Как найти отношение фокусных расстояний линз

Содержание

  1. ОПРЕДЕЛЕНИЕ ФОКУСНЫХ РАССТОЯНИЙ ЛИНЗ
  2. Определение фокусных расстояний линз.
  3. Определение фокусных расстояний собирающей и рассеивающей линз
  4. 391005, Рязань, ул. Гагарина, 59/1.

ОПРЕДЕЛЕНИЕ ФОКУСНЫХ РАССТОЯНИЙ ЛИНЗ

КРАТКАЯ ТЕОРИЯ. Линзой называется прозрачное для оптического излучения тело, у которого две противоположные стороны ограничены криволиней­ными поверхностями. Одна из поверхностей может быть плоской. Наибольшее применение имеют линзы со сферическими поверхнос­тями.

Прямая, проходящая через центры кривизны сферических поверхностей линзы, называется главной оптической осью (рис. 1). Если одна из поверх­ностей линзы плоская, то оптическая ось проходит перпендикулярно к ней. Точки пересечения поверхностей линзы с главной оптической осью (рис. 1, точки O1, О2) называются вершинами. Расстояние между вершинами называется толщиной линзы.

Линза называется тонкой, если ее толщина зна­чительно меньше радиусов кривизны ее поверхностей. Точка тонкой линзы, через которую лучи проходят без изменения своего направ­ления, называется оптическим центром линзы. Главная оптическая ось проходит через оптический центр. Любая другая прямая, про­ходящая через оптический центр линзы, называется побочной осью линзы.

Линза называется собирающей, если она пре­образует падающий на нее параксиальный пучок лучей, параллель­ный главной оптической оси, в сходящийся гомоцентрический пу­чок. В противном случае линза называется рассеивающей.

Точка на главной оптической оси, в которой пересекаются па­раксиальные лучи, параллельные главной оптической оси собираю­щей линзы, называется фокусом. В рассеивающей линзе параксиальный пучок лучей, параллель­ный главной оптической оси, преобразуется в расходящийся пучок, продолжения этих лучей пересекаются в точке, лежащей на главной оптической оси. Эта точка называется фокусом рассеивающей линзы.

У любой линзы имеется два фокуса. Расстояние от оптического центра тонкой линзы до фокуса называется фокусным расстоянием. Плоскости, проходящие через фокусы перпендикулярно главной оптической оси, называются фокальными плоскостями. Если среда по обе стороны линзы одна и та же, то модули ее фокусных расстоя­ний равны.

Для параксиальных пучков лучей, ко­торые преобразуются тонкой линзой, выполняется соотношение

, (1)

где a1 — расстояние от линзы до предмета, a2 — расстояние от лин­зы до изображения, f — фокусное расстояние линзы, R1 и R2 — ра­диусы кривизны сферических поверхностей, ограничивающих лин­зу, n — относительный показатель преломления вещества, из кото­рого изготовлена линза. Соотношение (1) называется формулой тонкой линзы.

Правило знаков.При расчетах по форму­ле (1) значения a1 или а2 подставляются со знаком плюс, если направления их отсче­та от оптического центра лин­зы совпадают с направлением распространения света (см. рис. 2). Значе­ния R1 и R2 также подставляются со знаком плюс, если их направле­ния отсчета от вершин сферических поверхностей совпадают с на­правлением распространения света, в противном случае эти значе­ния подставляются со знаками минус. Радиус кривизны R1 относится к той поверхности линзы, которая первой пересекается светом. Зна­чения фокусного расстояния f собирающей линзы подставляются со знаком плюс, рассеи­вающей — со знаком минус.

Отношение показателя преломления окру­жающей линзу среды к ее фокусному расстоянию называется опти­ческой силой:

. (2)

Единица оптической силы — диоптрия (дптр). 1 диоптрия — это оптическая сила линзы, расположенной в воздухе, с фокусным расстоянием 1 м. Оптическая сила — величина алгебраическая: собирающая линза имеет положительную оптическую силу, рассеи­вающая — отрицательную.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА. Для определения фокусных расстояний используется оптическая скамья, на которой с помощью рейтеров устанавливаются освещённое матовое стекло с прямоугольной сеткой, белый экран и соответствующие линзы.

Определение фокусного расстояния собирающей линзы

1-й способ. Перемещением линзы и экрана добиваются получения чёткого изображения сетки на экране. Измеряется расстояние a2 между линзой и экраном. Измеряются линейные размеры сетки y1 и линейные размеры её изображения y2. Находится фокусное расстояние f по формуле:

.

2-й способ. Если расстояние A между сеткой и экраном будет больше 4f, то посредством перемещения линзы при данном расстоянии A можно получить два изображения предмета — увеличенное и уменьшенное — (рис. 3). В этом случае уравнение (1) можно представить в следующем виде:

Два корня этого уравнения a ′ 1 и a ′′ 1 соответствуют двум возможным положениям линзы относительно сетки. На рис. 3 указаны эти положения линзы и соответствующие построения изображений, большему значению a1 (по модулю) соответствуют штриховые линии. Если обозначить разность , то получится расчётная формула: . В этом способе измеряется расстояние между сеткой и экраном А и расстояние l.

ЗАДАНИЕ. Измерить двумя способами фокусное расстояние собирающей линзы.

Источник

Определение фокусных расстояний линз.

Лабораторная работа №5

Определение фокусных

Расстояний линз.

Определение фокусных расстояний линз.

Цель работы: экспериментальное определение фокусных расстояний тонких линз.

Принадлежности: оптическая скамья, двояковогнутая и двояковыпуклая линзы, экран, светящийся предмет, линейка.

Оптическая система называется идеальной, если в ней сохраняется гомоцентричность пучка и изображение получается строго геометрически подобно предмету. Гомоцентрически пучок, имеющий центр, т.е. все лучи или их продолжения выходят из одной точки или сходятся в одной точке. Идеальная оптическая система обладает осью симметрии, которая называется главной оптической осью. Лучи параллельные главной оптической оси, проходят через идеальную оптическую систему, пересекаются в одной точке, называется фокусом оптической системы. Всякая оптическая система имеет два фокуса. В тонкой линзе за фокусное расстояние можно принять расстояние от фокуса до линзы, по главной оптической оси. Лучи, проходящие через фокусы линзы, и оптический центр, удобно использовать для построения изображения в линзах.

Экспериментальное определение фокусных расстояний линзы основано на измерении расстояний от предмета до линзы, от изображения до линзы, комбинации этих расстояний согласно формуле линзы:

(1)

где а1 – расстояние от предмета до линзы,

а2 – расстояние от линзы до изображения,

f – фокусное расстояние.

В формуле (1) все расстояния являются алгебраическими величинами. При расчете по формуле (1) необходимо пользоваться следующими правилами знаков: 1) расстояния отсчитываются от оптического центра линзы Р (рис.1), 2)отрезки которые откладываются против хода луча, записываются со знаком »+», 3) численные значения фокусного расстояния подставляют со знаком »+», если линза имеет положительную оптическую силу, для линзы с отрицательной оптической силой- подставляется »-».

Отношение линейных размеров изображения (L) и предмета (1) называется увеличением линзы:

(2)

Для собирающей линзы имеем:

Здесь а и в арифметические величины. В нашем эксперименте l=1,5см (сторона предмета).

Рис.1

Опыт 1.Определение фокусного расстояния двояковыпуклой линзы по расстоянию от предмета до линзы и от линзы до изображения.

Из формулы (2) имеем:

Ввиду неточности визуальной оценки резкости изображения, измерения нужно проводить не менее трех раз. Часть измерений нужно провести при увеличенном, а часть при уменьшенном изображении.

Опыт 2.Определение фокусного расстояния по величине предмета, по величине его изображения L и расстояния от линзы до изображения.

Комбинируя формулу (2) получим:

Эта формула является рабочей формулой для этого эксперимента. Все три измерения в данном опыте нужно проводить при увеличенном изображении.

Опыт 3.Определение фокусного расстояния положительной линзы по способу Бресселя.

Если расстояние от предмета до изображения, которое обозначим через А, более 4f, то всегда найдется два таких положения линзы, при которых на экране получится отчетливое изображение предмета: в одном случае уменьшенное, а в другом – увеличенное (рис.2).

Воспользовавшись уравнением (2), можно записать для первого и второго положения линзы:

Приравнивая правые части этих уравнений, найдем:

Чтобы получить выражение для фокусного расстояния, рассмотрим одно из положений линзы, например:

для него расстояние от предмета до линзы:

а расстояние от линзы до изображения:

Подставляя эти величины в формулу (1), найдем:

(3)

Для проведения эксперимента предмет и экран установить на расстоянии А > 4f. Грубое значение будет из предыдущих опытов. Передвигая линзу между предметом и экраном, находят положения линзы, при которых получается увеличенное и уменьшенное изображения предмета. По шкале на оптической скамье проводят необходимые измерения. По среднему значению В, используя формулу (3), вычисляют фокусное расстояние. Измерения проводят для трех различных А.

Опыт 4.Определение фокусного расстояния рассеивающей линзы.

Изображение реального объекта в рассеивающей линзе является мнимым и поэтому не может быть получено на экране непосредственно. Для определения фокусного расстояния рассеивающей линзы удобно воспользоваться мнимым источником, создаваемым собирающей линзой. Такое расположение линз показано на рис.3.

(4)

где а – расстояние между точками Д и С, b— расстояние СЕ.

Для проведения измерений на оптической скамье размещают осветитель, собирающую линзу и экран. Передвигая экран, получают на нем отчетливое изображение предмета. Записав отчет этого положения экрана по оптической скамье, сдвигают экран и вновь находят изображение предмета. Таких установок и отчетов делают не менее трех раз и берут из них среднее арифметическое. Это дает положение точки Д. Отодвинув экран вправо, ставят на скамью между найденным выше положением экрана (точки Д) и собирающей линзой исследуемую линзу и вновь находят отчетливое изображение предмета. Отсчитывают по шкале оптической скамьи положение линзы и, двигая ее, повторяют установку и отсчеты до трех раз, оставляя неподвижным экран. Из полученных результатов берут среднее. Это дает положение точки С. Вычислив расстояния СЕ и ДС, по формуле (4) находят фокусное расстояние.

Источник

Определение фокусных расстояний собирающей и рассеивающей линз

к лабораторной работе

Определение фокусных расстояний собирающей и рассеивающей линз: Методические указания к лабораторной работе / Рязан. гос. радиотехн. акад.; Сост. А.Е. Малютин; Под ред. А.П. Соколова. Рязань, 2003. 8 с.

Описывается процесс прохождения света через линзу, кратко изложены теория и методы экспериментального определения фокусных расстояний, даны описание экспериментальной установки и рекомендации по выполнению лабораторной работы.

Лабораторная работа поставлена с участием студента гр. 131 Буханова А.И.

Предназначены для студентов всех специальностей дневной и вечерней форм обучения.

Ил. 6. Библиогр.: 2 назв.

Оптическая система, линза, фокусное расстояние

Печатается по решению методического совета Рязанской государственной радиотехнической академии.

Рецензент: кафедра общей и экспериментальной физики РГРТА

(зав. кафедрой проф. Э.П.Шеретов)

Определение фокусных расстояний собирающей и рассеивающей линз

Составитель М а л ю т и н Александр Евгеньевич

Редактор М.Е. Цветкова

Корректор Н.Ф. Богданова

Подписано в печать . Формат бумаги 60´84 1/16.

Бумага газетная. Печать трафаретная. Усл. печ. л. 0,5.

Уч.-изд. л. 0,5. Тираж 200 экз. Заказ .

Рязанская государственная радиотехническая академия.

391005, Рязань, ул. Гагарина, 59/1.

Редакционно-издательский центр РГРТА.

Цель работы: изучить методы определения фокусных расстояний собирающей и рассеивающей линз.

Приборы и принадлежности: оптическая скамья, собирающая и рассеивающая линзы, лампа накаливания, щелевая диафрагма с сеткой, экран.

Оптическая система представляет собой совокупность отражающих и преломляющих поверхностей, отделяющих друг от друга однородные среды. Оптическая система, образованная сферическими (в частности, плоскими) поверхностями, называется центрированной, если центры всех поверхностей лежат на одной прямой. Эту прямую называют главной оптической осью системы.

Простейшей центрированной оптической системой является линза. Она представляет собой прозрачное тело, ограниченное двумя сферическими поверхностями. В частном случае одна из поверхностей может быть плоской. Центры кривизны поверхностей О1 и О2 лежат на главной оптической оси (рис. 1,а,б). Точки пересечения поверхностей с главной оптической осью С1 и С2 называются вершинами линзы. Расстояние между вершинами именуется толщиной линзы. Линза называется тонкой, если ее толщиной С1С2 можно пренебречь по сравнению с меньшим из радиусов кривизны О1С1 или О2С2. Для таких линз можно считать, что вершины С1 и С2 сливаются в одну точку, называемую оптическим центром линзы. Прямая, проходящая через оптический центр линзы, называется побочной оптической осью.

