Как найти отношение градусных мер углов

Градусная мера угла

Нам известно, что при измерении отрезков, мы сравниваем измеряемый отрезок с отрезком, который принят за единицу измерения. Аналогично происходит измерение углов: чтобы измерить угол его сравнивают с углом, который принят за единицу измеренияс градусом.

Градус – это угол, который равен части развернутого угла,обозначается знаком

часть градуса называется минутой , обозначается знаком

часть минуты называется секундой , обозначается знаком

Пример: (двадцать градусов пятнадцать минут сорок семь секунд)

Градусная мера угла – это положительное число, которое показывает, сколько раз градус и его части укладываются в данном угле.

Пример:

Градусная мера угла ABC равна . Говорят: “Угол ABC равен 120 градусам”. Пишут: .

Транспортир – это измерительный инструмент, который используется для измерения и построения углов. Состоит из линейки (прямолинейной шкалы) и полукруга (угломерной шкалы: внутренней и внешней), который разделен на градусы от 0 до .

Для того чтобы измерить угол, необходимо совместить вершину угла с центром транспортира, при этом одна из сторон угла должна пройти через нулевое деление шкалы, тогда вторая сторона угла укажет градусную меру угла.

Пример: Измерим угол ABC, для этого совместим точку B с центром транспортира, и расположим транспортир так, чтобы сторона BC прошла через нулевое деление шкалы (обратите внимание отсчёт угла ведётся по той шкале, через нулевое деление которой пройдет одна из сторон угла: в нашем случае по внутренней шкале).

Вторая сторона при этом, как мы видим, проходит через деление шкалы 120, значит: .

Свойства:

Основные типы углов:

  1. Острый угол – угол, градусная мера которого меньше 90 ° .

  1. Прямой угол – угол, градусная мера которого равна 90 ° .

  1. Тупой угол – угол, градусная мера которого больше 90 °, но меньше 180 ° .

  1. Развернутый угол – угол, градусная мера которого равна 180 °.

Поделись с друзьями в социальных сетях:

Как найти градусную меру угла если прямые параллельны

§ 15. Свойства параллельных прямых

(обратная теореме 14.1)

Если две параллельные прямые пересечены секущей, то углы, образующие пару накрест лежащих углов, равны.

На рисунке 224 прямые a и b параллельны, прямая c — секущая. Докажем, что ∠ 1 = ∠ 2.

Пусть ∠ 1 ≠ ∠ 2. Тогда через точку K проведём прямую a 1 так, чтобы ∠ 3 = ∠ 2 (рис. 224). Углы 3 и 2 являются накрест лежащими при прямых a 1 и b и секущей c . Тогда по теореме 14.1 a 1 ‖ b . Получили, что через точку K проходят две прямые, параллельные прямой b . Это противоречит аксиоме параллельности прямых. Таким образом, наше предположение неверно, и, следовательно, ∠ 1 = ∠ 2.

(обратная теореме 14.3)

Если две параллельные прямые пересечены секущей, то углы, образующие пару соответственных углов, равны.

На рисунке 225 прямые a и b параллельны, прямая c — секущая. Докажем, что ∠ 1 = ∠ 2.

По теореме 15.1 углы 3 и 2 равны как накрест лежащие при параллельных прямых a и b и секущей c . Но углы 3 и 1 равны как вертикальные. Следовательно, ∠ 1 = ∠ 2.

(обратная теореме 14.2)

Если две параллельные прямые пересечены секущей, то сумма углов, образующих пару односторонних углов, равна 180° .

На рисунке 226 прямые a и b параллельны, прямая c — секущая. Докажем, что ∠ 1 + ∠ 2 = 180°.

По теореме 15.1 углы 3 и 2 равны как накрест лежащие при параллельных прямых a и b и секущей c . Но углы 3 и 1 смежные, поэтому ∠ 1 + ∠ 3 = 180°. Следовательно, ∠ 1 + ∠ 2 = 180°.

Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой ( рис. 227 ).

Докажите это следствие самостоятельно.

Задача. Докажите, что все точки одной из двух параллельных прямых равноудалены от другой прямой.

Решение. Пусть прямые a и b параллельны (рис. 228), M и N — две произвольные точки прямой a . Опустим из них перпендикуляры MK и NP на прямую b . Докажем, что MK = NP .

Рассмотрим треугольники MKN и PNK . Отрезок KN — их общая сторона. Так как MK ⊥ b и NP ⊥ b , то MK ‖ NP , а углы MKN и PNK равны как накрест лежащие при параллельных прямых MK и NP и секущей KN .

Аналогично углы MNK и PKN равны как накрест лежащие при параллельных прямых MN и KP и секущей KN . Следовательно, треугольники MKN и PNK равны по стороне и двум прилежащим углам.

Тогда MK = NP .

Расстоянием между двумя параллельными прямыми называют расстояние от любой точки одной из прямых до другой прямой.

Например, на рисунке 228 длина отрезка MK — это расстояние между параллельными прямыми a и b .

Задача. На рисунке 229 отрезок AK — биссектриса треугольника ABC , MK ‖ AC . Докажите, что треугольник AMK — равнобедренный.

Решение. Так как AK — биссектриса треугольника ABC , то ∠ MAK = ∠ KAC .

Углы KAC и MKA равны как накрест лежащие при параллельных прямых MK и AC и секущей AK . Следовательно, ∠ MAK = ∠ MKA .

Тогда треугольник AMK — равнобедренный.

  1. Каким свойством обладают накрест лежащие углы, образованные при пересечении двух параллельных прямых секущей?
  2. Каким свойством обладают соответственные углы, образованные при пересечении двух параллельных прямых секущей?
  3. Чему равна сумма односторонних углов, образованных при пересечении двух параллельных прямых секущей?
  4. Известно, что прямая перпендикулярна одной из двух параллельных прямых. Обязательно ли она перпендикулярна другой прямой?
  5. Что называют расстоянием между двумя параллельными прямыми?

326. На рисунке 230 найдите угол 1.

327. На рисунке 231 найдите угол 2.

328. Разность односторонних углов, образованных при пересечении двух параллельных прямых секущей, равна 50°. Найдите эти углы.

329. Один из односторонних углов, образованных при пересечении двух параллельных прямых секущей, в 4 раза больше другого. Найдите эти углы.

330. Найдите все углы, образованные при пересечении двух параллельных прямых секущей, если:

1) один из этих углов равен 48°;

2) отношение градусных мер двух из этих углов равно 2 : 7.

331. Найдите все углы, образованные при пересечении двух параллельных прямых секущей, если один из них на 24° меньше другого.

332. На рисунке 232 m ‖ n , p ‖ k , ∠1 = 50°. Найдите ∠ 2, ∠ 3 и ∠ 4.

333. Прямая, параллельная основанию AC равнобедренного треугольника ABC , пересекает его боковые стороны AB и BC в точках D и F соответственно. Докажите, что треугольник DBF — равнобедренный.

334. На продолжениях сторон AC и BC треугольника ABC ( AB = BC ) за точки A и B отметили соответственно точки P и K так, что PK ‖ AB . Докажите, что треугольник KPC — равнобедренный.

335. Отрезки AB и CD пересекаются в точке O , AO = BO , AC ‖ BD . Докажите, что CO = DO .

336. Отрезки MK и DE пересекаются в точке F , DK ‖ ME , DK = ME . Докажите, что ∆ MEF = ∆ DKF .

337. Ответьте на вопросы.

1) Могут ли оба односторонних угла при двух параллельных прямых и секущей быть тупыми?

2) Может ли сумма накрест лежащих углов при двух параллельных прямых и секущей быть равной 180°?

3) Могут ли быть равными односторонние углы при двух параллельных прямых и секущей?

338. На рисунке 233 AB ‖ CD , BC ‖ AD . Докажите, что BC = AD .

339. На рисунке 233 BC = AD , BC ‖ AD . Докажите, что AB ‖ CD .

340. На рисунке 234 MK ‖ EF , ME = EF , ∠ KMF = 70°. Найдите ∠ MEF .

341. Через вершину B треугольника ABC (рис. 235) провели прямую MK , параллельную прямой AC , ∠ MBA = 42°, ∠ CBK = 56°. Найдите углы треугольника ABC .

342. Прямая, проведённая через вершину A треугольника ABC параллельно его противолежащей стороне, образует со стороной AC угол, равный углу BAC . Докажите, что данный треугольник — равнобедренный.

343. На рисунке 236 ∠ MAB = 50°, ∠ ABK = 130°, ∠ ACB = 40°, CE — биссектриса угла ACD . Найдите углы треугольника ACE .

344. На рисунке 237 BE ⊥ AK , CF ⊥ AK , CK — биссектриса угла FCD , ∠ ABE = 32°. Найдите ∠ ACK .

345. На рисунке 238 BC ‖ MK , BK = KE , CK = KD . Докажите, что AD ‖ MK .

346. На рисунке 239 AB = AC , AF = FE , AB ‖ EF . Докажите, что AE ⊥ BC .

347. Треугольник ABC — равнобедренный с основанием AC . Через произвольную точку M его биссектрисы BD проведены прямые, параллельные его сторонам AB и BC и пересекающие отрезок AC в точках E и F соответственно. Докажите, что DE = DF .

348. На рисунке 240 AB ‖ DE . Докажите, что ∠ BCD = ∠ ABC + ∠ CDE .

349. На рисунке 241 AB ‖ DE , ∠ ABC = 120°, ∠ CDE = 150°. Докажите, что BC ⊥ CD .

350. Через вершину B треугольника ABC провели прямую, параллельную его биссектрисе AM . Эта прямая пересекает прямую AC в точке K . Докажите, что ∆ BAK — равнобедренный.

351. Через точку O пересечения биссектрис AE и CF треугольника ABC провели прямую, параллельную прямой AC . Эта прямая пересекает сторону AB в точке M , а сторону BC — в точке K . Докажите, что MK = AM + CK .

