбор группировочного признака.
- Определение порядка формирования групп.
- Разработка системы статистических показателей для характеристики групп и объекта в целом
- Разработка макетов статистических таблиц для представления результатов сводки.
Статистическая группировка
Группировка – разбиение общей совокупности единиц объекта наблюдения по одному или нескольким существенным признакам на однородные группы, различающиеся между собой в количественном и качественном отношении и позволяющие выделить социально-экономические типы, изучить структуру совокупности и проанализировать связи между отдельными признаками.
Задачи, решаемые с помощью метода группировок:
- выделение социально-экономических типов явлений;
- изучение структуры явления и структурных сдвигов, происходящих в нем;
- выявление взаимосвязи и взаимозависимости между явлениями.
Виды группировок. В соответствии с познавательными задачами, решаемыми в ходе построения статистических группировок, различают следующие их виды: типологические, структурные, аналитические.
Типологическая группировка – это разбиение разнородной совокупности единиц наблюдения на отдельные качественно однородные группы и выявление на этой основе социально-экономических типов явлений. При построении группировки этого вида основное внимание должно быть уделено идентификации типов и выбору группировочного признака. Решение вопроса об основании группировки должно осуществляться на основе анализа сущности изучаемого социально-экономического явления.
Структурная группировка – предназначена для изучения состава однородной совокупности по какому-либо варьирующему признаку, а также структуры и структурных сдвигов, происходящих в нем.
Аналитическая группировка – выявляет взаимосвязи между изучаемыми явлениями и признаками, их характеризующими.
!!!В статистике при изучении связей социально-экономических явлений признаки подразделяют на факторные и результативные.
Факторные признаки, под их воздействием изменяются результативные признаки. Взаимосвязь проявляется в том, что с возрастанием или убыванием значения факторного признака систематически возрастает или убывает значение признака результативного и наоборот.!!!
Особенности построения аналитической группировки:
- единицы статистической совокупности группируются по факторному признаку;
- каждая выделенная группа характеризуется средними величинами результативного признака.
По способу построения группировки бывают простые и комбинационные.
Простая группировка – группы образованы только по одному признаку.
Комбинационная группировка – разбиение совокупности на группы производится по двум и более признакам, взятым в сочетании (комбинации).
Сначала группы формируются по одному признаку, затем группы делятся на подгруппы по другому признаку, а эти в свою очередь делятся по третьему и так далее. Таким образом, комбинационные группировки дают возможность изучить единицы совокупности одновременно по нескольким взаимосвязанным признакам.
При построении комбинационной группировки возникает вопрос о последовательности разбиения единиц объекта по признакам. Как правило, рекомендуется сначала производить группировку по атрибутивным признакам, значения которых имеют ярко выраженные качественные различия.
Этапы построения статистических группировок
- Определение группировочного признака.
- Определение размаха вариации.
- Определение числа групп.
- Расчет ширины интервала группировки.
- Определение признаков, которые в комбинации друг с другом будут характеризовать каждую выделенную группу.
При небольшом объеме совокупности (n<50) не следует образовывать большого количества групп, так как группы будут включать недостаточное число единиц объекта. Показатели, рассчитанные для таких групп, не будут представительными и не позволят получить адекватную характеристику исследуемого явления.
Часто группировка по количественному признаку имеет задачу отразить распределение единиц совокупности по этому признаку. В этом случае количество групп зависит, в первую очередь, от степени колеблемости группировочного признака: чем больше его колеблемость, тем больше можно образовать групп.
При определении числа групп необходимо принять во внимание размах вариации признака (R), который позволяет оценить вариацию признака между крайними значениями признака – максимальным (Хmax) и минимальным (Xmin) и определяется по формуле 5.1): (5.1)
Чем больше размах вариации признака, положенного в основание группировки, тем, как правило, может быть образовано большее число групп. При этом может возникнуть проблема получения пустых групп, т.е. групп, не содержащих ни одной единицы наблюдения.
Определение числа групп можно осуществить несколькими способами. Формально-математический способ предполагает использование формулы Стерджесса (формула 5.2): (5.2)
где n – число групп; N – число единиц совокупности.
Согласно этой формуле выбор числа групп зависит только от объема изучаемой совокупности.
Применение данной формулы дает хорошие результаты в том случае, если совокупность состоит из большого числа единиц наблюдения (n>50).