Рис. 1. Формы линз: а – двояковыпуклая, б – двояковогнутая

Луч света, идущий вдоль главной или побочной оптической оси тонкой линзы, не испытывает преломления. Если на линзу падает пучок лучей, параллельных главной оптической оси, то после линзы он будет сходящимся или расходящимся. В первом случае линза называется собирающей, а во втором рассеивающей. Условные обозначения собирающей и рассеивающей линз и ход лучей в них приведены на рис. 2,а,б. Пучок лучей, параллельных главной оптической оси, прошедший собирающую линзу, собирается в точке на главной оптической оси, называемой главным фокусом. Продолжения параллельных главной оптической оси лучей, прошедших рассеивающую линзу, пересекаются в лежащей перед линзой точке главной оптической оси, которая также называется главным фокусом.

Рис. 2. Ход лучей в собирающей (а) и рассеивающей (б) линзах

Расстояние между оптическим центром линзы и главным фокусом называется фокусным расстоянием линзы. Для собирающей линзы оно считается положительным, а для рассеивающей – отрицательным. Фокусное расстояние тонкой линзы может быть найдено по формуле:

, (1)

где n – показатель преломления линзы, n0 – показатель преломления среды, окружающей линзу, R1 и R2 – радиусы кривизны поверхностей линзы. Для выпуклой поверхности, то есть когда центр кривизны О лежит справа от вершины С (О1 на рис. 1,а и О2 на рис. 1,б), радиус кривизны нужно считать положительным. Для вогнутой поверхности, то есть когда центр кривизны О лежит слева от вершины С (О2 на рис. 1,а и О1 на рис. 1,б), радиус кривизны нужно считать отрицательным.

Плоскость, перпендикулярная к главной оптической оси и проходящая через главный фокус, называется фокальной плоскостью линзы. Любой параллельный пучок лучей после прохождения собирающей линзы соберется в точке, лежащей на пересечении фокальной плоскости и побочной оптической оси, параллельной пучку.

Рис. 3. Построение изображения предмета в собирающей линзе

Если светящийся предмет поместить на расстоянии d от оптического центра линзы, то его изображение получится на расстоянии f от него (рис. 3). Эти два расстояния связаны между собой соотношением:

. (2)

Если предмет поместить на расстояние f от оптического центра линзы, то изображение получится на расстоянии d от него. Поэтому расстояния d и f называют сопряженными.

Определение фокусного расстояния собирающей линзы

Формула (2) может быть использована для определения фокусного расстояния собирающей линзы. Измерив расстояния d и f, можно найти фокусное расстояние:

. (3)

Определить фокусное расстояние можно и другим способом. Так как лучи, проходящие через центр линзы, не испытывают преломления, треугольники OAB и OAB будут подобными (рис. 3). Следовательно:

, (4)

где h – величина предмета |AB|, H – величина изображения |AB|. Выражая отсюда d и подставляя его в формулу (3), получаем:

. (5)

Оба описанных выше способа не лишены недостатков. Реальные линзы имеют конечную толщину. Принимая середину линзы за оптический центр и измеряя расстояния от нее, мы допускаем ошибку. На самом деле расстояния d и f нужно измерять от соответствующих главных плоскостей линзы, положение которых должно быть известно. Определить фокусное расстояние при неизвестном положении главных плоскостей можно методом Бесселя, в котором измеряются не расстояния до линзы, а ее перемещение l.

Если расстояние L между предметом и экраном больше, чем 4F, то всегда найдутся два таких положения линзы, при которых на экране получается отчетливое изображение предмета: в одном случае уменьшенное, в другом – увеличенное (рис. 4). Нетрудно увидеть, что формула (3) может быть записана в виде:

или . (6)

Приравнивая правые части равенств, получаем d2=f1. Так как

Рис. 4. Определение фокусного расстояния методом Бесселя

, (7)

. (8)

Подставляя эти значения в формулу (6), окончательно получаем:

. (9)

Определение фокусного расстояния рассеивающей линзы

Определить описанными выше способами фокусное расстояние рассеивающей линзы невозможно, так как она не дает действительного изображения. Методы, применяемые в этом случае, обычно используют совокупное действие собирающей и рассеивающей линз.

Пусть точка B есть изображение светящейся точки A, полученное при помощи собирающей линзы L1 (рис. 5). Если между линзой L1 и точкой B поместить рассеивающую линзу L2, то изображение светящейся точки A переместится в точку C. Вследствие принципа обратимости лучей света можно считать, что светящейся точкой является точка C, а точка B является ее мнимым изображением. Принимая во внимание, что f и F в данном случае отрицательные (мнимые), формула (3) для их абсолютных значений принимает вид:

Рис. 5. Определение фокусного расстояния рассеивающей линзы

. (10)

Рис. 6. Схема лабораторной установки

Установка для измерения фокусных расстояний собирающей и рассеивающей линз приведена на рис. 6. На одном конце оптической скамьи 1 помещена щелевая диафрагма с сеткой 2, освещаемая электрической лампой 3. Вдоль скамьи на ползунках могут перемещаться собирающая линза 4 и экран 5. При измерении фокусного расстояния рассеивающей линзы 6 она помещается между собирающей линзой и экраном. Положения диафрагмы, линз и экрана определяется по линейке в нижней части оптической скамьи соответственно указателям на ползунках. Щелевое отверстие диафрагмы, центры линз и середина экрана должны находиться на одной горизонтальной прямой.

Источник

Физика > Комбинации линз

Узнайте, как определить фокусное расстояние объединенных линз. Читайте правила расчета фокусного расстояния линзы, объективы ахромат, выпуклая и вогнутая линзы.

Составная линза отображает несколько простых линз с общей осью.

Задача обучения

  • Вычислить фокусное расстояние составной линзы.

Основные пункты

Термины

  • Ахроматический дублет – две простые линзы, объединенные так, чтобы хроматическая аберрация одной частично компенсировала вторую.
  • Афокальная система – не создает сходимости или расходимости пучка, то есть обладает бесконечной эффективной фокусной дистанцией.
  • Аберрация – сходимость к различным точкам световых лучей.

Комбинации линз

Обычная линза представлена одним оптическим элементом, а вот составная – несколькими простыми с общей осью. Применение ряда элементов дает возможность исправлять оптические аберрации, вроде хроматической, созданной показателями преломления в стекле.

Наиболее простой вариант – пребывание линз в соприкосновении. Если они тонкие, то объединенная фокусная дистанция:

Если эти линзы отстранены на некую дистанцию:

Заднее фокусное расстояние (ЗФР)

Дистанцию от второй линзы к фокусу комбинированных именуют задней фокальной:

Если дистанция разделения приравнивается к нулю, то объединенная фокусная и ЗФР бесконечны. Это пара линз, преобразующих параллельный узел в другой параллельный узел. Подобную систему именуют афокальной, потому что она не дает чистого схождения или расхождения. Здесь линзы формируют наиболее простую разновидность оптического телескопа. Увеличение высчитывается по формуле:

У всех преломляющихся телескопов присутствует единый принцип. Объединение объектива и другого типа окуляра используют, чтобы собрать свет, чье количество превосходит показатель, доступный человеческим глазам

Телескоп с двумя выпуклыми линзами создает отрицательное увеличение (инвертированное изображение), а выпуклая и вогнутая линзы – положительное (вертикальное).

Ахроматы

Это линза, созданная для ограничения эффектов хроматической и сферической аберрации. Они корректируются, чтобы свести две длины волны (чаще всего красную и синюю/фиолетовую) в фокус одной плоскости.

Наиболее известный тип – ахроматический объектив. Представлен двумя отдельными стеклянными линзами с разным количеством дисперсии. Обычно один элемент выступает вогнутым (кремень), а второй выпуклый (кровель-стекло). Элементы устанавливаются рядом и скрепляются, чтобы хроматическая аберрация одной уменьшала вторую.

В кровельной линзе положительная мощность не совсем равна отрицательной у кремневой. Вместе они создают слабую положительную линзу, сводящую две длины волны в один фокус.

(а) – Хроматическая аберрация создается из-за зависимости показателя преломления линзы от длины волны. Мощность увеличивается сильнее для фиолетового (V), чем для красного (R). (b) – Ахроматический дублет может частично корректировать хроматические аберрации, но требует линзы из разных материалов и камеры


Содержание:

Линзы:

На уроках природоведения вы. наверное, пользовались микроскопом. Кое-кто из ваших друзей (а может, и вы сами) имеет очки. Вероятнее всего, большинство из вас знакомы с биноклем, зрительной тру бой, телескопом. У всех этих приборов есть общее: их основной частью является линза.

Равные виды линз

Линзой (сферической*) называют прозрачное тело, ограниченное с двух сторон сферическими поверхностями (в частности, одна из поверхностей может быть плоскостью). По форме линзы делятся на выпуклые (рис. 3.50) и вогнутые (рис. 3.51).

Если толщина линзы d во много раз меньше радиусов Линзы в физике - виды, формулы и определения с примерами

Обычно выпуклые линзы являются собирающими: параллельные лучи, которые падают на собирающую линзу, пройдя сквозь нее, пересекаются в одной точке (рис. 3.53).

Вогнутые линзы чаще всего бывают рассеивающими: параллельные лучи после прохождения сквозь рассеивающую линзу выходят расходящимся пучком (рис. 3.54).

Линзы также бывают цилиндрическими, но встречаются такие линзы редко.

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Характеристики линз

Проведем прямую, которая проходит через центры сферических поверхностей, ограничивающих линзу. Эту прямую называют главной оптической осью линзы. Точку линзы, которая расположена на главной оптической оси и через которую луч света проходит, не изменяя своего направления, называют оптическим центром линзы (рис. 3.55). На рисунках оптический центр линзы обычно обозначают буквой О.

Точку, в которой собираются после преломления лучи, параллельные главной оптической оси собирающей линзы, называют действительным фокусом собирающей линзы (рис. 3.56).

Если пучок лучей, параллельных главной оптической оси, направить на рассеивающую линзу, то после преломления они выйдут расходящимся пучком.

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Однако их продолжения соберутся в одной точке на главной оптической оси линзы (рис. 3.57). Эту точку называют мнимым фокусом рассеивающей линзы.

На рисунках фокус линзы обозначают буквой F.

Расстояние от оптического центра линзы до фокуса называют фокусным расстоянием линзы.

Фокусное расстояние обозначается символом F и измеряется в метрах. Фокусное расстояние собирающей линзы договорились считать положительным (F>0), а рассеивающей — отрицательным (F<0).

Очевидно, что чем сильнее преломляющие свойства линзы, тем меньшим будет ее фокусное расстояние (рис. 3.58).

Физическая величина, характеризующая преломляющие свойства линзы и обратная фокусному расстоянию, называется оптической силой линзы.

Оптическая сила линзы обозначается символом D и вычисляется по формулеЛинзы в физике - виды, формулы и определения с примерами
где F — фокусное расстояние линзы.

Единицей оптической силы является диоптрия

Линзы в физике - виды, формулы и определения с примерами

1 диоптрия (дптр) — это оптическая сила такой линзы, фокусное рас стояние которой равняется 1 м.

Если линза собирающая, то ее оптическая сила положительна. Оптическая сила рассеивающей линзы отрицательна. Например, оптическая сила линз в бабушкиных очках +3 дптр, а в маминых -3 дптр. Это означает, что в бабушкиных очках стоят собирающие линзы, а в маминых — рассеивающие.
 

Пример №1

Оптическая сила линзы равняется -1,6 дптр. Каково фокусное расстояние этой линзы? Эта линза собирающая или рассеивающая?

Дано:

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Анализ физической проблемы

Для определения фокусного расстояния этой линзы воспользуемся формулой для вычисления оптической силы линзы. Поскольку 1)< 0, то линза рассеивающая.

Поиск математической модели, решение:

Линзы в физике - виды, формулы и определения с примерами

Определим числовое значение искомой величины:

Линзы в физике - виды, формулы и определения с примерами

Ответ: F = -62,5 см, линза рассеивающая.

Итоги:

Прозрачное тело, ограниченное с двух сторон сферическими поверхностями, называют линзой. Линзы бывают собирающими и рассеивающими, а по форме — выпуклыми и вогнутыми.

Линза называется собирающей, если пучок параллельных лучей, падающий на нее, после преломления в линзе пересекается в одной точке. Эту точку называют действительным фокусом линзы.

Линза называется рассеивающей, если параллельные лучи, падающие на нее, после преломления в линзе идут расходящимся пучком, однако продолжения этих преломленных лучей пересекаются в одной точке. Эта точка называется мнимым фокусом линзы.

Физическая величина, характеризующая преломляющие свойства линзы и являющаяся обратной фокусному расстоянию линзы, называется оптической силой линзы = Оптическая сила линзы измеряется в диоптриях (дптр).
 

Формула тонкой линзы

Сейчас никого не удивляет, что можно увидеть бактерии и другие микроорганизмы, рассмотреть невидимые невооруженным глазом детали рельефа поверхности Луны или полюбоваться портретом, нарисованным на маковом зернышке. Все это стало возможным потому, что с по мощью линзы получают разные по размеру изображения предметов.
Линзы в физике - виды, формулы и определения с примерами

Изображение предмета, полученное с помощью линзы

Расположив последовательно зажженную свечу, собирающую линзу и экран, получим на экране четкое изображение пламени свечи (рис. 3.59). Изображение может быть как большим, так и меньшим, чем само пламя, или равным ему — в зависимости от расстояния между свечой и экраном. Чтобы выяснить, при каких условиях с помощью линзы образуется то или иное изображение предмета, рассмотрим приемы его построения.
 

