Подобные треугольники
Определение
Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.
Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.
Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.
Признаки подобия треугольников
I признак подобия треугольников
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
II признак подобия треугольников
Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
Свойства подобных треугольников
- Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
- Отношение периметров подобных треугольников равно коэффициенту подобия.
- Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.
Примеры наиболее часто встречающихся подобных треугольников
1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.
2. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –
3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.
Здесь вы найдете подборку задач по теме «Подобные треугольники» .
Основные сведения об отношении площадей подобных треугольников
Понятие подобия треугольников
Два треугольника называются подобными, если их углы попарно равны, а стороны, лежащие напротив соответственных углов пропорциональны.
A B / K L = B C / L M = A C / K M = k , ∠ A = ∠ K , ∠ B = ∠ L , ∠ C = ∠ M ⇒ Δ A B C
Отношение длин подобных треугольников называют коэффициентом подобия (k).
Также пропорциональные стороны подобных треугольников могут быть названы сходственными сторонами.
В подобных треугольниках, кроме сторон, подобны и другие величины: биссектрисы, медианы, высоты и т.д.
Теорема об отношении площадей подобных треугольников
Формулировка теоремы: отношение площадей подобных треугольников равно квадрату коэффициента подобия.
В геометрии существует три признака подобия треугольников:
1. Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.
3. Если три стороны одного треугольника пропорциональны двум сторонам другого треугольника, то такие треугольники подобны.
Свойства подобных треугольников:
- Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
- Отношение периметров подобных треугольников равно коэффициенту подобия.
- Отношение длин соответствующих элементов подобных элементов равно коэффициенту подобия.
Доказательство теоремы
Докажем теорему об отношении площадей подобных треугольников.
Теорема: отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Доказательство: изобразим подобные треугольники Δ A B C
Из подобия треугольников по определению следует: A B / K L = B C / L M = A C / K M = k .
Воспользуемся следующей теоремой: если у двух треугольников равны углы (∠A=∠K), то их площади относятся, как произведение сторон, заключающих данные углы. Запишем в виде формулы:
Что и требовалось доказать.
Примеры решения задач
Площади подобных треугольников ΔABC и ΔA1B1C1 равны соответственно 200 см² и 50 см². Сторона A1B1=5 см. Найдите сходственную ей сторону AB треугольника ABC.
По теореме об отношении площадей подобных треугольников: S a b c / S a 1 b 1 c 1 = k ² ⇒ 200 / 50 = k ² ⇒ k = 2 .
A B / A 1 B 1 = 2 , A B = A 1 B 1 * 2 , A B = 5 * 2 = 10 с м .
ΔABC и ΔA1B1C1 — подобны. Сходственные стороны AC и A1C1 соответственно равны 13 см и 0,1 м.
Найдите отношение периметров ΔABC и ΔA1B1C1.
A 1 C 1 = 0 , 1 м = 10 с м
A C / A 1 C 1 = 13 / 10 = 1 , 3 ⇒ P a b c / P a 1 b 1 c 1 = 1 , 3
Задача для самостоятельной работы
Треугольники Δ A B C
Δ K L M подобны. Площадь ΔABC равна 500 см², площадь ΔKLM равна 125 см². Сторона AC равна 18 см, найти сходственную ей сторону KM.
Проверьте, насколько верный или неверный ваш ответ.
Советуем составить краткий конспект для подготовки к уроку.
Отношение площадей подобных треугольников
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На данном уроке мы введем понятие подобных треугольников и рассмотрим теорему об отношении их площадей. Затем будет рассмотрен ряд примеров на применение этой теоремы.
Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Измерение»
[spoiler title=”источники:”]
http://wika.tutoronline.ru/geometriya/class/8/osnovnye-svedeniya-ob-otnoshenii-ploshhadej-podobnyh-treugolnikov
http://interneturok.ru/lesson/geometry/8-klass/podobnye-treugolniki/otnoshenie-ploschadey-podobnyh-treugolnikov
[/spoiler]
- Главная
- Справочники
- Справочник по геометрии 7-9 класс
- Подобные треугольники
- Отношение площадей подобных треугольников
Теорема
Доказательство
Дано: АВСА1В1С1, – коэффициент подобия, и – площади АВС и А1В1С1.