Другой способ определения числа групп основан на применении показателя среднего квадратического отклонения (σ). Если величина интервала равна 0,5σ, то совокупность разбивается на 12 групп, а когда величина интервала равна 2/3σ и σ, то совокупность делится, собственно, на 9 и 6 групп. Однако при определении групп данными методами существует большая вероятность получения «пустых» или малочисленных групп, характеристики изучаемого явления на основе которых будут недостаточно типичными для выделенной группы и изучаемой совокупности в целом.
Когда определено число групп, то следует определить интервалы группировки.
Интервал – это значения варьирующего признака, лежащие в определенных границах. Каждый интервал имеет верхнюю и нижнюю границы или одну из них. Нижней границей интервала называется наименьшее значение признака в интервале. Верхней границей интервала называется наибольшее значение признака в интервале. Величина интервала представляет собой разность между верхней и нижней границами интервала.
Интервалы группировки бывают: равные и неравные; открытые и закрытые.
Ширина равного интервала определяется по (формуле 5.3):
(5.3)
Если максимальные или минимальные значения сильно отличаются от смежных с ними значений вариантов в упорядоченном ряду значений группировочного признака, то для определения величины интервала следует использовать не максимальное или минимальное значения, а значения, несколько превышающие минимум, и несколько меньше, чем максимум.
Полученную по формуле (5.3) величину округляют и она будет являться шириной интервала.
Существуют следующие правила определения ширины интервала.
Если величина интервала, рассчитанная по формуле (5.3) представляет собой величину, которая имеет один знак до запятой (например: 0,67; 1,487; 3,82), то в этом случае полученные значения целесообразно округлить до десятых и их использовать в качестве ширины интервала. В приведенном выше примере это будут соответственно значения: 0,7; 1,5; 3,8.
Если рассчитанная величина интервала имеет две значащие цифры до запятой и несколько после запятой (например, 14,876), то это значение необходимо округлит до целого числа (15).
В случае, когда рассчитанная величина интервала представляет собой трехзначное, четырехзначное и так далее число, то эту величину следует округлить до ближайшего числа, кратного 100 или 50. Например, 652 следует округлить до 650 или до 700.
Если размах вариации признака в совокупности велик и значения признака варьируют неравномерно, то надо использовать группировку с неравными интервалами.
Неравные интервалы могут быть получены в процессе объединения пустых, не содержащих ни одной единицы совокупности, равных интервалов. Это происходит в том случае, если после построения равных интервалов по изучаемому признаку образуются группы, содержащие мало или не содержащие вообще ни одной единицы, т.е. группы, не отражающие определенных типов изучаемого явления по признаку. В этом случае возникает необходимость в увеличении интервалов группировки.
Также неравные интервалы могут быть прогрессивно-возрастающие или прогрессивно-убывающие в арифметической или геометрической прогрессии. Величина интервалов, изменяющихся в арифметической и геометрической прогрессии, определяется следующим образом:hi+1=hi+а,
а в геометрической прогрессии: hi +1= hi ×q, где:
а – константа: для прогрессивно-возрастающих интервалов имеет знак «+», а при прогрессивно-убывающих – знак «-».
q — константа: для прогрессивно-возрастающих – больше «1»; для прогрессивно-убывающих ‑ меньше «1».
Применение неравных интервалов обусловлено тем, что в первых группах небольшая разница в показателях имеет большое значение, а в последних группах эта разница не существенна.
Например, при построении группировки строительных компаний города по показателю численности работающих, который варьирует от 500 человек до 3500 человек, нецелесообразно рассматривать равные интервалы, т. к. учитываются как малые, так и крупнейшие строительные фирмы города. Поэтому следует образовывать неравные интервалы: 500–1000, 1000–2000, 2000–3500, т.е. величина каждого последующего интервала больше предыдущего на 500 человек и увеличивается в арифметической прогрессии. Выбор исследователя в построении равных или неравных интервалов зависит от степени заполнения каждой выделенной группы, т.е. от числа единиц в них. Если величина интервала существенна и содержит большое число единиц совокупности, то эти интервалы необходимо дробить, а в противном случае – объединять.
Интервалы статистической группировки
Интервалы группировок могут быть закрытыми и открытыми.
Закрытые интервалы – это интервалы, у которых есть и верхняя и нижняя границы.
