Как найти отношение описанной окружности к вписанной

Серединным перпендикуляром называют прямую перпендикулярную отрезку и проходящую через его середину.

Окружность называется описанной около треугольника, если она проходит через три его вершины.

Окружность, описанная около прямоугольного треугольника

  • Центр описанной окружности совпадает с серединой гипотенузы.
  • Радиус равен половине гипотенузы: $$R = frac<2>$$.
  • Радиус равен медиане, проведенной к гипотенузе: $$R = m_$$.

Четырехугольник, вписанный в окружность

  • Четырехугольник можно вписать в окружность, если сумма противолежащих углов равна $$180^circ: alpha + beta + gamma +delta = 180^circ$$.
  • Если четырехугольник вписан в окружность, то суммы противолежащих углов равны $$180^circ$$.
  • Сумма произведений противолежащих сторон четырехугольника ABCD равна произведению диагоналей: $$ABcdot DC + AD cdot BC = BD cdot AC$$.
  • Площадь: $$S = sqrt<(p-a)(p-b)(p-c)(p-d)>$$, где $$p = frac<2>$$ – полупериметр четырехугольника.

Окружность, вписанная в ромб

  • В любой ромб можно вписать окружность.
  • Радиус r вписанной окружности: $$r = frac<2>$$, где h – высота ромба или $$r = frac cdot d_<2>><4a>$$, где a – сторона ромба, d1 и d2 – диагонали ромба.

Все формулы для радиуса вписанной окружности

Радиус вписанной окружности в треугольник

a , b , c – стороны треугольника

p – полупериметр, p=( a + b + c )/2

Формула радиуса вписанной окружности в треугольник ( r ):

Радиус вписанной окружности в равносторонний треугольник

a – сторона треугольника

r – радиус вписанной окружности

Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):

Радиус вписанной окружности равнобедренный треугольник

1. Формулы радиуса вписанной окружности если известны: стороны и угол

a – равные стороны равнобедренного треугольника

b – сторона ( основание)

α – угол при основании

О – центр вписанной окружности

r – радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :

2. Формулы радиуса вписанной окружности если известны: сторона и высота

a – равные стороны равнобедренного треугольника

b – сторона ( основание)

h – высота

О – центр вписанной окружности

r – радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :

Описанные и вписанные окружности – формулы, свойства и определение с примерами решения

Содержание:

Окружность, которая касается стороны треугольника и продолжений двух других его сторон, называется вневписанной окружностью треугольника. На рисунке 146 изображен треугольник АВС и три его вневписанные окружности с центрами

Вневписанные окружности обладают рядом интересных свойств:

1. Центры вписанной и вневписанной окружностей лежат на биссектрисе соответствующего внутреннего угла треугольника.

2. где — радиус вписанной окружности треугольника,

3. где R — радиус описанной окружности
Попробуйте доказать некоторые из этих свойств.

Найдем радиус вневписанной окружности треугольника АВС со сторонами а, b и с (рис. 147). Для этого проведем радиусы По свойству касательной Из подо­бия прямоугольных треугольников АОЕ и (по острому углу) следуетТак как то откуда

Пример:

Вычислим, используя данную формулу, радиус вневписанной окружности прямоугольного треугольника с катетами 3 и 4, которая касается гипотенузы:

Описанная и вписанная окружности треугольника

Определение. Окружность называется описанной около треугольника, если она проходит через все его вершины.

На рисунке 90 изображена окружность с ради­усом R и центром описанная около треугольни ка АВС.

Так как ОА = ОВ = ОС = R, то центр описанной окружности равноудален от вершин треугольника.

Вместо слов «окружность, описанная около треугольника АВС», также говорят «окружность, описанная вокруг треугольника АВС», или «описанная окружность треугольника АВС».

Теорема (об окружности, описанной около треугольника).
Около любого треугольника можно описать окружность, причем только одну, ее центр находится в точке пересечения серединных перпендикуляров к сторонам треугольника.

Рассмотрим произвольный треугольник АВС (рис. 91). Пусть О — точка пересечения серединных перпендикуляров к его сторонам. Проведем отрезки ОА, ОВ и ОС. По свойству серединного перпендикуляра ОА = ОС, ОС = ОВ. Так как точка О равноудалена от всех вершин треугольника АВС, то окружность с центром в точке О и радиусом ОА проходит через все вершины треугольника АВС, т. е. является его описанной окружностью. Единственность описанной окружности докажите самостоятельно.

Замечание. Так как все три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке, то для нахождения центра описанной окружности достаточно построить точку пересечения любых двух из них.

Определение. Окружность называется вписанной в треугольник, если она касается всех его сторон.

На рисунке 92 изображена окружность с цент­ром О и радиусом вписанная в треугольник АВС; К, М и N — точки ее касания со сторонами треугольника АВС.
Так как и по свойству касательной к окружности то центр вписанной окружности равно­удален от сторон треугольника.

Вместо слов «окружность, вписанная в треугольник АВС», также говорят «вписанная окружность треугольника АВС».

Теорема (об окружности, вписанной в треугольник).
В любой треугольник можно вписать окружность, причем только одну, ее центр находится в точке пересечения биссектрис треугольника.

Рассмотрим произвольный треугольник АВС (рис. 93). Пусть О — точка пересечения его биссектрис. Проведем из точки О перпендикуляры ОК, ОМ и ON соответственно к сторонам АВ, ВС и АС. По свойству биссектрисы угла ОК = ON, ON = ОМ. Окружность с центром в точке О и радиусом ОК будет проходить через точки К, М и N и касаться сторон АВ, ВС и АС в указанных точках по признаку касательной.

Следовательно, эта окружность является вписанной в треугольник АВС. Единственность вписанной окружности докажите самостоятельно.

Замечание. Так как все три биссектрисы треугольника пересекаются в одной точке, то для нахождения центра вписанной окружности достаточно построить точ­ку пересечения любых двух из них.

Теорема. Площадь треугольника можно найти по формуле где — полупериметр треугольника, — радиус окружности, вписанной в этот треугольник.

Пусть дан треугольник АВС со сторонами — центр его вписанной окружности (рис. 94). Соединим отрезками точ­ку О с вершинами А, В и С. Треугольник АВС разобьется на три треугольника: Радиусы проведенные в точки касания, будут высотами этих тре­угольников. Площадь треугольника АВС равна сумме площадей указанных треугольников:

Следствие:

Радиус окружности, вписанной в треугольник, можно найти по формуле

Одной из важнейших задач данной темы является задача нахождения радиуса описанной и радиуса вписанной окружностей данного треугольника.

Пример:

Найти радиус окружности, описанной около равнобедренного треугольника АВС, у которого АВ = ВС = 26 см, высота ВК = 24 см
(рис. 95).

Решение:

Способ 1 (метод подобия). Центр описанной окружности лежит на пересечении серединных перпендикуляров к сторонам треугольника. Проведем серединные перпендикуляры к сторонам АС и ВС, которые пересекутся в точке О — центре описанной окружности. Так как в равнобедренном треугольнике высота, проведенная к основанию, является медианой, то ВК — серединный перпендикуляр к стороне АС. Пусть МО — серединный перпендикуляр к стороне ВС. Тогда ВМ = 13 см, ВО = R -— иско­мый радиус. Поскольку (как прямо­угольные с общим острым углом СВК), то ,
откуда
Способ 2 (тригонометрический метод). Из (см. рис. 95) из откуда Дальнейшее решение совпадает с приведенным в способе 1.

Способ 3* (среднее пропорциональное). Продлим высоту ВК до пересечения с описанной окружностью в точке D (рис. 96). Так как центр описанной окружности равнобедренного треугольника лежит на прямой ВК (см. способ 1), то BD = 2R — диаметр данной окружности. В прямоугольном треугольнике BCD как вписанный, опирающийся на диаметр) катет ВС есть среднее пропорциональное меж­ду гипотенузой BD и проекцией ВК катета ВС на гипотенузу. Поэтому откуда
Ответ: см.
Замечание. Из решения ключевой задачи 1 следует свойство: «Центр окружно­сти, описанной около равнобедренного треугольника, лежит на его высоте, про­веденной к основанию, или на ее продолжении».

Верно и обратное утверждение: «Если центр окружности, описанной около треугольника, лежит на высоте треугольника или на ее продолжении, то этот треугольник равнобедренный».
Обратное утверждение докажите самостоятельно.

Полезно запомнить!
Если в ключевой задаче 1 боковую сторону обозначить а высоту, проведенную к основанию, — то получится пропорция .
Отсюда следует удобная формула для нахождения радиуса окруж­ности, описанной около равнобедренного треугольника:

Пример:

Найти радиус окружности, вписанной в равнобедренный тре­угольник АВС, у которого АВ = ВС = 10 см, АС = 12 см.