Строим изображение предмета, которое дает тонкая линза

Любой предмет можно представить как совокупность точек. Каждая точка предмета, который светится собственным или
Линзы в физике - виды, формулы и определения с примерами

  1. — луч, проходящий через оптический центр О линзы (не преломляется и не изменяет своего направления);
  2. — луч, параллельный главной оптической оси / линзы (после преломления в линзе идет через фокус F);
  3. — луч, проходящий через фокус F (после преломления в линзе идет параллельно главной оптической оси/линзы)
  4. отраженным светом, испускает лучи во всех направлениях.

Для построения изображения точки S, получаемого с помощью линзы, достаточно найти точку пересечения Линзы в физике - виды, формулы и определения с примерами, любых двух лучей, выходящих из точки S и проходящих сквозь линзу (точка Линзы в физике - виды, формулы и определения с примерами и будет действительным изображением точки S). Кстати, в точке Линзы в физике - виды, формулы и определения с примерамипересекаются все лучи, выходящие из точки S, однако для построения изображения достаточно двух лучей (любых из трех показанных на рис. 3.60).

Изобразим схематически предмет стрелкой АВ и удалим его от линзы на расстояние, большее, чем 2F (за двойным фокусом) (рис. 3.61, а). Сначала построим изображение Линзы в физике - виды, формулы и определения с примерами точки В. Для этого воспользуемся двумя «удобными* лучами (луч 1 и луч 2). Эти лучи после преломления в линзе пересекутся в точке Линзы в физике - виды, формулы и определения с примерами. Значит, точка Линзы в физике - виды, формулы и определения с примерами является изображением точки В. Для построения изображения Линзы в физике - виды, формулы и определения с примерами точки А из точки Линзы в физике - виды, формулы и определения с примерамиопустим перпендикуляр на главную оптическую ось /. Точка пересечения перпендикуляра и оси / и является точкой Линзы в физике - виды, формулы и определения с примерами

Значит, Линзы в физике - виды, формулы и определения с примерамии является изображением предмета АВ, полученное с помощью линзы. Мы видим: если предмет расположен за двойным фокусом собирающей линзы, то его изображение, полученное с помощью линзы, будет уменьшенным, перевернутым, действительным. Такое изображение получается, например, на пленке фотоаппарата (рис. 3.61, б) или сетчатке глаза.

На рис. 3.62, а показано построение изображения предмета АВ, полученного с помощью собирающей линзы, в случае, когда предмет расположен
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Изображение предмета в этом случае будет увеличенным, перевернутым, действительным. Такое изображение позволяет получить проекционная аппаратура на экране (рис. 3.62, б).

Если поместить предмет между фокусом и линзой, то изображения на экране мы не увидим. Но, посмотрев на предмет сквозь линзу, увидим изображение предмета — оно будет прямое, увеличенное.

Используя «удобные лучи» (рис. 3.63, а), увидим, что после преломления в линзе реальные лучи, вышедшие из точки В, пойдут расходящимся пучком. Однако их продолжения пересекутся в точке В,. Напоминаем, что в этом случае мы имеем дело с мнимым изображением предмета. То есть если предмет расположен между фокусом и линзой, то его изображение бу дет увеличенным, прямым, мнимым, расположенным с той же стороны от линзы, что и сам предмет. Такое изображение можно получить с помощью лупы (рис. 3.63, б) или микроскопа.
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Итак, размеры и вид изображения, полученного с помощью собирающей линзы, зависят от расстояния между предметом и этой линзой.

Внимательно рассмотрите рис. 3.64, на котором показано построение изображения предмета, полученного с помощью рассеивающей линзы. Построение показывает, что рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение предмета, расположенное с той же стороны от линзы, что и сам предмет.

Мы часто сталкиваемся с ситуацией, когда предмет значительно больше, чем линза (рис. 3.65), или когда часть линзы закрыта непрозрачным экраном (например, линза объектива фотоаппарата). Как создается изображение в этих случаях? На рисунке видно, что лучи 2 и 3 при этом не проходят через линзу. Однако мы, как и раньше, можем использовать эти лучи для построения изображения, получаемого с помощью линзы. Поскольку реальные лучи, вышедшие из точки В, после преломления в линзе пересекаются в одной точке — Линзы в физике - виды, формулы и определения с примерами то «удобные лучи*, с помощью которых мы строим изображение, тоже пересеклись бы в точке Линзы в физике - виды, формулы и определения с примерами

Как выглядит формула тонкой линзы

Существует математическая зависимость между расстоянием d от предмета до линзы, расстоянием f от изображения предмета до линзы и фокусным расстоянием F линзы. Эта зависимость называется формулой тонкой линзы и записывается так:
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Пользуясь формулой тонкой линзы для решения задач, следует иметь в виду: расстояние f (от изображения предмета до линзы) следует брать со знаком минус, если изображение мнимое, и со знаком плюс, если изображение действительное; фокусное расстояние F собирающей линзы положительное, а рассеивающей — отрицательное.

Пример №2

Рассматривая монету с помощью лупы, оптическая сила которой +5 дптр, мальчик расположил монету на расстоянии 2 см от лупы. Определите, на каком расстоянии от лупы мальчик наблюдал изображение монет

Дано:

d = 2 см = 0,02 м

D = + 5 дптр

f- ?

Анализ физической проблемы, поиск математической модели

Лупу можно считать тонкой линзой, поэтому чтобы найти расстояние от лупы до изображения, воспользуемся
формулой тонкой линзыЛинзы в физике - виды, формулы и определения с примерами Фокусное расстояние F неизвестно, но мы знаем, что Линзы в физике - виды, формулы и определения с примерами (2), где

D — оптическая сила линзы, данная в условии задачи.
Решение и анализ результатов

Подставив формулу (2) в формулу (1), получаем
Линзы в физике - виды, формулы и определения с примерами
Проверим единицу: Линзы в физике - виды, формулы и определения с примерами

Найдем числовое Линзы в физике - виды, формулы и определения с примерами

Проанализируем результат: знак ♦-* говорит о том, что изображение является мнимым.

Ответ: f = -21 см, изображение мнимое.

Итоги:

В зависимости от вида линзы (собирающая или рассеивающая) и местоположения предмета относительно этой линзы получают разные изображения предмета с помощью линзы (см.таблицу):

Линзы в физике - виды, формулы и определения с примерами

Таким образом, по типу изображения можно судить так и о местоположении предмета относительно нее.

Расстояние d от предмета до линзы, расстояние f от изображения до линзы и фокусное расстояние F связаны формулой тонкой линзы: Линзы в физике - виды, формулы и определения с примерами

Что такое линза

Многие люди носят очки. А задумывались ли вы над вопросами: что собой представляют стекла очков и какова их роль? Стекла очков есть не что иное, как линзы. Ни один оптический прибор (от простой лупы до сложных телескопов) не обходится без линз. Что же такое линза?

Линза представляет собой прозрачное тело, ограниченное криволинейными (чаще всего сферическими) или криволинейной и плоской поверхностями. Материалом для линз обычно служит оптическое или органическое стекло.

Линзы в физике - виды, формулы и определения с примерамиЛинзы в физике - виды, формулы и определения с примерами

На рисунках 261, 262 представлены сечения линз двух типов: двояковыпуклой (см. рис. 261) и двояковогнутой (см. рис. 262). Одна из поверхностей линзы может быть плоской, как, например, на рисунке 263. Такие линзы называются плосковыпуклая (см. рис. 263, а) и плосковогнутая, (см. рис. 263, б).

Линзы в физике - виды, формулы и определения с примерами

Прямая, проходящая через центры Линзы в физике - виды, формулы и определения с примерами сферических поверхностей (рис. 264), называется главной оптической осью линзы. Радиусы Линзы в физике - виды, формулы и определения с примерами и Линзы в физике - виды, формулы и определения с примерами есть радиусы кривизны поверхностей линзы (см. рис. 264).

Если толщина линзы мала но сравнению с радиусами Линзы в физике - виды, формулы и определения с примерами кривизны ее поверхностей (см. рис. 264), то линза называется тонкой. Ее часто изображают Линзы в физике - виды, формулы и определения с примерами Всякая тонкая линза имеет точку, проходя через которую, луч не меняет своего направления (лучи 1 и 2 на рисунке 264). Эта точка О называется оптическим центром линзы. В дальнейшем мы будем рассматривать только тонкие линзы, изготовленные из вещества, оптически более плотного, чем среда (воздух), в которой они находятся.

Как линзы меняют направление падающих на них лучей после преломления? Ответ получим с помощью опыта.

Линзы в физике - виды, формулы и определения с примерами

Направим на двояковыпуклую линзу (рис. 265, а) параллельно главной оптической оси лучи света. После преломления в линзе они пересекают главную оптическую ось в одной точке F. Значит, двояковыпуклая линза собирает преломленные лучи, поэтому такая линза называется собирающей. Также превращают параллельный пучок в сходящийся линзы 2, 3, изображенные на рисунке 270. При замене линзы на двояковогнутую (рис. 265, б) лучи после преломления в линзе расходятся, а центральный луч, как и в первом случае, не испытывает преломления. Итак, двояковогнутая линза рассеивает параллельный пучок падающих на нее лучей, поэтому такая линза называется рассеивающей. Рассеивают параллельный пучок и линзы 5, 6 (см. рис. 270).

Линзы в физике - виды, формулы и определения с примерами

Точка F (см. рис. 265, а, рис. 266, а), в которой пересекаются преломленные линзой лучи, падающие параллельно главной оптической оси, или их продолжения (см. рис. 265, б, рис. 266, б), называется главным фокусом линзы. Так как параллельные лучи можно пустить как с одной, так и с другой стороны линзы, то и главных фокуса у линзы два. Оба фокуса лежат на главной оптической оси симметрично относительно оптического центра линзы (см. рис. 266). А в какой точке собирает линза лучи, идущие под углом к главной оптической оси? Оказывается, в точке Линзы в физике - виды, формулы и определения с примерами которая находится в плоскости Линзы в физике - виды, формулы и определения с примерами(см. рис. 266, а), проходящей через главный фокус перпендикулярно главной оптической оси. Эта плоскость называется фокальной плоскостью, а точка Линзы в физике - виды, формулы и определения с примерами в отличие от главного фокуса, называется фокусом.

Обратите внимание, что у собирающей линзы в фокусе пересекаются сами преломленные лучи, несущие энергию, поэтому фокус называется действительным. У рассеивающей линзы в фокусе пересекаются продолжения преломленных лучей. Такой фокус называют мнимым.

Расстояние от оптического центра до главного фокуса называется фокусным расстоянием. Его тоже принято обозначать буквой F.

Линзы в физике - виды, формулы и определения с примерами

Линза, имеющая более выпуклые поверхности, преломляет лучи сильнее. Линза 1 (рис. 267, а) преломляет лучи сильнее, чем линза 2 (рис. 267, 6). Фокусное расстояние Линзы в физике - виды, формулы и определения с примерами у линзы 1 меньше, чем Линзы в физике - виды, формулы и определения с примерами у линзы 2.

Чтобы количественно оценить преломляющую способность линзы, введем величину, обратную фокусному расстоянию, и назовем ее оптической силой линзы (обозначается буквой D):

Линзы в физике - виды, формулы и определения с примерами
Оптическая сила измеряется в диоптриях (сокращенно дптр). Очевидно, что D = 1 дптр, если фокусное расстояние линзы F = 1 м.

А как оценивается оптическая сила рассеивающей линзы, у которой фокус мнимый? В этом случае фокусное расстояние считается отрицательным, а следовательно, и оптическая сила — отрицательной величиной.

Например, если F = -0,5 м, то оптическая сила

Линзы в физике - виды, формулы и определения с примерами

Теперь для вас не будет загадкой рекомендация врача-окулиста: «Вам нужны очки со стеклами +1,5 диоптрии или -2 диоптрии».
 

Для любознательных:

Не следует думать, что любая линза с выпуклой поверхностью будет обязательно собирающей, а с вогнутой — рассеивающей. Собирающей является всякая линза, у которой середина толще краев (например, линзы 2, 2, 3 на рисунке 270), а рассеивающей — линза, у которой середина тоньше краев (см. рис. 270, линзы 4, 5, 6). И не забывайте, что все наши рассуждения справедливы, если вещество линзы (стекло) имеет большую оптическую плотность, чем окружающая среда (воздух).

В природе собирающими линзами являются капельки росы, в быту — наполненные водой прозрачные сосуды — кувшин, пластиковая бутылка. Подумайте и ответьте, какие это линзы.

Главные выводы:

  1. Линзы меняют направление падающих на них лучей после преломления, за исключением тех, которые проходят через оптический центр линзы.
  2. Собирающая линза после преломления делает параллельный пучок лучей сходящимся, рассеивающая линза — расходящимся.
  3. Лучи, идущие параллельно главной оптической оси, после преломления в собирающей линзе пересекаются в главном фокусе. В рассеивающей линзе в главном фокусе пересекаются продолжения преломленных лучей.
  4. Величина, обратная фокусному расстоянию, определяет оптическую силу линзы.

Построение изображений в тонких линзах

Глядя в окуляр микроскопа на уроках биологии, задумывались ли вы, как получается увеличенное изображение клеток? Главными частями микроскопа являются линзы. Именно они позволяют получать увеличенное или уменьшенное (например, в фотоаппарате) изображение предмета.