Открытые интервалы – это интервалы, у которых указана только одна граница: как правило, верхняя – у первого интервала и нижняя – у последнего.
Например, группы страховых компаний по числу работающих в них сотрудников (чел.): до 50, 50–100, 100–150, 150 и более. Применение открытых интервалов целесообразно в тех случаях, когда в совокупности встречается незначительное число единиц наблюдения с очень малыми или очень большими значениями вариантов, которые резко, в несколько раз, отличаются от всех остальных значений изучаемого признака.
Если основанием группировки служит непрерывный признак (например, группы строительных фирм по объему строительно-монтажных работ, выполненных собственными силами (тыс. руб.): 1200–1400, 1400–1600, 1600–1800, 1800–2000), то одно и то же значение признака выступает и верхней и нижней границами двух смежных интервалов. В данном случае объем работ 1400 тыс. руб. составляет верхнюю границу первого интервала и нижнюю границу второго, 1600 тыс. руб. ‑ соответственно второго и третьего и т.д., т.е. верхняя граница i-го интервала равна нижней границе (i+1)-го интервала.
При таком обозначении границ может возникнуть вопрос, в какую группу включать единицы наблюдения, значения признака у которых совпадают с границами интервалов.
Например, во вторую или третью группу должна войти строительная фирма с объемом строительно-монтажных работ 1600 тыс. рублей? Если верхняя граница формируется по принципу «исключительно», то фирма должна быть отнесена к третьей группе, в противном случае – ко второй. Для того, чтобы правильно отнести к той или иной группе единицу совокупности, значение признака которой совпадает с границами интервалов, можно ориентироваться на открытые интервалы (по нашему примеру группы строительных фирм по объему строительно-монтажных работ преобразуются в следующие: до 1400, 1400–1600, 1600–1800, 1800 и более). В данном случае, вопрос отнесения отдельных единиц совокупности, значения которых являются граничными, к той или иной группе решается на основе анализа последнего открытого интервала. Возможны два случая обозначения последнего открытого интервала: 1) 1800 тыс. руб. и более; 2) более 1800 тыс. руб. В первом случае, строительные фирмы с объемом строительно-монтажных работ 1600 тыс. руб. попадут в третью группу; во втором случае – во вторую группу.
Если в основании группировки лежит дискретный признак, то нижняя граница 1-го интервала равна верхней границе i-1-го интервала, увеличенной на 1.
Например, группы строительных фирм по числу занятого персонала (чел.) будут иметь вид: 100–150, 151–200, 201–300.
Строя такую группировку, следует дифференцированно устанавливать границы интервалов для разных отраслей народного хозяйства. Это достигается путем использования группировок со специализированными интервалами.
Специализированные интервалы – применяются дли выделения из совокупности одних и тех же типов по одному и тому же признаку для явлений, находящихся в различных условиях.
При изучении социально-экономических явлений на макроуровне часто применяют группировки, интервалы которых не будут ни прогрессивно-возрастающими, ни прогрессивно-убывающими. Такие интервалы называются произвольными и, как правило, используются при группировке предприятий, например, по уровню рентабельности.
Пример. Далее на примере данных приведенных в табл. 5.1. произведем аналитическую группировку совокупности, включающей 30 банков.
Таблица 5.1 ‑ Совокупность 30 банков Российской Федерации
(на 01.01.19 г., цифры условные)
Номер банка | Капитал, млн. руб. | Активы, млн. руб. |
Работающие активы, млн. руб |
1 | 2 | 3 | 4 |
1 | 207,7 | 2,48 | 1,14 |
2 | 200,3 | 2,40 | 1,10 |
3 | 190,2 | 2,28 | 1,05 |
4 | 323,2 | 3,88 | 1,88 |
5 | 247,1 | 2,96 | 1,36 |
6 | 177,7 | 2,12 | 0,97 |
7 | 242,5 | 2,90 | 1,33 |
8 | 182,9 | 2,18 | 0,99 |
9 | 315,6 | 3,78 | 1,73 |
10 | 183,2 | 2,20 | 1,01 |
11 | 320,2 | 3,84 | 1,76 |
12 | 207,3 | 2,48 | 1,14 |
13 | 181,0 | 2,17 | 0,99 |
14 | 172,4 | 2,06 | 0,94 |
15 | 234,3 | 2,81 | 1,29 |
16 | 189,5 | 2,27 | 1,04 |
17 | 187,8 | 2,24 | 1,03 |
18 | 166,9 | 1,99 | 0,91 |
19 | 157,7 | 1,88 | 0,86 |
20 | 168,3 | 2,02 | 0,93 |
21 | 224,4 | 2,69 | 1,23 |
22 | 166,5 | 1,99 | 0,91 |
23 | 198,5 | 2,38 | 1,09 |
24 | 240,4 | 2,88 | 1,32 |
25 | 229,3 | 2,75 | 1,26 |
26 | 175,2 | 2,10 | 0,96 |
27 | 156,0 | 1,87 | 0,86 |
28 | 160,1 | 1,92 | 0,88 |
29 | 178,7 | 2,14 | 0,98 |
30 | 171,6 | 2,05 | 0,94 |
По данным табл.5.1 группировочным (факторным) признаком является капитал, результативным – прибыль. Группировку производим по факторному признаку. Зададим количество групп (условно) – 4, а величину интервала определим по формуле (5.3).