Решение:

Способ 1 (метод подобия). Центр вписанной окружности находится в точке пересечения биссектрис треугольника. Проведем в треугольнике АВС биссектрисы из вершин В и С, которые пересекутся в точке О — центре вписанной окружности (рис. 97). Биссектриса ВМ, проведенная к основанию равнобедренного треугольника АВС, будет его высотой и медианой, луч СО — биссектриса угла С, — искомый радиус вписанной окружности. Так как AM = МС = 6 см, то из по теореме Пифагора (см), откуда (см). Проведем радиус ОК в точку касания окружности со стороной . Из подобия прямоугольных треугольников ВКО и ВМС ( — общий) следует:. Тогда (см).
Способ 2 (тригонометрический метод). Из (см. рис. 97) , из откуда . Дальнейшее решение совпадает с приведенным в способе 1.

Способ 3 (свойство биссектрисы треугольника). СО — биссектриса . Известно, что биссектриса треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам. Поэтому ‘ откуда = 3 (см).

Способ 4 (формула ).

Из формулы площади треугольника следует:
Ответ: 3 см.

Замечание. Из решения ключевой задачи 2 следует свойство: «Центр окружности, вписанной в равнобедренный треугольник, лежит на его высоте, проведенной к основанию».

Верно и обратное утверждение: «Если центр окружности, вписанной в тре­угольник, лежит на высоте треугольника, то этот треугольник равнобедренный».

Обратное утверждение докажите самостоятельно.

Пример:

Дан равносторонний треугольник со стороной а. Найти радиус R его описанной окружности и радиус его вписанной окружности.

Решение:

Способ 1 (тригонометрический метод).Так как в равностороннем треугольнике биссектрисы являются и высотами, и медианами, то его биссектрисы лежат на серединных перпендикулярах к сторонам треугольника. Поэтому в равностороннем треугольнике центры описанной и вписанной окружностей совпадают.

Рассмотрим равносторонний треугольник АВС со стороной а, у которого высоты AM и ВК пересекаются в точке О — центре описанной и вписанной окружностей (рис. 98). Тогда ОА = OB = R — радиусы описанной, — радиусы вписанной окружности. Так как AM — бис­сектриса и Поскольку ВК — высота и медиана, то Из , откуда .
В катет ОК лежит против угла в 30°, поэтому ,

Способ 2 (свойство медиан). Поскольку AM и ВК — медианы треугольника АВС (см. рис. 98), то по свойству медиан Высоту равностороннего треугольника можно найти по формуле . Откуда

Ответ:

Полезно запомнить!

Поскольку радиус описанной окружности равностороннего треугольника то Значит, сторона равностороннего
треугольника в раз больше радиуса его описанной окружности.
Чтобы найти радиус R описанной окружности равностороннего треугольника, нужно сторону разделить на , а чтобы найти его сторону а, нужно радиус R умножить на . Радиус вписанной окружности равностороннего треугольника

Прямоугольный треугольник и его описанная и вписанная окружности

Теорема. Центр окружности, описанной около прямоугольного тре­угольника, лежит на середине гипотенузы, а ее радиус равен половине гипотенузы, т. е. где с — гипотенуза.

Проведем в прямоугольном треугольнике АВС медиану СО к гипотенузе АВ (рис. 111). Так как медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы, то ОС = ОА = ОВ.
Тогда середина гипотенузы — точка О — равноудалена от точек А, В и С и поэтому является центром описанной окружности треугольника АВС. Радиус этой окружности где с — гипотенуза.
Теорема доказана.

Замечание. Также можно доказать, что серединные перпендикуляры к катетам прямоугольного треугольника пересекаются на середине гипотенузы.

Отметим, что у остроугольного треугольника центр описанной окружности лежит внутри треугольника (рис. 112, а), у тупоугольного — вне треугольника (рис. 112, б), у прямоугольного — на середине гипотенузы (рис. 112, в). Обоснуйте первые два утверждения самостоятельно.

Теорема. Радиус окружности, вписанной в прямоугольный треугольник, можно найти по формуле , где — искомый радиус, и — катеты, — гипотенуза треугольника.

Рассмотрим прямоугольный треуголь­ник АВС с катетами и гипотенузой . Пусть вписанная в треугольник окружность с центром О и радиусом касается сторон треугольника в точках М, N и К (рис. 113).
Проведем радиусы в точки касания и получим: Четырехугольник CMON — квадрат, так как у него все углы прямые и . Тогда Так как отрезки касательных, проведенных из одной точки к окружности, равны между собой, то Но , т. е. , откуда

Следствие: где р — полупериметр треугольника.

Преобразуем формулу радиуса вписанной окружности:

Формула в сочетании с формулами и дает возможность решать многие задачи, связанные с прямоугольным треугольником, алгебраическим методом.

Пример. Дан прямоугольный треугольник, Найти .

Решение:

Так как то
Из формулы следует . По теореме Виета (обратной) — посторонний корень.
Ответ: = 2.

Пример:

Найти радиус окружности, описанной около прямоугольного треугольника, у которого один из катетов равен 6, а радиус вписанной окружности равен 2.

Решение:

Способ 1 (геометрический). Пусть в треугольнике АВС, где — радиус вписанной окружности (рис. 114). Проведем из центра О вписанной окружности перпендикуляры ОК, ОМ и ON к сторонам треугольника, которые будут радиусами вписанной окружности. Так как — квадрат, то
По свойству касательных
Тогда По теореме Пифагора

Следовательно,
Радиус описанной окружности
Способ 2 (алгебраический). Подставив в формулу значения получим По теореме Пифагора , т. е. Тогда
Ответ: 5.

Пример:

Гипотенуза прямоугольного треугольника радиус вписанной в него окружности Найти площадь треугольника.

Решение:

Способ 1 (геометрический). Пусть в гипотенуза АВ – = с = 18,0 — центр вписанной окружности, ОК, ОМ, ON — ее радиусы, проведенные в точки касания (рис. 115). Так как

, то CMON — квадрат co стороной, равной радиусу вписанной окружности, — высота . Поскольку отрезки касательных, проведенных из одной точки к окруж­ности, равны между собой, то АК = AM, ВК = BN.
Отсюда по катету и гипотенузе.
Площадь равна сумме удвоенной площади и площади квадрата CMON, т. е.

Способ 2 (алгебраический). Из формулы следует Возведем части равенства в квадрат: Так как и

Способ 3 (алгебраический). Из формулы следует, что Из формулы следует, что
Ответ: 40.

Реальная геометрия:

Есть два листа ДСП (древесно-стружечной плиты). Один из них имеет форму равностороннего треугольника со сторо­ной 1 м, другой — форму прямоугольного равнобедренного треугольника с катетами, равными 1 м (рис. 120). Из каждого листа необходимо вырезать по одному кругу наибольшего диаметра. Определите, из какого листа будет вырезан круг большего диаметра и каким в этом случае будет процент отходов, если известно, что площадь круга можно найти по формуле

Вписанные и описанные четырехугольники

Определение. Окружность называется описанной около многоуголь­ника, если она проходит через все его вершины. При этом многоугольник называется вписанным в окружность.

Окружность называется вписанной в многоугольник, если она касается всех его сторон. При этом много угольник называется описанным около окружности.
Пятиугольник ABCDE (рис. 121, а) является вписанным в окружность а четырехугольник MNPK (рис. 121, б) — описанным около окружности.

Центр описанной окружности многоугольника находится в точке пересечения серединных перпендикуляров к его сторонам, а центр вписанной — в точке пересечения биссектрис его углов.
Обоснуйте эти утверждения самостоятельно.

Теорема (свойство вписанного четырехугольника).
Сумма противоположных углов четырехугольника, вписанного в окружность, равна 180°.

Пусть ABCD — четырехугольник, вписанный в окружность (рис. 122). Его углы А, В, С и D являются вписанными в окружность. Так как вписанный угол равен половине дуги, на которую он опирается, то Дуги BCD и BAD дополняют друг друга до окружности, и поэтому сумма их градусных мер равна 360°. Отсюда

Аналогично доказывается, что 180°. Теорема доказана.

Теорема (признак вписанного четырехугольника).
Если сумма противоположных углов четырехугольника равна то около него можно описать окружность.