352. Биссектрисы углов BAC и BCA треугольника ABC пересекаются в точке O . Через эту точку проведены прямые, параллельные прямым AB и BC и пересекающие сторону AC в точках M и K соответственно. Докажите, что периметр треугольника MOK равен длине стороны AC .

Упражнения для повторения

353. На отрезке AB отметили точку C так, что AC : BC = 2 : 1. На отрезке AC отметили точку D так, что AD : CD = 3 : 2. В каком отношении точка D делит отрезок AB ?

354. Отрезки AC и BD пересекаются в точке O , AB = BC = CD = AD . Докажите, что AC ⊥ BD .

355. В треугольнике MOE на стороне MO отметили точку A , в треугольнике TPK на стороне TP — точку B так, что MA = TB . Какова градусная мера угла BKP , если MO = TP , ∠ M = ∠ T , ∠ O = ∠ P , ∠ AEO = 17°?

Наблюдайте, рисуйте, конструируйте, фантазируйте

356. На рисунке 242 изображена очень сложная замкнутая ломаная. Она ограничивает некоторую часть плоскости (многоугольник). Как, отметив на рисунке любую точку, по возможности быстрее определить, принадлежит эта точка многоугольнику или нет?

Параллельные прямые – определение и вычисление с примерами решения

Содержание:

Параллельные прямые:

Ранее мы уже дали определение параллельных прямых.

Напомним, что две прямые на плоскости называются параллельными, если они не пересекаются.

Например, если две прямые a и b плоскости перпендикулярны прямой c этой плоскости, то они не пересекаются, т. е. параллельны (рис. 85, а). Этот факт нами был доказан как следствие из теоремы о существовании и единственности перпендикуляра, проведенного из точки к данной прямой.

Два отрезка называются параллельными, если они лежат на параллельных прямых.

Отрезок называется параллельным прямой, если он лежит на прямой, параллельной данной прямой.

Например, на рисунке 85, B изображены параллельные отрезки АВ и СD (параллельность отрезков АВ и СD обозначается следующим образом: АВ ). Отрезки ЕF и АВ не параллельны (это обозначается так: ЕF

Аналогично определяется параллельность двух лучей, отрезка и прямой, луча и прямой, а также отрезка и луча. Например, на рисунке 85, в изображены отрезок PQ, параллельный прямой l, и отрезок ТК, параллельный лучу СD.

Определения параллельных прямых

На рисунке 10 прямые имеют общую точку М. Точка А принадлежит прямой , но не принадлежит прямой . Говорят, что прямые пересекаются в точке М.

Это можно записать так: — знак принадлежности точки прямой, «» — знак пересечения геометрических фигур.

На плоскости две прямые могут либо пересекаться, либо не пересекаться. Прямые на плоскости, которые не пересекаются, называются параллельными. Если прямые параллельны (рис. 11, с. 11), то пишут

Две прямые, которые при пересечении образуют прямой угол, называются перпендикулярными прямыми. Если прямые перпендикулярны (рис. 12), то пишут

ВАЖНО!

Совпадающие прямые будем считать одной прямой. Поэтому, если сказано «даны две прямые», это означает, что даны две различные несовпадающие прямые. Это касается также точек, лучей, отрезков и других фигур.

Есть два способа практического сравнения длин отрезков, а также величин углов: 1) наложение; 2) сравнение результатов измерения. Оба способа являются приближенными. В геометрии отрезки и углы могут быть равны, если это дано по условию либо следует из условия на основании логических рассуждений.

Признаки параллельности двух прямых

Прямая c называется секущей по отношению к прямым a и b, если она пересекает каждую из них в различных точках.

При пересечении прямых а и b секущей с образуется восемь углов, которые на рисунке 86, а обозначены цифрами. Некоторые пары этих углов имеют специальное название:

  1. углы 3 и 5, 4 и 6 называются внутренними накрест лежащими;
  2. углы 4 и 5, 3 и 6 называются внутренними односторонними;
  3. углы 1 и 5, 4 и 8, 2 и 6, 3 и 7 называются соответственными.

Рассмотрим признаки параллельности двух прямых.

Теорема 1 (признак параллельности прямых по равенству внутренних накрест лежащих углов). Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.

  1. Пусть при пересечении прямых а и b секущей АВ внутренние накрест лежащие углы 1 и 2 равны (рис. 86, б). Докажем, что аb.
  2. Если 1 = 2 = 90°, то а АВ и b АВ. Отсюда в силу теоремы 1 (глава 3, § 2) следует, что аb.
  3. Если 1 = 290°, то из середины О отрезка АВ проведем отрезок ОF a.
  4. На прямой b отложим отрезок ВF1 = АF и проведем отрезок ОF1.
  5. Заметим, что ОFА = ОF1В по двум сторонам и углу между ними (АО = ВО, АF= BF1 и 1 = 2). Из равенства этих треугольников следует, что З = 4 и 5 = 6.
  6. Так как 3 = 4, а точки А, В и О лежат на одной прямой, то точки F1, F и О также лежат на одной прямой.
  7. Из равенства 5 = 6 следует, что 6 = 90°. Получаем, что а FF1 и b FF1, а аb.

Например, пусть прямая l проходит через точку F, принадлежащую стороне АС треугольника АВС, так, что 1 равен углу ВАС. Тогда сторона АВ параллельна прямой l, так как по теореме 1 данного параграфа прямые АВ и l параллельны (рис. 86, в).

Теорема 2 (признак параллельности прямых по равенству соответственных углов). Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

1) Пусть при пересечении прямых а и b секущей с соответственные углы равны, например 1 = 2. Докажем, что прямые a и b параллельны (рис. 87, а).


2) Заметим, что 2 = 3 как вертикальные углы.

3) Из равенств 1 = 2 и 2 = 3 следует, что 1 = 3. А поскольку углы 1 и 3 являются внутренними накрест лежащими углами, образованными при пересечении прямых a и b секущей с, то в силу теоремы 1 получаем, что аb.

Например, пусть прямая l пересекает стороны AB и АС треугольника ABC в точках О и F соответственно и AOF = ABC. Тогда сторона ВС параллельна прямой l, так как по теореме 2 прямые l и ВС параллельны (рис. 87, б).

Теорема 3 (признак параллельности прямых по сумме градусных мер внутренних односторонних углов). Если, при пересечении двух прямых секущей сумма градусных мер внутренних односторонних углов равна 180°, то прямые параллельны.

  1. Пусть при пересечении двух прямых а и b секущей с сумма градусных мер внутренних односторонних углов равна 180°, например 1 + 2 = 180° (рис. 87, в).
  2. Заметим, что 3 + 2 = 180°, так как углы 3 и 2 являются смежными.
  3. Из равенств l + 2 = 180° и 3 + 2 = 180° следует, что 1 = 3.
  4. Поскольку равны внутренние накрест лежащие углы 1 и 3, то прямые а и b параллельны.

Аксиома параллельных прямых

Как уже отмечалось, при доказательстве теорем опираются на уже доказанные теоремы и некоторые исходные утверждения, которые называются аксиомами. Познакомимся еще с одной аксиомой, имеющей важное значение для дальнейшего построения геометрии.

Пусть в плоскости дана прямая а и не лежащая на ней произвольная точка О. Можно доказать, что через точку О в этой плоскости проходит прямая, параллельная прямой а. Действительно, проведем через точку О прямую с, перпендикулярную прямой a, затем прямую b, перпендикулярную прямой с. Так как прямые а и b перпендикулярны прямой с, то они не пересекаются, т. е. параллельны (рис. 92). Следовательно, через точку O a проходит прямая b, параллельная прямой а. Возникает вопрос: сколько можно провести через точку О прямых, параллельных прямой а? Ответ на него не является очевидным. Оказывается, что утверждение о единственности прямой, проходящей через данную точку и параллельной прямой, не может быть доказано на основании остальных аксиом Евклида и само является аксиомой.

Большой вклад в решение этого вопроса внес русский математик Н. И. Лобачевский (1792—1856).

Таким образом, в качестве одной из аксиом принимается аксиома параллельных прямых, которая формулируется следующим образом.

Аксиома параллельных прямых. Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Непосредственно из аксиомы параллельны х прямых в качестве следствий получаем следующие теоремы.

Теорема 1. Если две прямые параллельны третьей прямой, то они параллельны.

Пусть прямые а и b параллельны прямой с. Докажем, что аb (рис. 93, а). Проведем доказательство этой теоремы методом от противного. Предположим, что верно утверждение, противоположное утверждению теоремы, т. е. допустим, что прямые а и b не параллельны, а, значит, пересекаются в некоторой точке О. Тогда через точку О проходят две прямые а и b, параллельные прямой с, что противоречит аксиоме параллельных прямых. Таким образом, наше предположение неверно, а, следовательно, прямые а и b параллельны.

Например, пусть прямые а и b пересекают сторону треугольника FDС так, что 1 = F и 2 = F (рис. 93, б). Тогда прямые а и b параллельны прямой FD, а, следовательно, аb.

Теорема 2. Пусть три прямые лежат в плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и другую прямую.

Пусть прямые а и b параллельны, а прямая с пересекает прямую а в точке О (рис. 94, а). Докажем, что прямая с пересекает прямую b. Проведем доказательство методом от противного. Допустим, что прямая с не пересекает прямую b. Тогда через точку О проходят две прямые а и с, не пересекающие прямую b, т. е. параллельные ей (рис. 94, б). Но это противоречит аксиоме параллельных прямых. Следовательно, наше предположение неверно и прямая с пересекает прямую b.