Доказать: .
Доказательство:
1. АВСА1В1С1, следовательно, А =А1, значит, (т.к. площади треугольников, имеющих по равному углу, относятся как произведения сторон, заключающих равные углы). При этом, из подобия треугольников АВС и А1В1С1 следует то, что , значит, и , тогда, .
Теорема доказана.
Советуем посмотреть:
Пропорциональные отрезки
Определение подобных треугольников
Первый признак подобия треугольников
Второй признак подобия треугольников
Третий признак подобия треугольников
Средняя линия треугольника
Пропорциональные отрезки в прямоугольном треугольнике
Практические приложения подобия треугольников
О подобии произвольных фигур
Синус, косинус и тангенс острого угла прямоугольного треугольника
Значение синуса, косинуса и тангенса для углов 30, 45 и 60
Подобные треугольники
Правило встречается в следующих упражнениях:
7 класс
Задание 543,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 544,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 545,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 546,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 622,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 627,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1077,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1143,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1209*,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1308,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
План урока:
Пропорциональные отрезки
Определение подобных треугольников
Первый признак подобия треугольников
Второй и третий признаки подобия треугольников
Отношение площадей подобных треугольников
Пропорциональные отрезки
Если известна длина двух отрезков, то можно узнать, во сколько раз один из них больше другого. Например, если некоторый отрезок NM = 24 см, а другой отрезок KP = 4 см, то можно утверждать, что NM в 6 раз длиннее, так как
Величину NM/KP именуют отношением отрезков NM и KP. Надо заметить, что в ряде случаев отношение отрезков можно найти, не зная их длины. Пусть в ∆МКР проведена медиана МН. Очевидно, что отрезок КР будет вдвое длиннее КН, ведь Н – середина КР:
Другой пример – это отношение между диагональю квадрата и его стороной.
Используя теорему Пифагора, несложно показать, что в любом квадрате АВСD
Наконец, в прямоугольном треуг-ке, один из углов которого равен 30°, гипотенуза всегда вдвое длиннее меньшего из катетов:
Если отношение отрезка AB к А1В1 равно отношению отрезка СD к С1D1, то говорят, что отрезки AB и CD пропорциональны отрезкам А1В1 и С1D1. Например, пусть
Получается, AВ и CD пропорциональны А1В1 и С1D1. Важно отметить, что пропорциональны могут быть также сразу три и более отрезка.
Определение подобных треугольников
В жизни нередко можно наблюдать объекты, у которых совпадает форма, но отличаются размеры. В качестве примера можно привести мяч для настольного тенниса и баскетбольный мяч. Оба этих предмета имеют форму шара, на баскетбольный мяч значительно больше. Другой пример – настоящий танк и игрушка, изображающая его. Часто подобны друг другу матрешки, которые вкладываются друг в друга – все они выглядят одинаково, а отличаются только общим размером. Наконец, подобны и знаменитые египетские пирамиды:
Такие объекты в геометрии именуют подобными. Подобны друг другу любые две окружности и любые два квадрата. Но особо важную роль в геометрии играют подобные треугольники. Рассмотрим это понятие подробнее.
Пусть есть два треуг-ка, ∆AВС и ∆А1В1С1, у которых соответственно равны углы:
Стороны, которые лежат против одинаковых углов в таких треуг-ках, именуют сходственными. Ими являются стороны AВ и А1В1, ВС и В1С1, АС и А1С1.
Можно дать такое определение подобных треугольников:
Таким образом, подобие треугольников (оно обозначается символом ∾) обозначает выполнение сразу нескольких равенств:
Отношение между сходственными сторонами подобных треуг-ков именуется коэффициентом подобия и обозначается буквой k:
Грубо говоря, подобие треуг-ков означает, что их форма одинакова, но один из них в несколько раз больше или меньше другого. Чтобы получить, из одного треуг-ка другой, равный ему по размерам, его надо просто «масштабировать». Например, на этом рисунке все стороны исходного треуг-ка просто увеличили в три раза:
Это значит, что коэффициент подобия в данном случае равен 3. Однако важно понимать, что в различных геометрических задачах подобные треуг-ки также могут быть повернуты друг относительно друга:
Задание. ∆AВС подобен ∆DEF. Известно, что
Найдите длину ЕF.