Рассмотрим четырехугольник ABCD, у которого (рис. 123). Через вершины А, В и D проведем окружность (около любого треугольника можно описать окружность). Если бы вершина С не лежала на данной окружности, а находилась вне ее в положении или внутри нее в положении то в первом случае угол С был бы меньше, а во втором — больше поло­вины градусной меры дуги BAD (по свойству угла между секущими и угла между пересекающимися хордами).
Тогда сумма не была бы равна 180°. Следовательно, вершина С лежит на данной окружности. Теорема доказана.

Замечание. Так как сумма углов четырехугольника равна 360°, то для того что­бы около четырехугольника можно было описать окружность, достаточно, чтобы сумма любой пары его противоположных углов была равна 180°.

Следствия.

1. Около параллелограмма можно описать окружность, только если этот параллелограмм — прямоугольник (рис. 124, а). Центр этой окружности лежит в точке пересечения диагоналей прямоугольника.

2. Около ромба можно описать окружность, только если этот ромб — квадрат (рис. 124, б).

3. Около трапеции можно описать окружность, только если она равнобедренная (рис. 124, в).

Докажите эти следствия самостоятельно.

Теорема (свойство описанного четырехугольника ).
Суммы противоположных сторон описанного четырехугольника равны между собой.

Пусть ABCD — описанный четырех­угольник, М, N, Р и К — точки касания его сторон с окружностью (рис. 125). Так как отрезки касательных, проведенных к окружности из одной точки, равны меж­ду собой, то AM = АК = а, ВМ = BN = b, СР = CN = с, DP = DK = d. Тогда

откуда AD + ВС = AB + CD.
Теорема доказана.

Следствие:

Периметр описанного четырехугольника равен удвоенной сумме длин любой пары его противоположных сторон:

Теорема (признак описанного четырехугольника).
Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Пусть для выпуклого четырехугольника ABCD справедливо, что

(1)
Проведем окружность, которая касается прямых AD, АВ и ВС (рис. 126). Такая окружность существует, ее центр находится в точке пересечения биссектрис углов А и В. Если окружность не касается стороны CD, то либо прямая CD не имеет с окружностью общих точек, либо является секущей. Рассмотрим первый случай. Проведем отрезок который касается окружности. По свойству описанного четырехугольника

(2)

Отняв почленно от равенства (1) равенство (2), получим что противоречит неравенству треугольника.
Рассмотрев случай, когда прямая DC — секущая, также придем к противоре­чию (сделайте это самостоятельно). Следовательно, данная окружность касается стороны CD и в четырехугольник ABCD можно вписать окружность. Теорема доказана.

Следствия.

1. В параллелограмм можно вписать окружность, только если этот параллелограмм — ромб. Центр этой окружности лежит в точке пересечения диагоналей ромба, а ее диаметр равен высоте ромба (рис. 127, а).

2. В прямоугольник можно вписать окружность, только если этот прямоугольник — квадрат (рис. 127, б).

3. Диаметр окружности, вписанной в трапецию, равен ее высоте (рис. 127, в).
Докажите эти следствия самостоятельно.

Для описанного многоугольника справедлива формула , где S — его площадь, р — полупериметр, — радиус вписанной окружности.

Доказательство аналогично приведенному в § 8 для треугольника. Выполните его самостоятельно, используя рисунок 128.

Пример:

Найти радиус окружности, вписанной в ромб с периметром 24 см и острым углом, равным 45°.

Решение:

Способ 1 (решение прямоугольного треугольника). Пусть ABCD — ромб (рис. 129), О — центр вписанной в ромб окружности. Известно, что высота ВК ромба равна диаметру EF вписанной окружности, т. е. Так как у ромба все стороны равны , то (см).
Из прямоугольного треугольника АВК находим. что откуда Искомый радиус вписанной окружности (см).
Способ 2 (метод площадей). Ромб — параллелограмм. По формуле площади параллелограмма найдем площадь данного ромба: С другой стороны , площадь ромба можно найти по формуле площади описанного многоугольника Поскольку (см), то Отсюда (см).

Ответ: см.

Пример:

Окружность, вписанная в прямоугольную трапецию ABCD, где делит точкой касания большую боковую сторону CD на отрезки СК = 1, KD = 4. Найти площадь трапеции (рис. 130).

Решение:

Способ 1. Площадь трапеции находится по формуле Необходимо найти сумму оснований и высоту трапеции. Проведем высоту трапеции, проходящую через центр О вписанной окружности. По свойству касательных, проведенных из одной точки к окружности, CF = СК = 1, DH = DK = 4. Проведем вы­соту СМ. Так как HFCM — прямоугольник (все углы прямые), то НМ = FC = 1, MD = 3. В прямо­угольном треугольнике CMD по теореме Пифагора Тогда По свойству описанного четырехугольника Отсюда

Способ 2*. Центр О вписанной окружности лежит на пересечении биссектрис углов и Так как как внутренние односторонние углы при и секущей CD, то (рис. 131). Тогда — прямоугольный, радиус является его высотой, проведенной к гипотенузе CD. Высота прямоугольного треугольника, проведенная к гипотенузе, — есть среднее пропорциональное между проекциями катетов на гипотенузу. Поэто­му или Высота описанной трапеции равна диаметру вписанной окружности, откуда Так как по свой­ству описанного четырехугольника то
Ответ: 18.
Замечание. Полезно запомнить свойство: «Боковая сторона описанной трапеции видна из центра вписанной окружности под углом 90°».

Пример:

Внутри острого угла А взята точка М, из которой опущены перпендикуляры МВ и МС на стороны угла А, Найти величину угла ВАС (рис. 132, а).

Решение:

Так как в четырехугольнике АВМС сумма углов В и С равна 180°, то около него можно описать окружность. Проведем в ней хорду AM (рис. 132, б). Поскольку как вписанные углы, опирающиеся на одну и ту же дугу МС, то и прямоугольный треугольник АМС является равнобедренным, В прямоугольном треугольнике ABM откуда

Окружность, вписанная в треугольник

Пример:

Окружность вписана в треугольник АВС со сторонами ВС = а, АС = Ь, АВ = с. Вывести формулу для нахождения длин отрезков, на которые точки касания окружности со сторонами делят каждую сторону треугольника.

Решение:

Пусть К, М и N — точки касания вписанной окружности соответственно со сторонами АС, АВ и ВС треугольника АВС (рис. 140). Известно, что отрезки касательных, проведенных из одной точки к окружности, равны между собой.
Тогда, если то Так как АВ = AM + МВ, то откуда т. е. . После преобразований получим: Аналогично:
Ответ:

Замечание. Если (рис. 141), то (см. c. 69). Формула радиуса окружности, вписанной в прямоугольный треугольник, — частный случай результата задачи 1.

Описанная трапеция

Пример:

Найти площадь описанной равнобедренной трапеции с основа­ниями а и Ь.

Решение:

Площадь трапеции можно найти по формуле Пусть в трапеции ABCD основания — боковые стороны, — высота (рис. 142). По свойству описанного четырехугольника АВ + CD = AD + ВС, откуда . Известно, что в равнобедренной трапеции (можно опустить высоту СК и убедиться в этом). Из прямоугольного треугольника АНВ получаем: Отсюда Ответ:
Замечание. Площадь описанной равнобедренной трапеции равна произведению среднего арифметического и среднего геометрического ее оснований.

Полезно запомнить!

Для описанной равнобедренной трапеции с основаниями боковой стороной с, высотой h, средней линией и радиусом вписанной окружности (см. рис. 142) справедливы равенства:

Дополнительные свойства и признаки вписанного четырехугольника

Теорема.
Около четырехугольника можно описать окружность тогда и только тогда, когда угол между его стороной и диагональю равен углу между противоположной стороной и другой диагональю.
Рис. 143

1. Если четырехугольник ABCD вписан в окружность (рис. 143), то как вписанные углы, опирающиеся на одну и ту же дугу.

2. Докажем, что если в некотором четырехугольнике ABCD то около него можно описать окружность.
Опишем около треугольника ABD окружность.
В 8-м классе (В. В. Казаков. «Геометрия, 8», с. 186) было доказано свойство:

«Геометрическим местом точек плоскости, из которых данный отрезок AD виден под углом а, является объединение двух дуг окружностей: дуги ABD и ей симметричной относительно прямой AD, исключая точки » . Данное свойство гарантирует, что вершины всех углов, равных углу ABD и лежащих по одну сторону от прямой AD, расположены на дуге ABD окружности. Поэтому окружность, описанная около треугольника ABD, пройдет и через вершину С. Теорема доказана.