Какие изображения предмета создает линза?

Линзы в физике - виды, формулы и определения с примерами

Проведем опыт. На столе расположим экран, собирающую линзу и зажженную свечу (рис. 271, а), удаленную от линзы на расстояние б/, большее, чем удвоенное фокусное, т. е. d > 2F. Будем передвигать экран до тех пор, пока не увидим на нем четкое изображение пламени свечи. Чем оно отличается от изображения, которое мы увидим в зеркале, поместив перед ним эту же свечу? Во-первых, оно уменьшенное, во-вторых, перевернутое. Ио самое главное, что это изображение, в отличие от мнимого изображения в зеркале, реально существует. На экране концентрируется энергия света. Чувствительный термометр, помещенный в изображение пламени свечи, покажет повышение температуры. Поэтому полученное в линзе изображение называют действительным, в отличие от мнимых изображений, наблюдаемых в плоском зеркале.

Подтвердим сказанное построением (рис. 271, б). Для получения изображения точки А достаточно использовать два луча, ход которых после преломления в линзе известен. Луч 1 идет параллельно главной оптической оси и после преломления в линзе проходит через главный фокус. Луч 2 идет через оптический центр и не меняет своего направления после прохождения сквозь линзу. Точка А’, являющаяся пересечением прошедших линзу лучей Линзы в физике - виды, формулы и определения с примерамии 2′, есть действительное изображение точки А. Заметим, что через точку А пройдет и любой другой преломленный луч идущий от точки А, благодаря чему энергия, излученная точкой А пламени свечи, будет сконцентрирована в точке А’.

Продолжим опыт. Поставим свечу на расстоянии d = 2F. Перемещая экран, мы увидим на нем действительное, перевернутое изображение пламени свечи, но размер его будет равен размеру пламени самой свечи (рис. 272). Сделайте сами построение изображения для этого случая.

Линзы в физике - виды, формулы и определения с примерами

Передвигая свечу ближе к линзе (F < d < 2F) и удаляя экран, мы увидим на нем действительное, перевернутое, увеличенное изображение пламени свечи (построение сделайте сами).

Линзы в физике - виды, формулы и определения с примерами

Наконец поставим свечу на расстоянии d от линзы, меньше фокусного, т. е. d

Линзы в физике - виды, формулы и определения с примерами

А какие изображения предмета дает рассеивающая линза? Пусть параллельно главной оптической оси надает луч 1 (рис. 275). После линзы преломленный луч Линзы в физике - виды, формулы и определения с примерами идет так, что только его продолжение проходит через фокус. Луч 2 не испытывает преломления. Видно, что лучи Линзы в физике - виды, формулы и определения с примерами и 2′ не пересекаются. В точке А’ пересекаются их продолжения. Тогда изображение точки А, а значит, и всего предмета АВ — мнимое. Как все мнимые изображения, оно прямое, но уменьшенное. Даст ли рассеивающая линза действительное изображение, если менять положение предмета? Может ли оно быть увеличенным? Ответьте на эти вопросы сами, сделав соответствующие построения изображений предмета в тетради.

Главные выводы:

  1. Собирающая линза дает как действительные, так и мнимые изображения, рассеивающая — только мнимые.
  2. Все мнимые изображения — прямые, все действительные — перевернутые.
  3. Для нахождения изображения точки наиболее целесообразно использовать луч, идущий параллельно главной оптической оси линзы, и луч, идущий через ее оптический центр.

Пример №3

С помощью стеклянной линзы на экране, удаленном от линзы на расстояние f = 36 см, получено увеличенное в 3 раза изображение предмета. Определите расстояние от предмета до линзы и оптическую силу линзы.

Дано:

Н = Зh

f = 36 см

d — ?

D — ?

Решение

Построим изображение предмета в линзе (рис. 276).

Линзы в физике - виды, формулы и определения с примерами

Поскольку изображение есть на экране, то оно действительное. Кроме того, оно увеличенное, значит, предмет находится между фокусом и двойным фокусом, а линза собирающая.

По условию размер предмета АВ в 3 раза меньше размера изображения А’В’. Из подобия треугольников АОВ и А’ОВ’ следует, что таким же будет и соотношение их сторон ВО и OB’, Значит, искомое расстояние d будет в 3 раза меньше заданного расстояния f. Это дает первый ответ: Линзы в физике - виды, формулы и определения с примерами Для ответа на второй вопрос используем подобие другой нары треугольников — CFO и A’FB’. И здесь подобные стороны треугольников различаются в 3 раза.
Так как одна из них — OF равна фокусному расстоянию F линзы, а другая — FB’ равна разности f – F, то их связь можно записать так: 3F = f – F, или 4F = f = 36 см. Вычислив значение фокусного расстояния Линзы в физике - виды, формулы и определения с примерами найдем и искомое значение оптической силы D линзы: Линзы в физике - виды, формулы и определения с примерами

Ответ: Линзы в физике - виды, формулы и определения с примерами

Оптическая сила и фокусное расстояние линзы

Граница разделения двух, прозрачных для света, тел может быть искривленной. Если прозрачное тело ограничить искривленными поверхностями, получим линзу (нем. linse – «чечевица»).

Линза — это прозрачное тело, ограниченное двумя выпуклыми или вво-гнутыми прозрачными поверхностями, преломляющими лучи света.
Одна из поверхностей линз может быть плоской. Линзы изготавливают из какого-либо прозрачного для света вещества: стекла, кварца, разных пластмасс, каменной соли, но чаще всего – из специальных сортов стекла.

Наибольшее распространение получили линзы, ограниченные сферическими поверхностями. В зависимости от взаимного размещения сферических поверхностей, ограничивающих линзу, различают 6 типов линз: двояковыпуклая, плоско-выпуклая, вогнуто-выпуклая (рис. 165, а, б, в); двояковогнутая, плоско-вогнутая, выпукло-ввогнутая (рис. 165, г, д, е).
Линзы в физике - виды, формулы и определения с примерами

Любая линза имеет характерные точки и линии. Выясним, какие именно.

1.    Прямую, проходящую через центры Линзы в физике - виды, формулы и определения с примерами сферических поверхностей, которые ограничивают линзу, называют ее главной оптической осью (рис. 166).

2.    Точку О, которая лежит на главной оптической оси в центре линзы, называют оптическим центром линзы (рис. 166).

Линзы в физике - виды, формулы и определения с примерами

Опыт 1. Направим на линзу пучок лучей, параллельных ее главной оптической оси. Проходя через линзу, световые лучи преломляются и пересекаются в одной точке, лежащей на главной оптической оси линзы (рис. 167).

Линзы в физике - виды, формулы и определения с примерами

Эту точку называют главным фокусом линзы F.

3.    Главный фокус линзы F – точка, в которой сходятся все, параллельные главной оптической оси, лучи после их преломления в линзе.

4.    Фокусное расстояние f – расстояние от оптического центра линзы О до главного фокуса F.

Каждая линза имеет два главных фокуса.

Любая тонкая линза характеризуется двумя основными параметрами -фокусным расстоянием и оптической силой. Оптическую силу линзы обозначают большой буквой D и определяют по формуле:

Линзы в физике - виды, формулы и определения с примерами
Единицей оптической силы является одна диоптрия (1 дптр), 1 дптр = Линзы в физике - виды, формулы и определения с примерами.

Как видно из опыта, линза преобразует пучок параллельных лучей в сходящийся, то есть собирает его в одну точку. Такую линзу называют собирательной.

Собирательная линза — это линза, которая световые лучи, падающие на нее параллельно ее главной оптической оси, после преломления собирает на этой оси в одну точку.

Опыт 2. Возьмем линзу другого типа и направим на нее параллельный главной оптической оси пучок лучей света. Лучи, преломившись на границе воздух-стекло, выходят из линзы расходящимся пучком, или рассеиваются (рис. 168).

Линзы в физике - виды, формулы и определения с примерами

Такую линзу называют рассеивающей.

Рассеивающая линза — это линза, которая световые лучи, падающие на нее параллельно ее главной оптической оси, после преломления отклоняет от этой оси.

Если пучок лучей, выходящий из рассеивающей линзы, продолжить в противоположном направлении, то продолжения лучей пересекутся в точке F, которая лежит на оптической оси с той же стороны, с которой свет падает на линзу. Эту точку F называют мнимым главным фокусом рассеивающей линзы (рис. 169).

Опыт 3. Пропустим световые лучи только через оптические центры линз. В результате опыта убеждаемся (рис. 170), что световые лучи, проходящие через оптический центр линзы, не преломляются, то есть не изменяют своего направления.

Линзы в физике - виды, формулы и определения с примерами

С помощью линз можно не только собирать или рассеивать световые лучи, но и строить изображение предметов. Как раз благодаря этому свойству линзы широко используют в практических целях.

Каким же образом строятся изображения предметов с помощью линз?

Изображение предмета — это воссоздание вида, формы и цвета предмета световыми лучами, проходящими через оптическую систему линз, которые имеют одну общую оптическую ось.

Если изображение предмета образовано пересечением самих лучей, то его называют действительным, если их продолжением – мнимым.

Определить ход лучей, отраженных всеми точками поверхности тела, невозможно. Поэтому для построения изображения будем использовать такие лучи, ход которых известен:

  • 1.    Луч, проходящий через оптический центр линзы, не преломляется (рис. 171, а).
  • 2.    Луч, параллельный главной оптической оси линзы, после преломления в линзе проходит через главный фокус линзы (рис. 171, б).
  • 3.    Луч, проходящий через главный фокус линзы, после преломления в ней, проходит параллельно главной оптической оси (рис. 171, в).

Линзы в физике - виды, формулы и определения с примерами

Рассмотрим случаи, при которых получается то или другое изображение, и особенности этих изображений.

1.    Предмет АВ размещен между линзой и ее фокусом F.

Линзы в физике - виды, формулы и определения с примерами

Построим изображение точки А, использовав для этого упомянутые лучи. Луч АС (рис. 172), параллельный главной оси линзы, преломившись в линзе, пройдет через главный фокус, а луч АО не изменит своего направления. Как видно на рисунке, эти лучи расходятся. Чтобы построить изображение точки А, следует продолжить лучи в противоположном направлении до пересечения, это будет точка Линзы в физике - виды, формулы и определения с примерами Это изображение точки есть мнимым. Такое же построение хода лучей можно выполнить для всех точек предмета, находящихся между точками А и В. Изображение этих промежуточных точек будут лежать междуЛинзы в физике - виды, формулы и определения с примерами. Таким образом, Линзы в физике - виды, формулы и определения с примерами – изображение предмета АВ.

Если предмет находится между линзой и ее фокусом, то получают увеличенное, прямое, мнимое его изображение, размещенное дальше от линзы, чем сам предмет.

Такое изображение получают, когда пользуются лупой – прибором для рассматривания мелких предметов (например, чтения мелкого текста).

2.    Предмет размещен в главном фокусе линзы F.

Для построения изображения предмета АВ снова воспользуемся лучами АС и АО (рис. 173). После прохождения лучей сквозь линзу мы увидим, что они параллельны между собой. Следовательно, изображение предмета АВ мы не получим.

Линзы в физике - виды, формулы и определения с примерами

Если в главном фокусе разместить источник света, то мы превратим пучок расходящихся лучей на пучок параллельных лучей, который хорошо освещает отдаленные предметы.

Если предмет размещен в главном фокусе линзы F, изображение предмета получить нельзя.

3.    Предмет размещен между главным фокусом линзы F и двойным фокусом линзы 2F.

Во время построения изображения (рис. 174) мы видим, что лучи АС и АО после прохождения линзы пересекаются в точке Линзы в физике - виды, формулы и определения с примерами. В этой точке образуется действительное изображение точки А. Изображение Линзы в физике - виды, формулы и определения с примерамипредмета АВ также будет действительным.

Линзы в физике - виды, формулы и определения с примерами

Если предмет находится между фокусом F и двойным фокусом 2F линзы, то образуется увеличенное, перевернутое и действительное изображение предмета; оно размещено с противоположной относительно предмета стороны линзы на расстоянии, больше двойного фокусного расстояния.

Такое изображение используют в проекционном аппарате, киноаппарате. Чтобы изображение на экране было прямым, диапозитивы или киноленту устанавливают в аппарат в перевернутом виде.

4.    Предмет находится в двойном фокусе линзы. 2F.

В этом случае линза дает (рис. 175) перевернутое, действительное изображение предмета такого же размера, как и он сам. Это изображение размещено в ее двойном фокусе 2F с противоположной относительно предмета стороны линзы.
Линзы в физике - виды, формулы и определения с примерами

5.    Если предмет находится за двойным фокусом линзы 2F (рис. 176), линза дает уменьшенное, перевернутое и действительное изображение предмета, которое размещено между ее главным фокусом F и двойным фокусом 2F с противоположной относительно предмета стороны линзы.
Линзы в физике - виды, формулы и определения с примерами

Такое изображение используют в фотоаппарате.

Пример №4

Почему не рекомендуется поливать растения днем, когда они освещены солнечными лучами, особенно те, на листьях которых остаются капельки воды?

Ответ: потому что капельки играют роль линз, фокусирующих солнечные лучи, и растения получают ожоги.