Обозначим границы групп:
1-я группа – 156,0-197,8;
2-я группа – 197,8-239,6;
3-я группа – 239,6-281,4;
4-я группа – 281,4-323,2.
После того, как определен группировочный признак – капитал, задано число групп – 4 и образованы сами группы, необходимо отобрать показатели, которые характеризуют группы, и определить их величины по каждой группе.
Далее показатели, характеризующие банки, разносятся по четырем указанным группам и подсчитываются групповые итоги. Результаты группировки заносятся в таблицу и определяются общие итоги по совокупности единиц наблюдения по каждому показателю.
Таблица 5.2 ‑ Группировка коммерческих банков по величине капитала
Группы банков
по величине капитала, млн. руб |
Число
банков |
Капитал,
млн. руб |
Активы,
млн. руб |
Работающие
активы, млн. руб |
156,0-197,8
197,8-239,6 239,6-281,4 281,4-323,2 |
17
7 3 3 |
2966,5
1501,8 730,0 958,8 |
35,48
17,99 8,74 11,5 |
16,25
8,25 4,01 5,37 |
Итого | 30 | 6157,1 | 73,71 | 33,88 |
Структурная группировка коммерческих банков на основе данных таблицы 5.2 будет иметь вид:
Таблица 5.3 ‑ Группировка коммерческих банков по величине капитала (в % к итогу)
Группы банков по величине капитала, млн. руб. | Число банков в % к итогу | Капитал | Активы | Работающие активы |
156,0-197,8 | 56,7 | 48,2 | 48,1 | 48,0 |
197,8-239,6 | 23,3 | 24,4 | 24,4 | 24,3 |
239,6-281,4 | 10,0 | 11,9 | 11,9 | 11,8 |
281,4-323,2 | 10,0 | 15,5 | 15,6 | 15,9 |
Итого | 100,0 | 100,0 | 100,0 | 100,0 |
Из таблицы 5.3 видно, что в основном преобладают малые банки ‑ 56,7%, на долю которых приходится 48,2% всего капитала. Более конкретный анализ взаимосвязи показателей можно сделать на основе аналитической группировки.
Таблица 5.4 ‑ Группировка коммерческих банков по величине капитала
Группы банков по величине капитала, млн. руб. |
Число банков | Капитал, млн. руб. | Активы, млн. руб. | Работающие активы, млн. руб. | |||
всего | в среднем на один банк | всего | в среднем на один банк | всего | в среднем на один банк | ||
156,0-197,8 | 17 | 2966,5 | 174,5 | 35,48 | 2,09 | 16,25 | 0,96 |
197,8-239,6 | 7 | 1501,8 | 214,5 | 17,99 | 2,57 | 8,25 | 1,18 |
239,6-281,4 | 3 | 730,0 | 243,3 | 8,74 | 2,91 | 4,01 | 1,34 |
281,4-323,2 | 3 | 958,8 | 319,6 | 11,5 | 3,83 | 5,37 | 1,79 |
Итого | 30 | 6157,1 | 205,2 | 73,71 | 2,46 | 33,88 | 1,13 |
Величина капитала, все активы банка и работающие активы прямо зависят между собой, и чем крупнее банк, тем эффективнее управление работающими активами.
Мы рассмотрели примеры группировок по одному признаку. Однако в ряде случаев для решения поставленных задач такая группировка является недостаточной. В этих случаях переходят к группировке исследуемой совокупности по двум и более существенным признакам во взаимосвязи (комбинационной группировке).