Решение. Как только в задаче появляются подобные треуг-ки, стоит сразу же определить их коэффициент подобия, а для этого надо разобраться, какие стороны будут сходственными. Так как∠А = ∠Е, то лежащие против них стороны DF и ВС– сходственные. Их отношение и будет равно коэффициенту подобия:
Получили, что стороны ∆DEF вдвое длиннее сходственных им сторон ∆AВС. У подобных треуг-ков углы одинаковы, поэтому∠С = ∠D. Отсюда следует, что стороны AВ и ЕF сходственны, а потому ЕF вдвое больше:
Задание. ∆AВС и∆DEF – подобные. Известно, что
Найдите длину ЕF.
Решение. По сравнению с предыдущей задачей изменилось только одно условие, теперь∠А = ∠D. Однако это меняет сходственные стороны. Из подобия треуг-ков следует, что∠С = ∠Е. Тогда сходственными оказываются уже стороны AВ и DF. Найдем коэффициент подобия треугольников:
Сходственными являются также стороны ВС и ЕF (ведь∠А = ∠D), поэтому ЕF в 1,25 раза длиннее:
Эти две задачи показывают, как важно правильно определять сходственные стороны подобных треугольников.
Естественно, что все равные друг другу треуг-ки являются одновременно и подобными, причем их коэффициент подобия равен единице.
Задание. Докажите, что у подобных треуг-ков отношение их периметров равно коэффициенту подобия.
Решение. Пусть подобны ∆ AВС и ∆А1В1С1, причем
Периметр ∆AВС можно вычислить так:
Мы доказали утверждение, сформулированное в условии.
Первый признак подобия треугольников
Оказывается, для того, чтобы доказать подобие треуг-ков, не требуется сравнивать все их углы и находить соотношение всех сторон. Существуют три простых признака подобия треугольников.
Однако прежде, чем сформулировать их, нам придется доказать отдельное утверждение, которое известно как обобщенная теорема Фалеса («обычную», не обобщенную теорему мы уже изучали ранее).
Если прямые ВВ1 и СС1 (показаны красным цветом)параллельны, то отрезки AВ и АС пропорциональны отрезкам AВ1 и АС1, то есть справедливо соотношение:
Доказывать будем от противного. Пусть отрезки AВ и АС непропорциональны AВ1 и АС1. Тогда отметим наАС такую точку Н, которая разобьет АС на пропорциональные отрезки, то есть
Естественно, эта точка не будет совпадать с С1. Рассмотрим случай, когда она окажется правее, чем С1:
Теперь поступим следующим образом. Проведем через стороны угла большое число прямых, параллельных ВС, которые будут разбивать АС на одинаковые отрезки. По теореме Фалеса эти же прямые отсекут одинаковые отрезки и на AВ. При этом мы проведем настолько много параллельных прямых, что хотя бы одна из них пересечет отрезок С1Н:
Пусть эта прямая пересечет отрезок С1Н в некоторой точке С2, а сторону AВ в точке В2. Ясно, что отрезки AВ и АВ2 пропорциональны отрезкам АС и АС2, так как они состоят из одинакового количества одинаковых отрезков. Например, на построенном рисунке отношение AB2 к AB равно 5/8, так как AB2 состоит из 5 отрезков, отсеченных зелеными параллельными прямыми, а AB состоит из 8 таких отрезков. Аналогично и отношение АС2 к АС также равно 5 к 8. Таким образом, можно записать:
Здесь мы рассмотрели случай, когда точка Н лежит правее С1, то есть АН >C1. Случай, когда АН <АС1, рассматривается аналогично, и также получается противоречие. Эти противоречия означают, что на самом деле точка Н должна совпадать с С1, то есть справедливо равенство
ч.т. д.