Пример №5

На рисунке 177 показан ход лучей в линзах. Какие это линзы?
Линзы в физике - виды, формулы и определения с примерами
Ответ: (слева направо) источник света, собирательная линза, рассеивающая линза.

Простые оптические приборы

Знания законов отражения и преломления света в зеркалах и линзах дали возможность создать ряд оптических приборов, имеющих важное значение для современной науки и техники. Их используют специалисты разных отраслей. Это микроскоп биолога и фотоаппарат журналиста, кинокамера оператора и телескоп астронома, перископ подводника и т. п. Кроме того, оптическими приборами являются очки миллионов людей разного возраста и специальностей.

Самый простой оптический прибор – лупа.

Лупа (франц. loupe – «нарост») – оптический прибор, являющийся собирательной линзой, применяется для рассматривания мелких деталей, плохо заметных невооруженным глазом.

Общий вид луп разного вида представлен на рисунке 181, а.

Чтобы увидеть изображение предмета увеличенным, лупу следует разместить так, чтобы данный предмет был между лупой и ее фокусом (рис. 181, б).

Лучи, падающие на лупу от крайних точек предмета, преломляются в линзе и сходятся.
Линзы в физике - виды, формулы и определения с примерами

Каким же образом все это видит наш глаз?

Оказывается, наш глаз не замечает преломления лучей. Лучи, идущие от предмета сквозь линзу, воспринимаются глазом как прямолинейные. Нам кажется, что лучи, идущие от лупы к глазу, продолжаются после лупы, не преломляясь. Благодаря этому мы видим предмет увеличенным по сравнению с его действительными размерами.

Лупа дает увеличение в 10-40 раз.

Значительное увеличение изображения предметов можно получить с помощью двух линз, размещенных в металлической трубе на определенном расстоянии друг от друга. Такой прибор называют микроскопом.

Микроскоп (греч. mikro – «маленький», skopeo – «смотрю») – оптический прибор для рассматривания мелких предметов и их деталей (рис. 182, а).

Ход лучей в микроскопе показан на рисунке 182, б. Линзу, размещенную со стороны глаза, называют окуляром (лат. oculus – «глаз»), а линзу, размещенную со стороны данного предмета, называют объективом (лат. objectivus – «предметный»).

Первое увеличение изображения предмета дает объектив. Предмет в микроскопе размещается немного дальше от фокуса обьектива. В результате этого выходит увеличенное и перевернутое изображение предмета.
Линзы в физике - виды, формулы и определения с примерами

Это изображение увеличивается еще раз линзой-окуляром: оно будто служит для окуляра предметом. Окуляр, подобно лупе, размещают на расстоянии (меньше фокусного) от промежуточного изображения. В итоге мы получаем новое, более увеличенное изображение.

Если, например, объектив микроскопа дает изображение предмета, увеличенное в 20 раз, а окуляр увеличивает это изображение в 15 раз, то общее увеличение, которое дает микроскоп, будет уже 20*15 = 300 раз.

Современные электронные микроскопы дают увеличение в десятки тысяч раз. Например, так выглядят под микроскопом бактерии, увеличенные в 25 000 раз (рис. 183).

Посмотрите еще раз на схему микроскопа (рис. 182, б). Объектив микроскопа – линза – имеет меньшее фокусное расстояние, чем окуляр этого прибора. А что будет, если мы возьмем объектив, который имеет большее фокусное расстояние, чем окуляр?

В этом случае мы получим новый прибор, который называют телескопом, или рефрактором (лат. refringo – «преломляю»). Такой телескоп создал еще в 1611 г. немецкий астроном Иоганн Кеплер. А вообще первый телескоп на основе зрительной трубы построил в 1609 г. Галилео Галилей.

Телескоп (греч. tele – «далеко», skopeo – «смотреть») – оптический прибор для астрономических исследований космических объектов (рис. 184).

Прохождение в телескопе лучей от небесного тела показано на рисунке 185.
Линзы в физике - виды, формулы и определения с примерамиЛинзы в физике - виды, формулы и определения с примерами

Как следует из рисунка, изображение небесного тела в телескопе мы видим под большим углом зрения, в отличие от невооруженного глаза. Окуляр телескопа, как и окуляр микроскопа, действует как обычная лупа.

Следует отметить, что, рассматривая с помощью телескопа отдаленные предметы на Земле, мы видим их перевернутыми. Однако для наблюдения за небесными телами это обстоятельство не столь важно.

Самый большой телескоп-рефрактор установлен в Йеркской обсерватории университета в Чикаго (США). Его объектив в диаметре достигает 102 см.

Другой тип – это телескопы-рефлекторы (лат. reflecto – «отображаю»). В таких телескопах, кроме преломления лучей света, используют другое их свойство – способность отражаться от зеркальных поверхностей.

Изображение небесного тела отражается с помощью маленького плоского зеркальца и рассматривается с помощью окуляра (рис. 186), который увеличивает отраженное изображение.

Линзы в физике - виды, формулы и определения с примерами

Первый рефлектор с диаметром зеркала 2,5 см и фокусным расстоянием 16,5 см построил в 1668 г. Исаак Ньютон. Сегодня самым большим в мире является зеркальный телескоп HESS II, установленный в Намибии, его площадь достигает 600 Линзы в физике - виды, формулы и определения с примерами. Устройство предназначено для изучения происхождения космических лучей.

Линзы в физике - виды, формулы и определения с примерами

Фотоаппарат – это оптический прибор, с помощью которого на цифровом устройстве (англ, digital device – «техническое устройство или приспособление, предназначенное для получения и обработки информации в цифровой форме, используя цифровые технологии»), фотопленке, фотопластинке, фотобумаге получают изображение предмета.

Сегодня существует много различных типов фотоаппаратов (рис. 187, а). Они отличаются формой и размерами, но их строение и основные части одинаковы. Ход лучей в фотоаппарате изображен на рисунке 187, б.

  • Заказать решение задач по физике

Подробное объяснение формулы тонкой линзы

Линза называется собирающей, если после преломления в ней параллельный пучок становится сходящимся. Если же после преломления в линзе параллельный пучок становится расходящимся, то линза называется рассеивающей (рис. 58).

Линзы в физике - виды, формулы и определения с примерами

Основные типы линз и лучи, используемые для построения изображений в них, даны на рисунках 59, 60.
Линзы в физике - виды, формулы и определения с примерамиЛинзы в физике - виды, формулы и определения с примерами
Величина, обратная фокусному расстоянию линзы, выраженному в метрах, называется ее оптической силой:

Линзы в физике - виды, формулы и определения с примерами

Единица оптической силы — диоптрия (1 дптр).

1 дптр соответствует оптической силе линзы с фокусным расстоянием I м: 1 дптр= 1 Линзы в физике - виды, формулы и определения с примерами.

Между фокусным расстоянием F тонкой линзы, расстоянием от предмета до линзы d и расстоянием от линзы до изображения f существует определенная количественная зависимость, называемая формулой линзы.

Выведем формулу тонкой линзы, рассматривая ход характерных лучей (рис. 61).

Линзы в физике - виды, формулы и определения с примерами

Пусть расстояние от предмета до линзы d, расстояние от линзы до изображения f, фокусное расстояние линзы F, расстояние от предмета до переднего главного фокуса а, расстояние от заднего главного фокуса до изображения а’.

Из рисунка 61 видно, что Линзы в физике - виды, формулы и определения с примерами следовательно

Линзы в физике - виды, формулы и определения с примерами

Из формул (1) и (2) следует формула Ньютона:

Линзы в физике - виды, формулы и определения с примерами

С учетом того, что d = а + F, f = а’ + F, получаем формулу тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами

Поперечным увеличением Г называется отношение линейного размера изображения h’ к линейному размеру предмета h. Из выражения (3) находим

Линзы в физике - виды, формулы и определения с примерами

В 1604 г. в исследовании «Дополнения к Вителло» Кеплер изучал преломление света в линзах различной конфигурации и для малых углов падения пришел к формуле линзы.

Для практического использования формулы тонкой линзы следует запомнить правило знаков:

  • для собирающей линзы, действительных источника и изображения величины F, d, f считают положительными;
  • для рассеивающей линзы, мнимых источника и изображения величины F, d,f считают отрицательными.

Заметим, что предмет или источник является мнимым только в том случае, если на линзу падает пучок сходящихся лучей.

Таким образом, линза с F>0 является собирающей (положительной), а с F< 0 — рассеивающей (отрицательной).

Оптическая сила линзы зависит от свойств окружающей среды.

В современных оптических приборах используются системы линз для улучшения качества изображений. Оптическая сила D системы тонких линз, сложенных вместе, равна сумме их оптических сил Линзы в физике - виды, формулы и определения с примерами:

Линзы в физике - виды, формулы и определения с примерами

Пример №6

Предмет расположен на расстоянии d = 0,15 м от рассеивающей линзы с фокусным расстоянием F=-0,30 м. На каком расстоянии f от линзы получается изображение данного предмета?

Линзы в физике - виды, формулы и определения с примерами
Решение

Из формулы тонкой линзы

Линзы в физике - виды, формулы и определения с примерами

находим

Линзы в физике - виды, формулы и определения с примерами

Отрицательное значение f соответствует мнимому изображению предмета.

Ответ: f =-0,10 м, изображение мнимое.

Пример №7

На каком расстоянии d от рассеивающей линзы с оптической силой D = -4 дптр надо поместить предмет, чтобы его мнимое изображение получилось в k = b раз меньше (Г = Линзы в физике - виды, формулы и определения с примерами) самого предмета?

Линзы в физике - виды, формулы и определения с примерами

Решение

Из формулы для увеличения

Линзы в физике - виды, формулы и определения с примерами

находим

Линзы в физике - виды, формулы и определения с примерами

Из формулы линзы

Линзы в физике - виды, формулы и определения с примерами

с учетом выражения для f получаем

Линзы в физике - виды, формулы и определения с примерами

Ответ: d= 1 м.

Пример №8

Определите фокусное расстояние F собирающей линзы, дающей мнимое изображение предмета, помещенного перед ней на расстоянии d- 0,4 м, если расстояние от линзы до изображения f =-1,2 м. 

Линзы в физике - виды, формулы и определения с примерами
Решение

Из формулы тонкой линзы

Линзы в физике - виды, формулы и определения с примерами

находим

Линзы в физике - виды, формулы и определения с примерами

Ответ: F= 0,6 м.

Разбираем формулу тонкой линзы

Линза называется собирающей, если после преломления в ней параллельный пучок становится сходящимся. Если же после преломления в линзе параллельный пучок становится расходящимся, то линза называется рассеивающей (рис. 80).

Линзы в физике - виды, формулы и определения с примерами

Величина, обратная фокусному расстоянию линзы, выраженному в метрах, называется ее оптической силой:

Линзы в физике - виды, формулы и определения с примерами

Единица оптической силы — 1 диоптрия (1 дптр).

1 дптр соответствует оптической силе линзы с фокусным расстоянием

Линзы в физике - виды, формулы и определения с примерами

Линзы можно представить в виде совокупности частей трехгранных призм. На рисунке 81, а изображена модель двояковыпуклой линзы, собранной из частей призм, повернутых основаниями к центру линзы. Соответственно, модель двояковогнутой линзы будет представлена частями призм, повернутых основаниями от центра линзы (рис. 81, б).

Преломляющие углы этих призм можно подобрать таким образом, чтобы падающие на нее параллельные лучи после преломления в призмах собрались в одной точке Линзы в физике - виды, формулы и определения с примерами

Линза считается тонкой, если ее толщина в центре намного меньше радиусов ограничивающих ее поверхностей. Тонкая линза дает неискаженное изображение только в том случае, если свет монохроматический и предмет достаточно мал, следовательно, лучи распространяются вблизи главной оптической оси. Такие лучи получили название параксиальных.

Отметим условия, при одновременном выполнении которых линза является собирающей:

  • толщина в центре больше толщины у краев,
  • ее показатель преломления больше показателя преломления окружающей среды.

При невыполнении (или выполнении) только одного из этих условий линза является рассеивающей.
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Между фокусным расстоянием тонкой линзы, расстоянием от предмета до линзы и от линзы до изображения существует определенная количественная зависимость, называемая формулой линзы.

Выведем формулу тонкой линзы из геометрических соображений, рассматривая ход характерных лучей. Обратим внимание на луч, идущий через оптический центр Линзы в физике - виды, формулы и определения с примерами линзы, луч, параллельный главной оптической оси линзы, и луч, проходящий через главный фокус линзы.

Построим изображение предмета Линзы в физике - виды, формулы и определения с примерами в тонкой собирающей линзе (рис. 82). Пусть расстояние от предмета до линзы Линзы в физике - виды, формулы и определения с примерами расстояние от линзы до изображения Линзы в физике - виды, формулы и определения с примерами фокусное расстояние линзы Линзы в физике - виды, формулы и определения с примерами расстояние от предмета до переднего главного фокуса Линзы в физике - виды, формулы и определения с примерами расстояние от заднего главного фокуса до изображения Линзы в физике - виды, формулы и определения с примерами высота предмета Линзы в физике - виды, формулы и определения с примерами высота его изображения Линзы в физике - виды, формулы и определения с примерами

Из рисунка 82 видно, что Линзы в физике - виды, формулы и определения с примерами Из подобия треугольников следует:

Линзы в физике - виды, формулы и определения с примерами

Используя соотношения (1) и (2), получим:

Линзы в физике - виды, формулы и определения с примерами

Соотношение Линзы в физике - виды, формулы и определения с примерами называется формулой Ньютона.