Обобщенная теорема Пифагора

В прямоугольном треугольнике проведена высота СН, которая делит его на треугольники АСН и СВН, подобные между собой и подобные треугольнику (рис. 148). Тогда теорема Пифагора может звучать так: сумма квадратов гипотенуз треугольников СВН и АСН равна квадрату гипотенузы треугольника АВС. И вообще, если – соответствующие линейные элемен­ты то можно сформулировать обобщенную теорему Пифагора:

Действительно, из подобия указанных треугольников откуда

Пример:

Пусть (см. рис. 148). Найдем По обобщенной теореме Пифагора отсюда
Ответ: = 39.

Формула Эйлера для окружностей

Для вписанной и описанной окружностей треугольника с радиусами и расстоянием d между их центрами (рис. 149) справедлива формула Эйлера

Проверим справедливость этой формулы на примере равнобедренного треугольника АВС, у которого АВ = ВС = 10, АС = 12 (рис. 150).

Вначале найдем расстояние между центрами указанных окружностей традиционным способом.

Проведем высоту ВН, длина которой будет равна 8 (пифагорова тройка 6, 8, 10). Центры описанной и вписанной окружностей — соответственно точки , и — лежат на прямой ВН (свойство равнобедренного треугольника). Тогда— расстояние между указанными центрами. Для нахождения радиуса описанной окружности воспользуемся формулой где b — боковая сторона, — высота, проведенная к основанию равнобедренного треугольника. Получим Радиус вписанной окружности Так как то Искомое расстояние
А теперь найдем d по формуле Эйлера:

откуда Как видим, формула Эйлера достаточно эффективна.

Запомнить:

  1. Центр описанной окружности треугольника (многоугольника) лежит в точке пересечения серединных перпендикуляров к его сторонам.
  2. Центр вписанной окружности треугольника (многоугольника) лежит в точке пересечения биссектрис его углов.
  3. Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы, а ее радиус равен половине гипотенузы:
  4. Радиус вписанной окружности прямоугольного треугольника находится по формуле
  5. Если четырехугольник вписан в окружность, то суммы его противополож­ных углов равны 180°. И обратно.
  6. Если четырехугольник описан около окружности, то суммы его противопо­ложных сторон равны между собой. И обратно.
  7. Площадь треугольника и описанного многоугольника можно найти по формуле где — полупериметр, — радиус вписанной окружности.

Справочная информация по описанной и вписанной окружности треугольника

Определение. Окружность называют описанной около треугольника, если она проходит через все вершины этого треугольника.

На рисунке 298 изображена окружность, описанная около треугольника. В этом случае также говорят, что треугольник вписан в окружность. Очевидно, что центр описанной окружности треугольника равноудален от всех его вершин. На рисунке 298 точка — центр окружности, описанной около треугольника , поэтому .

Теорема 21.1. Вокруг любого треугольника можно описать окружность.

Доказательство: Для доказательства достаточно показать, что для любого треугольника существует точка , равноудаленная от всех его вершин. Тогда точка будет центром описанной окружности, а отрезки , и — ее радиусами.

На рисунке 299 изображен произвольный треугольник . Проведем серединные перпендикуляры и сторон и соответственно. Пусть точка — точка пересечения этих прямых. Поскольку точка принадлежит серединному перпендикуляру , то . Так как точка принадлежит серединному перпендикуляру , то . Значит, , т. е. точка равноудалена от всех вершин треугольника.

Заметим, что вокруг треугольника можно описать только одну окружность. Это следует из того, что серединные перпендикуляры и (рис. 299) имеют только одну точку пересечения. Следовательно, существует только одна точка, равноудаленная от всех вершин треугольника.

Следствие 1. Три серединных перпендикуляра сторон треугольника пересекаются в одной точке.

Следствие 2. Центр описанной окружности треугольника — это точка пересечения серединных перпендикуляров его сторон.

Определение. Окружность называют вписанной в треугольник, если она касается всех его сторон.

На рисунке 300 изображена окружность, вписанная в треугольник. В этом случае также говорят, что треугольник описан около окружности.

Точка (рис. 300) — центр вписанной окружности треугольника , отрезки , , — радиусы, проведенные в точки касания, . Понятно, что центр вписанной окружности треугольника равноудален от всех его сторон.

Теорема 21.2. В любой треугольник можно вписать окружность.

Доказательство: Для доказательства достаточно показать, что для любого треугольника существует точка , удаленная от каждой его стороны на некоторое расстояние г. Тогда в силу следствия из теоремы 20.4 точка будет центром окружности радиуса г, которая касается сторон .

На рисунке 301 изображен произвольный треугольник . Проведем биссектрисы углов и , — точка их пересечения. Так как точка принадлежит биссектрисе угла , то она равноудалена от сторон и (теорема 19.2). Аналогично, так как точка принадлежит биссектрисе угла , то она равноудалена от сторон и . Следовательно, точка равноудалена от всех сторон треугольника.

Заметим, что в треугольник можно вписать только одну окружность. Это следует из того, что биссектрисы углов и (рис. 301) пересекаются только в одной точке. Следовательно, существует только одна точка, равноудаленная от сторон треугольника.

Следствие 1. Биссектрисы углов треугольника пересекаются в одной точке.

Следствие 2. Центр вписанной окружности треугольника — это точка пересечения его биссектрис.

Докажите, что радиус окружности, вписанной в прямоугольный треугольник, определяется по формуле , где — радиус вписанной окружности, и — катеты, — гипотенуза.

Решение:

В треугольнике (рис. 302) , , , , точка — центр вписанной окружности, , и — точки касания вписанной окружности со сторонами , и соответственно.

Отрезок — радиус окружности, проведенный в точку касания. Тогда .

Так как точка — центр вписанной окружности, то — биссектриса угла и . Тогда — равнобедренный прямоугольный, . Используя свойство отрезков касательных, проведенных к окружности из одной точки, получаем:

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Плоские и пространственные фигуры
  • Взаимное расположение точек и прямых
  • Сравнение и измерение отрезков и углов
  • Первый признак равенства треугольников
  • Треугольники и окружность
  • Площадь треугольника
  • Соотношения между сторонами и углами произвольного треугольника
  • Окружность и круг

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

[spoiler title=”источники:”]

13
Апр 2012

15 Задание (2022) (C4)ВИДЕОУРОКИ

В этой статье я хочу привести несколько полезных формул, которые помогают легко найти радиус вписанной и описанной окружности, и показать решение задачи из задания С4 с использованием этих формул.

1. Площадь треугольника равна произведению его полупериметра на радиус вписанной окружности:

 S=pr. где p={a+b+c}/2, r – радиус вписанной окружности.

Отсюда: r=S/p

То есть радиус вписанной окружности равен отношению площади треугольника к его полупериметру.

Для прямоугольного треугольника p={a+b+c}/2, S={ab}/2, тогда

r={ab}/{a+b+c}

где a и b – катеты треугольника, а c – гипотенуза.

2. Площадь треугольника равна отношению произведения его сторон к учетверенному радиусу описанной окружности:

S={abc}/{4R}

Отсюда:

R={abc}/{4S}

Радиус  окружности, описанной около треугольника, равен отношению произведения сторон треугольника к его учетверенной площади.

3. По теореме синусов, отношение стороны треугольника к синусу противолежащего угла равно двум радиусам описанной окружности:

a/{sinA}=b/{sinB}=c/{sinC}=2R

Отсюда:

R=a/{2sinA}=b/{2sinB}=c/{2sinC}

Радиус  окружности, описанной около треугольника, равен отношению стороны треугольника к удвоенному синусу противолежащего угла.

Предлагаю вам посмотреть ВИДЕОРЕШЕНИЕ задачи:

Угол при основании равнобедренного треугольника  равен varphi. Найдите отношение радиуса вписанной в этот треугольник окружности к радиусу описанной окружности:

И.В. Фельдман, репетитор по математике.

Радиус вписанной и описанной окружности: полезные формулы. Задание С4

|
Отзывов (13)
| Метки: решение задания С4

Лучший ответ

Евгений Фёдоров

Гений

(57858)


12 лет назад

I, r – центр и радиус вписанной
O, R – центр и радиус описанной

Формула Эйлера
IO² = R² – 2Rr

Евгений ФёдоровГений (57858)

12 лет назад

Пока ещё умом во мраке он блуждает,
Но истины лучом он будет озарён;
Сажая деревцо, садовник уже знает,
Какой цветок и плод с него получит он.

Гете. Фауст.

Сurly
Знаток
(447)
красивые стихи

Остальные ответы

Семен Аркадьевич

Высший разум

(340149)


12 лет назад

Если треугольник произвольный, то воспользуйтесь формулами площадей через радиус описанной и вписанной окружностей. Или для описанной – теоремой синусов. Если равносторонний – 2:1

Вопросы в агент.