Теперь, доказав обобщенную теорему Фалеса, мы можем перейти к первому признаку подобия треугольников.
Действительно, пусть есть ∆AВС и ∆А1В1С1, у которых
Так как сумма углов у любого треуг-ка постоянна и составляет 180°, то должны быть одинаковы и третьи углы:
При таком наложении прямые ВС и В1С1 окажутся параллельными, так как соответственные углы ∠В1С1А и ∠ВСА одинаковы. Но параллельные прямые должны отсекать на сторонах угла пропорциональные отрезки, то есть
У ∆AВС и ∆А1В1С1 углы одинаковы, а лежащие напротив них стороны пропорциональны, следовательно, это подобные треуг-ки.
Задание. Прямая, параллельная стороне AВ ∆AВС, пересекает стороны ВС и АС в точках Е и Р. Известно, что ЕС = 2, ВЕ = 3, ЕР = 3,2. Какова длина AВ?
Решение. В данной задаче есть только два треуг-ка, ∆AВС и ∆РЕС. Докажем их подобие. У них есть общий∠С, а ∠СЕР = ∠СВА, ведь это односторонние углы при параллельных прямых ЕР и AВ. Отсюда следует, что ∆AВС∾∆РЕС. Значит, ∠А = ∠СРЕ.
Далее надо найти коэффициент подобия. Стороны СЕ и ВС лежат против равных углов∠А и ∠СРЕ, поэтому они сходственные.
Задание. По данным рисунка найдите длину КЕ:
Решение. На рисунке показано, что ∠ВСА = ∠СКЕ, а∠А = ∠Е = 90°. То есть у ∆AВС и ∆СКЕ есть два одинаковых угла, и, следовательно, они подобны. Сходственными будут являться стороны AВ и ЕС, с их помощью найдем коэффициент подобия:
Задание. Основания трапеции имеют длины 5 и 8 см. Длины ее боковых сторон составляют 3,6 и 3,9 см. Продолжения боковых сторон пересекаются в точке М. Определите расстояние от М до вершин меньшего основания.
Решение. Для начала выполним построение:
Отрезки ВС и АD параллельны, так как они являются основаниями трапеции. Отсюда получаем равенство соответственных углов:
Теперь посмотрим на ∆АМD и ∆ВМС. МЫ только что выяснили, что у них есть одинаковые углы (∠МВС и ∠МАD), а ∠М является общим для них. Тогда получаем, что эти треуг-ки подобны. Стороны ВС и AD будут сходственными, так как лежат против одного и того же ∠М, поэтому по их длине можно найти коэффициент подобия:
Для нахождения МВ обозначим его длину как х. Тогда отрезок АМ будет иметь длину х + 3,9. Но из подобия треуг-ков следует такое соотношение:
Подставив сюда значение k и выраженные через х длины АМ и МВ, получим уравнение:
МС можно найти таким же путем, обозначив его длину как у. Тогда отрезок МD будет равен у + 3,6, и можно составить уравнение:
Второй и третий признаки подобия треугольников
Существует ещё два признака подобия треуг-ков, которые в решении задач используются значительно реже. Они выводятся непосредственно из первого признака.
Докажем второй признак подобия. Пусть есть ∆AВС и ∆А1В1С1, для которых выполняются соотношения:
Необходимо доказать, что они подобны. Для этого построим ещё один ∆AВС2, который будет иметь общую сторону с ∆AВС, причем точку С2 мы выберем так, что будут выполняться условия:
∆А1В1С1 и ∆AВС2 будут подобными, ведь у них одинаковы два угла. Значит, будет выполняться соотношение
Но тогда ∆AВС и ∆AВС2 будут равными, ведь у них одинаковы две стороны и угол, образованный этими сторонами:
В итоге у ∆AВС и ∆А1В1С1 оказываются два одинаковых угла, то есть они подобны друг другу
ч. т. д.
Задание. На стороне угла отмечены точки A и В так, что AВ = 5 см и АС = 16 см. На другой стороне этого же угла отмечены точки С и D так, что AD = 8 cм и AF = 10 см. Подобны ли ∆АСD и ∆AFB?
