Как найти отношение одной стороны к другой

Как найти отношение сторон прямоугольника?

Помоги себе сам
[5.5K]

4 года назад 

Эта задачка для семиклассника. Но мы ведь с Вами учились дольше!

Задачу решить просто даже для семиклассника. Сначала нужно произвести анализ условия и определить алгоритм достижения цели. Нужно найти соотношение сторон. Но соотношение должно быть выражено в числовых величинах. Для этого нужно узнать размеры сторон АВ и ВС. Известно количество равных прямоугольников, из которых состоит прямоугольник ABCD. Известно, что в прямоугольнике противоположные стороны равны между собой. Еще у нас есть число 7, которое будет частью ответа. Думаю, что решение понятно. Успехов! Кстати, задача решается, как говорят, в уме, числового ответа не даю, потому что нужно понять и получить знания для решения подобных задач.

в избранное

ссылка

отблагодарить

Вл50
[179K]

Ответ выдали, но на чертеже нет обозначений сторон малых прямоугольников. Поэтому обойдемся без иксов и игреков. ВС = AD
1. Находим значение АВ, AB = BC/4 + BC/3.
2. Приведем выражение к общему знаменателю, который равен 12. 12AB = 3BC + 4BC. 12AB = 7BC.
3. Теперь математика. АВ : ВС = 7 : 12.
 
—  4 года назад 

Гэнда­льф
[50.5K]

4 года назад 

Обозначим короткую сторону маленького прямоугольника “х”, а длинную его сторону “у”.

Тогда АВ = х + у, ВС = 4х, а АД = 3у.

Но так как ВС=АД, то 4х = 3у. Отсюда находим х = 3у/4.

Подставим этот икс в полученное выше уравнение АВ = х + у, получим АВ = 3у/4 + у = 7у/4.

Теперь находим соотношение искомое АВ/ВС.

АВ = 7у/4, ВС = 3у.

Поэтому соотношение будет АВ/ВС = 7у/4 / 3у.

Делим одну дробь на другую, сокращаем игреки и получаем, что соотношение равно 7/12.

комментировать

в избранное

ссылка

отблагодарить

Евген­ий трохо­в
[56.3K]

4 года назад 

Рассмотрим стороны ВС и АД .Так вот,если принять длинную сторону маленького прямоугольника за 1, то другая меньшая сторона будет равна 3/4.Теперь найдём соотношение АВ/ВС=(1+3/4)/(4*(3/­4)=7/12.Можно и по другому.У нас ВС=АД.Тогда АВ/ВС=АВ/АД=(1+(3/4)­)/3=7/12.Ответ-7/12

комментировать

в избранное

ссылка

отблагодарить

габба­с
[215K]

4 года назад 

Обозначим стороны маленького прямоугольника через х и у. Тогда АВ = х+у, ВС = 4*у. По рисунку видно, что 4*у = 3*х, то есть х = (4*у)/3. Получим АВ = (4*у)/3 +у = (7*у)/3. Значит искомое отношение АВ:ВС = (7*у)/3 : 4*у = 7/12.

Ответ: 7:12.

в избранное

ссылка

отблагодарить

Вл50
[179K]

Нужно решить без X и Y. 
—  4 года назад 

SIlm
[8.4K]

В седьмом классе не знают решение задачи подстановкой неизвестного? 
—  4 года назад 

Видно, что соотношение стороне маленьких прямоугольников составляет 3/4,

а тогда соотношение сторон большого прямоугольника составит (3+4)/(3+3+3+3), или 7/12

комментировать

в избранное

ссылка

отблагодарить

Знаете ответ?

Подобные треугольники

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

II признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Свойства подобных треугольников

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников равно коэффициенту подобия.
  • Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

2. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

Здесь вы найдете подборку задач по теме «Подобные треугольники» .

Треугольник. Формулы и свойства треугольников.