С учетом того, что Линзы в физике - виды, формулы и определения с примерами (см. рис. 82), находим: Линзы в физике - виды, формулы и определения с примерами и подставляем в формулу (4):

Линзы в физике - виды, формулы и определения с примерами

Разделив обе части последнего выражения на Линзы в физике - виды, формулы и определения с примерами получаем формулу тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами

Линейным (поперечным) увеличением Г называется отношение линейного размера изображения Линзы в физике - виды, формулы и определения с примерами к линейному размеру предмета Линзы в физике - виды, формулы и определения с примерами Из соотношения (3) находим линейное увеличение тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами

В 1604 г. в исследовании «Дополнения к Вителло» И. Кеплер изучал преломление света в линзах различной конфигурации и для малых углов падения пришел к формуле линзы.

Для практического использования формулы линзы следует твердо запомнить правило знаков:

Заметим, что предмет или источник является мнимым, только в том случае, если на линзу падает пучок сходящихся лучей.

Таким образом, линза с Линзы в физике - виды, формулы и определения с примерами является собирающей (положительной), а с Линзы в физике - виды, формулы и определения с примерами — рассеивающей (отрицательной).

Оптическая сила линзы зависит от свойств окружающей среды (вспомните, как плохо мы видим под водой без плавательных очков).

В современных оптических приборах для улучшения качества изображений используются системы линз. Оптическая сила Линзы в физике - виды, формулы и определения с примерами системы тонких линз, сложенных вместе, равна сумме их оптических сил Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Пример №9

На каком расстоянии Линзы в физике - виды, формулы и определения с примерами от рассеивающей линзы с оптической силой Линзы в физике - виды, формулы и определения с примерами дптр надо поместить предмет, чтобы его мнимое изображение получилось в Линзы в физике - виды, формулы и определения с примерами раз меньше Линзы в физике - виды, формулы и определения с примерами самого предмета? Постройте изображение предмета.

Дано:

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Решение

Из формулы для линейного увеличения

Линзы в физике - виды, формулы и определения с примерами

находим:

Линзы в физике - виды, формулы и определения с примерами

По формуле тонкой линзы ( рис. 83) с учетом правила знаков:

Линзы в физике - виды, формулы и определения с примерами

и с учетом выражения для Линзы в физике - виды, формулы и определения с примерами получаем:

Линзы в физике - виды, формулы и определения с примерами

Ответ: Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Изучаем линзы

Скорее всего, вы пользовались фотоаппаратом, знакомы с биноклем, подзорной трубой, телескопом, на уроках биологии работали с микроскопом. Некоторые из вас носят очки. Все эти устройства имеют общее — их основной частью является линза. О том, какое значение имеют данные устройства в жизни человека, вы можете рассказать и сами, а вот о том, что такое линза, какие существуют виды линз и каковы их свойства, вы узнаете из этого параграфа.

Линза — прозрачное тело, ограниченное с двух сторон сферическими поверхностями*.

Линзы в физике - виды, формулы и определения с примерамиОдна из поверхностей линзы может быть плоскостью, поскольку плоскость можно рассматривать как сферу бесконечного радиуса. Линзы также бывают цилиндрическими, но встречаются такие линзы редко.

По форме линзы делят на выпуклые (рис. 14.1) и вогнутые (рис. 14.2).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.1. Толщина выпуклой линзы посредине больше, чем у краев: а — вид; б — разные выпуклые линзы в разрезе

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.2. Толщина вогнутой линзы посредине меньше, чем у краев: а — вид; б — разные вогнутые линзы в разрезе

Если толщина Линзы в физике - виды, формулы и определения с примерами линзы во много раз меньше радиусов сферических поверхностей, ограничивающих линзу, такую линзу называют тонкой. Далее мы будем рассматривать только тонкие линзы. Прямую, которая проходит через центры сферических поверхностей, ограничивающих линзу, называют главной оптической осью линзы (рис. 14.3).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.3. Тонкая сферическая линза: Линзы в физике - виды, формулы и определения с примерами — главная оптическая ось линзы; Линзы в физике - виды, формулы и определения с примерами — толщина линзы; Линзы в физике - виды, формулы и определения с примерами— радиусы сферических поверхностей, ограничивающих линзу; Линзы в физике - виды, формулы и определения с примерами — оптический центр линзы

Если на линзу направить пучок световых лучей, они преломятся на ее поверхностях и изменят свое направление. В то же время на главной оптической оси линзы есть точка, которую луч света проходит практически не изменяя своего направления. Эту точку называют оптическим центром линзы (см. рис. 14.3).

Направим на линзу пучок лучей, параллельных ее главной оптической оси. Если лучи, пройдя сквозь линзу, идут сходящимся пучком, такая линза — собирающая. Точка F, в которой пересекаются преломленные лучи, — действительный главный фокус линзы (рис. 14.4).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.4. Ход лучей после преломления в собирающей линзе. Точка F — действительный главный фокус линзы

Линза является рассеивающей, если лучи, параллельные ее главной оптической оси, пройдя сквозь линзу, идут расходящимся пучком. Точку F, в которой пересекаются продолжения преломленных лучей, называют мнимым главным фокусом линзы (рис. 14.5).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.5. Ход лучей после преломления в рассеивающей линзе. Точка F — мнимый главный фокус линзы

Обратите внимание: любой пучок параллельных лучей, даже если эти лучи не параллельны главной оптической оси, после преломления в собирающей линзе всегда пересекаются в одной точке (рис. 14.6) (если линза рассеивающая, в одной точке пересекаются продолжения преломленных лучей).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.6. Ход параллельных лучей после преломления в собирающей линзе

Если оптическая плотность материала, из которого изготовлена линза, больше оптической плотности среды Линзы в физике - виды, формулы и определения с примерами то выпуклая линза будет собирать лучи (будет собирающей), а вогнутая линза будет рассеивать лучи (будет рассеивающей) (см. рис. 14.4, 14.5).

Если оптическая плотность материала, из которого изготовлена линза, меньше оптической плотности среды Линзы в физике - виды, формулы и определения с примерами то выпуклая линза будет рассеивающей (рис. 14.7, а), а вогнутая линза — собирающей (рис. 14.7, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.7. Выпуклая (а) и вогнутая (б) воздушные линзы в воде

Определение оптической силы линзы

Любая линза имеет два главных фокуса*, расположенных на одинаковом расстоянии от оптического центра линзы (см. рис. 14.8).

Линзы в физике - виды, формулы и определения с примерамиДалее главный фокус линзы, как правило, будем называть фокусом линзы.

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.8. Чем меньше радиусы R сферических поверхностей, ограничивающих линзу, тем сильнее эта линза преломляет свет, а значит, тем меньше ее фокусное расстояние F

Расстояние от оптического центра линзы до главного фокуса называют фокусным расстоянием линзы.

Фокусное расстояние, как и фокус, обозначают символом F. Единица фокусного расстояния в СИметр:

Линзы в физике - виды, формулы и определения с примерами

Фокусное расстояние собирающей линзы договорились считать положительным, а рассеивающей — отрицательным. Очевидно, что чем сильнее преломляющие свойства линзы, тем меньше по модулю ее фокусное расстояние (рис. 14.8).

Физическую величину, которая характеризует линзу и является обратной фокусному расстоянию линзы, называют оптической силой линзы.

Оптическую силу линзы обозначают символом D и вычисляют по формуле:

Линзы в физике - виды, формулы и определения с примерами

Единица оптической силыдиоптрия: Линзы в физике - виды, формулы и определения с примерами

1 диоптрияэто оптическая сила линзы, фокусное расстояние которой равно 1 м. Оптическая сила собирающей линзы положительна, а рассеивающей линзы — отрицательна.

Подводим итоги:

Прозрачное тело, ограниченное с двух сторон сферическими поверхностями, называют линзой. Линза является собирающей, если пучок параллельных лучей, падающий на нее, после преломления в линзе пересекается в одной точке (эта точка — действительный фокус линзы). Линза является рассеивающей, если параллельные лучи, падающие на нее, после преломления идут расходящимся пучком, а продолжения преломленных лучей пересекаются в одной точке (эта точка — мнимый фокус линзы).

Физическую величину, которая характеризует преломляющие свойства линзы и обратна ее фокусному расстоянию, называют оптической силой линзы: Линзы в физике - виды, формулы и определения с примерами Единица оптической силы линзы — диоптрия Линзы в физике - виды, формулы и определения с примерами

Построение изображений в линзах

Основное свойство линз заключается в том, что линзы дают изображение точки, а соответственно, и предмета (как совокупности точек) (рис. 15.1). В зависимости от расстояния между предметом и линзой изображение предмета может быть больше или меньше, чем сам предмет, мнимым или действительным. Выясним, при каких условиях с помощью линзы образуются те или иные изображения, и рассмотрим приемы их построения.

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.1. Получение изображения пламени свечи с помощью собирающей линзы

Любой предмет можно представить как совокупность точек. Каждая точка предмета излучает (или отражает) свет во всех направлениях. В создании изображения участвует множество лучей, однако для построения изображения некоторой точки S достаточно найти точку пересечения любых двух лучей, выходящих из точки S и проходящих через линзу. Обычно для этого выбирают два из трех «удобных лучей» (рис. 15.2).

Точка S1 будет действительным изображением точки S, если в точке пересекаются сами преломленные лучи (рис. 15.2, а). Точка будет мнимым изображением точки S, если в точке пересекаются продолжения преломленных лучей (рис. 15.2, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.2. Три самых простых в построении луча («удобные лучи»):

  1. луч, проходящий через оптический центр О линзы, не преломляется и не изменяет своего направления;
  2. луч, параллельный главной оптической оси Линзы в физике - виды, формулы и определения с примерами линзы, после преломления в линзе идет через фокус Линзы в физике - виды, формулы и определения с примерами или через фокус Линзы в физике - виды, формулы и определения с примерами идет его продолжение (б);
  3. луч, проходящий через фокус Линзы в физике - виды, формулы и определения с примерами после преломления в линзе идет параллельно главной оптической оси Линзы в физике - виды, формулы и определения с примерами линзы (а, б)

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.3. а — построение изображения Линзы в физике - виды, формулы и определения с примерами предмета Линзы в физике - виды, формулы и определения с примерами в собирающей линзе: предмет Линзы в физике - виды, формулы и определения с примерами расположен за двойным фокусом линзы; б — ход лучей в фотоаппарате

Строим изображение предмета, которое даёт линза:

Рассмотрим все возможные случаи расположения предмета АВ относительно собирающей линзы и докажем, что размеры и вид изображения зависят от расстояния между предметом и линзой.

1. Предмет расположен за двойным фокусом собирающей линзы (рис. 15.3, а). Сначала построим изображение точки Линзы в физике - виды, формулы и определения с примерами Для этого воспользуемся двумя лучами — 1 и 2. После преломления в линзе они пересекутся в точке Линзы в физике - виды, формулы и определения с примерами Значит, точка Линзы в физике - виды, формулы и определения с примерами является действительным изображением точки Линзы в физике - виды, формулы и определения с примерами Для построения изображения точки Линзы в физике - виды, формулы и определения с примерами опустим из точки Линзы в физике - виды, формулы и определения с примерами перпендикуляр на главную оптическую ось Линзы в физике - виды, формулы и определения с примерами Точка Линзы в физике - виды, формулы и определения с примерами пересечения перпендикуляра и оси I является изображением точки Линзы в физике - виды, формулы и определения с примерами

Итак, Линзы в физике - виды, формулы и определения с примерами — изображение предмета Линзы в физике - виды, формулы и определения с примерами Это изображение действительное, уменьшенное, перевернутое. Такое изображение получается, например, на сетчатке глаза или пленке фотоаппарата (рис. 15.3, б).

2. Предмет расположен между фокусом и двойным фокусом собирающей линзы (рис. 15.4, а). Изображение предмета действительное, увеличенное, перевернутое. Такое изображение позволяет получить на экране проекционная аппаратура (рис. 15.4, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.4. а — построение изображения Линзы в физике - виды, формулы и определения с примерами предмета Линзы в физике - виды, формулы и определения с примерами в собирающей линзе: предмет Линзы в физике - виды, формулы и определения с примерами расположен между фокусом и двойным фокусом линзы; б — ход лучей в проекционном аппарате

3. Предмет расположен между фокусом и собирающей линзой (рис. 15.5, а). Лучи, вышедшие из точки Линзы в физике - виды, формулы и определения с примерами после преломления в линзе идут расходящимся пучком. Однако их продолжения пересекаются в точке Линзы в физике - виды, формулы и определения с примерами

В данном случае изображение предмета является мнимым, увеличенным, прямым. Изображение расположено по ту же сторону от линзы, что и предмет, поэтому мы не можем увидеть изображение предмета на экране, но видим его, когда смотрим на предмет через линзу. Именно такое изображение дает короткофокусная собирающая линза — лупа (рис. 15.5, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.5. а – построение изображения Линзы в физике - виды, формулы и определения с примерами предмета Линзы в физике - виды, формулы и определения с примерами в собирающей линзе: предмет Линзы в физике - виды, формулы и определения с примерами расположен между линзой и ее фокусом; б – с помощью

4. Предмет расположен на фокусном расстоянии от собирающей линзы. После преломления все лучи идут параллельным пучком (рис. 15.6), следовательно, в данном случае ни действительного, ни мнимого изображения мы не получим.