Решение.
У рассматриваемых треуг-ков есть общий угол ∠А. Найдем отношение сторон, прилегающих к этому углу.
Отношения одинаковы, значит, треуг-ки подобны.
Примечание. В данном случае важно понимать, какие стороны надо делить друг на друга. У ∆АСD известны стороны АС и АD, равные 16 и 8 см. У ∆AFB известны AF и AB, которые составляют 10 и 5 см. Делить надо большую сторону одного треуг-ка на большую сторону другого треуг-ка, то есть 16 на 10. Потом же делим меньшие стороны, то есть 8 на 5.Если получили одно и тоже число, то это значит, что рассмотренные треуг-ки подобны, причем полученное число как раз и является коэффициентом подобия.
Рассмотрим третий признак подобия треуг-ков.
Докажем его. Пусть у ∆AВС и ∆А1В1С1 пропорциональны их стороны:
Можно заметить, что ∆AВС2 и ∆А1В1С1 подобны, ведь у них совпадают два угла. Тогда верны соотношения:
Самая левая дробь в обоих случаях одинакова, а в других отличны лишь числители. Значит, эти числители одинаковы:
Но тогда у ∆AВС и ∆AВС2 совпадают все стороны, то есть эти треуг-ки равные. Следовательно. Так как ∆AВС2 подобен ∆А1В1С1, то и равный ему ∆AВС также подобен ∆А1В1С1
ч. т. д.
Задание. Подобны ли ∆AВС и ∆DEF, если их стороны имеют длины:
Решение.
Для проверки достаточно просто поделить длины сторон друг на друга. При этом большую сторону одного треуг-ка будем делить на большую сторону другого, а меньшую – на меньшую. Если в результате отношение всех трех сторон будет одинаково, то можно утверждать, что треуг-ки подобны:
Все три раза мы получали число 2, именно оно и является коэффициентом подобия треуг-ков.
Отношение площадей подобных треугольников
Если треуг-ки подобны, то их стороны отличаются в k раз, где k– коэффициент подобия. А как соотносятся друг с другом длины их высот, медиан и других характерных отрезков. Несложно догадаться, что они также отличаются в k раз.
Докажем это на примере высот. Пусть есть подобные ∆AВС и ∆А1В1С1, причем их коэффициент подобия равен k:
Проведем в них высоты СН и С1Н1:
Теперь сравним ∆АСН и ∆А1С1Н1. Из подобия ∆AВС и ∆А1В1С1 следует, что
Аналогично можно доказать, что в k раз будут отличаться длины медиан и биссектрис.
А каким будет отношение площадей подобных треугольников?Оказывается, что они отличаются уже в k2 раз. Докажем это.
Пусть ∆AВС и ∆А1В1С1 подобны с коэффициентом подобия k. Снова проведем в них высоты СН и СН1:
Запишем очевидные равенства:
В итоге получили, что площади подобных треугольников отличаются в k2 раз.
Задание. Известно, у ∆AВС площадь составляет 10, а отрезок AВ имеет длину 5. ∆DEF подобен ∆AВС, причем сторона DE, сходственная AВ, равна 15. Вычислите площадь ∆DEF.
Решение. По условию задачи легко найти коэффициент подобия ∆AВС и ∆DEF, надо лишь поделить одну сходственную сторону на другую:
Задание. Площади двух подобных треуг-ков составляют 75 м2 и 300 м2. Одна из сторон второго треуг-ка равна 9 м. Вычислите сходственную ей сторону первого треуг-ка.
Решение. Зная площади треуг-ков, легко найдем коэффициент их подобия:
Если коэффициент равен 2, то стороны первого многоугольника вдвое меньше сторон второго, поэтому интересующая нас сторона равна
9:2 = 4,5 м
Ответ: 4,5 м.
Тема: Подобные треугольники
Урок: Отношение площадей подобных треугольников
1. Понятие подобия треугольников
Начнем с того, что введем определение подобных треугольников.
Определение. Два треугольника называются подобными, еслиих углы попарно равны, а стороны, лежащие напротив соответственных углов, пропорциональны (см. Рис. 1).