Типы треугольников

По величине углов

По числу равных сторон

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c = 2R
sin α sin β sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 – 2 bc · cos α

b 2 = a 2 + c 2 – 2 ac · cos β

c 2 = a 2 + b 2 – 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Медианы треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 – a 2

mb = 1 2 √ 2 a 2 +2 c 2 – b 2

mc = 1 2 √ 2 a 2 +2 b 2 – c 2

Биссектрисы треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p – a ) b + c

lb = 2√ acp ( p – b ) a + c

lc = 2√ abp ( p – c ) a + b

где p = a + b + c 2 – полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Высоты треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Окружность вписанная в треугольник

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b – c )( b + c – a )( c + a – b ) 4( a + b + c )

Окружность описанная вокруг треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Периметр треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

Формула Герона

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k – коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Подобные треугольники

Определение

Как правило, два треугольника считаются подобными если они имеют одинаковую форму, даже если они различаются размерами, повернуты или даже перевернуты.

Математическое представление двух подобных треугольников A1B1C1 и A2B2C2 , показанных на рисунке, записывается следующим образом:

Два треугольника являются подобными если:

1. Каждый угол одного треугольника равен соответствующему углу другого треугольника:
∠A1 = ∠A2, ∠B1 = ∠B2 и∠C1 = ∠C2

2. Отношения сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой:
$frac=frac=frac$

3. Отношения двух сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой и при этом
углы между этими сторонами равны:
$frac=frac$ и $angle A_1 = angle A_2$
или
$frac=frac$ и $angle B_1 = angle B_2$
или
$frac=frac$ и $angle C_1 = angle C_2$

Не нужно путать подобные треугольники с равными треугольниками. У равных треугольников равны соответствующие длины сторон. Поэтому для равных треугольников:

Из этого следует что все равные треугольники являются подобными. Однако не все подобные треугольники являются равными.

Несмотря на то, что вышеприведенная запись показывает, что для выяснения, являются ли два треугольника подобными или нет, нам должны быть известны величины трех углов или длины трех сторон каждого треугольника, для решения задач с подобными треугольниками достаточно знать любые три величины из указанных выше для каждого треугольника. Эти величины могут составлять различные комбинации:

1) три угла каждого треугольника (длины сторон треугольников знать не нужно).

Или хотя бы 2 угла одного треугольника должны быть равны 2-м углам другого треугольника.
Так как если 2 угла равны, то третий угол также будет равным.(Величина третьего угла составляет 180 – угол1 – угол2)

2) длины сторон каждого треугольника (углы знать не нужно);

3) длины двух сторон и угол между ними.

Далее мы рассмотрим решение некоторых задач с подобными треугольниками. Сначала мы рассмотрим задачи, которые можно решить непосредственным использованием вышеуказанных правил, а затем обсудим некоторые практические задачи, которые решаются по методу подобных треугольников.

Практические задачи с подобными треугольниками

Пример №1: Покажите, что два треугольника на рисунке внизу являются подобными.

Решение:
Так как длины сторон обоих треугольников известны, то здесь можно применить второе правило:

Пример №2: Покажите, что два данных треугольника являются подобными и определите длины сторон PQ и PR.

Решение:
∠A = ∠P и ∠B = ∠Q, ∠C = ∠R(так как ∠C = 180 – ∠A – ∠B и ∠R = 180 – ∠P – ∠Q)

Из этого следует, что треугольники ΔABC и ΔPQR подобны. Следовательно:
$frac=frac=frac$

Пример №3: Определите длину AB в данном треугольнике.

Решение:

∠ABC = ∠ADE, ∠ACB = ∠AED и ∠A общий => треугольники ΔABC и ΔADE являются подобными.

$frac = frac<3> <6>= frac = frac = frac = frac<1> <2>Rightarrow 2times AB = AB + 4 Rightarrow AB = 4$

Пример №4:Определить длину AD (x) геометрической фигуры на рисунке.

Треугольники ΔABC и ΔCDE являются подобными так как AB || DE и у них общий верхний угол C.
Мы видим, что один треугольник является масштабированной версией другого. Однако нам нужно это доказать математически.

AB || DE, CD || AC и BC || EC
∠BAC = ∠EDC и ∠ABC = ∠DEC

Исходя из вышеизложенного и учитывая наличие общего угла C, мы можем утверждать, что треугольники ΔABC и ΔCDE подобны.