Настя

Профи

(555)


6 лет назад

Тоже ищу, но никак

Окружность вписана в n-угольник, если она касается всех сторон этого n-угольника (рис. 8.106). 

Окружность описана около n-угольника, если все вершины n-угольника лежат на окружности (рис. 8.107). 

Свойства вписанной окружности

1. Окружность можно вписать в любой треугольник.

2. Окружность можно вписать в четырехугольник, если суммы длин его противолежащих сторон равны. 

Например, на рисунке 8.106 LaTeX formula: AD+BC=AB+DC

Так, окружность можно вписать в квадрат и в ромб, но нельзя вписать в параллелограмм и в прямоугольник.

Свойства описанной окружности

1. Окружность можно описать около любого треугольника.

2. Окружность можно описать около четырехугольника, если суммы его противолежащих углов равны. 

Например, на рисунке 8.107 LaTeX formula: angle A+angle C=angle B+angle D=180^{circ}

Так, окружность можно описать около квадрата и прямоугольника, но нельзя описать около параллелограмма и ромба.

Расположение центров окружностей, описанных около треугольника:

1) центр окружности расположен на пересечении серединных перпендикуляров к сторонам треугольника;

2) если треугольник остроугольный, то центр окружности расположен в этом треугольнике: 

а) в равностороннем треугольнике центром окружности является точка пересечения высот, биссектрис, медиан треугольника (центры вписанной и описанной окружностей совпадают (рис. 8.108); 

б) в равнобедренном треугольнике центр окружности расположен на биссектрисе, проведенной из вершины треугольника к его основанию (рис. 8.109);

3) если треугольник прямоугольный, то центр окружности расположен на середине гипотенузы (рис. 8.110);

4) если треугольник тупоугольный, то центр окружности расположен вне треугольника (рис. 8.111).

Расположение центров окружностей, вписанных в треугольник:

1) центр окружности, вписанной в треугольник, расположен в этом треугольнике (рис. 8.112 – 8.115);

2) центром окружности является точка пересечения биссектрис треугольника;

3) в равностороннем треугольнике центром окружности является точка пересечения высот, биссектрис, медиан треугольника. 

Формулы для вычисления радиусов вписанной и описанной окружностей

Радиус окружности, описанной около многоугольника, как правило, обозначают LaTeX formula: R, а радиус окружности, вписанной в многоугольник, обозначают LaTeX formula: r

1) для равностороннего треугольника со стороной LaTeX formula: a:

LaTeX formula: R=frac{a}{sqrt{3}}, (8.34)

LaTeX formula: r=frac{a}{2sqrt{3}}; (8.35)

2) для произвольного треугольника со сторонами LaTeX formula: a, b, c и площадью LaTeX formula: S

LaTeX formula: R=frac{abc}{4S}, (8.36)

LaTeX formula: r=frac{2S}{a+b+c}; (8.37)

3) для прямоугольного треугольника с катетами LaTeX formula: a, b и гипотенузой LaTeX formula: c

LaTeX formula: R=frac{c}{2}, (8.38)

LaTeX formula: r=frac{a+b-c}{2}; (8.39)

4) для квадрата со стороной LaTeX formula: a и диагональю LaTeX formula: d

LaTeX formula: R=frac{d}{2}, (8.40)

LaTeX formula: r=frac{a}{2}; (8.41)

5) для прямоугольника с диагональю LaTeX formula: d

LaTeX formula: R=frac{d}{2}; (8.42)

6) для ромба с высотой LaTeX formula: h

LaTeX formula: r=frac{h}{2}; (8.43)

7) для трапеции с высотой LaTeX formula: h, при условии, что в трапецию можно вписать окружность: 

LaTeX formula: r=frac{h}{2}. (8.44)

Если около трапеции можно описать окружность, то, проведя диагональ трапеции и рассмотрев один из полученных треугольников со сторонами LaTeX formula: a, b, c и площадью LaTeX formula: S, по формуле LaTeX formula: R=frac{abc}{4S} найдем радиус окружности описанной около треугольника, а значит и около трапеции (рис. 8.116);

8) для правильного шестиугольника со стороной LaTeX formula: a

LaTeX formula: R=a, (8.45)

LaTeX formula: r=frac{asqrt{3}}{2}. (8.46)

Правильный шестиугольник состоит из шести правильных треугольников (рис. 8.117) и точка LaTeX formula: O является центром вписанной в него и описанной около него окружностей. 

Пример 1. Найдите сторону квадрата, если известно, что разность между площадью квадрата и площадью вписанного в него круга равна LaTeX formula: 2pi -8.

Решение. Так как площадь круга радиуса LaTeX formula: r находят по формуле 8.32, а площадь квадрата со стороной LaTeX formula: a находят по формуле LaTeX formula: S=a^{2}, то согласно условию задачи запишем: LaTeX formula: S_{square }-S_{bigcirc }=12LaTeX formula: pi r^{2}-a^{2}=2pi -8.

А так как LaTeX formula: r=frac{a}{2}, то LaTeX formula: frac{pi a^{2}}{4}-a^{2}=2pi -8LaTeX formula: pi a^{2}-4a^{2}=4(2pi -8)LaTeX formula: a^{2}(pi -4)=8(pi -4)LaTeX formula: a^{2}=8LaTeX formula: a=2sqrt{2}.

Ответ: LaTeX formula: 2sqrt{2}.

Пример 2. Площадь прямоугольника равна 4, а разность длин его смежных сторон рана 3. Найдите радиус окружности, описанной около этого прямоугольника. 

Решение. Площадь прямоугольника со смежными сторонами LaTeX formula: a и LaTeX formula: b находят по формуле LaTeX formula: S=ab.

Пусть LaTeX formula: b=x, тогда LaTeX formula: a=x+3 (рис. 8.118).

Получим: LaTeX formula: x(x+3)=4LaTeX formula: x^{2}+3x-4=0, откуда LaTeX formula: x=1, следовательно, LaTeX formula: b=1LaTeX formula: a=4.

По теореме Пифагора найдем диагональ прямоугольника: LaTeX formula: d^{2}=1+16=17LaTeX formula: d=sqrt{17}. Согласно формуле 8.42 LaTeX formula: R=0,5sqrt{17}.

ОтветLaTeX formula: 0,5sqrt{17}.

Пример 3. Найдите радиус окружности, вписанной в ромб, если его диагонали равны 6 и 8. 

Решение. По теореме Пифагора найдем сторону ромба (рис. 8.119):

LaTeX formula: a^{2}=left (frac{d_{1}}{2} right )^{2}+left ( frac{d_{2}}{2} right )^{2}LaTeX formula: a^{2}=3^{2}+4^{2}LaTeX formula: a=5.

По формуле LaTeX formula: S=frac{1}{2}d_{1}d_{2} найдем площадь ромба: LaTeX formula: S=frac{1}{2}cdot 6cdot 8=24.

Но площадь ромба можно найти и по формуле LaTeX formula: S=ah, а так как LaTeX formula: h=2r, то LaTeX formula: S=2ar. Тогда LaTeX formula: 24=10r, а LaTeX formula: r=2,4.

Ответ: 2,4.

Пример 4. Найдите длину окружности, вписанной в правильный треугольник, если его площадь равна LaTeX formula: 4sqrt{3}.

Решение. Площадь правильного треугольника со стороной LaTeX formula: a находят по формуле: LaTeX formula: S=frac{sqrt{3}a^{2}}{4}.

Зная площадь треугольника, найдем его сторону: LaTeX formula: frac{sqrt{3}a^{2}}{4}=4sqrt{3}LaTeX formula: a^{2}=16LaTeX formula: a=4

По формуле 8.35 найдем радиус окружности, вписанной в этот треугольник: LaTeX formula: r=frac{4}{2sqrt{3}}=frac{2}{sqrt{3}}.

По формуле 8.30 найдем длину окружности: LaTeX formula: C=frac{4pi }{sqrt{3}}.

Ответ: LaTeX formula: frac{4sqrt{3}pi }{3}.

Пример 5. Радиус окружности, описанной около равнобедренного прямоугольного треугольника равен 2. Найдите радиус окружности, вписанной в этот треугольник. 

Решение. Радиус окружности, описанной около прямоугольного треугольника с гипотенузой LaTeX formula: c находят по формуле 8.38. Тогда LaTeX formula: c=2R=4

Так как треугольник равнобедренный, то его катеты LaTeX formula: a и LaTeX formula: b раны и по теореме Пифагора LaTeX formula: c^{2}=2a^{2}, откуда LaTeX formula: a=frac{C}{sqrt{2}}LaTeX formula: a=frac{4}{sqrt{2}}=2sqrt{2}

Радиус окружности, вписанной в прямоугольный треугольник, находят по формуле 8.39. В нашем случае LaTeX formula: r=frac{2a-c}{2}LaTeX formula: r=frac{4sqrt{2}-4}{2}=2sqrt{2}-2.