Обратные теоремы

В формулировке любой теоремы можно выделить две ее части: условие и заключение. Условие теоремы — это то, что дано, а заключение — то, что требуется доказать. Например, рассмотрим признак параллельности прямых: если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны. В этой теореме условием является первая часть утверждения: при пересечении двух прямых секущей внутренние накрест лежащие углы равны (это дано), а заключением — вторая часть: прямые параллельны (это требуется доказать).

Теоремой, обратной данной, называется такая теорема, в которой условием является заключение данной теоремы, а заключением — условие данной теоремы.

Теперь докажем теоремы, обратные признакам параллельности прямых.

Теорема 3 (о равенстве внутренних накрест лежащих углов). Если две параллельные прямые пересечены секущей, то внутренние накрест лежащие углы равны.

1) Пусть параллельные прямые а и b пересечены секущей (рис. 95, а). Докажем, что внутренние накрест лежащие углы, например 1 и 2, равны.

2) Доказательство теоремы проведем методом от противного. Допустим, что углы 1 и 2 не равны. Отложим угол QАВ, равный углу 2, так, чтобы угол QАВ и 2 были внутренними накрест лежащими при пересечении прямых AQ и b секущей АВ.

3) По построению накрест лежащие углы QАВ и 2 равны, поэтому по признаку параллельности прямых следует, что AQ b. Таким образом, получаем, что через точку А проходят две прямые AQ и а, параллельные прямой b, а это противоречит аксиоме параллельных прямых. Следовательно, наше предположение неверно, а, значит, 1 = 2.

Например, пусть прямая l параллельна стороне ВС треугольника АВС (рис. 95, б). Тогда 3 = B как внутренние накрест лежащие углы, образованные при пересечении параллельных прямых l и ВС секущей АВ.

Теорема 4 (о равенстве соответственных углов). Если две параллельные прямые пересечены секущей, то соответственные углы равны.

  1. Пусть параллельные прямые а и b пересечены секущей с. Докажем, что соответственные углы, например 1 и 2, равны (рис. 96, а).
  2. Так как прямые а и b параллельны, то по теореме 3 данного параграфа накрест лежащие углы 1 и 3 равны, т. е. 1 = 3. Кроме того, 2 = 3, так как они вертикальные.
  3. Из равенств 1 = 3 и 2 = 3 следует, что 1 = 2.

Например, пусть прямая l параллельна биссектрисе AF треугольника ABC (рис. 96, б), тогда 4 = BAF. Действительно, 4 и FAC равны как соответственные углы, a FAC = BAF, так как AF — биссектриса.

Теорема 5 (о свойстве внутренних односторонних углов). Если две параллельные прямые пересечены секущей, то сумма градусных мер внутренних односторонних углов равна 180°.

1) Пусть параллельные прямые а и b пересечены секущей с. Докажем, например, что 1 + 2 = 180° (рис. 97, а).

2) Так как прямые а и b параллельны, то по теореме 4 справедливо равенство 1 = 3.

3) Углы 2 и 3 смежные, следовательно, 2 + 3= 180°.

4) Из равенств = 3 и 2 + 3 = 180° следует, что 1 + 2 = 180°.

Например, пусть отрезок FT параллелен стороне АВ треугольника ABC (рис. 97, б). Тогда BAF + TFA = 180°.

Заметим, если доказана какая-либо теорема, то отсюда еще не следует, что обратная теорема верна. Например, известно, что вертикальные углы равны, но если углы равны, то отсюда не вытекает, что они являются вертикальными.

Пример №1

Докажите, что если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой прямой.

1) Пусть прямые а и b параллельны и са (рис. 98).

2) Так как прямая с пересекает прямую а, то она пересекает и прямую b.

3) При пересечении параллельных прямых а и b секущей с образуются равные внутренние накрест лежащие углы 1 и 2.

Так как 1 = 90°, то и 2 = 1 = 90°, а, значит, сb.

Что и требовалось доказать.

Параллельность прямых на плоскости

Параллельность прямых — одно из основных понятий геометрии. Параллельность часто встречается в жизни. Посмотрев вокруг, можно убедиться, что мы живем в мире параллельных линий. Это края парты, столбы вдоль дороги, полоски «зебры» на пешеходном переходе.

Две прямые, перпендикулярные третьей

Определение. Две прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.

Лучи и отрезки называются параллельными, если они лежат на параллельных прямых. Если прямые и параллельны, то есть (рис. 160), то параллельны отрезки АВ и МК, отрезок МК и прямая , лучи АВ и КМ.

Вы уже знаете теорему о параллельных прямых на плоскости: «Две прямые, перпендикулярные третьей, параллельны между собой». Другими словами, если , , то (рис. 161).

Данная теорема позволяет решить две важные практические задачи.

Первая задача заключается в проведении нескольких параллельных прямых.

Пусть дана прямая (рис. 162). При помощи чертежного треугольника строят прямую , перпендикулярную прямой . Затем сдвигают треугольник вдоль прямой и строят другую перпендикулярную прямую , затем — третью прямую и т. д. Поскольку прямые , , перпендикулярны одной прямой , то из указанной теоремы следует, что || , || , || .

Вторая задача — проведение прямой, параллельной данной и проходящей через точку, не лежащую на данной прямой.

По рисунку 163 объясните процесс проведения прямой , параллельной прямой и проходящей через точку К.

Из построения следует: так как и , то || . Решение второй задачи доказывает теорему о существовании прямой, параллельной данной, которая гласит:

Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной.

Накрест лежащие, соответственные и односторонние углы

При пересечении двух прямых и третьей прямой , которая называется секущей, образуется 8 углов (рис. 164).

Некоторые пары этих углов имеют специальные названия:

На рисунке 165 отмечены углы 1 и 2. Они являются внутренними накрест лежащими углами при прямых ВС и AD и секущей BD. В этом легко убедиться, продлив отрезки ВС, AD и BD.

Признаки параллельности прямых

С указанными парами углов связаны следующие признаки параллельности прямых.

Теорема (первый признак параллельности прямых). Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.

Дано: и — данные прямые, АВ — секущая, 1 =2 (рис. 166).

Доказать: || .

Доказательство:

Из середины М отрезка АВ опустим перпендикуляр МК на прямую и продлим его до пересечения с прямой в точке N. Треугольники ВКМ и ANM равны по стороне и двум прилежащим к ней углам (АМ = МВ, 1 = 2 по условию, BMK =AMN как вертикальные). Из равенства треугольников следует, что ANM =BKM = 90°. Тогда прямые и перпендикулярны прямой NK. А так как две прямые, перпендикулярные третьей, параллельны между собой, то || .

Теорема (второй признак параллельности прямых). Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Дано: 1 =2 (рис. 167).

Доказать: || .

Доказательство:

Углы 1 и 3 равны как вертикальные. А так как углы 1 и 2 равны по условию, то углы 2 и 3 равны между собой. Но углы 2 и 3 — внутренние накрест лежащие при прямых и и секущей . А мы знаем, что если внутренние накрест лежащие углы равны, то прямые параллельны. Значит, || . Теорема доказана.

Теорема (третий признак параллельности прямых). Если при пересечении двух прямых секущей сумма внутренних односторонних углов равна 180°, то прямые параллельны.

Дано: l +2 = 180° (рис. 168).

Доказать: || .

Доказательство:

Углы 1 и 3 — смежные, поэтому их сумма равна 180°. А так как сумма углов 1 и 2 равна 180° по условию, то углы 2 и 3 равны между собой. Но углы 2 и 3 — внутренние накрест лежащие при прямых и и секущей . А мы знаем, что если внутренние накрест лежащие углы равны, то прямые параллельны. Значит, || . Теорема доказана.

Пример №2

Доказать, что если отрезки AD и ВС пересекаются и точкой пересечения делятся пополам, то прямые АВ и CD параллельны.

Доказательство:

Пусть О — точка пересечения отрезков AD и ВС (рис. 169).

Треугольники АОВ и DOC равны по двум сторонам и углу между ними (AOB = DOC как вертикальные, ВО = ОС, АО = OD по условию). Из равенства треугольников следует, что BAO=CDO. Так как эти углы — накрест лежащие при прямых АВ и CD и секущей AD, то АВ || CD по признаку параллельности прямых.

Пример №3

На биссектрисе угла ВАС взята точка К, а на стороне АС — точка D, BAK = 26°, ADK = 128°. Доказать, что отрезок KD параллелен лучу АВ.

Доказательство:

Так как АК — биссектриса угла ВАС (рис. 170), то

BAC = 2 •BAK = 2 • 26° = 52°.

Углы ADK и ВАС — внутренние односторонние при прямых KD и ВА и секущей АС. А поскольку ADK +BAC = 128° + 52° = 180°, то KD || АВ по признаку параллельности прямых.

Пример №4

Биссектриса ВС угла ABD отсекает на прямой а отрезок АС, равный отрезку АВ. Доказать, что прямые а и b параллельны (рис. 171).

Доказательство:

Так как ВС — биссектриса угла ABD, то 1=2. Так как BAC равнобедренный (АВ=АС по условию), то 1 =3 как углы при основании равнобедренного треугольника. Тогда 2 =3. Но углы 2 и 3 являются накрест лежащими при прямых и и секущей ВС. А если накрест лежащие углы равны, то прямые параллельны. Следовательно, ||.

Реальная геометрия

На рисунке 184 изображен электронный угломер — инструмент для нанесения параллельных линий на рейке или доске. Прибор состоит из двух частей, скрепленных винтом. Одна часть неподвижная, она прижимается к доске, а другая поворачивается на необходимый угол, градусная мера которого отражается на экране угломера. Зажав винт, закрепляют нужный угол. Сдвинув неподвижную часть угломера вдоль доски, наносят новую линию разметки. Так получают параллельные линии, по которым затем распиливают доску.

Аксиома параллельных прямых

Вы уже знаете, что на плоскости через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной (см. § 15). Из пятого постулата Евклида (постулат — аксиоматическое предположение) следует, что такая прямая — единственная.