Следовательно:
$frac = frac<7> <11>= frac = frac<15> Rightarrow CA = frac<15 times 11> <7>= 23.57$
x = AC – DC = 23.57 – 15 = 8.57

Практические примеры

Пример №5: На фабрике используется наклонная конвеерная лента для транспортировки продукции с уровня 1 на уровень 2, который выше уровня 1 на 3 метра, как показано на рисунке. Наклонный конвеер обслуживается с одного конца до уровня 1 и с другого конца до рабочего места, расположенного на расстоянии 8 метров от рабочей точки уровня 1.

Фабрика хочет модернизировать конвеер для доступа к новому уровню, который находится на расстоянии 9 метров над уровнем 1, и при этом сохранить угол наклона конвеера.

Определите расстояние, на котором нужно установить новый рабочий пункт для обеспечения работы конвеера на его новом конце на уровне 2. Также вычислите дополнительное расстояние, которое пройдет продукция при перемещении на новый уровень.

Решение:

Для начала давайте обозначим каждую точку пересечения определенной буквой, как показано на рисунке.

Исходя из рассуждений, приведенных выше в предыдущих примерах, мы можем сделать вывод о том, что треугольники ΔABC и ΔADE являются подобными. Следовательно,

$frac = frac<3> <9>= frac = frac<8> Rightarrow AB = frac<8 times 9> <3>= 24 м$
x = AB – 8 = 24 – 8 = 16 м

Таким образом, новый пункт должен быть установлен на расстоянии 16 метров от уже существующего пункта.

А так как конструкция состоит из прямоугольных треугольников, мы можем вычислить расстояние перемещения продукции следующим образом:

Аналогично, $AC = sqrt = sqrt <24^2 + 9^2>= 25.63 м$
что является расстоянием, которое проходит продукция в данный момент при попадании на существующий уровень.

y = AC – AE = 25.63 – 8.54 = 17.09 м
это дополнительное расстояние, которое должна пройти продукция для достижения нового уровня.

Пример №6: Стив хочет навестить своего приятеля, который недавно переехал в новый дом. Дорожная карта проезда к дому Стива и его приятеля вместе с известными Стиву расстояниями показана на рисунке. Помогите Стиву добраться к дому его приятеля наиболее коротким путем.

Решение:

Дорожную карту можно геометрически представить в следующем виде, как показано на рисунке.

Мы видим, что треугольники ΔABC и ΔCDE подобны, следовательно:
$frac = frac = frac$

В условии задачи сказано, что:

AB = 15 км, AC = 13.13 км, CD = 4.41 км и DE = 5 км

Используя эту информацию, мы можем вычислить следующие расстояния:

Стив может добраться к дому своего друга по следующим маршрутам:

A -> B -> C -> E -> G, суммарное расстояние равно 7.5+13.23+4.38+2.5=27.61 км

F -> B -> C -> D -> G, суммарное расстояние равно 7.5+13.23+4.41+2.5=27.64 км

F -> A -> C -> E -> G, суммарное расстояние равно 7.5+13.13+4.38+2.5=27.51 км

F -> A -> C -> D -> G, суммарное расстояние равно 7.5+13.13+4.41+2.5=27.54 км

Следовательно, маршрут №3 является наиболее коротким и может быть предложен Стиву.

Пример 7:
Триша хочет измерить высоту дома, но у нее нет нужных инструментов. Она заметила, что перед домом растет дерево и решила применить свою находчивость и знания геометрии, полученные в школе, для определения высоты здания. Она измерила расстояние от дерева до дома, результат составил 30 м. Затем она встала перед деревом и начала отходить назад, пока верхний край здания стал виден над верхушкой дерева. Триша отметила это место и измерила расстояние от него до дерева. Это расстояние составило 5 м.

Высота дерева равна 2.8 м, а высота уровня глаз Триши равна 1.6 м. Помогите Трише определить высоту здания.

Решение:

Геометрическое представление задачи показано на рисунке.

Сначала мы используем подобность треугольников ΔABC и ΔADE.

$frac = frac<1.6> <2.8>= frac = frac <5 + AC>Rightarrow 2.8 times AC = 1.6 times (5 + AC) = 8 + 1.6 times AC$

$(2.8 – 1.6) times AC = 8 Rightarrow AC = frac<8> <1.2>= 6.67$

Затем мы можем использовать подобность треугольников ΔACB и ΔAFG или ΔADE и ΔAFG. Давайте выберем первый вариант.