Ответ: LaTeX formula: 2sqrt{2}-2.

Пример 6. Один из катетов прямоугольного треугольника равен 8, а радиус окружности, вписанной в треугольник равен 3. Найдите площадь треугольника.

Решение. Рассмотрим прямоугольный треугольник LaTeX formula: ABC. Точка LaTeX formula: O является центром вписанной в треугольник окружности (рис. 8.120).

Так как радиусы вписанной в треугольник окружности перпендикулярны сторонам треугольника в точках касания, то имеем квадрат LaTeX formula: ANOP со стороной 3. Если катет LaTeX formula: AC = 8, а сторона квадрата LaTeX formula: AP=3, то LaTeX formula: PC=5.

Пусть отрезок LaTeX formula: NB = x. По свойству касательных LaTeX formula: CP=CK=5 и LaTeX formula: BN=BK=x.

Тогда по теореме Пифагора LaTeX formula: BC^{2}=AC^{2}+AB^{2} или LaTeX formula: 25+10x+x^{2}=64+9+6x+x^{2}, откуда LaTeX formula: 4x=48LaTeX formula: x=12.

Найдем катет LaTeX formula: ABLaTeX formula: AB=AN+BN=3+12=15.

Найдем площадь треугольника: LaTeX formula: S_{Delta ABC}=frac{1}{2}cdot ACcdot ABLaTeX formula: S_{Delta ABC}=frac{1}{2}cdot 8cdot 15=60.

Ответ: 60.

Пример 7. Окружность, центр которой расположен на большей стороне треугольника, делит эту сторону на отрезки 4 и 8 и касается двух других его сторон, длина одной из которых равна 6. Найдите радиус окружности, вписанной в этот треугольник (рис.8.121).

Решение. Согласно свойству биссектрисы треугольника запишем: LaTeX formula: frac{6}{4}=frac{x}{8}, откуда LaTeX formula: x=12

Радиус окружности, вписанной в треугольник, найдем по формуле 8.37.

В свою очередь по формуле Герона LaTeX formula: S=sqrt{p(p-a)(p-b)(p-c)} найдем площадь треугольника. Так как LaTeX formula: p=(6+12+12):2=15, то LaTeX formula: S=sqrt{15cdot9cdot3cdot3}=9sqrt{15}.

Тогда LaTeX formula: r=frac{18sqrt{15}}{30}=frac{3sqrt{15}}{5}=0,6sqrt{15}.

Ответ:  LaTeX formula: 0,6sqrt{15}.

Пример 8. В прямоугольную трапецию вписана окружность радиуса 3, которая в точке касания делит ее боковую сторону на отрезки 4 и 5. Найдите площадь трапеции. 

Решение. Согласно условию задачи и рисунку 8.122, запишем: LaTeX formula: CD=9LaTeX formula: h=2r=AB=6.

По свойству четырехугольника, описанного около окружности, получим: LaTeX formula: AB+DC=BC+ADLaTeX formula: 6+9=BC+ADLaTeX formula: BC+AD = 15.

Согласно формуле LaTeX formula: S=frac{1}{2}(a+b)h найдем площадь трапеции: LaTeX formula: S=frac{1}{2}cdot 15cdot 6=45.

Ответ: 45.

Пример 9. Длины оснований равнобедренной трапеции относятся как LaTeX formula: 5:12, а длина ее высоты равна 17. Вычислите площадь круга, описанного около трапеции, если известно, что средняя линия трапеции равна ее высоте.

Решение. Рассмотрим равнобедренную трапецию LaTeX formula: ABCD (рис. 8.123) и проведем диагональ трапеции LaTeX formula: BD.

Радиус окружности, описанной около треугольника LaTeX formula: ABD, найдем по формуле 8.36:

LaTeX formula: R=frac{ABcdot BDcdot AD}{4cdot S_{triangle ABD}}=frac{ABcdot BDcdot AD}{4cdot frac{1}{2}cdot ADcdot BN}LaTeX formula: R=frac{ABcdot BD}{2cdot BN}.

Зная, что LaTeX formula: BC:AD=5:12 и вводя коэффициент пропорциональности LaTeX formula: k, получим LaTeX formula: BC=5kLaTeX formula: AD=12k.

Так как длина средней линии трапеции равна высоте трапеции, то LaTeX formula: frac{1}{2}(5k +12k)=17, откуда LaTeX formula: k=2. Тогда LaTeX formula: BC = 10, LaTeX formula: AD = 24.

Поскольку четырехугольник LaTeX formula: BCKN является прямоугольником, то LaTeX formula: NK = 10, тогда LaTeX formula: AN=KD=frac{1}{2}(24-10)=7.

Согласно теореме Пифагора запишем:

LaTeX formula: AB=sqrt{AN^{2}+BN^{2}}LaTeX formula: AB=sqrt{17^{2}+7^{2}}=sqrt{338};

LaTeX formula: BD=sqrt{BN^{2}+ND^{2}}LaTeX formula: BD=sqrt{17^{2}+17^{2}}=17sqrt{2}.

По формуле 8.36 найдем радиус окружности, описанной около треугольника LaTeX formula: ABD, а, следовательно, и около трапеции LaTeX formula: ABCD:

LaTeX formula: R=frac{sqrt{338}cdot 17sqrt{2}}{2cdot 17}=frac{2cdot 13}{2}=13.

Согласно формуле 8.32 найдем площадь круга: LaTeX formula: S=169pi.

Ответ: LaTeX formula: 169pi.

Пример 10. В правильный шестиугольник вписана окружность и около него описана окружность. Найдите площадь образовавшегося кольца, если сторона шестиугольника равна LaTeX formula: sqrt{3}.

Решение. По формуле 8.45 найдем радиус окружности, описанной около правильного шестиугольника: LaTeX formula: R=a=sqrt{3}

По формуле 8.46 найдем радиус окружности, вписанной в этот шестиугольник. Так как LaTeX formula: a=sqrt{3}, то LaTeX formula: r=frac{3}{2}

Площадь круга находят по формуле 8.32. Тогда LaTeX formula: S_{1}=3pi, а LaTeX formula: S_{2}=frac{9pi}{4}.

Найдем площадь кольца: LaTeX formula: S_{K}=S_{1}-S_{2}LaTeX formula: S_{K}=3pi -frac{9pi }{4}=frac{3pi }{4}.

Ответ: LaTeX formula: 0,75pi.

1. В любой треугольник можно вписать окружность и около любого треугольника можно описать окружность.

2. Не во всякий четырехугольник можно вписать окружность. Например, окружность можно вписать в ромб и квадрат, но нельзя вписать в параллелограмм и прямоугольник.

3. Не около всякого четырехугольника можно описать окружность. Например, окружность можно описать около квадрата и прямоугольника, но нельзя описать около параллелограмма и ромба.

4. Не во всякую трапецию можно писать окружность и не около всякой трапеции можно описать окружность. Описать окружность можно только около равнобедренной трапеции. 

5. Если многоугольник правильный (все его стороны и все его углы равны между собой), то в него всегда можно вписать окружность и около него всегда можно описать окружность. Причем, центры этих окружностей совпадают.

Длину окружности радиуса LaTeX formula: R находят по формуле: 

LaTeX formula: C=2pi R. (8.30)

Площадь круга радиуса LaTeX formula: R находят по формуле: 

LaTeX formula: S=pi R^{2}. (8.32)

Все про вписанные и описанные окружности

Содержание:

  • Вписанные и описанные окружности
  • Теоремы вписанной и описанной окружности, свойства
  • Свойства углов
  • Примеры задач на понятия вписанной и описанной окружности

Вписанные и описанные окружности

Окружность, описанная около выпуклого многоугольника, представляет собой такую окружность, которая касается каждой из вершин этого многоугольника.

Вписанным называют многоугольник, около которого описана окружность.

Рассмотрим наглядный пример:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Рассмотрим наглядный пример

Источник: www.treugolniki.ru

На рисунке изображена окружность с центром, обозначенным как О. Радиус этой окружности равен R. Она описана около многоугольника с пятью углами ABCDE, который по определению является вписанным. Заметим, что в точке О пересекаются серединные перпендикуляры к граням ABCD, то есть:

(AP = PE,OP bot AE),

(AM = MB,OM bot AB),

(BN = NC,ON bot BC),

(CL = LD,OL bot CD),

(DK = KE,OK bot DE).