На протяжении двух тысячелетий вокруг утверждения о единственности параллельной прямой разыгрывалась захватывающая и драматичная история! Со времен Древней Греции математики спорили о том, можно доказать пятый постулат Евклида или нет. То есть это теорема или аксиома?

В конце концов работы русского математика Н. И. Лобачевского (1792—1856) позволили выяснить, что доказать пятый постулат нельзя. Поэтому это утверждение является аксиомой.

Аксиома параллельных прямых. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.

Если прямая проходит через точку М и параллельна прямой (рис. 186), то любая другая прямая, проходящая через точку М, будет пересекаться с прямой в некоторой точке, пусть и достаточно удаленной.

Поиски доказательства пятого постулата Евклида привели к развитию математики и физики, к пересмотру научных представлений о геометрии Вселенной. Решая проблему пятого постулата, Лобачевский создал новую геометрию, с новыми аксиомами, теоремами, отличающуюся от геометрии Евклида, которая теперь так и называется — геометрия Лобачевского.

Вы уже знаете, что на плоскости две прямые, перпендикулярные третьей, параллельны между собой. А если две прямые параллельны третьей прямой, то что можно сказать про первые две прямые? На этот вопрос отвечает следующая теорема.

Теорема (о двух прямых, параллельных третьей). На плоскости две прямые, параллельные третьей, параллельны между собой.

Дано: ||, || (рис. 187).

Доказать: ||.

Доказательство:

Предположим, что прямые и не параллельны. Тогда они пересекаются в некоторой точке М. Поэтому через точку М будут проходить две прямые и , параллельные третьей прямой . А это противоречит аксиоме параллельных прямых. Значит, наше предположение неверно и ||. Теорема доказана.

Метод доказательства «от противного»

При доказательстве теоремы о двух прямых, параллельных третьей, мы применили метод доказательства от противного (то есть «от противоположного»). Суть его в следующем. Утверждение любой теоремы делится на условие — то, что в теореме дано, и заключение — то, что нужно доказать.

В доказанной выше теореме условие: «Каждая из двух прямых параллельна третьей прямой», а заключение: «Эти две прямые параллельны между собой».

Используя метод от противного, предполагают, что из данного условия теоремы следует утверждение, противоположное (противное) заключению теоремы. Если при сделанном предположении путем логических рассуждений приходят к какому-либо утверждению, противоречащему аксиомам или ранее доказанным теоремам, то сделанное предположение считается неверным, а верным — ему противоположное.

В доказательстве нашей теоремы мы предположили, что эти две прямые не параллельны, а пересекаются в точке. И пришли к выводу, что тогда нарушается аксиома параллельных прямых. Следовательно, наше предположение о пересечении прямых не верно, а верно ему противоположное: прямые не пересекаются, то есть параллельны.

Методом от противного ранее была доказана теорема о двух прямых, перпендикулярных третьей.

Данный метод является очень мощным логическим инструментом доказательства. Причем не только в геометрии, но и в любом аргументированном споре.

Теорема. Если на плоскости прямая пересекает одну из двух параллельных прямых, то она пересекает и другую прямую.

Пример №5

На рисунке 188 1 =2,3 =4. Доказать, что || .

Доказательство:

Так как накрест лежащие углы 1 и 2 равны, то || по признаку параллельности прямых. Так как соответственные углы 3 и 4 равны, то по признаку параллельности прямых || . Так как || и || , то || по теореме о двух прямых, параллельных третьей.

Пример №6

Доказать, что если сумма внутренних односторонних углов при двух данных прямых и секущей меньше 180°, то эти прямые пересекаются.

Доказательство:

Пусть и — данные прямые, АВ — их секущая, сумма углов 1 и 2 меньше 180° (рис. 189).

Отложим от луча АВ угол 3, который в сумме с углом 1 дает 180°. Получим прямую , которая параллельна прямой по признаку параллельности прямых. Если предположить, что прямые и не пересекаются, а, значит, параллельны, то через точку А будут проходить две прямые и , которые параллельны прямой . Это противоречит аксиоме параллельных прямых. Следовательно, прямые и пересекаются.

Свойства параллельных прямых

Вы знаете, что если две прямые пересечены секущей и накрест лежащие углы равны, то прямые параллельны. Это признак параллельности прямых. Обратное утверждение звучит так: «Если две прямые параллельны и пересечены секущей, то накрест лежащие углы равны». Это утверждение верно, и оно выражает свойство параллельных прямых. Докажем его и два других свойства для соответственных и односторонних углов.

Теорема (о свойстве накрест лежащих углов при параллельных прямых и секущей). Если две параллельные прямые пересечены секущей, то внутренние накрест лежащие углы равны.

Дано: || , АВ — секущая,1 и2 — внутренние накрест лежащие (рис. 195).

Доказать: 1 =2.

Доказательство:

Предположим, что1 2. Отложим от луча ВА угол 3, равный углу 2. Так как внутренние накрест лежащие углы 2 и 3 равны, то || по признаку параллельности прямых. Получили, что через точку В проходят две прямые и , параллельные прямой . А это невозможно по аксиоме параллельных прямых. Следовательно, наше предположение неверно и1 =2. Теорема доказана.

Теорема (о свойстве соответственных углов при параллельных прямых и секущей). Если две параллельные прямые пересечены секущей, то соответственные углы равны.

Дано: || , — секущая,1 и2 — соответственные (рис. 196).

Доказать:1 =2.

Доказательство:

Углы 1 и 3 равны как накрест лежащие при параллельных прямых и . Углы 2 и 3 равны как вертикальные. Следовательно,1 =2. Теорема доказана.

Теорема (о свойстве односторонних углов при параллельных прямых и секущей).

Если две параллельные прямые пересечены секущей, то сумма внутренних односторонних углов равна 180°.

Дано: || , — секущая,1 и2 — внутренние односторонние (рис. 197).

Доказать:l +2 = 180°.

Доказательство:

Углы 2 и 3 — смежные. По свойству смежных углов 2 +3 = 180°. По свойству параллельных прямыхl =3 как накрест лежащие. Следовательно,l +2 = 180°. Теорема доказана.

Следствие.

Прямая, перпендикулярная одной из двух параллельных прямых, перпендикулярна и другой прямой.

На рисунке 198 || и , т. е.1 = 90°. Согласно следствию , т. е.2 = 90°.

Доказанные нами теоремы о свойствах углов при двух параллельных прямых и секущей являются обратными признакам параллельности прямых.

Чтобы не путать признаки и свойства параллельных прямых, нужно помнить следующее:

  • а) если ссылаются на признак параллельности прямых, то требуется доказать параллельность некоторых прямых;
  • б) если ссылаются на свойство параллельных прямых, то параллельные прямые даны, и нужно воспользоваться каким-то их свойством.

Пример №7

Доказать, что если отрезки АВ и CD равны и параллельны, а отрезки AD и ВС пересекаются в точке О, то треугольники АОВ и DOC равны.

Доказательство:

Углы BAD и CD А равны как накрест лежащие при параллельных прямых АВ и CD и секущей AD (рис. 199).

Углы ABC и DCB равны как накрест лежащие при параллельных прямых АВ и CD и секущей ВС. Тогда АОВ =DOC по стороне и двум прилежащим к ней углам. Что и требовалось доказать.

Пример №8

Доказать, что отрезки параллельных прямых, заключенные между двумя другими пересекающими их параллельными прямыми, равны между собой.

Доказательство:

Пусть АВ || CD, ВС || AD (рис. 200).

Докажем, что АВ = CD, ВС=AD. Проведем отрезок BD. У треугольников ABD и CDB сторона BD — общая,ABD =CDB как накрест лежащие при параллельных прямых АВ и CD и секущей BD,ADB =CBD как накрест лежащие при параллельных прямых ВС и AD и секущей BD. Тогда треугольники равны по стороне и двум прилежащим к ней углам. Из равенства треугольников следует, что AB=CD, BC=AD. Что и требовалось доказать.

Геометрия 3D

Две плоскости называются параллельными, если они не имеют общих точек (не пересекаются).

Если плоскости и параллельны, то пишут: || (рис. 211).

Существует еще один вид многогранников — призмы (рис. 212). У призмы две грани (основания) — равные многоугольники, которые лежат в параллельных плоскостях, а остальные грани (боковые) — параллелограммы (задача 137).

У прямой призмы боковые грани — прямоугольники, боковые ребра перпендикулярны плоскостям оснований и равны между собой. На рисунке 212 изображены треугольная и четырехугольная прямые призмы. У них параллельны плоскости верхней и нижней граней.

Углы с соответственно параллельными и соответственно перпендикулярными сторонами

Теорема (об углах с соответственно параллельными сторонами).

Углы с соответственно параллельными сторонами или равны (если оба острые или оба тупые), или в сумме составляют 180° (если один острый, а другой тупой).

1) Острые углы 1 и 2 (рис. 213, а) — это углы с соответственно параллельными сторонами. Используя рисунок, докажите самостоятельно, что углы 1 и 2 равны.

2) Острый угол 1 и тупой угол 2 (рис. 213, б) — это углы с соответственно параллельными сторонами. Используя этот рисунок и результат пункта 1), докажите, что сумма углов 1 и 2 равна 180°.

Теорема (об углах с соответственно перпендикулярными сторонами).

Углы с соответственно перпендикулярными сторонами или равны (если оба острые или оба тупые), или в сумме составляют 180° (если один острый, а другой тупой).

Доказательство:

1) Острые углы 1 и 2 — это углы с соответственно перпендикулярными сторонами (рис. 214, а). Построим острый угол 3 в вершине угла 1, стороны которого параллельны сторонам угла 2. Стороны угла 3 перпендикулярны сторонам угла 1 (прямая, перпендикулярная одной из параллельных прямых, перпендикулярна и другой прямой). По предыдущей теореме2 =3. Поскольку угол 1 и угол 3 дополняют угол 4 до 90°, то1 =3. Значит,1 =2.