[spoiler title=”источники:”]

http://ru.onlinemschool.com/math/formula/triangle/

http://www.math10.com/ru/geometria/podobnye-treugolniki.html

[/spoiler]

Rectangles have four sides, and generally the adjacent sides are not equal. Knowing the measurements of the two sides allows you to create a ratio of the rectangle. This tells you how much bigger one side is compared to the other side. This is used in basic geometry and helps students understand properties of a rectangle. If you know the ratio of a rectangle and know the measurement of one side, you can calculate the adjacent side.

    Measure your rectangle’s sides. For example, assume your rectangle has a side of 8 inches and another of 4 inches.

    Set up a ratio where your large side is on top of the fraction and the smaller side is on the bottom of the fraction. In the example, 8 inches / 4 inches.

    Divide the ratio, then set the bottom number to one. In the example, 8 divided by 4 equals 2. So your ratio is 2 to 1.

    Tips

    • Rectangles with the same length-to-width ratios are considered similar.

Объясните как понимать отношение сторон треугольника?

sva



Ученик

(86),
закрыт



11 месяцев назад

Например в условии задачи сказанно, что нужно найти длину сторон ab и bc, если ab:bc= 3:4. что это значит?

SÁLEM)))

Мастер

(1695)


2 года назад

Это значит что аб относится к бс, как 3 относится к 4. Условно 3 части и 4 части, если аб=12, то бс = 12:3*4(части) =16

svaУченик (86)

2 года назад

спасибо, теперь ещё более непонятно стало

SÁLEM)))
Мастер
(1695)
sva, короче. Есть отношение 3:4
AB относится к BC как 3 относится к 4. Условно 3 и 4 это просто части. Вот AB, например, имеет 3 части по 2, поэтому равен 6. А вот ВС из условия это 4 части, тк 1 часть это 2 (взяли как пример), то ВС это 8

Как найти отношение сторон прямоугольника?

Эта задачка для семиклассника. Но мы ведь с Вами учились дольше!

Задачу решить просто даже для семиклассника. Сначала нужно произвести анализ условия и определить алгоритм достижения цели. Нужно найти соотношение сторон. Но соотношение должно быть выражено в числовых величинах. Для этого нужно узнать размеры сторон АВ и ВС. Известно количество равных прямоугольников, из которых состоит прямоугольник ABCD. Известно, что в прямоугольнике противоположные стороны равны между собой. Еще у нас есть число 7, которое будет частью ответа. Думаю, что решение понятно. Успехов! Кстати, задача решается, как говорят, в уме, числового ответа не даю, потому что нужно понять и получить знания для решения подобных задач.

Обозначим короткую сторону маленького прямоугольника «х», а длинную его сторону «у».

Тогда АВ = х + у, ВС = 4х, а АД = 3у.

Но так как ВС=АД, то 4х = 3у. Отсюда находим х = 3у/4.

Подставим этот икс в полученное выше уравнение АВ = х + у, получим АВ = 3у/4 + у = 7у/4.

Теперь находим соотношение искомое АВ/ВС.

АВ = 7у/4, ВС = 3у.

Поэтому соотношение будет АВ/ВС = 7у/4 / 3у.

Делим одну дробь на другую, сокращаем игреки и получаем, что соотношение равно 7/12.

Рассмотрим стороны ВС и АД .Так вот,если принять длинную сторону маленького прямоугольника за 1, то другая меньшая сторона будет равна 3/4.Теперь найдём соотношение АВ/ВС=(1+3/4)/(4*(3/­4)=7/12.Можно и по другому.У нас ВС=АД.Тогда АВ/ВС=АВ/АД=(1+(3/4)­)/3=7/12.Ответ-7/12

Обозначим стороны маленького прямоугольника через х и у. Тогда АВ = х+у, ВС = 4*у. По рисунку видно, что 4*у = 3*х, то есть х = (4*у)/3. Получим АВ = (4*у)/3 +у = (7*у)/3. Значит искомое отношение АВ:ВС = (7*у)/3 : 4*у = 7/12.

Ответ: 7:12.

Видно, что соотношение стороне маленьких прямоугольников составляет 3/4,

а тогда соотношение сторон большого прямоугольника составит (3+4)/(3+3+3+3), или 7/12

Добавить комментарий