Здесь точка О расположена на одинаковом расстоянии от вершин пятиугольника. Рассмотреть это можно на рисунке:

Здесь точка О расположена на одинаковом расстоянии от вершин пятиугольника.

Источник: www.treugolniki.ru

Точка О удалена от каждой из вершин пятиугольника на расстояние, которое равно радиусу описанной окружности:

OA=OB=OC=OD=OE=R.

Заметим, что около любого треугольника, допустимо описать окружность.

Окружность, вписанная в выпуклый многоугольник, представляет собой такую окружность, которая проходит через все стороны рассматриваемого многоугольника, а каждая из его сторон является касательной к вписанной окружности.

Описанным многоугольником называют такой многоугольник, в который вписана окружность.

Рассмотрим пример вписанной в многоугольник окружности:

Рассмотрим пример вписанной в многоугольник окружности

Источник: www.treugolniki.ru

Центр окружности обозначен точкой О, а радиус равен r. Данная окружность вписана в многоугольник с пятью углами ABCDE, который по определению является описанным. В точке О пересекаются биссектрисы геометрической фигуры ABCD, то есть:

(angle EAO = angle BAO),

(angle ABO = angle CBO),

(angle BCO = angle DCO),

(angle CDO = angle EDO),

(angle AEO = angle DEO).

Точка О находится на одинаковом расстоянии от каждой из точек касания

Источник: www.treugolniki.ru

Точка О находится на одинаковом расстоянии от каждой из точек касания. Точка О удалена от каждой стороны на величину радиуса:

OK=OL=ON=OM=OP=r.

Вершины многоугольника ABCDE расположены на одинаковом расстоянии от точек касания, которые им соответствуют:

AM=AN,

BN=BL,

CL=CK,

DK=DP,

EP=EM.

Вписанная в какой-то описанный многоугольник окружность имеет радиус, равный:

(r = frac{S}{p})

Здесь S обозначает величину площади, которой характеризуется многоугольник, p является полупериметром этого многоугольника.

Соотношения радиусов вписанной и описанной окружности можно выразить с помощью формулы Эйлера. Таким образом, при d, равном расстоянию между центральными точками вписанной и описанной окружностей, имеющими радиусы r и R соответственно, справедливо следующее соотношение:

(d^{2}=R^{2}-2Rr.)

Существует несколько формул, согласно которым можно сформулировать отношения и произведения радиусов рассматриваемых окружностей:

({frac {r}{R}}={frac {4S^{2}}{pabc}}=cos alpha +cos beta +cos gamma -1,)

(2Rr={frac {abc}{a+b+c}},)

({frac {r}{R}}=4sin {frac {alpha }{2}}sin {frac {beta }{2}}sin {frac {gamma }{2}}=cos alpha +cos beta +cos gamma -1.)

Здесь p обозначает полупериметр треугольника, а S является его площадью.

Заметим, что если опустить перпендикуляры к сторонам треугольника в точки касания вписанных окружностей, то эти прямые будут обладать единственной точкой пересечения. Данная точка симметрична центру вписанной окружности по отношению к центральной точке описанной окружности.

Теоремы вписанной и описанной окружности, свойства

Вписанная в многоугольник окружность касается каждой из его сторон. Ее центральная точка находится во внутренней области многоугольника. В качестве примера приведем окружность и два многоугольника:

Рис 1

Источник: budu5.com

Здесь четырехугольник АВСD является описанным около окружности, центр которой обозначен точкой О. Четырехугольник АЕКD нельзя назвать описанным, так как одна из его сторон ЕК не является касательной к окружности.

Теорема 1

В какой-либо треугольник допустимо вписать окружность.

Докажем данную теорему на примере некого треугольника АВС. Для этого построим биссектрисы углов А, В и С, пересекающиеся в точке О, что является следствием свойства биссектрис. Опустим из центра О перпендикуляры к сторонам АВ, ВС и СА и обозначим их ОК, ОL и ОМ.

В какой-либо треугольник допустимо вписать окружность

Источник: budu5.com

Заметим, что центр О находится на одинаковом расстоянии от сторон треугольника АВС по свойству биссектрис. Таким образом:

ОК = ОL = ОМ

В результате, окружность с центральной точкой О и радиусом, равным ОК, обладает точками К, L и М. Стороны треугольника АВС являются касательными к данной окружности, а точки касания соответствуют К, L, М, исходя из их перпендикулярности радиусам ОК, ОL и ОМ.

Следовательно, окружность с центром О и радиусом, равным ОК, вписана в треугольник АВС. В итоге теорема доказана.

Из рассматриваемой теоремы о вписанной окружности вытекает несколько следствий. Рассмотрим их детально.

Следствие 1

В какой-либо треугольник можно вписать лишь одну окружность.

В качестве доказательства этого утверждения, предположим, что в какой-то треугольник допустимо вписать две окружности. В таком случае их центральные точки расположены на одинаковом расстоянии от граней треугольника и в результате совпадают с центральной точкой О, в которой пересекаются биссектрисы углов треугольника.

Радиус окружностей можно вычислить, как расстояние от точки О до сторон треугольника. Можно сделать вывод о том, что рассматриваемые окружности совпадают, и в треугольник допустимо вписать единственную окружность.

Следствие 2

Площадь треугольника определяется, как его полупериметр, умноженный на радиус окружности, которая вписана в искомый треугольник.

Вернемся к последнему рисунку. Треугольник АВС можно условно поделить на три треугольника:

АВО;

ВСО;

САО.

Предположим, что АВ, ВС и АС являются основаниями перечисленных треугольников. В таком случае:

ОК = ОL = ОМ = r

Здесь r обозначает радиус окружности с центральной точкой О. Тогда:

Здесь r обозначает радиус окружности с центральной точкой О

Исходя из свойства площадей:

Исходя из свойства площадей

Тогда АВ + ВС + АС = Р, то есть периметру треугольника. Следствие доказано.

Следствие 3

Какую-либо окружность можно вписать не в каждый четырехугольник.

В качестве примера рассмотрим четырехугольник, являющийся прямоугольником:

Какую-либо окружность можно вписать не в каждый четырехугольник

Источник: budu5.com

Следствие 4

В какой-либо четырехугольник можно вписать окружность при условии, что суммы его противоположных граней равны.

Рассмотрим следующий четырехугольник и вписанную в него окружность:

Рассмотрим следующий четырехугольник и вписанную в него окружность

Источник: budu5.com

Отрезки касательных к окружности, которые проведены из одной точки, являются равными друг другу. В таком случае:

АВ + CD = a + b + c + d

ВС + АD = a + b + c + d

Тогда:

АВ + CD = ВС + АD

Следствие 5

В том случае, когда выпуклый четырехугольник обладает противоположными сторонами, суммы которых попарно равны, в данный четырехугольник можно вписать окружность.

Предположим, что в некотором четырехугольнике АВСD:

АВ + СD = ВС + АD

Построим окружность:

Построим окружность

Источник: budu5.com

Когда окружность касается также стороны CD, она будет вписана в четырехугольник. В противном случае CD является секущей, либо не обладает общими точками с окружностью. Построим параллельную ей прямую.

Когда окружность касается также стороны CD

Источник: budu5.com

Заметим, что АВС1D1 является описанным четырехугольником, поэтому:

АВ + С1D1 = ВС1 + AD1

С другой стороны:

ВС1 = ВС – С1С

АD1 = АD – D1D

В результате:

С1D1 + С1С + D1D = ВС + АD – АВ

Выражение слева равно CD, таким образом:

С1D1 + С1С + D1D = СD

Получается, что какая-то сторона в четырехугольнике равна трем другим сторонам в сумме. Это противоречит свойству четырехугольника и является ошибочным утверждением. Аналогичным способом можно представить доказательства того, что CD не является секущей к окружности. Тогда рассматриваемая окружность касается стороны CD.

Вписанная окружность обладает следующими свойствами:

  1. Биссектрисы внутренних углов описанного многоугольника пересекаются в центре окружности, которая вписана в данный многоугольник.
  2. В какой-либо треугольник допустимо вписать не более одной окружности.
  3. Вписанная окружность имеет радиус, который вычисляется как отношение площади описанного треугольника к его полупериметру.
  4. Вписать окружность можно исключительно в выпуклый четырехугольник.
  5. Допустимо вписать окружность в выпуклый многоугольник с четырьмя углами при условии, что суммы его противоположных сторон одинаковы.