2) Острый угол 1 и тупой угол 2 — это углы с соответственно перпендикулярными сторонами (рис. 214, б). Используя этот рисунок и результат пункта 1), докажите самостоятельно, что сумма углов 1 и 2 равна 180°.

Запомнить:

  1. Признаки параллельности прямых: «Если при пересечении двух прямых секущей накрест лежащие углы равны, или соответственные углы равны, или сумма односторонних углов равна 180°, то прямые параллельны».
  2. Свойства параллельных прямых: «Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны, соответственные углы равны и сумма односторонних углов равна 180°».
  3. На плоскости две прямые, перпендикулярные третьей, параллельны между собой.
  4. На плоскости две прямые, параллельные третьей, параллельны между собой.
  5. Прямая, перпендикулярная одной из двух параллельных прямых, будет перпендикулярна и другой прямой.
  6. Углы с соответственно параллельными сторонами или равны, или в сумме составляют 180°.
  7. Углы с соответственно перпендикулярными сторонами или равны, или в сумме составляют 180°.

Расстояние между параллельными прямыми

Определение. Расстоянием между параллельными прямыми называется расстояние от точки одной из этих прямых до другой прямой.

Если || и АВ, то расстояние между прямыми и равно длине перпендикуляра АВ (рис. 284). Это расстояние будет наименьшим из всех расстояний от точки А до точек прямой . Следующая теорема гарантирует, что расстояния от всех точек одной из параллельных прямых до другой прямой равны между собой.

Теорема (о расстоянии между параллельными прямыми).

Все точки каждой из двух параллельных прямых равноудалены от другой прямой.

Дано: || , А , С , АВ, CD.

Доказать: АВ = CD (рис. 285).

Доказательство:

Проведем отрезок AD. Углы CAD и BDA равны как внутренние накрест лежащие при параллельных прямых и и секущей AD. Прямоугольные треугольники ABD и ACD равны по гипотенузе (AD — общая) и острому углу (CAD =BDA). Откуда АВ = CD. Теорема доказана.

Следствие.

Все точки, лежащие в одной полуплоскости относительно данной прямой и равноудаленные от этой прямой, лежат на прямой, параллельной данной.

Доказательство:

Пусть перпендикуляры АВ и CD к прямой равны (см. рис. 285). Прямая , проходящая через точку А параллельно прямой , будет пересекать луч DC в некоторой точке С1. По теореме о расстоянии между параллельными прямыми C1D = АВ. Но CD = AB по условию. Значит, точка С совпадает с точкой С1 и лежит на прямой , которая параллельна прямой . Утверждение доказано.

В силу того что прямая, перпендикулярная к одной из двух параллельных прямых, будет перпендикулярна и к другой прямой, перпендикуляр АВ к прямой будет перпендикуляром и к прямой (см. рис. 285). Поэтому такой перпендикуляр называют общим перпендикуляром двух параллельных прямых.

Пример №9

В четырехугольнике ABCD АВ || CD, AD || ВС, АВ = 32 см, ADC=150°. Найти расстояние между прямыми AD и ВС.

Решение:

BAD +ADC = 180° как сумма внутренних односторонних углов при параллельных прямых АВ и CD и секущей AD (рис. 286).

Тогда BAD = 180°- 150° = 30°.

Расстояние между параллельными прямыми измеряется длиной перпендикуляра, опущенного из любой точки одной из прямых на другую прямую. Опустим перпендикуляр ВН на прямую AD. В прямоугольном треугольнике АВН катет ВН лежит против угла в 30°. Поэтому он равен половине гипотенузы. Значит, ВН =АВ = 16 см.

Пример №10

Найти геометрическое место точек, равноудаленных от двух данных параллельных прямых.

Решение:

1) Пусть и — данные параллельные прямые (рис. 287), АВ — их общий перпендикуляр. Через середину К отрезка АВ проведем прямую , параллельную прямой .

Тогда || . По теореме о расстоянии между параллельными прямыми все точки прямой равноудалены от прямых и на расстояние АВ.

2) Пусть некоторая точка М (см. рис. 287) равноудалена от прямых и , то есть расстояние от точки М до прямой равно АВ. По следствию из теоремы о расстоянии между параллельными прямыми точки К и М лежат на прямой КМ, параллельной прямой . Но через точку К проходит единственная прямая , параллельная . Значит, точка М принадлежит прямой .

Таким образом, все точки прямой равноудалены от прямых и . И любая равноудаленная от них точка лежит на прямой . Прямая , проходящая через середину общего перпендикуляра прямых и , — искомое геометрическое место точек.

Геометрия 3D

Расстоянием между параллельными плоскостями называется длина перпендикуляра, опущенного из точки, принадлежащей одной из плоскостей, на другую плоскость (рис. 290). В вашем классе пол и потолок — части параллельных плоскостей. Расстояние между ними равно высоте классной комнаты.

Высотой прямой призмы называется расстояние между плоскостями оснований. Отрезок КК1 — перпендикуляр к плоскости ABC, равный ее высоте. У прямой призмы боковые ребра перпендикулярны плоскостям оснований. Поэтому высота призмы равна длине бокового ребра, то есть АА1 = КК1 (рис. 291).

Запомнить:

  1. Сумма углов треугольника равна 180°.
  2. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
  3. Катет меньше гипотенузы. Перпендикуляр меньше наклонной, проведенной из той же точки к одной прямой.
  4. Прямоугольные треугольники могут быть равны: 1) по двум катетам; 2) по катету и прилежащему острому углу; 3) по катету и противолежащему острому углу; 4) по гипотенузе и острому углу; 5) по катету и гипотенузе.
  5. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы. Если катет равен половине гипотенузы, то он лежит против угла в 30°.
  6. В треугольнике против большей стороны лежит больший угол, а против большего угла — большая сторона.
  7. В треугольнике любая сторона меньше суммы двух других его сторон (неравенство треугольника).
  8. Любая точка биссектрисы равноудалена от сторон угла. Если точка внутри угла равноудалена от сторон угла, то она лежит на биссектрисе этого угла.
  9. Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы. Если в треугольнике медиана равна половине стороны, к которой она проведена, то треугольник прямоугольный.
  10. Биссектрисы треугольника пересекаются в одной точке (2-я замечательная точка).
  11. Расстояние от любой точки одной из параллельных прямых до другой прямой есть величина постоянная.

Справочный материал по параллельным прямым

Параллельные прямые

  • ✓ Две прямые называют параллельными, если они не пересекаются.
  • ✓ Основное свойство параллельных прямых (аксиома параллельности прямых). Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
  • ✓ Две прямые, перпендикулярные третьей прямой, параллельны.
  • ✓ Если две прямые параллельны третьей прямой, то они параллельны.
  • ✓ Расстоянием между двумя параллельными прямыми называют расстояние от любой точки одной из прямых до другой прямой.

Признаки параллельности двух прямых

  • ✓ Если две прямые а и b пересечь третьей прямой с, то образуется восемь углов (рис. 246). Прямую с называют секущей прямых а и b.
  • Углы 3 и 6, 4 и 5 называют односторонними.
  • Углы 3 и 5, 4 и 6 называют накрест лежащими.
  • Углы 6 и 2, 5 и 1, 3 и 7, 4и 8 называют соответственными.

  • ✓ Если накрест лежащие углы, образующиеся при пересечении двух прямых секущей, равны, то прямые параллельны.
  • ✓ Если сумма односторонних углов, образующихся при пересечении двух прямых секущей, равна 180°, то прямые параллельны.
  • ✓ Если соответственные углы, образующиеся при пересечении двух прямых секущей, равны, то прямые параллельны.

Свойства параллельных прямых

  • ✓ Если две параллельные прямые пересекаются секущей, то:
  • • углы, образующие пару накрест лежащих углов, равны;
  • • углы, образующие пару соответственных углов, равны;
  • • сумма углов, образующих пару односторонних углов, равна 180°.
  • ✓ Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.

Перпендикулярные и параллельные прямые

Две прямые называют взаимно перпендикулярными, если они пересекаются под прямым углом.

На рисунке 264 прямые и – перпендикулярные. Две прямые на плоскости называют параллельными, если они не пересекаются.

На рисунке 265 прямые и – параллельны.

Основное свойство параллельных прямых (аксиома параллельности прямых). Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.

Углы, образованные при пересечении двух прямых секущей. Признаки и свойство параллельности прямых. Свойства углов, образованных при пересечении двух параллельных прямых секущей

Прямую с называют секущей для прямых и если она пересекает их в двух точках (рис. 266).

Пары углов 4 и 5; 3 и 6 называют внутренними односторонними; пары углов 4 и 6; 3 и 5внутренними накрест лежащими; пары углов 1 и 5; 2 и 6; 3 и 7; 4 и 8соответственными углами.

Признаки параллельности прямых:

  1. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
  2. Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.
  3. Если при пересечении двух прямых секущей сумма внутренних односторонних углов равна 180°, то прямые параллельны.
  4. Две прямые, перпендикулярные третьей, параллельны.

Свойство параллельных прямых. Две прямые, параллельные третьей прямой, параллельны друг другу.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Соотношения между сторонами и углами треугольника
  • Неравенство треугольника – определение и вычисление
  • Свойства прямоугольного треугольника
  • Расстояние между параллельными прямыми
  • Медианы, высоты и биссектрисы треугольника
  • Равнобедренный треугольник и его свойства
  • Серединный перпендикуляр к отрезку
  • Второй и третий признаки равенства треугольников

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

[spoiler title=”источники:”]

http://reader.lecta.rosuchebnik.ru/demo/8068/data/Chapter21.xhtml

http://www.evkova.org/parallelnyie-pryamyie

[/spoiler]

Соотношения между сторонами и углами треугольника:

Можно заметить, что в треугольнике длины сторон связаны с величинами противолежащих углов следующим образом: большей стороне соответствует больший противолежащий угол, а меньшей стороне — меньший. Так, в треугольнике ABC сторона АС — большая, сторона АВ — средняя, сторона ВС — меньшая, Соотношения между сторонами и углами треугольника с примерами

Соотношения между сторонами и углами треугольника с примерами

Эта гипотеза находит подтверждение в следующей теореме.