. Отношение длин сторон треугольников называют коэффициентом подобия ().
Рис. 1
Замечание. Пропорциональные стороны подобных треугольников называют еще сходственными сторонами.
Важно понимать, что в подобных треугольниках пропорциональны не только стороны, но и другие соответственные линейные элементы: высоты, медианы, биссектрисы, проведенные к соответственным сторонам, периметры и т.п. Т.е. все эти величины относятся, как коэффициент подобия. Вопрос заключается в том, верно ли аналогичное утверждение и для площадей треугольников. Для того чтобы ответить на этот вопрос, сформулируем теорему.
Теорема 1. Отношение площадей подобных треугольников равно квадрату коэффициента их подобия.
Доказательство. Изобразим подобные треугольники на Рис. 2.
Рис. 2
2. Теорема об отношении площадей подобных треугольников
Из подобия треугольников по определению следует, что .Воспользуемся следующей теоремой, которую мы сформулировали в предыдущей теме «Площадь»: если у двух треугольников равны углы (), то их площади относятся, как произведение сторон, заключающих данные углы. Запишем этот факт в виде формулы:
, что и требовалось доказать.
Доказано.
Замечание. Возможно доказательство этой теоремы не единственным указанным способом, а и с использованием различных формул для вычисления площади треугольника, но мы их указывать не будем.
3. Задачи на применение теоремы об отношении площадей подобных треугольников
Рассмотрим ряд примеров, в которых применяется рассмотренная теорема.
Пример 1. Если два треугольника подобны с коэффициентом подобия , то чему равно отношение площадей этих треугольников.
Решение. Задача устная и не требует выполнения чертежа. Воспользуемся изученной теоремой: .
Ответ. 2.
Пример 2. Треугольники подобны. Площадь равна , площадь равна . Сторона равна 18 см, найти сходственную ей сторону .
Решение. Воспользуемся для удобства готовым Рис. 2. Поскольку отношение площадей треугольников: , то по теореме .
Тогда из подобия треугольников: .
Ответ. 9 см.
Пример 3. Дан треугольник , площадь которого равна и в нем проведена средняя линия параллельно . Необходимо найти площадь треугольника, который отсекает средняя линия от треугольника .
Решение. Изобразим Рис. 3.
Рис. 3
Из рисунка видно, что в условии требуется найти площадь треугольника . Треугольники и подобны, т.к. равны их углы ( общий, , как соответственные углы при параллельных прямых и секущей) и сходственные стороны пропорциональны с коэффициентом пропорциональности ( и – середины соответствующих сторон, а по теореме о средней линии).
Тогда по теореме об отношении площадей подобных треугольников .
Ответ. .
На сегодняшнем уроке была рассмотрена теорема об отношении площадей подобных треугольников и приведен ряд примеров на ее применение.
Список литературы
- Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
- Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
- Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Antonmart.narod.ru (Источник).
- Oldskola1.narod.ru (Источник).
Домашнее задание
- Вычислите коэффициент подобия треугольников, площади которых равны: а) , б) , в) .
- В треугольнике через точку , лежащую на стороне , проведены прямые, параллельные сторонам и . Площадь образованного при этом параллелограмма составляет площади треугольника . Найдите отношение .
- В треугольнике через основание высоты проведена прямая параллельно стороне до пересечения со стороной в точке. Найдите отношение , если площадь треугольника составляет площади треугольника .
- На боковых сторонах и трапеции взяты точки и так, что отрезок параллелен основаниям и делит площадь трапеции пополам. Найдите длину , если и .
Наверное, всем известен способ вычисления площади любого треугольника:
«Площадь треугольника она равна произведению половины основания на высоту».
Оказывается этого достаточно, чтобы доказать следующие утверждения, которые подчас помогают решать сложные экзаменационные и олимпиадные геометрические задачи!
1. Равновеликие треугольники и параллельные прямые
Пусть прямые p и q параллельны, см. рис. 1. Вершины и основания (оранжевые отрезки равны) △1, △2, и △3 расположены на этих прямых.