Вписанный в окружность многоугольник обладает вершинами, которые лежат на описанной около него окружности. В качестве примера рассмотрим рисунок:

В качестве примера рассмотрим рисунок

Источник: budu5.com

Заметим, что по определению четырехугольник АВСD является вписанным в окружность, центр которой находится в точке О. Четырехугольник АЕСD нельзя назвать вписанным, так как его вершина Е не расположена на окружности.

Теорема 2

Около какого-либо треугольника допустимо описать окружность.

В качестве доказательства рассмотрим треугольник АВС. Построим серединные перпендикуляры к сторонам рассматриваемого треугольника. Эти прямые имеют точку пересечения, совпадающую с центром окружности О. Соединим ее с точками А, В, С.

Около какого-либо треугольника допустимо описать окружность

Источник: budu5.com

Точка О расположена на одинаковом расстоянии от А, В и С:

ОА = ОВ = ОС

Тогда окружность с центром О пересекает каждую из вершин построенного треугольника. В результате эта окружность описана около треугольника АВС.

Следствие 6

Около какого-либо треугольника можно описать не более одной окружности.

Если предположить обратное, то центры описанных окружностей будут находиться на одинаковом расстоянии от вершин вписанного треугольника. Радиус каждой из таких окружностей совпадет с расстоянием от точки О, в которой пересекаются серединные перпендикуляры к сторонам треугольника, до вершин. В результате рассматриваемые окружности совпадают.

Следствие 7

Не в каждом случае около многоугольника с четырьмя углами можно описать окружность.

В качестве примера рассмотрим следующий рисунок:

В качестве примера рассмотрим следующий рисунок:

Источник: budu5.com

Следствие 8

В каком-либо вписанном четырехугольнике противоположные углы в сумме составляют 180°.

Приведем пример вписанного четырехугольника ABCD:

Приведем пример вписанного четырехугольника ABCD

Источник: budu5.com

В данном случае:

(angle В = ½ smile АDС)

(angle D = ½ smile АВС)

(angle В + angle D = ½ smile АDС + ½ smile АВС = ½ ( smile АDС + smile АВС))

(smile АDС + smile АВС = 360circ)

(angle В + angle D = 1/2times 360circ = 180circ)

Обратное утверждение в математике звучит так: когда в четырехугольнике противоположные углы в сумме составляют 180°, около него можно описать окружность.

Окружность, которая описана около треугольника, обладает следующими свойствами:

  1. Вокруг какого-либо треугольника допустимо описать окружность, причем не более одной.
  2. Если около прямоугольного треугольника описана окружность, то ее центр расположен на середине гипотенузы.
  3. Радиус описанной около треугольника окружности определяется по формулам:

(R=frac{abc}{4S})

(R=frac{AB}{2sin angle C}=frac{AC}{2sin angle B}=frac{BC}{2sin angle A}).

Окружность, которая описана около четырехугольника, обладает следующими свойствами:

  1. Вокруг какого-то четырехугольника допустимо описать окружность, когда его противоположные углы в сумме составляют 180°.
  2. Результат умножения диагоналей вписанного четырехугольника равен сумме произведений противоположных сторон.
  3. Правило Брахмагупты для расчета площади вписанного четырехугольника:

(S=sqrt{(p-a)(p-b)(p-c)(p-d)}).

Свойства углов

Вписанный угол в окружность является углом с вершиной, расположенной на этой окружности, и сторонами, пересекающими окружность.

Свойства углов

 Вписанные углы обладают следующими свойствами:

  1. Вписанный угол равен половине дуги, на которую он опирается.
  2. Вписанный угол равен половине центрального угла, опирающегося на аналогичную дугу: (angle BAC=frac{1}{2}angle BOC)
  3. Если вписанные углы опираются на одинаковую дугу, то данные углы являются равными.
  4. Если вписанный угол опирается на диаметр окружности, то его градусная мера составляет 90°.
  5. Каждая из пар вписанных углов, опирающихся на одинаковую хорду и имеющих вершины, расположенные с разных сторон от хорды, в сумме дают 180°.

Описанным углом в геометрии называют такой угол, который образован с помощью пары касательных, выходящих из одной и той же точки.

Главное свойство (признак) заключается в том, что описанный угол равен половине разности дуг, которые заключены между сторонами этого треугольника:

(angle ACB = ½ (smile АMB – smile АLB))

Описанным углом в геометрии

Источник: fizmat.by

Примеры задач на понятия вписанной и описанной окружности

Задача 1

Имеется некий равнобедренный (но не равносторонний) треугольник с гипотенузой А=6 см. В данный треугольник вписана окружность, радиус которой требуется вычислить с описанием решения.

Решение

Воспользуемся формулой:

(r=frac{S}{p})

Заметим, что стороны в равнобедренном треугольнике равны:

AB=BC

Введем переменную х для обозначения этих сторон. Применим теорему Пифагора, чтобы вычислить стороны:

({{x}^{2}}+{{x}^{2}}=36)

Тогда:

(x=3sqrt{2})

(AB=BC=3sqrt{2})

Вычислим площадь прямоугольного треугольника:

(S=frac{1}{2}ABcdot BC=9 {{cm}^{2}})

Рассчитаем периметр:

(p=frac{AB+BC+AC}{2}=frac{3sqrt{2}+3sqrt{2}+6}{2}=3sqrt{2}+3=3(sqrt{2}+1) cm)

Далее вычислим радиус:

(r=frac{S}{p}=frac{9}{3(sqrt{2}+1)}=frac{3}{sqrt{2}+1} cm)

Ответ: (r=frac{3}{sqrt{2}+1} см)

Задача 2

В многоугольник с четырьмя углами ABCD вписана окружность. Требуется вычислить стороны CD и AD, если CD больше по сравнению с AD в 3 раза, при этом AB=4 см, BC=10 см.

Решение

По определению описанного четырехугольника суммы его противоположных сторон равны:

AB+CD=BC+AD

Введем переменную х и обозначим с ее помощью AD. Тогда:

CD=3x

Таким образом:

4+3x=10+x

x=3

В результате:

(AD=3 cm, quad CD=3cdot 3=9 cm)

Ответ: AD=3 см, CD=9 см

Задача 3

Дан прямоугольный треугольник АВС с катетами: AB=3 см, AC=4 см.

Около данного треугольника описана окружность, радиус которой требуется определить.

Решение

Определим гипотенузу по теореме Пифагора и свойствам описанной окружности:

(BC=sqrt{A{{B}^{2}}+A{{C}^{2}}}=sqrt{9+16}=5 cm)

В результате:

(R=frac{1}{2}BC=2,5 см.)

Ответ: R=2,5 см.

Задача 4

Дан четырехугольник ABCD, в котором угол А меньше по сравнению с углом В в 2 раза, угол С больше, чем угол D в 3 раза. Около данного четырехугольника описана окружность. Необходимо вычислить, чему равны углы этого четырехугольника.

Решение

Представим, что:

(angle A=x)

В таком случае:

(angle B=2x)

(angle D=y)

Таким образом:

(angle C=3y)

Сумма противоположных углов вписанного четырехугольника равна 180°:

(begin{cases} & x+3y=180, \ & 2x+y=180. \ end{cases})

Решениями системы являются:

(x=72, quad y=36.)

В результате:

(angle A={{72}^{circ}}, angle B=2cdot {{72}^{circ}}={{144}^{circ}}, angle D={{36}^{circ}}, text{a} angle C=3cdot {{36}^{circ}}={{108}^{circ}})

Ответ: (angle A={{72}^{circ}}, angle B={{144}^{circ}}, angle C={{108}^{circ}}, angle D={{36}^{circ}})

Задача 5

Построена окружность, в которой проведена хорда АВ. С разных сторон от нее отметили точки C и D, соединенные с концами хорды. Образованный угол ACB больше по сравнению с углом ADB в 2 раза. Требуется вычислить, чему равны данные углы.

Решение

Введем обозначение угла:

(angle ADB=x)

В таком случае:

(angle ACB=2x)

Тогда:

(x+2x=180)

(x=60)

В результате:

(angle ADB={{60}^{circ}}, text{a} angle ACB={{120}^{circ}})

Ответ: (angle ADB={{60}^{circ}}, angle ACB={{120}^{circ}})

Задача 6

Имеется пара вписанных в окружность треугольников ABC и ABD. Угол D составляет 35°, а сторона BC пересекает центральную точку окружности. Нужно определить, чему равен угол АВС.

Решение

Выполним вычисления:

(angle C=angle D={{35}^{circ}})

(angle ABC={{180}^{circ}}-angle A-angle C={{180}^{circ}}-{{90}^{circ}}-{{35}^{circ}}={{55}^{circ}})

Ответ: (angle ABC={{55}^{circ}})

Добавить комментарий