Теорема (о соотношениях между сторонами и углами в треугольнике).

В треугольнике против большей стороны лежит больший угол, а против большего угла лежит большая сторона.

Теорема состоит из двух утверждений. Докажем каждое из них.

1) В треугольнике против большей стороны лежит больший угол.

Дано: Соотношения между сторонами и углами треугольника с примерамиАВС, АВ > ВС (рис. 247).

Соотношения между сторонами и углами треугольника с примерами

Доказать: Соотношения между сторонами и углами треугольника с примерамиC >Соотношения между сторонами и углами треугольника с примерамиA.

Доказательство:

На большей стороне ВА от вершины В отложим отрезок BD, равный меньшей стороне ВС, и проведем отрезок CD. Получим равнобедренный ADBC, у которого углы при основании равны, то естьСоотношения между сторонами и углами треугольника с примерамиBDC =Соотношения между сторонами и углами треугольника с примерамиBCD. НоСоотношения между сторонами и углами треугольника с примерамиBDC — внешний для треугольника ADC, и поэтомуСоотношения между сторонами и углами треугольника с примерамиBDC большеСоотношения между сторонами и углами треугольника с примерамиA. Значит, иСоотношения между сторонами и углами треугольника с примерамиBCD большеСоотношения между сторонами и углами треугольника с примерамиA. А так какСоотношения между сторонами и углами треугольника с примерамиC большеСоотношения между сторонами и углами треугольника с примерамиBCD, тоСоотношения между сторонами и углами треугольника с примерамиC подавно большеСоотношения между сторонами и углами треугольника с примерамиA. Утверждение доказано.

2) В треугольнике против большего угла лежит большая сторона.

Дано: Соотношения между сторонами и углами треугольника с примерамиАВС, Соотношения между сторонами и углами треугольника с примерамиC >Соотношения между сторонами и углами треугольника с примерамиA (рис. 248).

Соотношения между сторонами и углами треугольника с примерами

Доказать: АВ > ВС.

Доказательство:

Применим метод доказательства от противного. ПустьСоотношения между сторонами и углами треугольника с примерамиC >Соотношения между сторонами и углами треугольника с примерамиA, а АВ < ВС. Если АВ < ВС, то по первой части теоремы Соотношения между сторонами и углами треугольника с примерамиC <Соотношения между сторонами и углами треугольника с примерамиA. Получили противоречие с условием. Если АВ = ВС, то Соотношения между сторонами и углами треугольника с примерамиАВС — равнобедренный, и тогда     Соотношения между сторонами и углами треугольника с примерамиA =Соотношения между сторонами и углами треугольника с примерамиC. Снова получили противоречие. Следовательно, АВ > ВС. Утверждение доказано.

Следствие 1.

Катет прямоугольного треугольника меньше гипотенузы.

Следствие 1 справедливо, так как катет лежит против острого угла, а гипотенуза — против прямого, который больше острого (рис. 249).

Соотношения между сторонами и углами треугольника с примерами

Определение. Если АС — перпендикуляр к прямой Соотношения между сторонами и углами треугольника с примерами, точка В принадлежит прямой а и не совпадает с точкой С, то отрезок АВ называется наклонной, проведенной из точки А к прямой Соотношения между сторонами и углами треугольника с примерами(рис. 250). Точка В называется основанием наклонной. Отрезок ВС, соединяющий основание наклонной и основание перпендикуляра, называется проекцией наклонной АВ на прямую Соотношения между сторонами и углами треугольника с примерами.

Соотношения между сторонами и углами треугольника с примерами

Следствие 2.

Если из одной точки к прямой проведены перпендикуляр и наклонная, то перпендикуляр и проекция наклонной меньше этой наклонной.

Следствие 2 справедливо, поскольку в прямоугольном треугольнике катет меньше гипотенузы.

Определение. Расстоянием от точки до прямой называется длина перпендикуляра, опущенного из точки на прямую.

Если точка лежит на прямой, то это расстояние равно нулю.

Из следствия 2 вытекает, что длина перпендикуляра, опущенного из данной точки на прямую, — это кратчайшее расстояние от данной точки до точек прямой.

На рисунке 251, а расстояние от точки М до прямой Соотношения между сторонами и углами треугольника с примерами равно длине перпендикуляра МК.

Соотношения между сторонами и углами треугольника с примерами

Расстояние от вершины А треугольника ABC до прямой ВС, содержащей противоположную сторону, равно высоте АК треугольника (рис. 251, б).

В математике за расстояние между фигурами принимается наименьшее расстояние между точками этих фигур.

Пример:

Отрезок AM — перпендикуляр к прямой Соотношения между сторонами и углами треугольника с примерами. Точки В и С лежат на прямой а по одну сторону от точки М (рис. 252). Доказать, что если СМ < ВМ, то АС <АВ.

Соотношения между сторонами и углами треугольника с примерами

Доказательство:

Так как Соотношения между сторонами и углами треугольника с примерамиАМС — прямоугольный, то Соотношения между сторонами и углами треугольника с примерамиACM — острый. Тогда смежный к немуСоотношения между сторонами и углами треугольника с примерамиACB — тупой. В треугольнике ABC угол АСВ — больший, поэтомуСоотношения между сторонами и углами треугольника с примерамиACB >Соотношения между сторонами и углами треугольника с примерамиABC. Так как в треугольнике против большего угла лежит большая сторона, то АС <АВ. Что и требовалось доказать.

Замечание. Решите данную задачу при условии, что точки В и С лежат на прямой Соотношения между сторонами и углами треугольника с примерами по разные стороны от точки М. Тогда будет доказано свойство: «Если наклонные проведены из одной точки к одной прямой, то большей проекции соответствует большая наклонная, а меньшей — меньшая».

Пример:

Дан равнобедренный прямоугольный треугольник с гипотенузой 12 см. Найти расстояние от вершины прямого угла до прямой, содержащей гипотенузу.

Решение:

Пусть в Соотношения между сторонами и углами треугольника с примерамиАВС АС=ВС, Соотношения между сторонами и углами треугольника с примерамиС=90о, АВ=12 см (рис.253). По свойству равнобедренного треугольника Соотношения между сторонами и углами треугольника с примерамиА =Соотношения между сторонами и углами треугольника с примерамиВ = 45о. Проведем высоту СК. Длина отрезка СК – искомое расстояние. В равнобедренном треугольнике АСВ высота СК, опущенная на основание АВ, будет медианой и биссектрисой.

Поэтому АК=КВ=Соотношения между сторонами и углами треугольника с примерамиАВ=6 см, Соотношения между сторонами и углами треугольника с примерамиАСК=Соотношения между сторонами и углами треугольника с примерамиСоотношения между сторонами и углами треугольника с примерамиАСВ=45о.

В прямоугольном Соотношения между сторонами и углами треугольника с примерамиАСК Соотношения между сторонами и углами треугольника с примерамиАСК=Соотношения между сторонами и углами треугольника с примерамиСАК=45о. Поэтому Соотношения между сторонами и углами треугольника с примерамиАСК – равнобедренный и СК=АК=6 см.

Ответ: 6 см.

Замечание. В дальнейшем будем пользоваться тем, что высота равнобедренного прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы.

Сумма градусных мер углов треугольника. Внешний угол треугольника

Докажем теорему о сумме градусных мер углов треугольника.

Теорема 1 (теорема о сумме градусных мер углов треугольника). Сумма градусных мер углов треугольника равна 180°.

Доказательство.

1) Пусть ABC — произвольный треугольник. Докажем, что Соотношения между сторонами и углами треугольника с примерамиA + Соотношения между сторонами и углами треугольника с примерамиB + Соотношения между сторонами и углами треугольника с примерамиC= 180°.

2) Проведем через вершину В прямую а, параллельную стороне АС (рис. 103, а).

3) Углы 1 и 4 являются внутренними накрест лежащими углами, образованными при пересечении параллельных прямых АС и а секущей AB, значит, Соотношения между сторонами и углами треугольника с примерами1= Соотношения между сторонами и углами треугольника с примерами4 (теорема 3, глава 4, § 2).

4) Углы 3 и 5 являются внутренними накрест лежащими углами, образованными при пересечении параллельных прямых АС и а секущей ВС, следовательно, Соотношения между сторонами и углами треугольника с примерами3 = Соотношения между сторонами и углами треугольника с примерами5.
Соотношения между сторонами и углами треугольника с примерами

5) Сумма градусных мер углов 4, 2 и 5 равна градусной мере развернутого угла с вершиной в точке B, т. е. Соотношения между сторонами и углами треугольника с примерами4+Соотношения между сторонами и углами треугольника с примерами2+Соотношения между сторонами и углами треугольника с примерами5= 180°. Но так как Соотношения между сторонами и углами треугольника с примерами1 = Соотношения между сторонами и углами треугольника с примерами4 и Соотношения между сторонами и углами треугольника с примерами3 = Соотношения между сторонами и углами треугольника с примерами5, то получаем: Соотношения между сторонами и углами треугольника с примерами3+Соотношения между сторонами и углами треугольника с примерами2+Соотношения между сторонами и углами треугольника с примерами1= 180°, т. е. Соотношения между сторонами и углами треугольника с примерамиA + Соотношения между сторонами и углами треугольника с примерамиB + Соотношения между сторонами и углами треугольника с примерамиC = 180°.