Тогда △1, △2, и △3 равновеликие, т.е. их площади равны.
2. Медиана делит треугольник на два равновеликих треугольника
Очевидный факт! Площади △1 и △2 равны, см.рис. 2.
3. Отношение площадей треугольников с равными высотами
Пусть прямые p и q параллельны. Расположение △1, △2, △3 и △4 и обозначения длин оснований см. на рис. 3.
S₁ : S₂ = S₃ : S₄ = a : b.
Наверное, пояснять не требуется.
Еще парочка полезных и несложных отношений:
S₁₂ : S₁ = (a+b) : a,
S₁₂ : S₂ = (a+b) : b.
4. Отношение высот при равных основаниях
Представим △12, изображенный слева на рис. 3, по-другому, см. рис. 4.
Нетрудно видеть (и обосновать), что высоты △12 и △2, проведенные к основанию (горизонтальный отрезок), относятся как (a+b) : b.
Значит, S₁₂ : S₂ = (a+b) : b.
5. Прямая пересекает треугольник по двум сторонам
Оранжевая прямая отсекает от сторон треугольника AB = b и AC = c отрезки b’ и c’ так, как изображено на рис. 5.
S₁₂ : S₁ = (bc) : (b’c’).
Совсем просто, если применить формулу площади треугольника через синус угла.
А если вы учитесь в 7-8 классах, то никаких синусов не надо! Достаточно использовать отношения из п.3-4.
Перейдем к рис. 6. Лишь чуть сложнее доказать без тригонометрии, что
S₂ : S₁ = (b₂c₂) : (b₁c₁), где
△1 — это △AB₁C₁, AB₁ = b₁, AC₁ = c₁,
△2 — это △AB₂C₂, AB₂ = b₂, AC₂ = c₂.
6. Отношение площадей для треугольников с вертикальными и смежными углами
Следующие два варианта (рис. 6-7) расположения треугольников легко сводятся к случаям, изображенным на рис. 5-6.
S₂ : S₁ = (b₂c₂) : (b₁c₁).
Точки B₁, A и B₂ лежат на одной прямой, точки С₁, A и С₂ лежат на одной прямой
Точки B₁, A и B₂ лежат на одной прямой, точки А, С₁ и С₂ лежат на одной прямой
7. Польза от решения задач методом площадей
В одном из комментариев мне сделали упрёк (по-доброму), что у меня много решений методом площадей, зачастую, в ущерб решениям с помощью тригонометрии. Верно подмечено!
Я практикую на своих занятиях именно метод площадей с целью научить своих подопечных «видеть» на чертеже различные фигуры, их элементы и соотношения между ними. А геометрическое «видение» — обязательный навык для решения геометрических задач профильного уровня.
Например, Основное свойство биссектрисы угла треугольника достаточно просто доказывается с помощью дополнительного построения и подобия. Однако я считаю, что важно уметь доказывать и через площади, причем доказательство аналогичное как для биссектрисы внутреннего угла, так и для внешнего угла.
Ровно те же слова можно сказать про доказательство теоремы Менелая.
Разумеется, не всякую задачу можно и нужно решать с помощью метода площадей. И при уместном применении теоремы синусов или теоремы косинусов решение сокращается. Но стоит быть готовым к таким задачам, в которых «тригонометрия и алгебра» занимают лишь небольшую часть решения, а вся сложность заключена в понимании планиметрии и/или стереометрии.
Давайте рассмотрим четырехугольник общего вида.
Вы считаете очевидными (и можете сходу обосновать) следующие равенства
S₁ : S₂ = S₃ : S₄ = S₁₃ : S₂₄ и
S₁ ∙ S₄ = S₂ ∙ S₃? Эти факты должны быть известны семиклассникам!
Или другая задача (тоже из 7-го класса).
AKMN и AXYZ — параллелограммы. Точки K и Z лежат на сторонах XY и MN соответственно, см. рис. 9. Докажите, что суммы площадей двух синих и двух оранжевых треугольников равны.
Красивая, полезная задача. Обоснование умещается в одну строку!