От группировок следует отличать классификацию. Классификацией называется систематизированное распределение явлений и объектов на определенные группы, классы, разряды на основании их сходства и различия.
Ряды распределения представляют собой простейшую группировку, в которой каждая выделенная группа характеризуется только частотой.
В зависимости от признака, положенного в основу образования ряда распределения, различают атрибутивные и вариационные ряды распределения.
Атрибутивными называют ряды распределения, построенные по качественным признакам, то есть признакам, характеризующим состояние изучаемого явления и не имеющим числового выражения.
Атрибутивные ряды распределения характеризуют состав совокупности по тем или иным существенным признакам. Взятые за несколько периодов, эти данные позволяют исследовать изменение структуры.
Вариационными рядами называют ряды распределения, построенные по количественному признаку, т.е. признаку, имеющему числовое выражение у отдельных единиц совокупности. Вариационный ряд состоит из двух элементов: вариантов и частот.
Вариантами называются отдельные значения признака, которые он принимает в вариационном ряду, то есть конкретное значение варьирующего признака.
Частотами называются численности отдельных вариант, или каждой группы вариационного ряда. Частоты показывают, как часто встречаются те или иные значения признака в изучаемой совокупности. Сумма всех частот определяет численность всей совокупности, ее объем.
Частостями называются частоты, выраженные в долях единицы или в процентах к итогу. Соответственно сумма частостей равна 1 или 100%.
В зависимости от характера вариации признака различают дискретные и интервальные вариационные ряды.
Дискретный вариационный ряд ‑ это ряд распределения в котором группы составлены по признаку, изменяющемуся прерывно, т.е. через определенное число единиц и характеризуют распределение единиц совокупности по дискретному признаку, принимающему только целые значения.
Например, группы студентов по баллу в сессию по предмету: 5,4,3,2.
Интервальный вариационный ряд распределения – это ряд распределения, в котором группировочный признак, составляющий основание группировки, может принимать в интервале любые значения, отличающиеся друг от друга на сколь угодную малую величину
Построение интервальных вариационных рядов целесообразно прежде всего при непрерывной вариации признака, а также если дискретная вариация признака проявляется в широких пределах, то есть число вариантов дискретного признака достаточно велико.
Правила построения рядов распределения аналогичны правилам построения группировки.
Анализ рядов распределения наглядно можно проводить на основе их графического изображения. Для этой цели строят полигон, гистограмму, огиву и кумуляту распределения.
Полигон используется при изображении дискретных вариационных рядов. Для его построения в прямоугольной системе координат по оси абсцисс в одинаковом масштабе откладываются ранжированные значения варьирующего признака, а по оси ординат наносится шкала для выражения величины частот. Полученные на пересечении оси абсцисс (х) и оси ординат (у) точки соединяются прямыми линиями, в результате чего получают ломаную линию, называемую полигоном частот. Иногда для замыкания полигона предлагается крайние точки (слева и справа на ломаной линии) соединить с точками на оси абсцисс, в результате чего получается многоугольник.
Гистограмма применяется для изображения интервального вариационного ряда. При построении гистограммы на оси абсцисс откладываются величины интервалов, а частоты изображаются прямоугольниками, построенным на соответствующих интервалах. Высота столбиков должна быть пропорциональна частотам. В результате получается график, на котором ряд распределения изображен в виде смежных друг с другом столбиков.
Гистограмма может быть преобразована в полигон распределения, если середины верхних сторон прямоугольников соединить прямыми линиями.
При построении гистограммы распределения вариационного ряда с неравными интервалами по оси ординат наносят не частоты, а плотность распределения признака в соответствующих интервалах. Это необходимо сделать для устранения влияния величины интервала на распределение интервала и получения возможности сравнивать частоты.
Плотность распределения – это частота, рассчитанная на единицу ширины интервалу то есть, сколько единиц в каждой группе приходится на единицу величины интервала.
Для графического изображения вариационных рядов может использоваться кумулятивная кривая. При помощи кумуляты изображается ряд накопленных частот. Накопленные частоты определяются путем последовательного суммирования частот по группам. Накопленные частоты показывают, сколько единиц совокупности имеют значения признака не больше, чем рассматриваемое значение.