Теорема доказана.

Например, пусть ABC и ADC — два треугольника, имеющие общую сторону АС и лежащие в разных полуплоскостях с границей АС, тогда Соотношения между сторонами и углами треугольника с примерамиABC + Соотношения между сторонами и углами треугольника с примерамиBCD + Соотношения между сторонами и углами треугольника с примерамиCDA + Соотношения между сторонами и углами треугольника с примерамиDAB = 360° (рис. 103, б). Действительно,Соотношения между сторонами и углами треугольника с примерамиABC + Соотношения между сторонами и углами треугольника с примерамиBCD + Соотношения между сторонами и углами треугольника с примерамиCDA + Соотношения между сторонами и углами треугольника с примерамиDAB = Соотношения между сторонами и углами треугольника с примерамиABC + (Соотношения между сторонами и углами треугольника с примерамиI + Соотношения между сторонами и углами треугольника с примерами2) + Соотношения между сторонами и углами треугольника с примерамиCDA + (Соотношения между сторонами и углами треугольника с примерами3 + Соотношения между сторонами и углами треугольника с примерами4) = (Соотношения между сторонами и углами треугольника с примерамиABC + Соотношения между сторонами и углами треугольника с примерами1 + Соотношения между сторонами и углами треугольника с примерами3) + (Соотношения между сторонами и углами треугольника с примерамиCDA +Соотношения между сторонами и углами треугольника с примерами2 + Соотношения между сторонами и углами треугольника с примерами4) = 180° + 180° = 360°.

Определение. Внешним углом треугольника называется угол, смежный с каким-либо углом треугольника.

Например, Соотношения между сторонами и углами треугольника с примерами1 — внешний угол треугольника ABC, смежный с углом ВСА, a Соотношения между сторонами и углами треугольника с примерами2 — внешний угол, смежный с углом ВАС (рис. 104, а).
Соотношения между сторонами и углами треугольника с примерами

Теорема 2 (о внешнем угле треугольника). Градусная мера внешнего угла треугольника равна сумме градусных мер двух углов треугольника, не смежных с ним.

Доказательство.

1) Пусть ABC — произвольный треугольник. Докажем, например, что градусная мера внешнего угла 4 равна сумме градусных мер не смежных с ним углов 1 и 2 (рис. 104, б).

2) Так как сумма градусных мер углов 3 и 4 равна градусной мере развернутого угла, то Соотношения между сторонами и углами треугольника с примерами3 + Соотношения между сторонами и углами треугольника с примерами4 = 180°, а по теореме о сумме градусных мер углов треугольника (Соотношения между сторонами и углами треугольника с примерамиl + Соотношения между сторонами и углами треугольника с примерами2) +Соотношения между сторонами и углами треугольника с примерами3 = 180°, следовательно, Соотношения между сторонами и углами треугольника с примерами4 = Соотношения между сторонами и углами треугольника с примерами1 + Соотношения между сторонами и углами треугольника с примерами2.

Теорема доказана.

Из теоремы о сумме градусных мер углов треугольника следует, что если в треугольнике один из углов прямой или тупой, то сумма градусных мер двух других углов не больше 90°, следовательно, каждый из них острый. Отсюда вытекает, что в любом треугольнике либо все углы острые, либо два угла острые, а третий тупой или прямой.

Треугольник называется остроугольным, если все его углы острые (рис. 105, а). Треугольник называется тупоугольным, если один из его углов тупой (рис. 105, б). Треугольник называется прямоугольным, если один из его углов прямой (рис. 105, в).

Соотношения между сторонами и углами треугольника с примерами

Из определения прямоугольного треугольника и теоремы о сумме градусных мер углов треугольника следует, что сумма градусных мер острых углов прямоугольного треугольника равна 90°.

Стороны прямоугольного треугольника имеют специальное название. Сторона прямоугольного треугольника, лежащая против прямого угла, называется гипотенузой, а две другие стороны — катетами. Например, на рисунке 105, в изображен прямоугольный треугольник ABC с прямым углом С. Сторона AB этого треугольника является гипотенузой, а стороны АС и ВС — катетами.

Две модели прямоугольного треугольника получаются, если лист бумаги, имеющий форму прямоугольника, разрезать, как показано на рисунке 106, а.

Соотношения между сторонами и углами треугольника с примерами

На рисунке 106, б, в изображены прямоугольные треугольники А1AD и DCC1, которые содержатся соответственно в гранях 1D1 и DD1C1C  прямоугольного параллелепипеда.

  • Неравенство треугольника – определение и вычисление
  • Свойства прямоугольного треугольника
  • Расстояние между параллельными прямыми
  • Задачи на построение циркулем и линейкой
  • Равнобедренный треугольник и его свойства
  • Серединный перпендикуляр к отрезку
  • Второй и третий признаки равенства треугольников
  • Параллельные прямые

Треугольник

О многоугольнике с тремя сторонами

Соотношение углов и сторон в треугольнике интуитивно можно понять, если хорошо представлять эту фигуру. Речь идет о плоском объекте, который состоит всего из трех отрезков. Они расположены таким образом, что начало первого совпадает с концом последнего, то есть они пересекаются. Каждый отрезок представляет собой независимую сторону фигуры. Точка пересечения является вершиной, а соответствующий ей угол является внутренним.

Таким образом, два ключевых элемента образуют рассматриваемую фигуру:

  • вершина;
  • сторона.

И вершин, и сторон в любом треугольнике по три, поэтому его принято обозначать большими латинскими буквами, например, ABC или MNK. Малые буквы резервируют для обозначения длин сторон, например, a, b, c.

Соотношения между сторонами и углами треугольника

На первый взгляд может показаться, что рассматриваемый объект является несложным, и в нем нечего изучать. Действительно, он является самым простым по построению многоугольником, однако, он обладает большим количеством свойств, количественное и качественное знание которых требуют понимания многих теорем.

Существование фигуры

Пусть имеется три отрезка, и необходимо понять, возможно ли из них построить треугольник. Это можно сделать с помощью одного простого правила, которое можно сформулировать следующим образом: любая сторона треугольника всегда меньше суммы длин двух других.

Математика

Знание этого правила является очень важным и эффективным инструментом при решении задач. Например, из отрезков с условными длинами 1, 2 и 4 построить треугольник невозможно, а из 2, 3, 4 это сделать можно.

Помимо соотношения длин сторон существует также еще одна теорема, которая гласит, что во всяком треугольнике сумма его внутренних углов всегда равна 180 °. Благодаря знанию этой теоремы можно все рассматриваемые фигуры разделить на три типа:

  1. Остроугольные. В них все три угловые меры меньше 90 °. При этом возможны случаи взаимного их равенства, то есть каждый будет составлять 60 °. Такие треугольники называются равносторонними или правильными. Равны могут быть между собой также два угла, это будет уже равнобедренный треугольник, у которого боковые стороны имеют одинаковую длину.
  2. Тупоугольные. Поскольку сумма составляет 180 °, то по определению в рассматриваемом многоугольнике не может быть больше одного тупого угла. Тупоугольные фигуры могут иметь либо произвольный тип, когда все их отрезки различаются, либо являться равнобедренными.
  3. Прямоугольные. Это специальный тип треугольников, о котором известно многое, и который разграничивает два предыдущих типа. В них один угол равен 90 °, а два других являются острыми.

Полноты ради следует сказать о вырожденных фигурах. К ним относятся такие многоугольники, у которых тупой стремится к 180 °. Несложно представить, что в этом случае два других будут обращаться в ноль, а сумма противолежащих им сторон окажется равной длине отрезка, расположенного напротив тупого угла. На плоскости вырожденный треугольник представляет отрезок, его площадь стремится к нулю.

Важные линии

Несмотря на всю простоту построения треугольника, при решении задач могут понадобиться дополнительные отрезки. Внутри фигуры существует целая гамма типов этих отрезков, наиболее важными из них являются следующие:

Урок геометрии

  1. Медиана — делящий на две равные по площади части исходный треугольник. Отрезок проводится из вершины к середине противоположной стороны.
  2. Биссектриса. Ею называют отрезок, который на две половины делит угол при произвольной вершине.
  3. Высота. Этот элемент проводится также из вершины, но по отношению к противоположной стороне он является перпендикуляром. Таким образом, высота делит исходную фигуру на два прямоугольных геометрических объекта, которые в общем случае между собой не равны.
  4. Медиатриса — это серединный перпендикуляр, то есть он сочетает свойства медианы и высоты, однако, через вершину треугольника он может не проходить. Медиатрисами пользуются при построении описанной окружности.
  5. Средняя линия — это отрезок, который посередине пересекает две стороны треугольника. Его длина всегда будет в два раза меньше стороны фигуры, которой он параллелен. Средняя линия приводит к созданию подобной исходной фигуры, которая в два раза меньше.

Для правильных, равнобедренных и прямоугольных треугольников некоторые из названных отрезков могут совпадать друг с другом, а также со сторонами фигуры. Например, в прямоугольном треугольнике две малые стороны (катеты) также являются высотами.

Соотношение отрезков и углов

Задачи на соотношение отрезков и угловых мер в рассматриваемой фигуре могут требовать либо качественный, либо количественный ответ. В первом случае следует провести определенное доказательство, опираясь на известные аксиомы и теоремы о сторонах треугольника и их следствия. Во втором же случае следует пользоваться формулами и выражениями, которые содержат тригонометрические функции. В действительности оба типа задач связаны между собой. Так, прежде чем использовать какую-либо формулу, следует доказать возможность ее применения в конкретной ситуации.

Большие и меньшие длины

Геометрия

Основная теорема о соотношении между элементами в рассматриваемом типе многоугольников гласит, что против большего угла лежит большая сторона. Ее доказательство провести несложно, если построить треугольник, например, тупоугольный. Из тупого провести отрезок к противоположной стороне таким образом, чтобы он образовывал новый равнобедренный треугольник внутри исходного. После этого следует воспользоваться тем свойством, что внешний угол треугольника всегда больше внутреннего.