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.6. Если предмет расположен в фокусе собирающей линзы, мы не получим его изображения

Внимательно рассмотрите рис. 15.7, на котором показано построение изображений предмета, полученных с помощью рассеивающей линзы. Видим, что рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение, расположенное по ту же сторону от линзы, что и сам предмет.

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.7. Рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение

Чаще всего предмет больше, чем линза, или часть линзы закрыта непрозрачным экраном (как, например, линза в объективе фотоаппарата). Изменяется ли при этом внешний вид изображения? Конечно же нет. Ведь от каждой точки предмета на линзу падает множество лучей, и все они собираются в соответствующей точке изображения. Если закрыть часть линзы, это приведет лишь к тому, что энергия, попадающая в каждую точку изображения, уменьшится. Изображение будет менее ярким, однако ни его вид, ни месторасположение не изменятся. Именно поэтому, строя изображение, мы можем использовать все «удобные лучи», даже те, которые не проходят через линзу (рис. 15.8).

Формула тонкой линзы:

Построим изображение предмета в собирающей линзе (рис. 15.9).

Рассмотрим прямоугольные треугольники Линзы в физике - виды, формулы и определения с примерами и Линзы в физике - виды, формулы и определения с примерами Эти треугольники подобны Линзы в физике - виды, формулы и определения с примерами поэтому Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами поэтому Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами

Приравняв правые части равенств (1) и (2), имеем Линзы в физике - виды, формулы и определения с примерами то есть Линзы в физике - виды, формулы и определения с примерамиили Линзы в физике - виды, формулы и определения с примерами Разделив обе части последнего равенства на Линзы в физике - виды, формулы и определения с примерами получим формулу тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами

где Линзы в физике - виды, формулы и определения с примерами – оптическая сила линзы.

При решении задач следует иметь в виду:

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.8. Построение изображения предмета в случае, когда предмет значительно больше линзы

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.9. К выведению формулы тонкой линзы: h — высота предмета; Н — высота изображения; d — расстояние от предмета до линзы; f — расстояние от линзы до изображения; F — фокусное расстояние

Пример №10

Рассматривая монету с помощью лупы, оптическая сила которой +10 дптр, мальчик расположил монету на расстоянии 6 см от лупы. Определите: 1) фокусное расстояние линзы; 2) на каком расстоянии от лупы находится изображение монеты; 3) какое изображение дает лупа — действительное или мнимое; 4) какое увеличение дает лупа.

Анализ физической проблемы. Лупу можно считать тонкой линзой, поэтому воспользуемся формулой тонкой линзы. Фокусное расстояние найдем, воспользовавшись определением оптической силы линзы.

Дано:

Линзы в физике - виды, формулы и определения с примерами

Найти:

Линзы в физике - виды, формулы и определения с примерами

Поиск математической модели, решение

По определению Линзы в физике - виды, формулы и определения с примерами

По формуле тонкой линзы: Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами Следовательно, Линзы в физике - виды, формулы и определения с примерами

Зная расстояние Линзы в физике - виды, формулы и определения с примерами определим увеличение Линзы в физике - виды, формулы и определения с примерами

Найдем значения искомых величин:

Линзы в физике - виды, формулы и определения с примерами

Знак «-» перед значением Линзы в физике - виды, формулы и определения с примерами говорит о том, что изображение мнимое.

Ответ: Линзы в физике - виды, формулы и определения с примерами изображение мнимое; Линзы в физике - виды, формулы и определения с примерами

Подводим итоги:

В зависимости от типа линзы (собирающая или рассеивающая) и месторасположения предмета относительно данной линзы получают разные изображения предмета:

Расположение предмета Характеристика изображения в линзе
собирающей рассеивающей
За двойным фокусом линзы Линзы в физике - виды, формулы и определения с примерами действительное, уменьшенное, перевернутое мнимое, уменьшенное, прямое
В двойном фокусе линзы Линзы в физике - виды, формулы и определения с примерами действительное, равное, перевернутое
Между фокусом и двойным фокусом линзы Линзы в физике - виды, формулы и определения с примерами действительное, увеличенное, перевернутое
В фокусе линзы Линзы в физике - виды, формулы и определения с примерами изображения нет
Между линзой и фокусом Линзы в физике - виды, формулы и определения с примерами мнимое, увеличенное, прямое

Расстояние Линзы в физике - виды, формулы и определения с примерами от предмета до линзы, расстояние Линзы в физике - виды, формулы и определения с примерами от линзы до изображения и фокусное расстояние Линзы в физике - виды, формулы и определения с примерами связаны формулой тонкой линзы: Линзы в физике - виды, формулы и определения с примерами

  • Глаз как оптическая система
  • Звук в физике и его характеристики
  • Звуковые и ультразвуковые колебания
  • Инерция в физике
  • Дифракция света
  • Принцип Гюйгенса — Френеля
  • Прохождение света через плоскопараллельные пластинки и призмы
  • Поляризация света
Определение

Формула тонкой линзы — формула, связывающая три величины: расстояние от предмета до линзы, расстояние от изображения до линзы и фокусное расстояние линзы.

Условные обозначения:

  • расстояние от предмета до линзы — d (м);
  • расстояние от изображения до линзы— f (м);
  • фокусное расстояние линзы — F (м).

Вывод формулы

Обратимся к рисунку, который мы использовали для объяснения правила построения изображений в собирающих линзах:

Видно, что треугольники АОВ и А1В1О подобные (по двум углам). Следовательно:

BOOB1=ABA1B1

По двум углам также являются подобными треугольники COF и FA1B1. Отсюда делаем вывод, что:

COA1B1=OFFB1

Линия предмета образует с частью главной оптической оси, перпендикуляром, проведенным из верхней точки к линзе, и частью самой линзы прямоугольник. Следовательно, его противоположные стороны равны:

AB=CO

Следовательно:

ABA1B1=COA1B1

Отсюда следует, что:

BOOB1=OFFB1

BO является расстоянием от предмета до линзы. Обозначим его за d. OB1 является расстоянием от линзы до изображения. Обозначим его за f. OF является фокусным расстоянием линзы. Обозначим его за F. FB1 является разностью расстояния от линзы до изображения и фокусного расстояния линзы. Поэтому это выражение мы можем записать так:

df=FfF

Избавимся от знаменателей и получим:

fdFd=fF

Или можно записать так:

fF+Fd=fd

Теперь все члены равенства поделим на произведение Ffd. В результате вычислений получим формулу тонкой линзы:

Формула тонкой линзы

1d+1f=1F

Поскольку величиной, равной обратной фокусному расстоянию, является оптическая сила, формулу тонкой линзы можно записать следующим образом:

1d+1f=D

Величины d, ƒ и F могут быть как положительными, так и отрицательными. Отметим (без доказательства), что при применении формулы тонкой линзы знаки нужно ставить перед членами уравнения согласно следующим правилам.

Правила расстановки знаков перед членами уравнения в формуле линзы

  • Если линза собирающая, то ее фокус действительный, и перед членом 1F ставят знак «плюс» (1F).
  • Если линза рассеивающая, то ее фокус мнимый, и перед членом 1F ставят знак «минус» (1F).
  • Если изображение действительное, то перед величиной 1d ставят знак «плюс» (1d).
  • Если изображение мнимое, то перед величиной 1d ставят знак «минус» (1d).
  • Величина 1f всегда имеет знак «плюс», поскольку расстояние от предмета до линзы всегда положительное.

Иногда случается, что перед величинами F, f и d знаки неизвестны. Тогда при вычислениях перед ними ставят знаки «плюс». Но если в результате вычислений фокусного расстояния или расстояния от линзы до изображения либо до источника получается отрицательная величина, то это означает, что фокус, изображение или источник мнимые.

Пример №1. Фокусное расстояние линзы равно 10 см. Найти расстояние от предмета до линзы, если расстояние от нее до изображения составляет 15 см.

Переводить в СИ единицы измерения не будем, поскольку они однородны. Так как все величины выражены в см, то и ответ будет выражен в см.

Применим формулу тонкой линзы:

1d+1f=1F

1d+115=110

Умножим выражение на 150d:

150+10d=15d

5d=150

d=30 (см)

Увеличение линзы

Раньше мы уже упоминали, что изображение, полученное в линзе, может быть увеличенным или уменьшенным. Различие размеров предмета и изображения характеризуется увеличением.

Определение

Линейное увеличение — отношение линейного размера изображения к линейному размеру предмета. Линейное увеличение обозначают буквой Γ.

Чтобы найти линейное увеличение изображения предмета в линзе, снова обратимся к первому рисунку этого параграфа. Если высота предмета АВ равна h, а высота изображения А1В1 равна Н, то:

Γ=Hh

Мы уже выяснили, что треугольники АОВ и ОА1В1 подобны. Поэтому:

Hh=|f||d|

Где H — высота изображения предмета, h — высота самого предмета.

Отсюда вытекает, что увеличение линзы равно:

Γ=|f||d|

Пример №2. Предмет имеет высоту h = 2 см. Какое фокусное расстояние F должна иметь линза, расположенная от экрана на расстоянии f = 4 м, чтобы изображение указанного предмета имело высоту H = 1 м?

2 см = 0,02 м

Сначала применим формулы тонкой линзы:

1d+1f=1F

Она необходима, чтобы выразить фокусное расстояние линзы:

F=dfd+f

Расстояние от предмета до линзы неизвестно. Но его можно выразить из формулы увеличения линзы:

Γ=fd=Hh

Отсюда это расстояние равно:

d=fhH

Подставим полученное выражение в формулу фокусного расстояния линзы:

F=fhHffhH+f=f2hH·
Hfh+fH=fhH+h

F=fhH+h=4·0,021+0,020,08 (м)=8 (см)

Задание EF17760

Равнобедренный прямоугольный треугольник ABC расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет AC лежит на главной оптической оси линзы (см. рисунок). Вершина прямого угла C лежит ближе к центру линзы, чем вершина острого угла A. Расстояние от центра линзы до точки A равно удвоенному фокусному расстоянию линзы, AC = 4 см. Постройте изображение треугольника и найдите площадь получившейся фигуры.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Сделать рисунок — построить изображение в линзе.

3.Записать формулу для нахождения площади полученной фигуры.

4.Выполнить решение в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Оптическая сила линзы: D = 2,5 дптр.

 Сторона треугольника AC = 4 см.

4 см = 0,04 м

Построим изображение в линзе. Для этого достаточно построить изображение точки В. Сначала пустим луч, параллельный главной оптической оси, к плоскости линзы. Он будет преломляться, после чего пройдет через фокус. Затем пустим луч через оптический центр. На месте пересечения двух лучей поставим точку и обозначим ее за B´.

Так как точки B и C предмета лежат на одной прямой, перпендикулярной главной оптической оси, для нахождения точки изображения C´ достаточно пустить перпендикуляр от B´ этой оси. На месте пересечения поставим точку и обозначим ее C´.

Рассматривать ход лучей для построения точки A´ тоже не будем. Точка A лежит в плоскости второго фокуса. Значит, она будет находиться в этой же точке и с противоположной стороны линзы. Это легко доказать с помощью формулы тонкой линзы:

1d+1f=1F

Если расстояние от предмета до линзы равно 2F, то и расстояние от линзы до его изображения будет 2F:

12F+1f=1F

1f=1F12F=212F=12F

f=2F

Теперь соединим все найденные точки и получим треугольник A´ B´ C´. Найдем его площадь. Поскольку это прямоугольный треугольник, его площадь будет равна половине произведения двух катетов — B´ C´и A´ C´:

S=AC·BC2

Из формулы оптической силы линзы найдем фокусное расстояние:

F=1D=12,5=0,4 (м)

Известно, что точка A находится в точке двойного фокусного расстояния. И ее изображение тоже находится на таком же расстоянии от линзы. Следовательно, чтобы найти длину катета A´ C´, нужно найти расстояние от точки C до ее изображения. Расстояние от этой точки до линзы равно разности двойного фокусного расстояния и длины отрезка AC:

dC=2FAC=2·0,40,04=0,76 (м)

Используя формулу тонкой линзы, вычислим расстояние от линзы до изображения этой точки:

10,76+1f=1F

1fC=1F10,76=0,76F0,76F=0,760,40,76·0,4

fC=0,76·0,40,760,4=0,844 (м)

Тогда длина катета A´ C´ будет равна:

AC=fCfA=fC2F=0,8440,4·2=0,044 (м)

Треугольники BCO и B´ C´O подобны по 3 углам. Углы O равны как вертикальные. Углы C и C´ как прямые, а B и B´ как накрест лежащие (полученные при пересечении секущей в виде луча через оптический центр и параллельных фокальных плоскостей). Следовательно BC относится к B´ C´ так же, как OC относится к C´O:

BCBC=ACAC

Треугольник ABC равнобедренный, поэтому BC = AС. Тогда:

ACBC=ACAC

Следовательно:

BC=AC

Отсюда площадь треугольника равна:

S=AC·AC2=(0,044)22=0,000968 (м2)=9,68 (см2)

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17685

Линза с фокусным расстоянием F=1м даёт на экране изображение предмета, увеличенное в 4 раза. Каково расстояние от предмета до линзы?