При построении кумуляты интервального вариационного ряда по оси абсцисс (х) откладываются варианты ряда, а по оси ординат (у) накопленные частоты, которые наносят на поле графика в виде перпендикуляров к оси абсцисс в верхних границах интервалов. Затем эти перпендикуляры соединяют и получают ломаную линию, то есть кумуляту.
Если при графическом изображении вариационного ряда в виде кумуляты оси х и у поменять местами, то получим огиву.
Контрольные задания
- В чем суть и каково значение сводки как второго этапа статистического исследования?
- Какова роль группировок в статистике?
- Что такое ряды распределения?
- Дайте характеристику вариационному ряду.
- Пользуясь формулой Стерджесса, определите интервал группировки сотрудников фирмы по уровню доходов, если общая численность сотрудников составляет 50 человек, а минимальный и максимальный доход соответственно равен 50000 и 300000 рублей.
- По данным статистических сборников, постройте группировку численности безработных двух регионов по полу и возрасту (% к итогу) с целью приведения их к сопоставимому виду. Сделайте сравнительный анализ результатов.
- Имеются следующие данные об успеваемости в летнюю сессию 2019 г.: 5, 4, 4, 4. 3. 2, 5, 3, 4, 4, 4, 3, 2, 5, 2, 5, 5, 2, 3, 3. Постройте по этим данным: а) ряд распределения студентов по баллам оценок, полученных в сессию; б) ряд распределения студентов по уровню успеваемости, выделив в нем 2 группы студентов: не успевающие (2 балла), успевающие (3 балла и выше); в) каким видом ряда распределения (вариационным или атрибутивным) является каждый из этих двух рядов?
- Какие из указанных ниже группировок являются типологическими: а) группировка населения по полу; б) группировка населения по отраслям, занятого в народном хозяйстве; в) группировка вложений на строительство объектов производственного и непроизводственного назначения; г) группировка предприятий общественного питания по формам собственности.
Содержание курса лекций «Статистика»
Как найти середину интервала
При статистической обработке результатов исследований самого разного рода полученные значения часто группируются в последовательность интервалов. Для расчета обобщающих характеристик таких последовательностей иногда приходится вычислять середину интервала – «центральную варианту». Методы ее расчета достаточно просты, но имеют некоторые особенности, вытекающие как из используемой для измерения шкалы, так и из характера группировки (открытые или закрытые интервалы).
Инструкция
Если интервал является участком непрерывной числовой последовательности, то для нахождения ее середины используйте обычные математические методы вычисления среднеарифметического значения. Минимальное значение интервала (его начало) сложите с максимальным (окончанием) и разделите результат пополам – это один из способов вычисления среднеарифметического значения. Например, это правило применимо, когда речь идет о возрастных интервалах. Скажем, серединой возрастного интервала в диапазоне от 21 года до 33 лет будет отметка в 27 лет, так как (21+33)/2=27.
Иногда бывает удобнее использовать другой метод вычисления среднеарифметического значения между верхней и нижней границами интервала. В этом варианте сначала определите ширину диапазона – отнимите от максимального значения минимальное. Затем поделите полученную величину пополам и прибавьте результат к минимальному значению диапазона. Например, если нижняя граница соответствует значению 47,15, а верхняя – 79,13, то ширина диапазона составит 79,13-47,15=31,98. Тогда серединой интервала будет 63,14, так как 47,15+(31,98/2) = 47,15+15,99 = 63,14.
Если интервал не является участком обычной числовой последовательности, то вычисляйте его середину в соответствии с цикличностью и размерностью используемой измерительной шкалы. Например, если речь идет об историческом периоде, то серединой интервала будет являться определенная календарная дата. Так для интервала с 1 января 2012 года по 31 января 2012 серединой будет дата 16 января 2012.
Кроме обычных (закрытых) интервалов статистические методы исследований могут оперировать и «открытыми». У таких диапазонов одна из границ не определена. Например, открытый интервал может быть задан формулировкой «от 50 лет и старше». Середина в этом случае определяется методом аналогий – если все остальные диапазоны рассматриваемой последовательности имеют одинаковую ширину, то предполагается, что и этот открытый интервал имеет такую же размерность. В противном случае вам надо определить динамику изменения ширины интервалов, предшествующих открытому, и вывести его условную ширину, исходя из полученной тенденции изменения.
Источники:
- что такое открытый интервал
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.