Следуя условию равенства углов в построенном равнобедренном треугольнике, легко показать, что против тупого всегда находится самый длинный отрезок.

Обратно эта теорема также справедлива, то есть против большей стороны треугольника лежит больший угол. Ее справедливость понятна каждому школьнику на интуитивном уровне, а доказательство заключается в переборе возможных трех вариантов соотношения между отрезками (больше, меньше, равно) и в привлечении уже доказанной теоремы.

Рассмотренные теоремы приводят к двум важным следствиям:

  1. Против равных сторон лежат равные углы, и наоборот. Следствие актуально для равносторонних и равнобедренных фигур.
  2. Гипотенуза в треугольнике с прямым углом является самой длинной стороной, поскольку она лежит напротив самого большого угла.

Рассмотренные теоремы и их следствия активно используются при изучении подобных фигур. Поскольку напротив равных углов двух треугольников лежат соответствующие им длины отрезков, то последние будут попарно относиться друг к другу с определенным коэффициентом подобия.

Теоремы косинусов и синусов

Количественной характеристикой соотношения сторон и углов являются знаменитые формулы, содержащие зависимость длин отрезков и угловых мер. Первая из них называется теоремой косинусов. Соответствующая формула имеет вид:

c 2 = a 2 + b 2 — 2*a*b*cos©.

Здесь величины a, b, c — это длины, C — угол напротив стороны c. Формула позволяет вычислить третью сторону по известным двум другим и углу между ними. Однако, возможности выражения шире, с его помощью можно посчитать всякий внутренний угол фигуры, если известны три ее стороны.

Соотношения между сторонами и углами треугольника математика

Следующая по счету, но не по важности теорема синусов. Ее математическое выражение записывается так:

a/sin (A) = b/sin (B) = c/sin©.

Эти равенства говорят о том, что отношение стороны к синусу противоположного ей угла является постоянной характеристикой конкретного треугольника. Зная связь двух углов и стороны или двух отрезков и одного угла можно рассчитать все остальные характеристики фигуры. Следует запомнить, что для любого рассматриваемого типа многоугольников однозначное вычисление всех его свойств требует знания минимум трех элементов (кроме трех углов).

Прямоугольный треугольник

Урок математики

Этот особый случай следует рассмотреть подробнее. Каждый школьник знает знаменитую теорему, позволяющую сравнить соответствие отрезков друг другу в этом типе фигуры. Она гласит, что сумма квадратов катетов соответствует квадрату гипотенузы, и называется пифагоровой теоремой, то есть можно записать:

c 2 = a 2 + b 2 .

Работать с прямоугольными треугольниками удобно по одной простой причине: через их геометрические параметры вводятся в математику тригонометрические функции. Последние легко использовать при вычислении сторон и углов фигуры. Например, если фигура является не только прямоугольной, но и равнобедренной, то ее катеты равны, а углы напротив них составляют по 45 °. При этом любой из катетов всегда в 2 0,5 раза меньше гипотенузы:

sin (45 °) = a/c = ½ 0,5.

Это соотношение можно получить также из теоремы Пифагора.

Другая ситуация, когда один из острых углов равен 30 °. Для лежащего напротив него катета a можно записать следующее выражение:

sin (30 °) = ½ = a/c.

Иными словами, лежащий против 30 ° катет составляет ровно половину длины гипотенузы.

Таким образом, в любом треугольнике существует прямая пропорциональность между длиной стороны и противолежащим ей углом. Для количественного решения задач по геометрии с этой фигурой следует пользоваться выражениями синусов, косинусов и теоремой Пифагора.

Геометрия

7 класс

Урок №5

Измерение углов

Перечень рассматриваемых вопросов:

  • Измерительные инструменты.
  • Градусная мера угла; биссектриса.
  • Транспортир.
  • Классификация углов.

Тезаурус:

Градус – угол, равный одной сто восьмидесятой части развернутого угла.

Градусная мера угла – положительное число, которое показывает, сколько раз градус и его части укладываются в данном углу.

Минута – 1/60 часть градуса.

Секунда – 1/60 часть минуты.

Луч – часть прямой, состоящий из всех точек, лежащих по одну сторону от заданной точки, которая является началом луча.

Угол – это геометрическая фигура, которая состоит из точки и двух лучей, исходящих из этой точки.

Стороны угла – лучи, из которых состоит угол.

Вершина угла – общее начало сторон угла.

Биссектриса – это луч, исходящий из вершины угла и делящий его на два равных угла.

Основная литература:

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.

Дополнительная литература:

  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Ранее вы уже познакомились с геометрической фигурой – уголи его составными элементами.

Сегодня мы продолжим изучать углы, познакомимся с их классификацией и будем измерять углы с помощью транспортира.

Измерение углов аналогично измерению отрезков – оно основано на сравнении, только отрезки сравнивались с отрезком, принятым за единицу измерения, а углы с углом, тоже принятым за единицу измерения.

Обычно за единицу измерения углов принимают градус.

Градус – угол, равный 1/180 части развёрнутого угла.

Положительное число, которое показывает, сколько раз градус и его части укладываются в данном углу, называется градусной мерой угла.

Для измерения углов используют транспортир. Вспомним, как проводить измерение углов с помощью транспортира.

Транспортир накладывают на угол так, чтобы вершина угла совпала с центром транспортира, а одна из сторон угла прошла через нулевое деление на шкале. Тогда другая сторона угла укажет величину угла в градусах на той же шкале.

Например:

∠О = 50°

Но обычно говорят кратко – угол О равен 50 градусам.

Если масштабныйугол не укладываетсяцелое число раз в измеряемом угле, тоединицу измерения делят ещё на части.

Определённые части градуса носят специальные названия.

Части градуса.

Минута – 1/60 часть градуса.

Обозначается «´».

Секунда – 1/60 часть минуты.

Обозначается «´´».

Например:

∠А = 40 ° 15´ 16 ´´

Далее, аналогично понятию равные отрезки, ведём понятие равные углы.

Дваугла считаются равными, если градус и его части укладываются в этих углах одинаковое число раз, т.е. равные углы имеют равные градусные меры.

Если один угол меньше другого, то градус в нём (или его часть) укладываются в этом углу меньшее число раз, чем в другом, т.е. меньший угол имеет меньшую градусную меру.

Когда луч делит угол на два угла, градусная мера всего угла равна сумме градусных мер этих углов.

∠АОС =∠АОL + ∠LОС,

∠АОL = 64°,

∠LОС = 64°,

∠АОС = 64° + 64° = 128°.

Далее рассмотрим классификацию углов.

Мы уже знаем, что есть развёрнутый угол, его градусная мера сто восемьдесят градусов.

Но есть и другие углы.

Например, прямой угол, его градусная мера девяносто градусов;

острый угол, его градусная мера меньше девяноста градусов;

тупой угол, его градусная мера больше девяноста градусов, но меньше ста восьмидесяти.

Выполним практическое задание – построим биссектрису угла с помощью транспортира.

Мы знаем, что биссектриса – это луч, исходящий из вершины угла и делящий его на два равных угла.

∠АОС = 128°,

128° : 2 = 64°,

OL – биссектриса ∠АОС.

Поэтому для начала определим градусную меру ∠АОС, она составляет 128°, тогда биссектриса этого угла, исходя из определения, составит 64 °.

Итак, сегодня получили представление о том, как измерять и изображать угол с помощью транспортира. Перейдем к практическим заданиям.

Способы измерения на местности.

Измерение углов на местности проводят с помощью различных приборов. Один из таких – астролябия, она состоит из диска (лимб), разбитого на градусы и вращающейся вокруг центра диска линейки (алидады). На концах алидады есть окошечки, которые нужны, чтобы устанавливать её в определённом направлении.

Опишем, как происходит измерение углов с помощью этого прибора. При измерении углов астролябию устанавливают в его вершине, например, точке О, при этом лимб должен находится горизонтально плоскости угла, а отвес, в центе диска, совпадать с вершиной угла.

Затем устанавливаем алидаду вдоль одной из сторон угла, например, АО, отмечаем деление, напротив которого находится указатель алидады.

Далее поворачиваем алидаду по часовой стрелке, пока она не совпадёт со второй стороной угла, у нас это сторона ОВ, отмечаем деление, напротив которого оказался указатель алидады. Теперь можно найти градусную меру измеряемого угла, как разность второго и первого измерения.

Тренировочные задания.

1. Луч ВК делит развернутый ∠ОВС на два угла, разность которых равна 56°. Найдите образовавшиеся углы.

Решение: нарисуем рисунок, исходя из условия задачи.

Обозначим ∠СВК за х, тогда ∠ОВК= х + 56°, исходя из условия задачи (разность углов равна 56°). Развёрнутый угол равен 180°. Составим уравнение и решим его.

х + х +56 =180,

2х= 180 – 56,

2х= 124,

х = 124:2,

х = 62° (∠СВК).

Тогда ∠ОВК= х + 56°= 62° +56° = 118°.

Ответ: ∠СВК = 62°; ∠ОВК = 118°.

2. Чему равен ∠ЕОА, если ∠ВОА = 130° 54´, а ∠ВОЕ = 105° 76´?

Решение: Найдём ∠ЕОА = ∠ВОА – ∠ВОЕ, т.к. ОЕ – луч, проведённый из вершины ∠ВОА и делящий этот угол на 2 части. Подставим в выражение градусные меры углов и найдём градусную меру ∠ЕОА. Так как в градусе 60 минут, то 105° 76´ = 106° 16´.

∠ЕОА = 130° 54´ – 106° 16´ = 24° 38´.

Ответ: ∠ЕОА = 24° 38´.

Добавить комментарий