Ответ:

а) 0,50 м

б) 0,75 м

в) 1,25 м

г) 1,50 м


Линза с фокусным расстоянием F=1м даёт на экране изображение предмета, увеличенное в 4 раза. Каково расстояние от предмета до линзы?

Алгоритм решения

1.Записать известные данные.

2.Записать формулу увеличения линзы и формулу тонкой линзы.

3.Выразить из обеих формул расстояние от линзы до изображения предмета.

4.Приравнять правые части выражений.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем известные данные:

 Фокусное расстояние линзы: F = 1 м.

 Увеличение линзы: Γ = 4.

Запишем формулу увеличения линзы и выразим из нее расстояние от линзы до изображения предмета:

Γ=fd

f=Γd

Запишем формулу тонкой линзы и выразим из нее расстояние от линзы до изображения предмета:

1d+1f=1F

1f=1F1d=dFFd

f=dFdF

Приравняем правые части последних выражений:

Γd=dFdF

Поделим на d и выразим расстояние от предмета до линзы:

Γ=FdF

d=FΓ+F=14+1=1,25 (м)

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18124

Предмет высотой 6 см расположен на горизонтальной главной оптической оси тонкой собирающей линзы на расстоянии 30 см от её оптического центра. Высота  изображения предмета 12 см. Найдите фокусное расстояние линзы.

Ответ:

а) 5 см

б) 10 см

в) 20 см

г) 36 см


Алгоритм решения

1.Записать известные данные.

2.Записать формулу увеличения линзы в двух вариантах и выразить из нее расстояние от изображения до линзы.

3.Записать формулу тонкой линзы и тоже выразить из нее расстояние от изображения до линзы.

4.Приравнять правые части выражений.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем известные данные:

 Расстояние от оптического центра линзы до предмета: d = 30 cм.

 Высота предмета: h = 6 см.

 Высота изображения: H = 12 см.

Так как все данные измеряются в сантиметрах, переводить единицы измерения величин в СИ нет необходимости. Просто ответ будет получен тоже в сантиметрах.

Запишем формулу увеличения линзы:

Γ=Hh=fd

Отсюда расстояние от изображения до линзы равно:

f=Hdh

Запишем формулу тонкой линзы и выразим из нее расстояние от линзы до изображения предмета:

1d+1f=1F

1f=1F1d=dFFd

f=dFdF

Приравняем правые части последних выражений:

Hdh=dFdF

Поделим на d, у множим на h(d –F) и выразим фокусное расстояние:

Hh=FdF

H(dF)=hF

HdHF=hF

hF+HF=Hd

F(h+H)=Hd

F=Hdh+H=12·3012+6=20 (см)

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF19112

В плоскости, параллельной плоскости тонкой собирающей линзы, по окружности со скоростью v = 5 м/с движется точечный источник света. Расстояние между плоскостями d = 15 см. Центр окружности находится на главной оптической оси линзы. Фокусное расстояние линзы F = 10 см. Найдите скорость движения изображения точечного источника света. Сделайте пояснительный чертёж, указав ход лучей в линзе. Ответ запишите в м/с.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

3.Записать формулу тонкой линзы и определить из нее расстояние от изображения до линзы.

4.Записать формулу линейного увеличения линзы двумя способами для вычисления радиусов окружностей, по которым движутся точка и ее изображение.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Фокусное расстояние линзы: F = 10 см.

 Расстояние от линзы до плоскости, в которой вращается точка: d = 15 см.

 Скорость вращения точки: v = 5 м/с.

10 см = 0,1 м

15 см = 0,15 м

Выполним рисунок. Для его построения достаточно найти изображение точки А. Затем в противоположную сторону отложим перпендикуляр и на таком же расстоянии от главной оптической оси будет находиться изображение точки B.

Глядя со стороны, мы будем видеть вместо окружности, которую описывает точка, линию AB. Она равн диаметру окружности, по которой движется точка. Обозначим ее радиус OA за r. Изображением окружности будет окружность. Вместо нее мы со стороны также увидим отрезок — A´B´. Обозначим радиус O´A´ за R.

Запишем формулу тонкой линзы и выразим из нее расстояние от изображения до линзы:

1d+1f=1F

1f=1F1d=dFFd

f=dFdF

Формулу линейного увеличения линзы можно определить как отношение радиуса окружности, по которой движется точка-изображение, к радиусу окружности, по которой движется сама точка:

Γ=Rr

Линейное увеличение также определяется формулой:

Γ=fd

Следовательно:

Rr=fd

Подставим сюда выражение, найденное для расстояния от изображения до линзы из формулы тонкой линзы:

Rr=dFd(dF)=FdF

Так как изображение будет двигаться вслед за точкой, то угловые скорости этой точки и изображения будут равны. Поэтому:

ω=vr=VR

Отсюда линейная скорость движения изображения равна:

V=Rvr=FvdF=0,1·50,150,1=10 (мс)

Ответ: 10

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 14.7k

Лабораторная работа

ОПРЕДЕЛЕНИЕ ФОКУСНЫХ
РАССТОЯНИЙ СОБИРАЮЩИХ И

РАССЕИВАЮЩИХ ЛИНЗ

Цель работы: научиться определять
фокусные расстояния собирающих и рассеивающих линз.

Приборы и
принадлежности
: набор линз; осветитель; экран.

Теоретическая часть

Оптические линзы
представляют собой тела из прозрачного вещества (стёкла, прозрачные кристаллы,
пластмассы и т. д.), ограниченные двумя сферическими поверхностями, вершины
которых лежат на одной оси, называемой оптической осью (рис.1).

а

б

в

г

д

е

Рис.1. Различные типы собирающих и рассеивающих линз

Для тонких линз
имеет место соотношение:

,                                                       
(1)

где bрасстояние от линзы до изображения; а – расстояние от
линзы до предмета;
f – фокусное расстояние
линзы. Знаки расстояний, входящих в формулу (1), можно определять по простому правилу:
если расстояние отсчитывается от линзы по ходу луча, то ему приписывают знак
«+», в противном случае – « – ».

На рисунке 1
показаны различные типы собирающих и рассеивающих линз: а) двояковыпуклая; б)
плосковыпуклая; в) выпукло-вогнутая; г) двояковогнутая; д) плосковогнутая; е)
вогнуто-выпуклая. Около соответствующих рисунков показаны характеристики линз:
радиусы кривизны и фокусы. К собирающим линзам относят типы а, б, в, к
рассеивающим — г, д, е. У первых середина линзы толще, чем края, у вторых края
толще, чем середина.

Описание экспериментальной установки

Установка для
измерения фокусных расстояний собирающих и рассеивающих линз представлена на
рис. 2.

Рис. 2. Установка для измерения фокусных расстояний собирающих и рассеивающих линз

Установка состоит
из источника света 1 с наклеенной на нем стрелкой, играющей роль предмета.
Источник света 1 установлен на основании 2. Экран 6, на котором получается
изображение, установлен на основании 4. Основания 2 и 4 скрепляются между собой
при помощи стержней, по которым могут перемещаться одна или несколько
исследуемых  линз 3. Вертикальность расположения установки можно регулировать
при помощи ножек 7.Установка снабжена метровой шкалой, позволяющей определить
положение линз в каждом из опытов. Каждая из линз может быть независимо удалена
из оптического тракта.

Выполнение работы

Рассмотрим
методику измерений при работе на установке, изображенной на рисунке 2. В данном
случае фокусное расстояние собирающих линз можно определить тремя способами:

1) по расстояниям от предмета до
линзы и от изображения до линзы;

2) по величине предмета и
изображения;

3) способом Бесселя.

Определение фокусного расстояния
собирающей линзы по расстоянию от предмета до линзы и по расстоянию от
изображения до линзы

В этом случае фокусное расстояние
определяется непосредственно из формулы тонкой линзы. Для этого необходимо:

1. Устанавить в
оптический тракт установки исследуемую собирающую линзу.

2. Отрегулировать
положение осветителя, линзы и экрана по высоте (получаемое изображение должно
получаться неизогнутым).

3. Включить
осветитель и получить четкое увеличенное или уменьшенное изображение на экране.

4. По
измерительному устройству отмерить расстояние от линзы до экрана и от линзы до
предмета.

5. По измеренным
расстояниям от линзы до предмета и от линзы до изображения исходя из формулы (1)
определить фокусное расстояние.

6. Определить
погрешность измерения фокусного расстояния данным методом.

7. Результаты
измерения занести с таблицу 1.

                                                                                                    
             Таблица.1

 a , м

 b , м

  f

   fср

   Df

Данным способом необходимо измерить
фокусное расстояние не менее 3 раз.

Определение фокусного расстояния по
величине предмета и

изображения

Построим геометрическое изображение
предмета в собирающей линзе:

Рис. 3. Схема построения изображения
предмета в собирающей линзе

Исходя из данного
геометрического построения получим:

.                                                        (2)

Тогда с учетом
формулы тонкой линзы , (2) приведется к виду:

.                                          (3)

Производя
простейшие преобразования формулы (3), получаем:

.                                                           (4)

Из (4) следует,
что фокусное расстояние собирающей линзы можно определить по высотам предмета и
изображения. Для измерения до фокусного расстояния данным способом необходимо:

1. Получить четкое уменьшенное или
увеличенное изображение предмета.

2. Измерить при
помощи линейки высоту линейки, высоту предмета и высоту изображения (высота
предмета считается известной
h=2.5 см).

3. Измерить расстояние
от предмета до линзы.

4. Полученные
результаты подставить в формулу и найти величину фокусного расстояния.

5. Измерения
повторить не менее 3 раз и результаты занести в таблицу 2.

6. Определить
погрешность нахождения данным способом.

                                                                         
                                                         Таблица 2

H , м

 h , м

a , м

  f

     fср

   Df

Способ Бесселя

Данный способ
основан на том, что при расстоянии между предметом и экраном, превышающим 4F, одна и та же собирающая линза может давать как
увеличенное, так и уменьшенное изображение предмета. Поясним это, исходя из
формулы тонкой линзы:

.                                              
(5)

,                                                   
(6)

где L – расстояние от предмета до экрана.

Выразим из (6) b и подставим полученное выражение в
формулу тонкой линзы:

.                                       (7)

После
преобразования получаем квадратное уравнение:

.                                       (8)

Исходя из решения
данного квадратного уравнения, получаем:

.                                    (9)

Если расстояние
между двумя положениями линзы обозначить через k, то получим:

.                        (10)

.                                     (11)

Таким образом, в способе Бесселя
достаточно измерить расстояние между предметом и экраном и расстояние между
двумя положениями линзы, при которых она дает четкие изображения. Порядок
измерения в этом случае следующий:

1. Получить четкое увеличенное
изображение предмета и отметить положение линзы  при помощи карандаша.

2. Получить четкое уменьшенное
изображение предмета и отметить положение линзы  при помощи карандаша

3. Измерить расстояние между этими
двумя этими положениями линзы.

4. Измерить расстояние между
предметом и экраном.

5. Вычислить фокусное расстояние.

6. Определить погрешность.

7. Полученные
результаты занести в таблицу 3.

                                                                                      
                 
Таблица 3

L , м

k, м

f

fср

Df

Определение фокусного
расстояния рассеивающей линзы

Для того чтобы
определить фокусное расстояние рассеивающей линзы, нужно взять  собирающую
линзу с  известным фокусным  расстоянием,  оптическая сила которой больше по
модулю, чем у рассеивающей линзы. Далее эти линзы сдвигаются вплотную друг с
другом. Оптическая сила такой системы складывается из оптических сил каждой из
линз:

,                                            
(12)

или

.                                                 
(13)

Здесь f, f1 и f2 – соответственно фокусные
расстояния системы первой и второй линзы. Таким образом, оптическая система из
двух таких линз является собирающей, и ее фокусное расстояние можно определить
как для обычной тонкой собирающей линзы, а затем из формулы (13) найти фокусное
расстояние рассеивающей линзы.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какие линзы называются
тонкими?

2. Дайте
определения главных фокусов.

3.
Что такое оптическая сила линзы?

4.
Может ли двояковыпуклая линза иметь отрицательную оптическую силу?

5. Покажите, что
если расстояние между предметом и экраном превышает 4
F, то изображение на экране может быть
получено при двух различных положениях линзы. Что будет, если это расстояние
будет 4
F?

8. В каких случаях получаются
действительные изображения, а в каких -мнимые? Чем действительное изображение
отличается от мнимого? При каких условиях изображение переносится в
бесконечность?

9. Что произойдет
с изображением, если половина линзы закрыта непрозрачным экраном?

10. Как построить
изображение точки, лежащей на главной оптической оси?

11. Постройте
график зависимости координаты точки изображения от координаты точечного
источника для тонкой собирающей (рассеивающей) линзы.

12. Восстановите падающий луч по
известному преломленному лучу.

13. Покажите
построением, что все лучи, исходящие из произвольной точки объекта,
находящегося в фокальной плоскости лупы, будут при выходе из лупы параллельны
друг другу.

14. Покажите
построением, что два произвольных параллельных луча, входящих в систему из двух
линз, расположенных так, что задний фокус первой линзы совпадает с передним
фокусом второй линзы, на выходе системы также будут параллельны.

Добавить комментарий